JP2014079716A - Catalyst for treating exhaust gas and exhaust gas treatment method - Google Patents

Catalyst for treating exhaust gas and exhaust gas treatment method Download PDF

Info

Publication number
JP2014079716A
JP2014079716A JP2012230384A JP2012230384A JP2014079716A JP 2014079716 A JP2014079716 A JP 2014079716A JP 2012230384 A JP2012230384 A JP 2012230384A JP 2012230384 A JP2012230384 A JP 2012230384A JP 2014079716 A JP2014079716 A JP 2014079716A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
component
mass
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012230384A
Other languages
Japanese (ja)
Other versions
JP6016572B2 (en
Inventor
Atsushi Morita
敦 森田
Yasuhiro Higuchi
泰弘 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2012230384A priority Critical patent/JP6016572B2/en
Publication of JP2014079716A publication Critical patent/JP2014079716A/en
Application granted granted Critical
Publication of JP6016572B2 publication Critical patent/JP6016572B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To treat NOx or organic halides stably over long time even at low temperature range, and especially to treat NOx or organic halides included in exhaust gas stably over long time even when sulfur oxides are included in exhaust gas.SOLUTION: A catalyst for treating an exhaust gas including NOx or organic halides contains a ternary system complex oxide or a mixed oxide of titanium, molybdenum or silicon as a catalyst A component, a compound of at least one element of vanadium, niobium or tantalum as a catalyst B component, and a compound of at least one element of manganese, iron, cobalt or zinc as a catalyst C component, and has the molybdenum content in the catalyst A component of 10 to 30 mass% as oxide.

Description

本発明は、窒素酸化物や有機ハロゲン化合物が含まれる排ガスの処理に関するものであり、特に硫黄酸化物が含まれる排ガスの処理に関する技術である。   The present invention relates to the treatment of exhaust gas containing nitrogen oxides and organic halogen compounds, and particularly relates to the treatment of exhaust gas containing sulfur oxides.

窒素酸化物は人体にとって有害な物質である他、酸性雨や光化学スモッグの原因物質であり、その対策技術として、アンモニアまたは尿素などの還元剤を用いて排ガス中の窒素酸化物を触媒上で接触還元して窒素と水に分解する選択的触媒還元法(SCR法)が一般的に用いられている。また、ダイオキシン類に代表される有機ハロゲン化合物も人体に深刻な影響を及ぼす有害物質であるが、その処理においても触媒による分解除去が広く用いられている。特に都市ごみ焼却炉など廃棄物処理施設から排出される排ガスでは、窒素酸化物と有機ハロゲン化合物の両方を除去することが必要になる場合も多い。   Nitrogen oxides are harmful to the human body and are also responsible for acid rain and photochemical smog. As a countermeasure, nitrogen oxides in exhaust gas are contacted on the catalyst using a reducing agent such as ammonia or urea. A selective catalytic reduction method (SCR method) that reduces and decomposes into nitrogen and water is generally used. Organohalogen compounds represented by dioxins are harmful substances that have a serious effect on the human body, and catalytic decomposition and removal are widely used in the treatment. In particular, exhaust gas discharged from waste treatment facilities such as municipal waste incinerators often needs to remove both nitrogen oxides and organic halogen compounds.

このような用途に用いられる排ガス処理触媒としては、例えば、チタン酸化物、バナジウム酸化物およびタングステン酸化物を含有する触媒(特許文献1、2)、またはチタン酸化物、バナジウム酸化物およびモリブデン酸化物を含有する触媒(特許文献3、4)について開示されている。   Examples of the exhaust gas treatment catalyst used for such applications include catalysts containing titanium oxide, vanadium oxide and tungsten oxide (Patent Documents 1 and 2), or titanium oxide, vanadium oxide and molybdenum oxide. The catalyst (patent documents 3 and 4) which contains is disclosed.

一方、近年では排ガス再加熱にかかるCO排出の低減などの観点から、排ガス処理温度の低温化が望まれており、例えば都市ごみ焼却炉排ガスの処理では200℃未満の低温度域においても優れた除去性能および耐久性を有する触媒が求められている。これに関しては、性能および耐久性をより向上させた触媒として、チタン系酸化物、バナジウム酸化物、および銅、コバルトなどの金属の硫酸塩を含有する触媒について提案されているが(特許文献5)、排ガスの処理温度が200℃未満になると硫黄酸化物による性能低下が顕著となるため、従来の触媒は必ずしも充分な耐久性を有しているとはいえなかった。 On the other hand, in recent years, from the viewpoint of reducing CO 2 emission due to exhaust gas reheating, it has been desired to lower the exhaust gas treatment temperature. For example, municipal waste incinerator exhaust gas treatment is excellent even in a low temperature range of less than 200 ° C. There is a need for a catalyst having excellent removal performance and durability. In this regard, as a catalyst with further improved performance and durability, a catalyst containing a titanium oxide, a vanadium oxide, and a sulfate of a metal such as copper or cobalt has been proposed (Patent Document 5). When the treatment temperature of the exhaust gas is less than 200 ° C., the performance deterioration due to sulfur oxide becomes remarkable, so that it cannot be said that conventional catalysts have sufficient durability.

特許第3312870号公報Japanese Patent No. 3312870 特許第3337634号公報Japanese Patent No. 3337634 特許第3648125号公報Japanese Patent No. 3648125 特許第3749078号公報Japanese Patent No. 3749078 特許第4822740号公報Japanese Patent No. 4822740

本発明の目的は、従来の触媒に比べて硫黄酸化物などによる性能低下が少なく、より長時間にわたって排ガス中の窒素酸化物や有機ハロゲン化合物を除去する事ができる排ガス処理触媒、およびこの触媒を用いた排ガス処理方法を提供する事にある。   An object of the present invention is to provide an exhaust gas treatment catalyst capable of removing nitrogen oxides and organic halogen compounds in exhaust gas over a longer period of time, with less performance degradation due to sulfur oxide or the like compared to conventional catalysts, and this catalyst. It is to provide an exhaust gas treatment method used.

本発明者は、上記課題を解決する為に鋭意検討を行った結果、以下に示す組成の触媒が有効である事を見出した。すなわち本発明の排ガス処理触媒は、触媒A成分としてチタン、モリブデンおよびケイ素の三元系複合酸化物または混合酸化物、触媒B成分としてバナジウム、ニオブまたはタンタルの少なくとも1種の元素の化合物ならびに触媒C成分としてマンガン、鉄、コバルトまたは亜鉛の少なくとも1種の元素の化合物を含有し、かつ触媒A成分中のモリブデン含有量が酸化物換算で10〜30質量%であることを特徴とするものである。   As a result of intensive studies in order to solve the above problems, the present inventor has found that a catalyst having the following composition is effective. That is, the exhaust gas treatment catalyst of the present invention includes a ternary composite oxide or mixed oxide of titanium, molybdenum and silicon as the catalyst A component, a compound of at least one element of vanadium, niobium or tantalum as the catalyst B component and the catalyst C. It contains at least one elemental compound of manganese, iron, cobalt or zinc as a component, and the molybdenum content in the catalyst A component is 10 to 30% by mass in terms of oxide. .

本発明を用いる事で、低温度域においても硫黄酸化物による性能低下を抑制する事が可能になり、排ガス中に含まれるNOxや有機ハロゲン化合物を長時間にわたって安定的に処理する事ができる。   By using the present invention, it becomes possible to suppress the performance deterioration due to sulfur oxide even in a low temperature range, and NOx and organic halogen compounds contained in the exhaust gas can be stably treated for a long time.

本発明の排ガス処理触媒は、触媒A成分としてチタン、モリブデンおよびケイ素の三元系複合酸化物または混合酸化物、触媒B成分としてバナジウム、ニオブまたはタンタルの少なくとも1種の元素の化合物ならびに触媒C成分としてマンガン、鉄、コバルトまたは亜鉛の少なくとも1種の元素の化合物を含むものである。   The exhaust gas treatment catalyst of the present invention comprises a ternary composite oxide or mixed oxide of titanium, molybdenum and silicon as a catalyst A component, a compound of at least one element of vanadium, niobium or tantalum as a catalyst B component, and a catalyst C component. As a compound containing at least one element of manganese, iron, cobalt, or zinc.

(触媒成分)
触媒A成分の組成は除去性能および耐久性に大きく影響し、具体的には触媒A成分中のモリブデン含有量が酸化物換算で10〜30質量%であるのがよく、好ましくは15〜25質量%、更に好ましくは15〜20質量%であるのがよい。触媒A成分中のモリブデン含有量が酸化物換算で10質量%未満では充分な耐久性が得られず、30質量%を超えて多くするとNOxや有機ハロゲン化合物の除去性能が低くなるからである。触媒中に占める触媒A成分の含有量としては、触媒A成分と触媒B成分と触媒C成分の合計に対して70〜96質量%であるのが好ましく、より好ましくは80〜95質量%、更に好ましくは85〜94質量%であるのがよい。触媒A成分の含有量が70質量%未満あるいは96質量%を超えると除去性能が低下するからである。
(Catalyst component)
The composition of the catalyst A component greatly affects the removal performance and durability. Specifically, the molybdenum content in the catalyst A component should be 10 to 30% by mass in terms of oxide, preferably 15 to 25% by mass. %, More preferably 15 to 20% by mass. This is because if the molybdenum content in the catalyst A component is less than 10% by mass in terms of oxide, sufficient durability cannot be obtained, and if it exceeds 30% by mass, the removal performance of NOx and organic halogen compounds decreases. The content of the catalyst A component in the catalyst is preferably 70 to 96% by mass, more preferably 80 to 95% by mass, and more preferably 80 to 95% by mass with respect to the total of the catalyst A component, the catalyst B component, and the catalyst C component. Preferably it is 85-94 mass%. This is because when the content of the catalyst A component is less than 70% by mass or exceeds 96% by mass, the removal performance is deteriorated.

また、触媒A成分を調製する際の出発原料としては、各元素の酸化物、水酸化物、無機塩、有機塩などが用いられる。例えばチタン供給源としては、硫酸チタニル、四塩化チタン、テトライソプロピルチタネートなどが用いられ、ケイ素供給源としてはシリカゾル、水ガラス、四塩化ケイ素などが用いられ、モリブデン源としてはパラモリブデン酸アンモニウム、モリブデン酸などを用いる事ができる。触媒A成分の調製方法としてはゾル−ゲル法、水熱合成、共沈法などを用いる事ができるが、特に好ましい方法としてモリブデン源とケイ素源を混合した塩基性溶液にチタン源の酸性溶液を添加する事によって触媒A成分の前駆体を得る共沈法が挙げられる。この方法を用いる場合、共沈反応後のpHは好ましくは2〜6、より好ましくは3〜5に制御するのがよく、このように制御する事によって性能および耐久性に優れた触媒を得る事ができる。   In addition, as starting materials for preparing the catalyst A component, oxides, hydroxides, inorganic salts, organic salts and the like of each element are used. For example, titanyl sulfate, titanium tetrachloride, tetraisopropyl titanate, etc. are used as the titanium source, silica sol, water glass, silicon tetrachloride, etc. are used as the silicon source, and ammonium paramolybdate, molybdenum as the molybdenum source. An acid or the like can be used. As a preparation method of the catalyst A component, a sol-gel method, hydrothermal synthesis, a coprecipitation method and the like can be used. As a particularly preferable method, an acidic solution of a titanium source is added to a basic solution in which a molybdenum source and a silicon source are mixed. The coprecipitation method which obtains the precursor of the catalyst A component by adding is mentioned. When this method is used, the pH after the coprecipitation reaction is preferably controlled to 2 to 6, more preferably 3 to 5. By controlling in this way, a catalyst excellent in performance and durability can be obtained. Can do.

触媒B成分はバナジウム、ニオブまたはタンタルの少なくとも1種の元素の化合物であるが、酸化物の形態で触媒に含有されているのが除去性能の点から好ましい。またその含有量も除去性能に大きく影響し、触媒A成分と触媒B成分と触媒C成分の合計に対して酸化物換算で1〜20質量%であるのが好ましく、より好ましくは3〜15質量%、更に好ましくは5〜10質量%であるのがよい。触媒B成分の含有量が1質量%未満では充分な除去性能が得られず、20質量%を超えて多くすると金属種のシンタリングによって却って性能低下を引き起こす恐れがあるからである。なお、触媒B成分としてバナジウム、ニオブ、タンタルのうちから複数の元素の化合物を用いる場合には、各化合物の酸化物換算での合計量が上記範囲にあるのがよい。また、触媒B成分を調製する際の出発原料としては、各元素の酸化物、水酸化物、無機塩、有機塩などが用いられ、例えばバナジウム源としてはメタバナジン酸アンモニウムが好適に用いられ、ニオブ源としてはシュウ酸ニオブやそのアンモニウム塩を用いる事ができる。   The catalyst B component is a compound of at least one element of vanadium, niobium or tantalum, but is preferably contained in the catalyst in the form of an oxide from the viewpoint of removal performance. Further, the content greatly affects the removal performance, and it is preferably 1 to 20% by mass, more preferably 3 to 15% by mass in terms of oxide with respect to the total of the catalyst A component, the catalyst B component and the catalyst C component. %, More preferably 5 to 10% by mass. This is because if the content of the catalyst B component is less than 1% by mass, sufficient removal performance cannot be obtained, and if it exceeds 20% by mass, there is a risk of performance degradation due to sintering of the metal species. In addition, when using the compound of a some element from vanadium, niobium, and a tantalum as a catalyst B component, it is good that the total amount in conversion of the oxide of each compound exists in the said range. Further, as starting materials for preparing the catalyst B component, oxides, hydroxides, inorganic salts, organic salts, and the like of each element are used. For example, ammonium metavanadate is preferably used as the vanadium source. As a source, niobium oxalate or its ammonium salt can be used.

触媒C成分はマンガン、鉄、コバルトまたは亜鉛の少なくとも1種の元素の化合物であるが、硫酸塩の形態で触媒に含有されているのが好ましい。触媒C成分としてマンガン、鉄、コバルトまたは亜鉛の少なくとも1種の元素の硫酸塩を用いる場合、その含有量は触媒A成分と触媒B成分と触媒C成分の合計に対して3〜10質量%であるのが好ましく、より好ましくは4〜8質量%、更に好ましくは5〜7質量%であるのがよい。含有量が3質量%未満では充分な耐久性が得られず、10質量%を超えて多くすると除去性能が低下する場合があるからである。なお、触媒C成分としてマンガン、鉄、コバルト、亜鉛の複数の元素の硫酸塩を用いる場合には、各化合物の合計量が上記範囲にあるのがよい。   The catalyst C component is a compound of at least one element of manganese, iron, cobalt or zinc, but is preferably contained in the catalyst in the form of a sulfate. When the sulfate of at least one element of manganese, iron, cobalt or zinc is used as the catalyst C component, the content thereof is 3 to 10% by mass with respect to the total of the catalyst A component, the catalyst B component and the catalyst C component. It is preferable that it is 4 to 8% by mass, more preferably 5 to 7% by mass. This is because if the content is less than 3% by mass, sufficient durability cannot be obtained, and if the content exceeds 10% by mass, the removal performance may deteriorate. In addition, when using the sulfate of the some element of manganese, iron, cobalt, and zinc as a catalyst C component, it is good that the total amount of each compound exists in the said range.

さらに、本発明の実施形態としては、触媒B成分としてバナジウム酸化物、触媒C成分として硫酸亜鉛を用いるのが特に好ましく、これらを必須成分として含有する事によって除去性能および耐久性に優れた触媒を得る事ができる。   Furthermore, as an embodiment of the present invention, it is particularly preferable to use vanadium oxide as the catalyst B component and zinc sulfate as the catalyst C component. By containing these as essential components, a catalyst having excellent removal performance and durability can be obtained. I can get it.

なお、本発明にかかる触媒の性能を損なわないものであれは更に他の化合物を添加することもできる。   In addition, another compound can also be added as long as the performance of the catalyst according to the present invention is not impaired.

本発明の排ガス処理触媒の比表面積は、50〜200m/gの範囲にあるのがよく、より好ましくは70〜150m/g、更に好ましくは80〜120m/gの範囲にあるのがよい。触媒の比表面積が低すぎると充分な触媒性能が得られない他、活性成分のシンタリングが起こりやすくなり、高すぎても触媒性能はそれほど向上しないが、被毒物質の蓄積量が多くなって性能低下が大きくなる場合があるからである。 The specific surface area of the exhaust gas treatment catalyst of the present invention should be in the range of 50 to 200 m 2 / g, more preferably 70 to 150 m 2 / g, and still more preferably in the range of 80 to 120 m 2 / g. Good. If the specific surface area of the catalyst is too low, sufficient catalyst performance cannot be obtained, and active component sintering tends to occur. If it is too high, the catalyst performance will not improve much, but the amount of poisonous substances accumulated will increase. This is because there is a case where the performance degradation becomes large.

また、本発明で用いる脱硝触媒の細孔容積は、全細孔容積が0.20〜0.70mL/gの範囲にあるのがよく、より好ましくは0.25〜0.60mL/g、更に好ましくは0.28〜0.50mL/gの範囲にあるのがよい。触媒の細孔容積が小さすぎると十分な触媒性能が得られず、大きすぎても触媒性能はそれほど向上しないが、触媒の機械的強度が低下してハンドリングに支障をきすことや耐磨耗性が低くなるなどの弊害が生じるおそれがあるので好ましくない。   The pore volume of the denitration catalyst used in the present invention is such that the total pore volume is in the range of 0.20 to 0.70 mL / g, more preferably 0.25 to 0.60 mL / g, Preferably it is in the range of 0.28 to 0.50 mL / g. If the pore volume of the catalyst is too small, sufficient catalyst performance will not be obtained, and if it is too large, the catalyst performance will not improve so much, but the mechanical strength of the catalyst will be reduced and handling will be hindered and abrasion resistance This is not preferable because there is a risk of adverse effects such as lowering.

(触媒製造方法)
本発明にかかる触媒調製方法としては、(1)触媒A成分にかかる三元系複合酸化物または混合酸化物を上記手順で得た後、触媒B成分および触媒C成分の水性液を加えニーダーなどで十分混合し所定の形状成形し乾燥、焼成する方法、(2)触媒A成分、触媒B成分および触媒C成分の原料を一度に混合し、乾燥、焼成し、更に水性媒体を加えスラリーとした後に所定形状に成形する方法、(3)触媒A成分、触媒B成分および触媒C成分の原料を一度に混合し、場合によってはpH調整することで沈殿物を得た後、当該沈殿物を乾燥、焼成し、更に水性媒体を加えスラリーとした後に所定形状に成形する方法、(4)(2)または(3)で得られたスラリーを通常触媒用担体として用いられる担体に被覆することもできる。(5)なお、(1)、(2)または(3)で成形する場合、ハニカム、ペレット、粒体に成形し乾燥、焼成し触媒とすることもできる。
(Catalyst production method)
As a catalyst preparation method according to the present invention, (1) a ternary composite oxide or mixed oxide relating to catalyst A component is obtained by the above procedure, then aqueous solutions of catalyst B component and catalyst C component are added, and a kneader or the like. (2) Catalyst A component, Catalyst B component and Catalyst C component raw materials are mixed at one time, dried and fired, and further an aqueous medium is added to form a slurry. (3) The catalyst A component, the catalyst B component, and the catalyst C component raw materials are mixed at once, and the pH is adjusted in some cases to obtain a precipitate, and then the precipitate is dried. A method of calcining and further adding an aqueous medium to form a slurry, and then shaping the slurry into a predetermined shape, (4) The slurry obtained in (2) or (3) can also be coated on a carrier that is usually used as a catalyst carrier. . (5) In addition, when shape | molding by (1), (2) or (3), it can also shape | mold into a honeycomb, a pellet, and a granule, can be dried and baked, and can also be set as a catalyst.

本発明にかかる触媒は、押し出し成形、打錠成形、転動造粒などにより、サドル状、ペレット、球体、ハニカム状に成形して用いることができる。またサドル状、ペレット、球体、ハニカム状の担体に脱硝触媒の成分を被覆して用いる事もできる。排ガス処理装置の圧力損失を少なくするにはハニカム状が好ましい。また、その調製においては各種金属化合物を用いた一般的な調製方法を用いる事ができ、例えば、触媒A成分の成形体に触媒B成分および触媒C成分の溶液を含浸する方法や、触媒A成分の粉体に触媒B成分および触媒C成分の溶液または粉体を混合した後に混練する方法などが挙げられるが、細孔容積の制御などの点から混練法が好適に用いられる。   The catalyst according to the present invention can be formed into a saddle, pellet, sphere, or honeycomb by extrusion molding, tableting, rolling granulation, or the like. Further, a saddle-shaped, pellet, sphere, or honeycomb-shaped carrier can be used by coating the components of the denitration catalyst. A honeycomb shape is preferable for reducing the pressure loss of the exhaust gas treatment apparatus. Further, in the preparation, general preparation methods using various metal compounds can be used. For example, a method of impregnating a molded product of the catalyst A component with a solution of the catalyst B component and the catalyst C component, A method of kneading, after mixing a solution or powder of the catalyst B component and the catalyst C component with the powder of the above, is preferable from the viewpoint of controlling the pore volume.

本発明の排ガス処理方法は、前記本発明の触媒を用いて排ガス中のNOxおよび/または有機ハロゲン化合物を除去する排ガス処理方法であるが、このときの排ガスの処理温度は、150〜400℃、好ましくは150〜300℃、より好ましくは160〜250℃、さらに好ましくは160〜190℃の範囲にあるのがよい。排ガスの処理温度が150℃未満ではNOxや有機ハロゲン化合物の充分な除去効率が得られず、400℃を超えるとモリブデンの飛散による触媒性能の低下や後流機器への悪影響を引き起こす場合があるからである。   The exhaust gas treatment method of the present invention is an exhaust gas treatment method for removing NOx and / or organic halogen compounds in the exhaust gas using the catalyst of the present invention. At this time, the treatment temperature of the exhaust gas is 150 to 400 ° C, Preferably it is 150-300 degreeC, More preferably, it is 160-250 degreeC, More preferably, it is good in the range of 160-190 degreeC. If the treatment temperature of the exhaust gas is less than 150 ° C., sufficient removal efficiency of NOx and organic halogen compounds cannot be obtained, and if it exceeds 400 ° C., catalyst performance may be deteriorated due to the scattering of molybdenum and adverse effects on downstream equipment may be caused. It is.

(排ガス処理方法)
本発明にかかる触媒が処理対象とする排ガスは窒素酸化物(NOx)および/または有機ハロゲン化合物を含むものであり、排ガス中のNOx濃度は5〜1000ppm(容量基準)であるのが好ましく、より好ましくは10〜500ppm、更に好ましくは20〜300ppmの範囲にあるのがよい。排ガス中のNOx濃度が5ppm未満では充分なNOx除去性能が発揮されず、一方、1000ppmを超えると排ガス中に硫黄化合物が含まれている場合、硫安化合物の蓄積量が増加して性能低下が大きくなるため好ましくはないからである。
(Exhaust gas treatment method)
The exhaust gas to be treated by the catalyst according to the present invention contains nitrogen oxide (NOx) and / or an organic halogen compound, and the NOx concentration in the exhaust gas is preferably 5 to 1000 ppm (volume basis), more Preferably it is in the range of 10 to 500 ppm, more preferably 20 to 300 ppm. If the NOx concentration in the exhaust gas is less than 5 ppm, sufficient NOx removal performance will not be exhibited. This is because it is not preferable.

排ガス中の有機ハロゲン化合物の濃度は0.1ppt〜3000ppm(容量基準)であるのが好ましく、より好ましくは0.5ppt〜1000ppm、更に好ましくは1ppt〜500ppmの範囲にあるのがよい。排ガス中の有機ハロゲン化合物の濃度が0.1ppt未満では充分な分解性能が発揮されず、一方、3000ppmを超えると反応による発熱が大きくなり、触媒が熱的ダメージを受ける場合があるためである。   The concentration of the organic halogen compound in the exhaust gas is preferably 0.1 ppt to 3000 ppm (volume basis), more preferably 0.5 ppt to 1000 ppm, and still more preferably 1 ppt to 500 ppm. If the concentration of the organic halogen compound in the exhaust gas is less than 0.1 ppt, sufficient decomposition performance is not exhibited. On the other hand, if it exceeds 3000 ppm, heat generated by the reaction increases and the catalyst may be thermally damaged.

排ガスを処理する場合には排ガス中にアンモニアまたは尿素(アンモニア等とも称する)を添加することができる。特に排ガス中に窒素酸化物が含まれていることには効果的である。アンモニア等添加量は、窒素酸化物(NO換算)1モルに対して、アンモニア換算(尿素の場合は1/2モル)で0.2〜2.0モル、好ましくは0.5〜1.0モルである。 In the case of treating exhaust gas, ammonia or urea (also referred to as ammonia or the like) can be added to the exhaust gas. In particular, it is effective that nitrogen oxides are contained in the exhaust gas. The addition amount of ammonia and the like is 0.2 to 2.0 mol, preferably 0.5 to 1. mol in terms of ammonia (1/2 mol in the case of urea) with respect to 1 mol of nitrogen oxide (NO X conversion). 0 mole.

なお、有機ハロゲン化合物が排ガス中に含まれる場合はアンモニア等を加える必要はないが、アンモニア等が排ガス中に加えられても本発明にかかる触媒の効果は損なわれるものではない。   In addition, when an organic halogen compound is contained in the exhaust gas, it is not necessary to add ammonia or the like, but even if ammonia or the like is added to the exhaust gas, the effect of the catalyst according to the present invention is not impaired.

更に排ガス中に含まれる成分として酸素、水、SOxなどがある。例えば、排ガス中に酸素が存在する条件下で好適に用いられるが、この場合の酸素濃度は、0.1〜50容量%の範囲にあるのが好ましく、より好ましくは0.3〜20容量%、更に好ましくは0.5〜16容量%の範囲にあるのがよい。酸素濃度が0.1容量%未満では除去効率が低下し、50容量%を超えると副反応であるSO酸化が促進されるため、好ましくない。また、排ガス中に水分を含む場合には、その濃度は50容量%以下であるのが好ましく、より好ましくは40容量%以下、更に好ましくは30容量%以下であるのがよい。排ガス中の水分濃度が50容量%を超えると除去効率が低下する他、場合によっては性能低下が大きくなるからである。 Furthermore, oxygen, water, SOx, etc. are contained in the exhaust gas. For example, it is preferably used under conditions where oxygen is present in the exhaust gas. In this case, the oxygen concentration is preferably in the range of 0.1 to 50% by volume, more preferably 0.3 to 20% by volume. More preferably, it is in the range of 0.5 to 16% by volume. If the oxygen concentration is less than 0.1% by volume, the removal efficiency decreases, and if it exceeds 50% by volume, SO 2 oxidation as a side reaction is promoted, which is not preferable. When the exhaust gas contains moisture, the concentration is preferably 50% by volume or less, more preferably 40% by volume or less, and further preferably 30% by volume or less. This is because when the moisture concentration in the exhaust gas exceeds 50% by volume, the removal efficiency is lowered and, in some cases, the performance is greatly lowered.

排ガス中に硫黄酸化物(SOx)を含有している場合にあっても本発明にかかる触媒は好適に用いられるが、そのときのSOx濃度は0.1〜2000ppm(容量基準)、好ましくは0.2〜500ppm、より好ましくは0.5〜100ppm、更に好ましくは1〜50ppmの範囲にあるのがよい。SOx濃度が0.1ppm以上である排ガスの処理において本発明の効果が発揮される。一方、排ガス中のSOx濃度が2000ppmを超えるとSOxによる性能低下が大きくなるため、好ましくない。   Even when sulfur oxide (SOx) is contained in the exhaust gas, the catalyst according to the present invention is preferably used, but the SOx concentration at that time is 0.1 to 2000 ppm (volume basis), preferably 0. It may be in the range of .2 to 500 ppm, more preferably 0.5 to 100 ppm, and still more preferably 1 to 50 ppm. The effect of the present invention is exhibited in the treatment of exhaust gas having a SOx concentration of 0.1 ppm or more. On the other hand, if the SOx concentration in the exhaust gas exceeds 2000 ppm, performance degradation due to SOx becomes large, which is not preferable.

また、本発明の排ガス処理に際しての空間速度は、100〜50,000h−1(STP)、好ましくは200〜10,000h−1(STP)、より好ましくは500〜5,000h−1(STP)の範囲にあるのがよい。空間速度が50,000h−1(STP)を超えるとNOxや有機ハロゲン化合物の充分な除去効率が得られず、100h−1(STP)未満では除去効率は大きく変わらないが排ガス処理装置の圧力損失が高くなり、また装置自体も大きくなって非効率だからである。更に、本発明の排ガス処理に際しての触媒層を通過するガスの線速度は、0.1〜10m/s(Normal)、好ましくは0.5〜7m/s(Normal)、より好ましくは0.7〜4m/s(Normal)の範囲にあるのがよい。線速度が0.1m/s(Normal)未満では充分な除去効率が得られず、10m/s(Normal)を超えると除去効率は大きく変わらないが、排ガス処理装置の圧力損失が高くなるからである。 The space velocity during the exhaust gas treatment of the present invention is 100 to 50,000 h −1 (STP), preferably 200 to 10,000 h −1 (STP), more preferably 500 to 5,000 h −1 (STP). It is good to be in the range. Not sufficient removal efficiency is obtained of the space velocity exceeds 50,000h -1 (STP) NOx and organic halogen compounds, removal efficiency but does not change significantly the pressure loss of the exhaust gas treatment device is less than 100h -1 (STP) And the device itself becomes larger and inefficient. Furthermore, the linear velocity of the gas passing through the catalyst layer in the exhaust gas treatment of the present invention is 0.1 to 10 m / s (Normal), preferably 0.5 to 7 m / s (Normal), more preferably 0.7. It should be in the range of ˜4 m / s (Normal). If the linear velocity is less than 0.1 m / s (Normal), sufficient removal efficiency cannot be obtained, and if it exceeds 10 m / s (Normal), the removal efficiency does not change greatly, but the pressure loss of the exhaust gas treatment device increases. is there.

以下に実施例により発明を詳細に説明するが、本発明の効果を奏するものであれば以下の実施例に限定されるものではない。   The present invention will be described in detail below with reference to examples. However, the present invention is not limited to the following examples as long as the effects of the present invention are achieved.

(実施例1)
<Ti−Si−Mo複合酸化物(MoO含有量:20質量%)の調製>
パラモリブデン酸アンモニウム4.9kgと、シリカゾル(スノーテックス−30(製品名)、日産化学社製、SiO2換算30質量%含有)6.0kgと、工業用アンモニア水(25質量%NH含有)109kgと、水186リットル(以下、Lと表記)との混合溶液に、硫酸チタニルの硫酸溶液(テイカ社製、TiOとして70g/L、HSOとして287g/L含有)203Lを、攪拌しながら徐々に滴下し、沈殿を生成させ後、適量のアンモニア水を加えてpHを5に調整した。この共沈スラリーを約20時間静置し、水で充分洗浄した後、濾過し、100℃で1時間乾燥させた。さらに、空気雰囲気下、550℃で5時間焼成し、さらにハンマーミルを用いて粉砕し、分級機で分級してTi−Si−Mo複合酸化物の粉体を得た。このようにして調製したTi−Si−Mo複合酸化物粉体の組成は、TiO:SiO:MoO=71:9:20(質量比)であった。
<バナジウム酸化物および硫酸マンガンの添加>
8Lの水にメタバナジン酸アンモニウム1.54kgとシュウ酸1.85kg、さらにモノエタノールアミン0.4kgを混合し、溶解させ、均一溶液を調製した。先に調製したTi−Si−Mo複合酸化物粉体(MoO含有量:20質量%)17.6kgと、硫酸マンガン5水和物(MnSO・5HO)1.92kgをニーダーに投入後、有機バインダーなどの成形助剤とともにバナジウム含有溶液を加え、よく攪拌した。さらに適量の水を加えつつブレンダーでよく混合した後、連続ニーダーで充分混練りし、外形80mm角、長さ500mm、目開き3.2mm、肉厚0.5mmのハニカム状に押し出し成形した。得られた成形物を60℃で乾燥後、500℃で5時間焼成して触媒Aを得た。この触媒Aの組成は、TiO:SiO:MoO:V:MnSO=62:8:18:6:6(質量比)であり、BET比表面積は100m/g、全細孔容積は0.32mL/gであった。
Example 1
<Preparation of Ti-Si-Mo composite oxide (MoO 3 content: 20% by mass)>
4.9 kg of ammonium paramolybdate, silica sol (Snowtex-30 (product name), manufactured by Nissan Chemical Industries, containing 30% by mass of SiO 2 equivalent) 6.0 kg, and industrial aqueous ammonia (containing 25% by mass of NH 3 ) In a mixed solution of 109 kg and 186 liters of water (hereinafter referred to as L), 203 L of sulfuric acid solution of titanyl sulfate (manufactured by Teika, containing 70 g / L as TiO 2 and 287 g / L as H 2 SO 4 ) was stirred. The solution was gradually added dropwise to produce a precipitate, and then an appropriate amount of aqueous ammonia was added to adjust the pH to 5. The coprecipitated slurry was allowed to stand for about 20 hours, washed thoroughly with water, filtered, and dried at 100 ° C. for 1 hour. Furthermore, it was fired at 550 ° C. for 5 hours in an air atmosphere, further pulverized using a hammer mill, and classified with a classifier to obtain a Ti—Si—Mo composite oxide powder. The composition of the Ti—Si—Mo composite oxide powder thus prepared was TiO 2 : SiO 2 : MoO 3 = 71: 9: 20 (mass ratio).
<Addition of vanadium oxide and manganese sulfate>
In 8 L of water, 1.54 kg of ammonium metavanadate, 1.85 kg of oxalic acid, and 0.4 kg of monoethanolamine were mixed and dissolved to prepare a uniform solution. 17.6 kg of Ti-Si-Mo composite oxide powder (MoO 3 content: 20% by mass) prepared previously and 1.92 kg of manganese sulfate pentahydrate (MnSO 4 .5H 2 O) are charged into a kneader. After that, the vanadium-containing solution was added together with a molding aid such as an organic binder and stirred well. Further, after mixing well with a blender while adding an appropriate amount of water, the mixture was sufficiently kneaded with a continuous kneader and extruded into a honeycomb shape having an outer diameter of 80 mm square, a length of 500 mm, an aperture of 3.2 mm, and a wall thickness of 0.5 mm. The obtained molded product was dried at 60 ° C. and then calcined at 500 ° C. for 5 hours to obtain Catalyst A. The composition of the catalyst A is TiO 2 : SiO 2 : MoO 3 : V 2 O 5 : MnSO 4 = 62: 8: 18: 6: 6 (mass ratio), the BET specific surface area is 100 m 2 / g, The pore volume was 0.32 mL / g.

(実施例2)
実施例1において、硫酸マンガン5水和物1.92kgの代わりに硫酸鉄7水和物(FeSO・7HO)2.20kgを使用した以外は実施例1と同様にして、触媒Bを得た。この触媒Bの組成は、TiO:SiO:MoO:V:FeSO=62:8:18:6:6(質量比)であり、BET比表面積は104m/g、全細孔容積は0.33mL/gであった。
(Example 2)
In Example 1, Catalyst B was prepared in the same manner as in Example 1 except that 2.20 kg of iron sulfate heptahydrate (FeSO 4 .7H 2 O) was used instead of 1.92 kg of manganese sulfate pentahydrate. Obtained. The composition of the catalyst B is TiO 2 : SiO 2 : MoO 3 : V 2 O 5 : FeSO 4 = 62: 8: 18: 6: 6 (mass ratio), and the BET specific surface area is 104 m 2 / g, The pore volume was 0.33 mL / g.

(実施例3)
実施例1において、硫酸マンガン5水和物1.92kgの代わりに硫酸コバルト7水和物(CoSO・7HO)2.18kgを使用した以外は実施例1と同様にして、触媒Cを得た。この触媒Cの組成は、TiO:SiO:MoO:V:CoSO=62:8:18:6:6(質量比)であり、BET比表面積は99m/g、全細孔容積は0.32mL/gであった。
(Example 3)
In Example 1, Catalyst C was prepared in the same manner as in Example 1 except that 2.18 kg of cobalt sulfate heptahydrate (CoSO 4 .7H 2 O) was used instead of 1.92 kg of manganese sulfate pentahydrate. Obtained. The composition of the catalyst C is TiO 2 : SiO 2 : MoO 3 : V 2 O 5 : CoSO 4 = 62: 8: 18: 6: 6 (mass ratio), and the BET specific surface area is 99 m 2 / g, The pore volume was 0.32 mL / g.

(実施例4)
実施例1において、硫酸マンガン5水和物1.92kgの代わりに硫酸亜鉛7水和物(ZnSO・7HO)2.14kgを使用した以外は実施例1と同様にして、触媒Dを得た。この触媒Dの組成は、TiO:SiO:MoO:V:ZnSO=62:8:18:6:6(質量比)であり、BET比表面積は102m/g、全細孔容積は0.31mL/gであった。
(Example 4)
In Example 1, Catalyst D was prepared in the same manner as in Example 1 except that 2.14 kg of zinc sulfate heptahydrate (ZnSO 4 .7H 2 O) was used instead of 1.92 kg of manganese sulfate pentahydrate. Obtained. The composition of the catalyst D is TiO 2 : SiO 2 : MoO 3 : V 2 O 5 : ZnSO 4 = 62: 8: 18: 6: 6 (mass ratio), and the BET specific surface area is 102 m 2 / g, The pore volume was 0.31 mL / g.

(実施例5)
実施例4において、Ti−Si−Mo複合酸化物粉体(MoO含有量:20質量%)の量を17.6kgから18.2kgに変更し、硫酸亜鉛7水和物の量を2.14kgから1.07kgに変更した以外は実施例4と同様にして、触媒Eを得た。この触媒Eの組成は、TiO:SiO:MoO:V:ZnSO=65:8:18:6:3(質量比)であり、BET比表面積は110m/g、全細孔容積は0.32mL/gであった。
(Example 5)
In Example 4, the amount of Ti—Si—Mo composite oxide powder (MoO 3 content: 20 mass%) was changed from 17.6 kg to 18.2 kg, and the amount of zinc sulfate heptahydrate was changed to 2. Catalyst E was obtained in the same manner as in Example 4 except that the amount was changed from 14 kg to 1.07 kg. The composition of the catalyst E is TiO 2 : SiO 2 : MoO 3 : V 2 O 5 : ZnSO 4 = 65: 8: 18: 6: 3 (mass ratio), the BET specific surface area is 110 m 2 / g, The pore volume was 0.32 mL / g.

(実施例6)
実施例4において、Ti−Si−Mo複合酸化物粉体(MoO含有量:20質量%)の量を17.6kgから16.8kgに変更し、硫酸亜鉛7水和物の量を2.14kgから3.56kgに変更した以外は実施例4と同様にして、触媒Fを得た。この触媒Fの組成は、TiO:SiO:MoO:V:ZnSO=59:8:17:6:10(質量比)であり、BET比表面積は95m/g、全細孔容積は0.29mL/gであった。
(Example 6)
In Example 4, the amount of Ti—Si—Mo composite oxide powder (MoO 3 content: 20 mass%) was changed from 17.6 kg to 16.8 kg, and the amount of zinc sulfate heptahydrate was 2. Catalyst F was obtained in the same manner as in Example 4 except that the amount was changed from 14 kg to 3.56 kg. The composition of the catalyst F is TiO 2 : SiO 2 : MoO 3 : V 2 O 5 : ZnSO 4 = 59: 8: 17: 6: 10 (mass ratio), the BET specific surface area is 95 m 2 / g, The pore volume was 0.29 mL / g.

(実施例7)
実施例4において、硫酸亜鉛7水和物2.14kgの代わりに硝酸亜鉛6水和物(Zn(NO・6HO)4.33kgを使用した以外は実施例4と同様にして、触媒Gを得た。この触媒Gの組成は、TiO:SiO:MoO:V:ZnO=62:8:18:6:6(質量比)であり、BET比表面積は92m/g、全細孔容積は0.34mL/gであった。
(Example 7)
In Example 4, in the same manner as in Example 4 except that 4.33 kg of zinc nitrate hexahydrate (Zn (NO 3 ) 2 .6H 2 O) was used instead of 2.14 kg of zinc sulfate heptahydrate. Catalyst G was obtained. The composition of the catalyst G is TiO 2 : SiO 2 : MoO 3 : V 2 O 5 : ZnO = 62: 8: 18: 6: 6 (mass ratio), and the BET specific surface area is 92 m 2 / g, all fine. The pore volume was 0.34 mL / g.

(比較例1)
<Ti−Si−Mo複合酸化物(MoO含有量:9質量%)の調製>
パラモリブデン酸アンモニウム2.2kgと、シリカゾル(スノーテックス−30(製品名))6.0kgと、工業用アンモニア水(25質量%NH含有)126kgと、水138Lとの混合溶液に、実施例1で用いた硫酸チタニルの硫酸溶液234Lを、攪拌しながら徐々に滴下し、沈殿を生成させ後、適量のアンモニア水を加えてpHを5に調整した。この共沈スラリーを約20時間静置し、水で充分洗浄した後、濾過し、100℃で1時間乾燥させた。さらに、空気雰囲気下、550℃で5時間焼成し、さらにハンマーミルを用いて粉砕し、分級機で分級してTi−Si−Mo複合酸化物の粉体を得た。このようにして調製したTi−Si−Mo複合酸化物粉体の組成は、TiO:SiO:MoO=82:9:9(質量比)であった。
(Comparative Example 1)
<Preparation of Ti-Si-Mo composite oxide (MoO 3 content: 9% by mass)>
In a mixed solution of 2.2 kg of ammonium paramolybdate, 6.0 kg of silica sol (Snowtex-30 (product name)), 126 kg of industrial ammonia water (containing 25 mass% NH 3 ), and 138 L of water, Example The sulfuric acid solution of titanyl sulfate used in 1 was gradually added dropwise with stirring to form a precipitate, and then an appropriate amount of aqueous ammonia was added to adjust the pH to 5. The coprecipitated slurry was allowed to stand for about 20 hours, washed thoroughly with water, filtered, and dried at 100 ° C. for 1 hour. Furthermore, it was fired at 550 ° C. for 5 hours in an air atmosphere, further pulverized using a hammer mill, and classified with a classifier to obtain a Ti—Si—Mo composite oxide powder. The composition of the Ti—Si—Mo composite oxide powder thus prepared was TiO 2 : SiO 2 : MoO 3 = 82: 9: 9 (mass ratio).

<バナジウム酸化物および硫酸亜鉛の添加>
実施例4において、Ti−Si−Mo複合酸化物粉体(MoO含有量:20質量%)17.6kgの代わりに上記Ti−Si−Mo複合酸化物粉体(MoO含有量:9質量%)17.6kgを使用した以外は実施例4と同様にして、触媒Hを得た。この触媒Hの組成は、TiO:SiO:MoO:V:ZnSO=72:8:8:6:6(質量比)であり、BET比表面積は98m/g、全細孔容積は0.34mL/gであった。
<Addition of vanadium oxide and zinc sulfate>
In Example 4, instead of 17.6 kg of Ti—Si—Mo composite oxide powder (MoO 3 content: 20 mass%), the above Ti—Si—Mo composite oxide powder (MoO 3 content: 9 mass) %) Catalyst H was obtained in the same manner as in Example 4 except that 17.6 kg was used. The composition of the catalyst H is TiO 2 : SiO 2 : MoO 3 : V 2 O 5 : ZnSO 4 = 72: 8: 8: 6: 6 (mass ratio), and the BET specific surface area is 98 m 2 / g, The pore volume was 0.34 mL / g.

(比較例2)
<Ti−Si−Mo複合酸化物(MoO含有量:35質量%)の調製>
パラモリブデン酸アンモニウム8.6kgと、シリカゾル(スノーテックス−30(製品名))6.0kgと、工業用アンモニア水(25質量%NH含有)86kgと、水252Lとの混合溶液に、実施例1で用いた硫酸チタニルの硫酸溶液160Lを、攪拌しながら徐々に滴下し、沈殿を生成させ後、適量のアンモニア水を加えてpHを5に調整した。この共沈スラリーを約20時間静置し、水で充分洗浄した後、濾過し、100℃で1時間乾燥させた。さらに、空気雰囲気下、550℃で5時間焼成し、さらにハンマーミルを用いて粉砕し、分級機で分級してTi−Si−Mo複合酸化物の粉体を得た。このようにして調製したTi−Si−Mo複合酸化物粉体の組成は、TiO:SiO:MoO=56:9:35(質量比)であった。
(Comparative Example 2)
<Preparation of Ti-Si-Mo composite oxide (MoO 3 content: 35% by mass)>
In a mixed solution of 8.6 kg of ammonium paramolybdate, 6.0 kg of silica sol (Snowtex-30 (product name)), 86 kg of industrial ammonia water (containing 25 mass% NH 3 ), and 252 L of water, Examples 160 L of the sulfuric acid solution of titanyl sulfate used in 1 was gradually added dropwise with stirring to form a precipitate, and then an appropriate amount of aqueous ammonia was added to adjust the pH to 5. The coprecipitated slurry was allowed to stand for about 20 hours, washed thoroughly with water, filtered, and dried at 100 ° C. for 1 hour. Furthermore, it was fired at 550 ° C. for 5 hours in an air atmosphere, further pulverized using a hammer mill, and classified with a classifier to obtain a Ti—Si—Mo composite oxide powder. The composition of the Ti—Si—Mo composite oxide powder thus prepared was TiO 2 : SiO 2 : MoO 3 = 56: 9: 35 (mass ratio).

<バナジウム酸化物および硫酸亜鉛の添加>
実施例4において、Ti−Si−Mo複合酸化物粉体(MoO含有量:20質量%)17.6kgの代わりに上記Ti−Si−Mo複合酸化物粉体(MoO含有量:35質量%)17.6kgを使用した以外は実施例4と同様にして、触媒Iを得た。この触媒Iの組成は、TiO:SiO:MoO:V:ZnSO=49:8:31:6:6(質量比)であり、BET比表面積は105m/g、全細孔容積は0.27mL/gであった。
<Addition of vanadium oxide and zinc sulfate>
In Example 4, instead of 17.6 kg of Ti—Si—Mo composite oxide powder (MoO 3 content: 20 mass%), the Ti—Si—Mo composite oxide powder (MoO 3 content: 35 mass) was used. %) Catalyst I was obtained in the same manner as in Example 4 except that 17.6 kg was used. The composition of the catalyst I is TiO 2 : SiO 2 : MoO 3 : V 2 O 5 : ZnSO 4 = 49: 8: 31: 6: 6 (mass ratio), and the BET specific surface area is 105 m 2 / g, The pore volume was 0.27 mL / g.

(比較例3)
実施例4において、Ti−Si−Mo複合酸化物粉体(MoO含有量:20質量%)の量を17.6kgから18.8kgに変更し、硫酸亜鉛7水和物を用いなかった以外は実施例4と同様にして、触媒Jを得た。この触媒Jの組成は、TiO:SiO:MoO:V=67:8:19:6(質量比)であり、BET比表面積は124m/g、全細孔容積は0.32mL/gであった。
(Comparative Example 3)
In Example 4, the amount of Ti—Si—Mo composite oxide powder (MoO 3 content: 20 mass%) was changed from 17.6 kg to 18.8 kg, and zinc sulfate heptahydrate was not used. Produced catalyst J in the same manner as in Example 4. The composition of the catalyst J is TiO 2 : SiO 2 : MoO 3 : V 2 O 5 = 67: 8: 19: 6 (mass ratio), the BET specific surface area is 124 m 2 / g, and the total pore volume is 0. .32 mL / g.

(NOx除去試験)
実施例1〜7および比較例1〜3で得た触媒A〜Jを用い、下記条件でNOx除去性能の評価を行なった。
(NOx removal test)
Using the catalysts A to J obtained in Examples 1 to 7 and Comparative Examples 1 to 3, the NOx removal performance was evaluated under the following conditions.

[供給ガス組成]
NOx:100ppm,NH:100ppm,SO:50ppm,O:10容量%,HO:15容量%,N:balance
[処理条件]
ガス温度:160℃,空間速度:3,000h−1(STP),ガス線速度:1.0m/s(Normal)
次に、触媒入口および触媒出口のNOx濃度を測定し、次式に従ってNOx除去率を算出した。なお、測定は反応開始10時間後と1000時間後に行なった。結果を表1に示す。
[Supply gas composition]
NOx: 100 ppm, NH 3 : 100 ppm, SO 2 : 50 ppm, O 2 : 10% by volume, H 2 O: 15% by volume, N 2 : balance
[Processing conditions]
Gas temperature: 160 ° C., space velocity: 3,000 h −1 (STP), gas linear velocity: 1.0 m / s (Normal)
Next, the NOx concentration at the catalyst inlet and the catalyst outlet was measured, and the NOx removal rate was calculated according to the following equation. The measurement was carried out 10 hours and 1000 hours after the start of the reaction. The results are shown in Table 1.

Figure 2014079716
Figure 2014079716

(クロロフェノール分解試験)
実施例4および比較例1、2で得た触媒D、H、Iを用い、下記条件でクロロフェノール分解性能の評価を行なった。
(Chlorophenol degradation test)
Using the catalysts D, H, and I obtained in Example 4 and Comparative Examples 1 and 2, the chlorophenol decomposition performance was evaluated under the following conditions.

[供給ガス組成]
クロロフェノール:30ppm,SO:50ppm,O:10容量%,HO:15容量%,N:balance
[処理条件]
ガス温度:160℃,空間速度:5,000h−1(STP),ガス線速度:1.0m/s(Normal)
次に、触媒入口および触媒出口のクロロフェノール濃度を測定し、次式に従ってクロロフェノール分解率を算出した。なお、測定は反応開始10時間後と1000時間後に行なった。結果を表2に示す。
[Supply gas composition]
Chlorophenol: 30 ppm, SO 2 : 50 ppm, O 2 : 10% by volume, H 2 O: 15% by volume, N 2 : balance
[Processing conditions]
Gas temperature: 160 ° C., space velocity: 5,000 h −1 (STP), gas linear velocity: 1.0 m / s (Normal)
Next, the chlorophenol concentrations at the catalyst inlet and the catalyst outlet were measured, and the chlorophenol decomposition rate was calculated according to the following formula. The measurement was carried out 10 hours and 1000 hours after the start of the reaction. The results are shown in Table 2.

Figure 2014079716
Figure 2014079716

Figure 2014079716
Figure 2014079716

Figure 2014079716
Figure 2014079716

本発明は排ガス処理に関する技術であり、各種産業排ガスの処理、特に窒素酸化物や有機ハロゲン化合物を含む排ガスの処理に用いることができる。更に詳しくは、都市ごみや産業廃棄物を処理する焼却施設、重油焚きボイラや石炭焚きボイラ、ディーゼルエンジン、火力発電所および各種工業プロセスから排出される排ガス中に含まれる窒素酸化物(NOx)および/または有機ハロゲン化合物を接触還元または分解除去する為の排ガス処理触媒、およびこの触媒を用いた排ガス処理方法に応用することができる。   The present invention is a technology related to exhaust gas treatment, and can be used for treatment of various industrial exhaust gases, particularly for treatment of exhaust gas containing nitrogen oxides and organic halogen compounds. More specifically, incineration facilities for treating municipal waste and industrial waste, heavy oil fired boilers, coal fired boilers, diesel engines, thermal power plants, and nitrogen oxides (NOx) contained in exhaust gas discharged from various industrial processes and The present invention can be applied to an exhaust gas treatment catalyst for catalytic reduction or decomposition removal of organic halogen compounds and an exhaust gas treatment method using this catalyst.

Claims (4)

窒素酸化物および/または有機ハロゲン化合物を含有する排ガスを処理するための触媒であって、触媒A成分としてチタン、モリブデンおよびケイ素の三元系複合酸化物または混合酸化物、触媒B成分としてバナジウム、ニオブまたはタンタルの少なくとも1種の元素の化合物ならびに触媒C成分としてマンガン、鉄、コバルトまたは亜鉛の少なくとも1種の元素の化合物を含有し、かつ触媒A成分中のモリブデン含有量が酸化物換算で10〜30質量%であることを特徴とする排ガス処理触媒。 A catalyst for treating exhaust gas containing nitrogen oxides and / or organic halogen compounds, wherein the catalyst A component is a ternary complex oxide or mixed oxide of titanium, molybdenum and silicon, the catalyst B component is vanadium, The compound of at least one element of niobium or tantalum and the compound of at least one element of manganese, iron, cobalt or zinc as the catalyst C component, and the molybdenum content in the catalyst A component is 10 in terms of oxide An exhaust gas treatment catalyst, characterized in that it is -30 mass%. 触媒C成分が、マンガン、鉄、コバルトまたは亜鉛の少なくとも1種の元素の硫酸塩であり、かつその含有量が、触媒A成分と触媒B成分と触媒C成分の合計に対して4〜8質量%であることを特徴とする請求項1に記載の排ガス処理触媒。 The catalyst C component is a sulfate of at least one element of manganese, iron, cobalt, or zinc, and the content thereof is 4 to 8 mass based on the total of the catalyst A component, the catalyst B component, and the catalyst C component. The exhaust gas treatment catalyst according to claim 1, wherein the exhaust gas treatment catalyst is%. 請求項1または2に記載の触媒を用いて、窒素酸化物および/または有機ハロゲン化合物を含有する排ガスを処理することを特徴とする排ガス処理方法。 An exhaust gas treatment method comprising treating exhaust gas containing nitrogen oxides and / or organic halogen compounds using the catalyst according to claim 1. 当該排ガスが更に硫黄酸化物を含有していることを特徴とする請求項3に記載の排ガス処理方法。 The exhaust gas treatment method according to claim 3, wherein the exhaust gas further contains a sulfur oxide.
JP2012230384A 2012-10-18 2012-10-18 Exhaust gas treatment catalyst and exhaust gas treatment method Expired - Fee Related JP6016572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012230384A JP6016572B2 (en) 2012-10-18 2012-10-18 Exhaust gas treatment catalyst and exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012230384A JP6016572B2 (en) 2012-10-18 2012-10-18 Exhaust gas treatment catalyst and exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JP2014079716A true JP2014079716A (en) 2014-05-08
JP6016572B2 JP6016572B2 (en) 2016-10-26

Family

ID=50784442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012230384A Expired - Fee Related JP6016572B2 (en) 2012-10-18 2012-10-18 Exhaust gas treatment catalyst and exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP6016572B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113198455A (en) * 2021-05-17 2021-08-03 南昌航空大学 Molybdenum trioxide/molybdenum mesh photocatalyst and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935028A (en) * 1982-08-19 1984-02-25 Mitsubishi Heavy Ind Ltd Preparation of calcined titanium oxide and catalyst
JPH01111443A (en) * 1987-10-26 1989-04-28 Babcock Hitachi Kk Nitrogen oxide removing catalyst
JP2001286729A (en) * 2000-04-06 2001-10-16 Mitsubishi Chemicals Corp Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
JP2001321667A (en) * 2000-03-08 2001-11-20 Nippon Shokubai Co Ltd Catalyst for treating waste gas, method for treating waste gas and manufacturing method of catalyst for treating waste gas
JP2004081995A (en) * 2002-08-27 2004-03-18 Nippon Shokubai Co Ltd Denitration catalyst and denitration method using the same
JP2004081994A (en) * 2002-08-27 2004-03-18 Nippon Shokubai Co Ltd Waste gas treatment catalyst and method of treating waste gas using the same
JP2006320803A (en) * 2005-05-18 2006-11-30 Nippon Shokubai Co Ltd Catalyst and method for treating exhaust gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935028A (en) * 1982-08-19 1984-02-25 Mitsubishi Heavy Ind Ltd Preparation of calcined titanium oxide and catalyst
JPH01111443A (en) * 1987-10-26 1989-04-28 Babcock Hitachi Kk Nitrogen oxide removing catalyst
JP2001321667A (en) * 2000-03-08 2001-11-20 Nippon Shokubai Co Ltd Catalyst for treating waste gas, method for treating waste gas and manufacturing method of catalyst for treating waste gas
JP2001286729A (en) * 2000-04-06 2001-10-16 Mitsubishi Chemicals Corp Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
JP2004081995A (en) * 2002-08-27 2004-03-18 Nippon Shokubai Co Ltd Denitration catalyst and denitration method using the same
JP2004081994A (en) * 2002-08-27 2004-03-18 Nippon Shokubai Co Ltd Waste gas treatment catalyst and method of treating waste gas using the same
JP2006320803A (en) * 2005-05-18 2006-11-30 Nippon Shokubai Co Ltd Catalyst and method for treating exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113198455A (en) * 2021-05-17 2021-08-03 南昌航空大学 Molybdenum trioxide/molybdenum mesh photocatalyst and preparation method and application thereof

Also Published As

Publication number Publication date
JP6016572B2 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
JP2013091045A (en) Exhaust gas treating method
JP2730987B2 (en) Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst
JP4113090B2 (en) Exhaust gas treatment method
JPH0242536B2 (en)
JP4098703B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method
JP2015182067A (en) Catalyst and method for treating marine exhaust gas
JP6132498B2 (en) Titanium / silicon / tungsten oxide, denitration catalyst using the same, method for preparing the oxide, and denitration method
JP4822740B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP3507906B2 (en) DeNOx catalyst
JP6016572B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JPH0824651A (en) Ammonia decomposition catalyst and method for decomposing ammonia using the same
JP6261260B2 (en) Ship exhaust gas treatment catalyst and exhaust gas treatment method
JP7486301B2 (en) Exhaust gas treatment catalyst, its manufacturing method, exhaust gas treatment method using the same, and catalyst design method
JP2001286734A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
JPH07289897A (en) Catalyst for decomposition of ammonia and decomposing method of ammonia using the same
JP6906420B2 (en) Manufacturing method of inorganic composite oxide and exhaust gas treatment method using this
JP6663761B2 (en) Method for producing honeycomb type denitration catalyst
JP2017177051A (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP3749078B2 (en) NOx removal catalyst and NOx removal method
JP2013071071A (en) Method for treating exhaust gas
JP3860734B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP4499511B2 (en) Method for treating exhaust gas containing nitrogen oxides
JP2016064358A (en) Marine exhaust gas treatment catalyst, and exhaust treatment method
JPH038820B2 (en)
JP2015181971A (en) Catalyst and method for treating marine exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160927

R150 Certificate of patent or registration of utility model

Ref document number: 6016572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees