JP2020044461A - Denitrification device - Google Patents

Denitrification device Download PDF

Info

Publication number
JP2020044461A
JP2020044461A JP2018172372A JP2018172372A JP2020044461A JP 2020044461 A JP2020044461 A JP 2020044461A JP 2018172372 A JP2018172372 A JP 2018172372A JP 2018172372 A JP2018172372 A JP 2018172372A JP 2020044461 A JP2020044461 A JP 2020044461A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
catalyst layer
flow passage
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018172372A
Other languages
Japanese (ja)
Inventor
谷口 幸久
Yukihisa Taniguchi
幸久 谷口
勝美 矢野
Katsumi Yano
勝美 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2018172372A priority Critical patent/JP2020044461A/en
Priority to TW108132947A priority patent/TWI738055B/en
Priority to PCT/JP2019/036135 priority patent/WO2020054853A1/en
Priority to CN201980058098.7A priority patent/CN112638506A/en
Publication of JP2020044461A publication Critical patent/JP2020044461A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Chimneys And Flues (AREA)

Abstract

To suppress adhesion and accumulation of acidic ammonium sulfate to a device on the downstream side of a denitrification device and to reduce carbon monoxide in exhaust gas, while suppressing an increase in cost.MEANS FOR SOLVING THE PROBLEM: A first catalyst layer 11 is arranged on a gas flow passage 15, and carries a first catalyst for reducing and removing a nitride oxide in exhaust gas by using ammonia as a reducing agent. A second catalyst layer 12 is arranged on one gas flow passage 15 of at least one of the upstream or downstream of the first catalyst layer 11, and reduces and removes the nitride oxide in the exhaust gas by using carbon monoxide as a reducing agent. The second catalyst layer 12 has a catalyst-carrying region 21 which is arranged in at least four corner parts of a flow channel cross section of the gas flow passage 15 and carries a second catalyst, and a catalyst non-carrying region 22 which is arranged in the center part of the flow channel cross section of the gas flow passage 15 and does not carry the second catalyst, and a pressure loss of the flowing exhaust gas is equal to each other in the whole region of the flow channel cross section including the catalyst-carrying region 21 and the catalyst non-carrying region 22.SELECTED DRAWING: Figure 2

Description

本発明は、ボイラからの排ガスを浄化するための脱硝装置に関する。   The present invention relates to a denitration apparatus for purifying exhaust gas from a boiler.

ボイラで燃料を燃焼して発電を行う火力発電所では、ボイラからの排ガスを排煙処理系統で浄化した後に大気中に排出している。排煙処理系統には、排ガス中の窒素酸化物(NOx)を還元除去する脱硝装置や、排ガスとの熱交換によって燃焼用空気を加熱する空気予熱器や、排ガス中の煤塵(燃焼灰)を捕集除去する電気集塵機などが設けられる。   In a thermal power plant that generates power by burning fuel in a boiler, exhaust gas from the boiler is purified by a flue gas treatment system and then discharged to the atmosphere. The flue gas treatment system includes a denitration device that reduces and removes nitrogen oxides (NOx) in the exhaust gas, an air preheater that heats combustion air by heat exchange with the exhaust gas, and dust (combustion ash) in the exhaust gas. An electric precipitator for collecting and removing is provided.

特許文献1には、排ガス中の一酸化炭素または炭化水素を用いて排ガス中の窒素酸化物を還元浄化するNOx浄化触媒の前段または後段に、アンモニア(NH)を還元剤として窒素酸化物を還元する触媒(アンモニア脱硝触媒)を設置し、アンモニア脱硝触媒の前段で排ガス中にアンモニアを吹き込む排ガス浄化装置が開示されている。 Patent Literature 1 discloses that a nitrogen oxide using ammonia (NH 3 ) as a reducing agent is provided before or after a NOx purification catalyst that reduces and purifies nitrogen oxides in exhaust gas using carbon monoxide or hydrocarbons in exhaust gas. There is disclosed an exhaust gas purifying apparatus in which a reducing catalyst (ammonia denitration catalyst) is installed and ammonia is blown into exhaust gas at a stage preceding the ammonia denitration catalyst.

特開2008−238069号公報JP 2008-238069 A

アンモニアを還元剤とする触媒を用いた脱硝装置の場合、脱硝装置へ流入する排ガスの温度が低いと、酸性硫安(硫酸水素アンモニウム:NHHSO)が生成されて脱硝装置の下流側の機器(例えば、空気予熱器)に付着堆積し、当該機器の劣化や機能不全(例えば、空気予熱器の閉塞)を招くおそれがある。また、燃料と燃焼用空気との混合等が悪いと、排ガス中の一酸化炭素の濃度が高くなるため、一酸化炭素の削減が必要となる。 In the case of a denitration apparatus using a catalyst using ammonia as a reducing agent, when the temperature of the exhaust gas flowing into the denitration apparatus is low, acidic ammonium sulfate (ammonium hydrogen sulfate: NH 4 HSO 4 ) is generated, and equipment downstream of the denitration apparatus is used. (For example, an air preheater), which may cause deterioration or malfunction of the device (for example, blockage of the air preheater). In addition, if the fuel and the combustion air are mixed poorly, the concentration of carbon monoxide in the exhaust gas increases, so that it is necessary to reduce carbon monoxide.

これに対し、特許文献1のようにアンモニアを還元剤とする脱硝触媒(アンモニア脱硝触媒)と一酸化炭素を還元剤とする脱硝触媒(一酸化炭素脱硝触媒)とを用いた脱硝装置では、アンモニア脱硝触媒のみを用いる場合に比べて排ガス中に注入するアンモニアの量を低減することができる。このため、酸性硫安が生成され難くなり、脱硝装置の下流側の機器への酸性硫安の付着堆積を抑制することができる。また、一酸化炭素を還元剤とする一酸化炭素脱硝触媒を設けているので、排ガス中の一酸化炭素を低減することができる。   On the other hand, in a denitration apparatus using a denitration catalyst using ammonia as a reducing agent (ammonia denitration catalyst) and a denitration catalyst using carbon monoxide as a reducing agent (carbon monoxide denitration catalyst) as disclosed in Patent Document 1, ammonia The amount of ammonia injected into the exhaust gas can be reduced as compared with the case where only the denitration catalyst is used. For this reason, it becomes difficult to generate acidic ammonium sulfate, and it is possible to suppress the adhesion and deposition of acidic ammonium sulfate on equipment downstream of the denitration apparatus. Further, since a carbon monoxide denitration catalyst using carbon monoxide as a reducing agent is provided, carbon monoxide in exhaust gas can be reduced.

しかし、脱硝装置を流通する排ガスの一酸化炭素濃度は、流路断面内で均一ではなく濃度が低い部分と高い部分とが存在し、一酸化炭素濃度が低い部分では一酸化炭素脱硝触媒による窒素酸化物の還元除去が有効に行われず、一酸化炭素脱硝触媒による効果を得ることができない。すなわち、流路断面の全域に一酸化炭素脱硝触媒を配置することは、必要以上にコストを上昇させる。   However, the concentration of carbon monoxide in the exhaust gas flowing through the denitration device is not uniform in the cross section of the flow channel, and there are low and high concentrations of the carbon monoxide. The reduction and removal of oxides are not effectively performed, and the effect of the carbon monoxide denitration catalyst cannot be obtained. In other words, arranging the carbon monoxide denitration catalyst over the entire cross section of the flow path unnecessarily increases the cost.

そこで本発明は、コストの上昇を抑制しつつ、脱硝装置の下流側の機器への酸性硫安の付着堆積の抑制と排ガス中の一酸化炭素の低減とを図ることが可能な脱硝装置の提供を目的とする。   Thus, the present invention provides a denitration apparatus capable of suppressing the adhesion and deposition of acidic ammonium sulfate to equipment downstream of the denitration apparatus and reducing carbon monoxide in exhaust gas while suppressing an increase in cost. Aim.

上記目的を達成すべく、本発明の第1の態様に係る脱硝装置は、ガス流通路と、第1触媒層と、第2触媒層と、還元剤注入手段とを備える。   In order to achieve the above object, a denitration apparatus according to a first aspect of the present invention includes a gas flow passage, a first catalyst layer, a second catalyst layer, and a reducing agent injection unit.

ガス流通路は、矩形状の流路断面を有し、ボイラから排出された排ガスが流通する。第1触媒層は、ガス流通路に配置され、アンモニアを還元剤として排ガス中の窒素酸化物を還元除去する第1触媒を担持する。第2触媒層は、第1触媒層の上流側又は下流側の少なくとも一方のガス流通路に配置され、一酸化炭素を還元剤として排ガス中の窒素酸化物を還元除去する第2触媒を担持する。還元剤注入手段は、第1触媒層の上流側のガス流通路を流通する排ガス中へアンモニアを注入する。   The gas flow path has a rectangular flow path cross section, and exhaust gas discharged from the boiler flows. The first catalyst layer is disposed in the gas flow passage, and carries a first catalyst for reducing and removing nitrogen oxides in exhaust gas using ammonia as a reducing agent. The second catalyst layer is disposed in at least one of the gas flow passages on the upstream side or the downstream side of the first catalyst layer, and carries a second catalyst for reducing and removing nitrogen oxides in exhaust gas using carbon monoxide as a reducing agent. . The reducing agent injection means injects ammonia into the exhaust gas flowing through the gas flow passage on the upstream side of the first catalyst layer.

第2触媒層は、ガス流通路の流路断面の少なくとも4箇所の隅部に配置されて第2触媒を担持する触媒担持領域と、ガス流通路の流路断面の中央部に配置されて第2触媒を担持しない触媒非担持領域とを有し、触媒担持領域と触媒非担持領域とを含む流路断面の全域において、流通する排ガスの圧力損失が同等となるように構成されている。   The second catalyst layer is disposed at at least four corners of the cross section of the gas flow passage and supports the second catalyst. The second catalyst layer is disposed at the center of the cross section of the flow passage of the gas flow passage. It has a catalyst non-supporting region that does not support two catalysts, and is configured such that the pressure loss of flowing exhaust gas is equal in the entire region of the flow path cross section including the catalyst supporting region and the catalyst non-supporting region.

上記構成では、アンモニアを還元剤とする第1触媒(アンモニア脱硝触媒)と一酸化炭素を還元剤とする第2触媒(一酸化炭素脱硝触媒)とを用いて排ガス中の窒素酸化物を還元除去するので、還元剤注入手段から排ガス中へ注入するアンモニアの量を、アンモニア脱硝触媒のみを用いる場合に比べて低減することができる。このため、酸性硫安が生成され難く、脱硝装置の下流側の機器(例えば、空気予熱器)への酸性硫安の付着堆積を抑制することができる。   In the above configuration, nitrogen oxides in exhaust gas are reduced and removed using the first catalyst (ammonia denitration catalyst) using ammonia as a reducing agent and the second catalyst (carbon monoxide denitration catalyst) using carbon monoxide as a reducing agent. Therefore, the amount of ammonia injected into the exhaust gas from the reducing agent injection means can be reduced as compared with the case where only the ammonia denitration catalyst is used. For this reason, it is difficult to generate acidic ammonium sulfate, and it is possible to suppress the adhesion and deposition of acid ammonium sulfate on equipment downstream of the denitration apparatus (for example, an air preheater).

ガス流通路の流路断面が矩形状であるので、第2触媒層へ流入する排ガスの一酸化炭素濃度は、4箇所の隅部が高く中央部が低くなる傾向を示し、係る傾向を考慮して、一酸化炭素濃度が高い隅部を触媒担持領域とし、一酸化炭素濃度が低い中央部を触媒非担持領域としている。このように、第2触媒(一酸化炭素脱硝触媒)による窒素酸化物の還元除去が期待できる隅部には第2触媒を配置し、窒素酸化物の還元除去が期待できない中央部には第2触媒を配置しないので、第2触媒の材料費に起因するコストの上昇を抑制することができる。   Since the cross section of the gas flow passage is rectangular, the carbon monoxide concentration of the exhaust gas flowing into the second catalyst layer tends to be higher at four corners and lower at the center. Thus, the corners where the concentration of carbon monoxide is high are defined as catalyst-supporting regions, and the central portions where the concentration of carbon monoxide is low are defined as regions where catalyst is not supported. As described above, the second catalyst is disposed at a corner where reduction and removal of nitrogen oxides by the second catalyst (carbon monoxide denitration catalyst) can be expected, and the second catalyst is disposed at a center where reduction and removal of nitrogen oxides cannot be expected. Since no catalyst is provided, an increase in cost due to the material cost of the second catalyst can be suppressed.

また、触媒担持領域と触媒非担持領域とを含む流路断面の全域において、流通する排ガスの圧力損失が同等となるように第2触媒層を構成しているので、第2触媒層の入口で排ガスの流通方向が大きく変動することがない。このため、一酸化炭素濃度が高い排ガスを触媒担持領域に、一酸化炭素濃度が低い排ガスを触媒非担持領域にそれぞれ流通させることができる。   In addition, since the second catalyst layer is configured so that the pressure loss of the flowing exhaust gas is equal in the entire area of the flow path cross section including the catalyst supporting area and the catalyst non-supporting area, the second catalyst layer is formed at the entrance of the second catalyst layer. The flow direction of the exhaust gas does not greatly change. For this reason, exhaust gas with a high concentration of carbon monoxide can flow through the catalyst-carrying region, and exhaust gas with a low concentration of carbon monoxide can flow through the catalyst-non-carrying region.

本発明の第2の態様は、第1の態様の脱硝装置であって、第2触媒層の触媒担持領域は、ガス流通路の流路断面の外周縁に沿う環状であり、触媒非担持領域は、環状の触媒担持領域に囲まれた内側領域である。   A second aspect of the present invention is the denitration apparatus according to the first aspect, wherein the catalyst supporting region of the second catalyst layer is annular along the outer peripheral edge of the gas flow passage cross section, and the catalyst non-supporting region Is an inner region surrounded by an annular catalyst carrying region.

上記構成では、ガス流通路の流路断面が矩形状であるので、第2触媒層へ流入する排ガスの一酸化炭素濃度は、流路断面の外周縁に沿う環状の外周縁部(4箇所の隅部を含む)が高く、外周縁部に囲まれた内側領域(中央部)が低くなる傾向を示し、係る傾向を考慮して、一酸化炭素濃度が高い外周縁部を触媒担持領域とし、一酸化炭素濃度が低い内側領域を触媒非担持領域としている。このため、4箇所の隅部のみに第2触媒を配置する場合よりも窒素酸化物の還元除去を広範囲で行うことができる。   In the above configuration, since the cross section of the gas flow passage is rectangular, the concentration of carbon monoxide in the exhaust gas flowing into the second catalyst layer is determined by an annular outer peripheral portion along the outer periphery of the cross section of the flow passage (at four locations). (Including corners) is high, and the inner region (central portion) surrounded by the outer peripheral edge tends to be lower. In consideration of such a tendency, the outer peripheral edge having a high carbon monoxide concentration is defined as a catalyst supporting region, The inner region where the concentration of carbon monoxide is low is defined as a catalyst non-supporting region. Therefore, the reduction and removal of nitrogen oxides can be performed in a wider range than in the case where the second catalyst is arranged only at four corners.

本発明の第3の態様は、第1又は第2の態様の脱硝装置であって、排ガスを冷却する排ガス冷却手段を備える。第2触媒層は、第1触媒層の下流側のガス流通路に配置され、排ガス冷却手段は、第1触媒層の下流側で且つ第2触媒層の上流側のガス流通路を流通する排ガスを冷却する。   A third aspect of the present invention is the denitration apparatus according to the first or second aspect, further comprising an exhaust gas cooling means for cooling exhaust gas. The second catalyst layer is disposed in a gas flow passage downstream of the first catalyst layer, and the exhaust gas cooling unit is configured to control the exhaust gas flowing through the gas flow passage downstream of the first catalyst layer and upstream of the second catalyst layer. To cool.

上記構成では、第2触媒層の上流側を流通する排ガスの温度が第2触媒の活性化温度よりも高い場合であっても、第2触媒層を流通する排ガスを排ガス冷却手段によって第2触媒の活性化温度まで低下させることができ、第2触媒を用いた窒素酸化物の還元除去を好適に行うことができる。   In the above configuration, even if the temperature of the exhaust gas flowing on the upstream side of the second catalyst layer is higher than the activation temperature of the second catalyst, the exhaust gas flowing on the second catalyst layer is cooled by the second catalyst layer by the second catalyst. , And the reduction and removal of nitrogen oxides using the second catalyst can be suitably performed.

また、第1触媒層の下流側で排ガスの温度を低下させるので、第1触媒の活性化温度が第2触媒の活性化温度よりも高い場合において、第1触媒を用いた窒素酸化物の還元除去と第2触媒を用いた窒素酸化物の還元除去との双方を好適に行うことができる。   In addition, since the temperature of the exhaust gas is reduced on the downstream side of the first catalyst layer, when the activation temperature of the first catalyst is higher than the activation temperature of the second catalyst, reduction of the nitrogen oxide using the first catalyst is performed. Both removal and reduction removal of nitrogen oxides using the second catalyst can be suitably performed.

本発明によれば、コストの上昇を抑制しつつ、脱硝装置の下流側の機器への酸性硫安の付着堆積の抑制と排ガス中の一酸化炭素の低減とを図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, while suppressing the increase in cost, it can aim at suppression of the adhesion accumulation of the acidic ammonium sulfate to the downstream equipment of a denitration apparatus, and reduction of carbon monoxide in exhaust gas.

本発明の一実施形態に係る脱硝装置を含む排煙処理系統の模式図である。It is a schematic diagram of a flue gas treatment system including a denitration device according to an embodiment of the present invention. 図1の脱硝装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the denitration apparatus of FIG. 図2の第2触媒層の流路断面に沿った断面図であり、(a)は矩形環状の外周縁部を触媒担持領域とした場合を、(b)は4箇所の隅部のみを触媒担持領域とした場合をそれぞれ示す。3A and 3B are cross-sectional views of a second catalyst layer along a flow path cross section of FIG. 2, wherein FIG. 2A shows a case where a rectangular annular outer peripheral edge is used as a catalyst supporting region, and FIG. Each case is shown as a supporting area. 図3(a)のIV部の拡大斜視図であり、(a)は第2触媒層を多孔構造体によって構成した例を、(b)は第2触媒層を板状触媒ユニットによって構成した例をそれぞれ示す。4A is an enlarged perspective view of a portion IV in FIG. 3A, wherein FIG. 3A illustrates an example in which a second catalyst layer is configured by a porous structure, and FIG. 3B illustrates an example in which the second catalyst layer is configured by a plate-shaped catalyst unit. Are respectively shown. 第2触媒層を構成する構造体の斜視図であり、(a)は図4(a)の多孔構造体を構成する多孔体を、(b)は図4(b)の板状触媒ユニットをそれぞれ示す。It is a perspective view of the structure which comprises a 2nd catalyst layer, (a) is the porous body which comprises the porous structure of FIG.4 (a), (b) is the plate-shaped catalyst unit of FIG.4 (b). Shown respectively. 図5(a)の第2触媒層の拡大断面図であり、(a)は触媒担持領域を、(b)は触媒非担持領域をそれぞれ示す。It is an expanded sectional view of the 2nd catalyst layer of Drawing 5 (a), (a) shows a catalyst loading field, and (b) shows a catalyst non-loading field, respectively. 脱硝装置の変形例の断面図である。It is sectional drawing of the modification of a denitration apparatus.

本発明の一実施形態に係る脱硝装置について、図面を参照して説明する。なお、図中の矢印Dfは排ガスの流通方向を示す。   A denitration apparatus according to one embodiment of the present invention will be described with reference to the drawings. Note that the arrow Df in the figure indicates the flow direction of the exhaust gas.

図1に示すように、ボイラ(石炭炊きボイラ)1からの排ガスを浄化して大気中に排出する排煙処理系統には、脱硝装置2、空気予熱器(AH:エアヒータ)3、電気集塵機4及び誘引通風機5が設けられる。なお、ボイラ1は、石炭炊き以外のボイラであってもよい。   As shown in FIG. 1, a flue gas treatment system for purifying exhaust gas from a boiler (coal-fired boiler) 1 and discharging the exhaust gas to the atmosphere includes a denitration device 2, an air preheater (AH: air heater) 3, and an electric dust collector 4. And an induction draft fan 5 are provided. In addition, the boiler 1 may be a boiler other than coal-fired.

脱硝装置2は、ボイラ1の下流に配置され、排ガス中の窒素酸化物(NOx)を還元除去する。空気予熱器3は、脱硝装置2の下流に配置され、排ガスとの熱交換によって燃焼用空気を加熱する。電気集塵機4は、空気予熱器3の下流に配置され、排ガス中の煤塵(燃焼灰)を捕集除去する。誘引通風機5は、電気集塵機4の下流に配置され、排ガスを誘引して煙突6へ導く。   The denitration device 2 is disposed downstream of the boiler 1, and reduces and removes nitrogen oxides (NOx) in exhaust gas. The air preheater 3 is arranged downstream of the denitration device 2 and heats combustion air by heat exchange with exhaust gas. The electric dust collector 4 is disposed downstream of the air preheater 3 and collects and removes dust (combustion ash) in exhaust gas. The induction ventilator 5 is arranged downstream of the electric precipitator 4, and attracts and guides the exhaust gas to the chimney 6.

ボイラ1と脱硝装置2との間、及び脱硝装置2と空気予熱器3との間は、それぞれ排気ダクト8、9を介して連通し、ボイラ1内から空気予熱器3へ至るガス流通路の流路断面(排ガスの流通方向Dfと略直交する断面)は、概ね矩形状に形成されている。   The boiler 1 and the denitration device 2 and the denitration device 2 and the air preheater 3 communicate with each other via exhaust ducts 8 and 9, respectively, and serve as gas flow passages from inside the boiler 1 to the air preheater 3. A cross section of the flow path (a cross section substantially orthogonal to the exhaust gas flow direction Df) is formed in a substantially rectangular shape.

燃焼用空気は、押込通風機7によって空気予熱器3へ導入され、排ガスの熱によって予熱されてボイラ1へ供給される。   The combustion air is introduced into the air preheater 3 by the forced draft fan 7, preheated by the heat of the exhaust gas, and supplied to the boiler 1.

図2に示すように、脱硝装置2は、脱硝反応器10、第1触媒層11、第2触媒層12、複数の還元剤注入ノズル(還元剤注入手段)13、及び冷却管(排ガス冷却手段)14を備える。脱硝反応器10の内部には、流路断面が矩形状のガス流通路15が区画される。第1触媒層11、第2触媒層12、及び還元剤注入ノズル13は、ガス流通路15に配置され、脱硝反応器10に対して固定される。   As shown in FIG. 2, the denitration apparatus 2 includes a denitration reactor 10, a first catalyst layer 11, a second catalyst layer 12, a plurality of reducing agent injection nozzles (reducing agent injection means) 13, and a cooling pipe (exhaust gas cooling means). ) 14 is provided. Inside the denitration reactor 10, a gas flow passage 15 having a rectangular cross section is defined. The first catalyst layer 11, the second catalyst layer 12, and the reducing agent injection nozzle 13 are arranged in the gas flow passage 15 and fixed to the denitration reactor 10.

第1触媒層11は、アンモニアを還元剤として排ガス中の窒素酸化物を還元除去する第1触媒(アンモニア脱硝触媒)と、第1触媒を担持する第1担体とから構成される。第2触媒層12は、一酸化炭素を還元剤として排ガス中の窒素酸化物を還元除去する第2触媒(一酸化炭素脱硝触媒)と、第2触媒を担持する第2担体とから構成され、第1触媒層の下流側に配置される。   The first catalyst layer 11 includes a first catalyst (ammonia denitration catalyst) that reduces and removes nitrogen oxides in exhaust gas using ammonia as a reducing agent, and a first carrier that supports the first catalyst. The second catalyst layer 12 includes a second catalyst (carbon monoxide denitration catalyst) that reduces and removes nitrogen oxides in exhaust gas using carbon monoxide as a reducing agent, and a second carrier that supports the second catalyst. It is arranged downstream of the first catalyst layer.

第1触媒層11及び第2触媒層12は、1層(1段)であってもよく、複数層(複数段)であってもよい。第1触媒、第1担体、第2触媒及び第2担体には、何れも公知の触媒及び担体が用いられる。   The first catalyst layer 11 and the second catalyst layer 12 may be a single layer (one step) or a plurality of layers (a plurality of steps). Known catalysts and carriers are used for the first catalyst, the first carrier, the second catalyst, and the second carrier.

還元剤注入ノズル13は、第1触媒層11の上流側のガス流通路15に配置され、ガス流通路15を流通する排ガス中へアンモニアを注入する。なお、ボイラ1と脱硝装置2とを接続する排気ダクト8(図1参照)内のガス流通路に還元剤注入ノズル13を配置してもよい。   The reducing agent injection nozzle 13 is disposed in the gas flow passage 15 on the upstream side of the first catalyst layer 11 and injects ammonia into exhaust gas flowing through the gas flow passage 15. Note that the reducing agent injection nozzle 13 may be disposed in a gas flow passage in the exhaust duct 8 (see FIG. 1) connecting the boiler 1 and the denitration device 2.

冷却管14は、第1触媒層11と第2触媒層12の間のガス流通路15に配置される。冷却管14は、その内部を冷却水が流通し、冷却水との熱交換によって排ガスを冷却する。なお、冷却管14に代えて又は加えて、他の排ガス冷却手段(例えば、ガス流通路15へ冷却水を霧状に噴射する冷却水噴射ノズル等)を設けてもよい。   The cooling pipe 14 is disposed in the gas flow passage 15 between the first catalyst layer 11 and the second catalyst layer 12. Cooling water flows through the inside of the cooling pipe 14 and cools the exhaust gas by heat exchange with the cooling water. In addition, instead of or in addition to the cooling pipe 14, another exhaust gas cooling means (for example, a cooling water injection nozzle that sprays cooling water into the gas flow passage 15 in a mist state) may be provided.

図2及び図3(a)に示すように、第2触媒層12は、第2触媒を担持する触媒担持領域(図中の斜線領域)21と、第2触媒を担持しない触媒非担持領域(図中の非斜線領域)22とを有する。本実施形態では、ガス流通路15の流路断面の外周縁に沿う矩形環状の外周縁部を触媒担持領域21とし、触媒担持領域21に囲まれた内側領域(流路断面の中央部)を触媒非担持領域22としている。   As shown in FIGS. 2 and 3A, the second catalyst layer 12 includes a catalyst-carrying region (a hatched region in the drawing) 21 for carrying the second catalyst and a catalyst-non-carrying region (not shown) for supporting the second catalyst. (A non-hatched area in the drawing) 22. In the present embodiment, a rectangular annular outer peripheral edge along the outer peripheral edge of the flow path cross section of the gas flow passage 15 is defined as the catalyst supporting area 21, and an inner area (central portion of the flow path cross section) surrounded by the catalyst supporting area 21 is defined. This is the catalyst non-supporting region 22.

このように、触媒担持領域21を外周縁部に配置しているのは、矩形状のガス流通路15を流通して第2触媒層12へ流入する排ガスの一酸化炭素濃度は、流路断面の外周縁に沿う環状の外周縁部(4箇所の隅部を含む)が高く、外周縁部に囲まれた内側領域(中央部)が低くなる傾向を示すためである。   As described above, the catalyst supporting region 21 is arranged at the outer peripheral edge because the concentration of carbon monoxide in the exhaust gas flowing through the rectangular gas flow passage 15 and flowing into the second catalyst layer 12 is determined by the cross section of the flow passage. This is because the annular outer peripheral portion (including the four corners) along the outer peripheral edge of tends to be high, and the inner region (central portion) surrounded by the outer peripheral edge tends to be low.

また、環状の外周縁部内での一酸化炭素濃度を比較すると、4箇所の隅部で一酸化炭素濃度が高くなる傾向を示す。特に、燃焼炉(火炉)の4つの壁面にそれぞれバーナを配置し、炉内に旋回する火炎を発生させる燃焼方式のボイラ(タンジェンシャル焚ボイラ)の場合、4箇所の隅部の一酸化炭素濃度が顕著に高くなる。   Further, when the carbon monoxide concentration in the annular outer peripheral portion is compared, the carbon monoxide concentration tends to increase at four corners. In particular, in the case of a combustion type boiler (tangential combustion boiler) in which burners are arranged on four wall surfaces of a combustion furnace (furnace) and generate a swirling flame in the furnace, the carbon monoxide concentration at four corners Is significantly higher.

上記一酸化炭素の濃度分布の傾向から、触媒担持領域21は、ガス流通路15の流路断面の少なくとも4箇所の隅部(角部)に配置されていればよく、例えば図3(b)に示すように、ガス流通路15の流路断面の4箇所の隅部を触媒担持領域21とし、他の領域を触媒非担持領域22としてもよい。   From the tendency of the carbon monoxide concentration distribution, the catalyst supporting region 21 may be arranged at at least four corners (corners) of the cross section of the gas flow passage 15, for example, as shown in FIG. As shown in (4), the four corners of the gas flow passage 15 in the cross section may be the catalyst supporting region 21, and the other regions may be the catalyst non-supporting regions 22.

図4(a)に示すように、本実施形態の第2触媒層12は、多数の多孔構造体24,25を流路断面内に互いに隣接して配列する(縦横複数列に配置して敷き詰める)ことによって構成される。第2触媒層12には、多孔構造体24,25を所定数(本実施形態では、縦横に3列ずつ)配列するための隔壁29が設けられている。   As shown in FIG. 4A, in the second catalyst layer 12 of the present embodiment, a large number of porous structures 24 and 25 are arranged adjacent to each other in a flow path cross section (they are arranged in a plurality of rows and columns and are laid down). ). The second catalyst layer 12 is provided with a partition wall 29 for arranging a predetermined number of porous structures 24 and 25 (in this embodiment, three rows vertically and horizontally).

多孔構造体24,25は、図5(a)に示すように、両端面の間を多数の通気孔(セル)28が貫通する直方体状の多孔体23によって構成され、その両端面が排ガスの流通方向Dfの上流側と下流側とに位置するように配置される。多孔体23は、ハニカム構造であってもよく、他の構造であってもよい。   As shown in FIG. 5 (a), the porous structures 24 and 25 are each formed by a rectangular parallelepiped porous body 23 in which a large number of ventilation holes (cells) 28 penetrate between both end faces. It is arranged so as to be located on the upstream side and the downstream side in the flow direction Df. The porous body 23 may have a honeycomb structure or another structure.

触媒担持領域21に配置される多孔構造体(第2触媒構造体)24は、多孔体23が第2触媒を担持する構造体であり、第2触媒構造体24の多孔体23は、第2触媒を担持する第2担体である。一方、触媒非担持領域22に配置される多孔構造体(ダミー構造体)25は、多孔体23が第2触媒を担持しない構造体である。   The porous structure (second catalyst structure) 24 disposed in the catalyst support region 21 is a structure in which the porous body 23 supports the second catalyst, and the porous body 23 of the second catalyst structure 24 is This is a second support for supporting a catalyst. On the other hand, the porous structure (dummy structure) 25 arranged in the catalyst non-supporting region 22 is a structure in which the porous body 23 does not support the second catalyst.

また、多孔構造体24,25に代えて、図4(b)に示すように、板状の触媒担体30を複数積層した板状触媒ユニット31,32を配置してもよい。図4(b)の例では、隔壁29が区画する空間に1つずつの板状触媒ユニット31,32を配置しているが、図5(b)のように、隔壁29が区画する空間に複数(縦横複数列)の板状触媒ユニット31,32を敷き詰めてもよく、また隔壁29を省略してもよい。   Further, instead of the porous structures 24 and 25, plate catalyst units 31 and 32 in which a plurality of plate catalyst carriers 30 are stacked may be arranged as shown in FIG. In the example of FIG. 4B, one plate-shaped catalyst unit 31, 32 is arranged in the space defined by the partition 29, but as shown in FIG. A plurality (plurality of rows and columns) of plate-like catalyst units 31 and 32 may be spread, and the partition wall 29 may be omitted.

板状触媒ユニット31,32は、図5(b)に示すように、矩形筒状の金属枠33内に複数の板状の触媒担体30を互いに離間させて積層したユニットによって構成される。隣接する2枚の触媒担体30の間、及び最外端の触媒担体30と金属枠33との間が、排ガスが流通する通気空間34であり、通気空間34の両端面が排ガスの流通方向Dfの上流側と下流側とに位置するように配置される。隣接する2枚の触媒担体30の間や最外端の触媒担体30と金属枠33との間に形成される通気空間34は、各触媒担体30に部分的に形成された波形状の屈曲部35の突出先端が隣接する触媒担体30又は金属枠33と当接することによって所望の大きさ(幅)に保持される。なお、触媒担体30を平板状とし、別体のスペーサによって通気空間34を確保するように構成してもよい。   As shown in FIG. 5B, the plate-shaped catalyst units 31 and 32 are configured by a unit in which a plurality of plate-shaped catalyst carriers 30 are stacked in a rectangular cylindrical metal frame 33 while being separated from each other. Between the two adjacent catalyst carriers 30 and between the outermost catalyst carrier 30 and the metal frame 33 are ventilation spaces 34 through which the exhaust gas flows, and both end surfaces of the ventilation space 34 have exhaust gas flow directions Df. Are arranged so as to be located on the upstream side and the downstream side. The ventilation space 34 formed between the two adjacent catalyst carriers 30 or between the outermost catalyst carrier 30 and the metal frame 33 has a wavy bent portion partially formed in each catalyst carrier 30. The projecting tip 35 is held at a desired size (width) by contacting the adjacent catalyst carrier 30 or metal frame 33. The catalyst carrier 30 may be formed in a flat plate shape, and the ventilation space 34 may be secured by a separate spacer.

触媒担持領域21に配置される板状触媒ユニット(第2触媒構造体)31は、板状の触媒担体30が第2触媒を担持する構造体であり、板状の触媒担体30に第2触媒が塗布される。すなわち、第2触媒構造体31の板状の触媒担体30は、第2触媒を担持する第2担体である。一方、触媒非担持領域22に配置される板状触媒ユニット(ダミー構造体)32は、板状の触媒担体30が第2触媒を担持しない構造体である。   The plate-shaped catalyst unit (second catalyst structure) 31 arranged in the catalyst support region 21 is a structure in which the plate-shaped catalyst carrier 30 supports the second catalyst. Is applied. That is, the plate-shaped catalyst carrier 30 of the second catalyst structure 31 is a second carrier that carries the second catalyst. On the other hand, the plate-shaped catalyst unit (dummy structure) 32 arranged in the catalyst non-supporting region 22 is a structure in which the plate-shaped catalyst carrier 30 does not support the second catalyst.

なお、特に図示していないが、第1触媒層11も第2触媒層12と同様に、多数の多孔構造体又は板状触媒ユニットを流路断面内に互いに隣接して配列することによって構成される。第1触媒層11に配列される多孔構造体又は板状触媒ユニットは、何れも多孔体又は板状の触媒担体(第1担体)が第1触媒を担持する構造体である。   Although not specifically shown, the first catalyst layer 11 is also formed by arranging a number of porous structures or plate-like catalyst units adjacent to each other in the flow channel cross section, similarly to the second catalyst layer 12. You. Each of the porous structure or the plate-shaped catalyst unit arranged in the first catalyst layer 11 is a structure in which a porous or plate-shaped catalyst carrier (first carrier) supports the first catalyst.

第2触媒層12は、触媒担持領域21と触媒非担持領域22とを含む流路断面の全域において、流通する排ガスの圧力損失が同等となるように構成されている。   The second catalyst layer 12 is configured such that the pressure loss of flowing exhaust gas is equal over the entire area of the flow path cross section including the catalyst supporting region 21 and the catalyst non-supporting region 22.

本実施形態では、図6に示すように、第2触媒構造体24とダミー構造体25とにおいて、同一形状の多孔体23を用いる。第2触媒構造体24では、多孔体23の通気孔28の内周面上に第2触媒の薄層26が固着形成され、薄層26の分だけ通気孔28が縮小する(図6(a)参照)。このため、ダミー構造体25では、多孔体23の通気孔28の内周面上に、第2触媒の薄層26と同厚となるように第2触媒の活性成分を有さないダミーの薄層27を固着形成する。これにより、第2触媒構造体24とダミー構造体25とを同形状とすることができ、両者の通気孔の密度(単位面積当たりの孔数及び各孔の有効内径の大きさ)を同等にすることができる。その結果、第2触媒構造体24を流通する排ガスの圧力損失と、ダミー構造体25を流通する排ガスの圧力損失とを同等に構成することができる。   In the present embodiment, as shown in FIG. 6, a porous body 23 having the same shape is used in the second catalyst structure 24 and the dummy structure 25. In the second catalyst structure 24, the thin layer 26 of the second catalyst is fixedly formed on the inner peripheral surface of the vent 28 of the porous body 23, and the vent 28 is reduced by the thickness of the thin layer 26 (FIG. 6 (a)). )reference). For this reason, in the dummy structure 25, a dummy thin film having no active component of the second catalyst is formed on the inner peripheral surface of the vent hole 28 of the porous body 23 so as to have the same thickness as the thin layer 26 of the second catalyst. The layer 27 is fixedly formed. Thereby, the second catalyst structure 24 and the dummy structure 25 can be made to have the same shape, and the density of the ventilation holes (the number of holes per unit area and the size of the effective inner diameter of each hole) can be made equal to each other. can do. As a result, the pressure loss of the exhaust gas flowing through the second catalyst structure 24 and the pressure loss of the exhaust gas flowing through the dummy structure 25 can be made equal.

多孔構造体24,25に代えて板状触媒ユニット31,32を配置する場合も、多孔構造体24,25の場合と同様に、第2触媒構造体31及びダミー構造体32とを同形状(通気空間34の数及び大きさを同等)とし、第2触媒層12の流路断面の全域において流通する排ガスの圧力損失が同等となるように構成する。   When the plate-shaped catalyst units 31 and 32 are arranged in place of the porous structures 24 and 25, the second catalyst structure 31 and the dummy structure 32 have the same shape (the same as the case of the porous structures 24 and 25). The number and the size of the ventilation spaces 34 are equal), and the pressure loss of the exhaust gas flowing in the entire area of the cross section of the second catalyst layer 12 is equalized.

なお、触媒担持領域21と触媒非担持領域22とを含む流路断面の全域を同等の圧力損失とする構成は上記に限定されず、他の構成(例えば、ダミー構造体の通気孔の内径が第2触媒構造体の通気孔の内径と等しくなるように、第2触媒構造体の多孔体よりも通気孔の内径が小さい多孔体をダミー構造体として用いるなど)であってもよい。   The configuration in which the entire area of the cross section of the flow path including the catalyst supporting region 21 and the catalyst non-supporting region 22 has the same pressure loss is not limited to the above, and other configurations (for example, when the inner diameter of the ventilation hole of the dummy structure is A porous body having a smaller inner diameter of the ventilation hole than the porous body of the second catalyst structure may be used as the dummy structure so as to be equal to the inner diameter of the ventilation hole of the second catalyst structure.

本実施形態によれば、排ガスが第1触媒層11及び第2触媒層12の双方を挿通し、アンモニアを還元剤とする第1触媒(アンモニア脱硝触媒)と一酸化炭素を還元剤とする第2触媒(一酸化炭素脱硝触媒)とを用いて排ガス中の窒素酸化物が還元除去されるので、還元剤注入ノズル13から排ガス中へ注入するアンモニアの量を、アンモニア脱硝触媒のみを用いる場合に比べて低減することができる。このため、酸性硫安が生成され難く、脱硝装置の下流側の機器(例えば、空気予熱器3)への酸性硫安の付着堆積を抑制することができる。   According to this embodiment, the exhaust gas passes through both the first catalyst layer 11 and the second catalyst layer 12, and the first catalyst (ammonia denitration catalyst) using ammonia as a reducing agent and the second catalyst using carbon monoxide as a reducing agent. Since the nitrogen oxides in the exhaust gas are reduced and removed using the two catalysts (carbon monoxide denitration catalyst), the amount of ammonia injected into the exhaust gas from the reducing agent injection nozzle 13 is reduced when only the ammonia denitration catalyst is used. It can be reduced in comparison. For this reason, it is difficult to generate acidic ammonium sulfate, and it is possible to suppress the adhesion and deposition of acid ammonium sulfate on equipment downstream of the denitration device (for example, the air preheater 3).

また、第2触媒(一酸化炭素脱硝触媒)による窒素酸化物の還元除去が期待できる領域(4箇所の隅部を含む外周縁部)には第2触媒を配置し、窒素酸化物の還元除去が期待できない中央部には第2触媒を配置しないので、第2触媒の材料費に起因するコストの上昇を抑制することができる。   Further, the second catalyst is disposed in a region where the reduction and removal of nitrogen oxides by the second catalyst (carbon monoxide denitration catalyst) can be expected (the outer peripheral edge including four corners), and the reduction and removal of nitrogen oxides Since the second catalyst is not disposed in the central portion where is not expected, an increase in cost due to the material cost of the second catalyst can be suppressed.

また、外周縁部に第2触媒を配置するので、4箇所の隅部のみに第2触媒を配置する場合よりも窒素酸化物の還元除去を広範囲で行うことができる。   Further, since the second catalyst is arranged at the outer peripheral edge, the reduction and removal of nitrogen oxides can be performed in a wider range than when the second catalyst is arranged only at four corners.

また、触媒担持領域21と触媒非担持領域22とを含む流路断面の全域において、流通する排ガスの圧力損失が同等となるように第2触媒層12を構成しているので、第2触媒層12の入口で排ガスの流通方向が大きく変動することがない。このため、一酸化炭素濃度が高い排ガスを触媒担持領域21に、一酸化炭素濃度が低い排ガスを触媒非担持領域22にそれぞれ流通させることができる。   Further, since the second catalyst layer 12 is configured such that the pressure loss of the exhaust gas flowing therethrough is equal in the entire area of the flow path cross section including the catalyst supporting region 21 and the catalyst non-supporting region 22, the second catalyst layer The flow direction of the exhaust gas does not fluctuate greatly at the inlet of the nozzle 12. Therefore, the exhaust gas with a high concentration of carbon monoxide can flow through the catalyst-supporting region 21 and the exhaust gas with a low concentration of carbon monoxide can flow through the non-catalyst-supporting region 22.

また、第2触媒層12の上流側を流通する排ガスの温度が第2触媒の活性化温度よりも高い場合であっても、第2触媒層12を流通する排ガスを冷却管14によって第2触媒の活性化温度まで低下させることができ、第2触媒を用いた窒素酸化物の還元除去を好適に行うことができる。   Further, even when the temperature of the exhaust gas flowing on the upstream side of the second catalyst layer 12 is higher than the activation temperature of the second catalyst, the exhaust gas flowing on the second catalyst layer 12 is cooled by the cooling pipe 14 to the second catalyst. , And the reduction and removal of nitrogen oxides using the second catalyst can be suitably performed.

さらに、第1触媒層11の下流側で排ガスの温度を低下させるので、第1触媒の活性化温度が第2触媒の活性化温度よりも高い場合において、第1触媒を用いた窒素酸化物の還元除去と第2触媒を用いた窒素酸化物の還元除去との双方を好適に行うことができる。   Further, since the temperature of the exhaust gas is lowered on the downstream side of the first catalyst layer 11, when the activation temperature of the first catalyst is higher than the activation temperature of the second catalyst, the nitrogen oxides using the first catalyst are reduced. Both reduction and removal of nitrogen oxides using the second catalyst can be suitably performed.

なお、本発明は、一例として説明した上述の実施形態及び変形例に限定されることはなく、上述の実施形態等以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。   Note that the present invention is not limited to the above-described embodiment and the modified example described as an example, and other than the above-described embodiment and the like, as long as the technical idea according to the present invention is not deviated. Various changes are possible according to the design and the like.

例えば、図7に示すように、第1触媒層11を第2触媒層12の下流側に配置し、還元剤注入ノズル13を第2触媒層12と第1触媒層11との間に配置してもよい。   For example, as shown in FIG. 7, the first catalyst layer 11 is disposed downstream of the second catalyst layer 12, and the reducing agent injection nozzle 13 is disposed between the second catalyst layer 12 and the first catalyst layer 11. You may.

1:ボイラ
2:脱硝装置
3:空気予熱器
4:電気集塵機
5:誘引通風機
6:煙突
7:押込通風機
8,9:排気ダクト
10:脱硝反応器
11:第1触媒層
12:第2触媒層
13:還元剤注入ノズル(還元剤注入手段)
14:冷却管(排ガス冷却手段)
15:ガス流通路
21:触媒担持領域
22:触媒非担持領域
23:多孔体
24:多孔構造体(第2触媒構造体)
25:多孔構造体(ダミー構造体)
26,27:薄層
28:通気孔(セル)
29:隔壁
30:板状の触媒担体
31:板状触媒ユニット(第2触媒構造体)
32:板状触媒ユニット(ダミー構造体)
33:金属枠
34:通気空間
35:屈曲部
1: Boiler 2: Denitration device 3: Air preheater 4: Electric precipitator 5: Induction ventilator 6: Chimney 7: Push-in ventilator 8, 9: Exhaust duct 10: Denitration reactor 11: First catalyst layer 12: Second Catalyst layer 13: reducing agent injection nozzle (reducing agent injection means)
14: Cooling pipe (exhaust gas cooling means)
15: gas flow path 21: catalyst supporting region 22: catalyst non-supporting region 23: porous body 24: porous structure (second catalyst structure)
25: Porous structure (dummy structure)
26, 27: thin layer 28: vent (cell)
29: Partition wall 30: Plate-shaped catalyst carrier 31: Plate-shaped catalyst unit (second catalyst structure)
32: Plate-shaped catalyst unit (dummy structure)
33: metal frame 34: ventilation space 35: bent portion

Claims (3)

矩形状の流路断面を有し、ボイラから排出された排ガスが流通するガス流通路と、
前記ガス流通路に配置され、アンモニアを還元剤として排ガス中の窒素酸化物を還元除去する第1触媒を担持する第1触媒層と、
前記第1触媒層の上流側又は下流側の少なくとも一方の前記ガス流通路に配置され、一酸化炭素を還元剤として排ガス中の窒素酸化物を還元除去する第2触媒を担持する第2触媒層と、
前記第1触媒層の上流側の前記ガス流通路を流通する排ガス中へアンモニアを注入する還元剤注入手段と、を備え、
前記第2触媒層は、前記ガス流通路の流路断面の少なくとも4箇所の隅部に配置されて前記第2触媒を担持する触媒担持領域と、前記ガス流通路の流路断面の中央部に配置されて前記第2触媒を担持しない触媒非担持領域とを有し、前記触媒担持領域と前記触媒非担持領域とを含む流路断面の全域において、流通する排ガスの圧力損失が同等となるように構成されている
ことを特徴とする脱硝装置。
A gas flow passage having a rectangular flow path cross section, through which exhaust gas discharged from the boiler flows,
A first catalyst layer disposed in the gas flow passage and carrying a first catalyst for reducing and removing nitrogen oxides in exhaust gas using ammonia as a reducing agent;
A second catalyst layer disposed in at least one of the gas flow passages on the upstream side or the downstream side of the first catalyst layer and carrying a second catalyst for reducing and removing nitrogen oxides in exhaust gas using carbon monoxide as a reducing agent; When,
Reducing agent injection means for injecting ammonia into exhaust gas flowing through the gas flow passage on the upstream side of the first catalyst layer,
The second catalyst layer is disposed at at least four corners of a cross section of the gas flow passage and supports a catalyst carrying the second catalyst, and a central portion of the cross section of the flow passage of the gas flow passage. A catalyst non-supporting region that is disposed and does not support the second catalyst, and the pressure loss of flowing exhaust gas is equal in the entire region of the flow path cross section including the catalyst supporting region and the catalyst non-supporting region. A denitration apparatus characterized by comprising:
請求項1に記載の脱硝装置であって、
前記触媒担持領域は、前記ガス流通路の流路断面の外周縁に沿う環状であり、
前記触媒非担持領域は、前記環状の触媒担持領域に囲まれた内側領域である
ことを特徴とする脱硝装置。
The denitration apparatus according to claim 1,
The catalyst-carrying region has an annular shape along an outer peripheral edge of a cross section of the gas flow passage,
The denitration apparatus, wherein the non-catalyst carrying region is an inner region surrounded by the annular catalyst carrying region.
請求項1又は請求項2に記載の脱硝装置であって、
排ガスを冷却する排ガス冷却手段を備え、
前記第2触媒層は、前記第1触媒層の下流側の前記ガス流通路に配置され、
前記排ガス冷却手段は、前記第1触媒層の下流側で且つ前記第2触媒層の上流側の前記ガス流通路を流通する排ガスを冷却する
ことを特徴とする脱硝装置。
The denitration device according to claim 1 or claim 2,
Equipped with exhaust gas cooling means for cooling exhaust gas,
The second catalyst layer is disposed in the gas flow passage downstream of the first catalyst layer,
The denitrification apparatus, wherein the exhaust gas cooling means cools exhaust gas flowing through the gas flow passage downstream of the first catalyst layer and upstream of the second catalyst layer.
JP2018172372A 2018-09-14 2018-09-14 Denitrification device Pending JP2020044461A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018172372A JP2020044461A (en) 2018-09-14 2018-09-14 Denitrification device
TW108132947A TWI738055B (en) 2018-09-14 2019-09-12 Denitration device
PCT/JP2019/036135 WO2020054853A1 (en) 2018-09-14 2019-09-13 Denitrification apparatus
CN201980058098.7A CN112638506A (en) 2018-09-14 2019-09-13 Denitration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018172372A JP2020044461A (en) 2018-09-14 2018-09-14 Denitrification device

Publications (1)

Publication Number Publication Date
JP2020044461A true JP2020044461A (en) 2020-03-26

Family

ID=69777659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018172372A Pending JP2020044461A (en) 2018-09-14 2018-09-14 Denitrification device

Country Status (4)

Country Link
JP (1) JP2020044461A (en)
CN (1) CN112638506A (en)
TW (1) TWI738055B (en)
WO (1) WO2020054853A1 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792432A (en) * 1994-11-15 1998-08-11 Babcock-Hitachi Kabushiki Kaisha Catalyst unit and gas purifying apparatus
JPH11107744A (en) * 1997-10-07 1999-04-20 Toyota Motor Corp Exhaust emission control catalyst device
JP3489049B2 (en) * 1999-07-15 2004-01-19 日産自動車株式会社 Exhaust gas purification catalyst
US6821490B2 (en) * 2001-02-26 2004-11-23 Abb Lummus Global Inc. Parallel flow gas phase reactor and method for reducing the nitrogen oxide content of a gas
EP1386664B1 (en) * 2002-07-31 2016-05-11 Ineos Technologies (Vinyls) Limited A hollow parallelepiped pellet suitable as carrier of catalysts for selective exothermic reactions
DE60336824D1 (en) * 2002-09-05 2011-06-01 Ngk Insulators Ltd hONEYCOMB STRUCTURE
TW200833419A (en) * 2007-02-15 2008-08-16 China Steel Corp Regenerating method of plate-shaped catalyst for denitration and dedioxin
JP2008238069A (en) * 2007-03-28 2008-10-09 Babcock Hitachi Kk Purification device for exhaust gas, purification method for exhaust gas, and purification catalyst
JP5319934B2 (en) * 2008-02-28 2013-10-16 三菱重工業株式会社 Exhaust gas treatment method and apparatus
CN201815314U (en) * 2010-10-27 2011-05-04 山东电力研究院 Honeycombed catalyst provided with regular hexagonal internal pore passage structure and used for SCR denitration technology
JP5511865B2 (en) * 2012-02-13 2014-06-04 日立造船株式会社 Exhaust gas denitration equipment for diesel engines
JP5888259B2 (en) * 2013-02-13 2016-03-16 トヨタ自動車株式会社 Catalytic converter
JP6111122B2 (en) * 2013-03-29 2017-04-05 日本碍子株式会社 Honeycomb structure and manufacturing method thereof
JP6671163B2 (en) * 2015-01-09 2020-03-25 日揮触媒化成株式会社 Exhaust gas treatment honeycomb catalyst and method for producing the same
JP6591197B2 (en) * 2015-05-21 2019-10-16 三菱日立パワーシステムズ株式会社 Exhaust gas mixing device
CN206935112U (en) * 2017-06-07 2018-01-30 重庆三众环保投资顾问有限公司 A kind of waste gas purification structure with photocatalysis apparatus

Also Published As

Publication number Publication date
WO2020054853A1 (en) 2020-03-19
CN112638506A (en) 2021-04-09
TW202017639A (en) 2020-05-16
TWI738055B (en) 2021-09-01

Similar Documents

Publication Publication Date Title
JP5752367B2 (en) System and method for injecting cooling air into an exhaust gas stream
JP3175943B2 (en) Apparatus and method for injecting NOx reducing agents
CN107152328B (en) System and method for mixing tempered air with flue gas for thermal SCR catalyst
TW201402192A (en) Gas mixing arrangement
CA2815962A1 (en) Ammonia injection device
TWI721547B (en) Exhaust purification device
KR20040010598A (en) Reactor and method for reducing the nitrogen oxide content of a gas
WO2020054853A1 (en) Denitrification apparatus
JP2009138598A (en) Additive distribution board structure of exhaust passage
KR100927084B1 (en) Apparatus having baffle device and used for treating exhaust gas
US9409124B2 (en) Flow control grid
TW202033264A (en) Nox removal equipment
KR101625029B1 (en) Oxidation apparatus of volatile organic compound
KR20170075150A (en) A module case for the selective catalytic reduction
JP5198744B2 (en) Catalyst structure
KR102153836B1 (en) Denitrification apparatus that improves denitrification efficiency using pellet catalyst
JP2014231744A (en) Exhaust gas purification device
KR101561260B1 (en) Scr reactor for minium area installation
JP2015532706A (en) Combustion gas cooling device, denitration device equipped with combustion gas cooling device, and combustion gas cooling method
JP3002452B1 (en) High efficiency flue gas denitration system
JPH1151358A (en) Heat storage type waste gas processing apparatus
CN110694471A (en) But many storehouses off-line denitration reaction system
US9238199B1 (en) Combined flow mixing, tempering and noise suppressing apparatus for a selective catalytic reduction system and method of use thereof
JP2010013944A (en) Exhaust emission control device
KR102094112B1 (en) Denitrification apparatus that improves denitrification efficiency using pellet catalyst