JP2003093881A - Catalyst for removing nitrogen oxide and manufacturing method therefor - Google Patents

Catalyst for removing nitrogen oxide and manufacturing method therefor

Info

Publication number
JP2003093881A
JP2003093881A JP2001296569A JP2001296569A JP2003093881A JP 2003093881 A JP2003093881 A JP 2003093881A JP 2001296569 A JP2001296569 A JP 2001296569A JP 2001296569 A JP2001296569 A JP 2001296569A JP 2003093881 A JP2003093881 A JP 2003093881A
Authority
JP
Japan
Prior art keywords
component
oxide
slurry
catalyst
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001296569A
Other languages
Japanese (ja)
Other versions
JP4798908B2 (en
Inventor
Takao Hirakawa
孝男 平川
Koji Masuda
浩司 増田
Masaaki Uchida
雅昭 内田
Kazuhiro Nishii
一博 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Engineering Corp
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Mitsubishi Chemical Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd, Mitsubishi Chemical Engineering Corp filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2001296569A priority Critical patent/JP4798908B2/en
Publication of JP2003093881A publication Critical patent/JP2003093881A/en
Application granted granted Critical
Publication of JP4798908B2 publication Critical patent/JP4798908B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a catalyst for removing nitrogen oxides, useful as an industrial catalyst with an excellent durability, in which a NOx removal rate is higher than those of the conventionally proposed catalysts for removing nitrogen oxides and a conversion rate to SO3 is low when ammonia is added to exhaust gas containing NOx, particularly simultaneously containing NOx and SOx and a reaction is catalytically carried out; and a manufacturing method therefor. SOLUTION: The catalyst for removing nitrogen oxides and the manufacturing method therefor are provided. The catalyst contains (1) a composite oxide (component A) obtained from a composite hydroxide ((a) component) slurry obtained by a method that a composite hydroxide (y component) slurry is obtained by adding a basic aqueous solution to a mixed aqueous solution of a soluble titanium compound, a soluble silicon compound and/or silica sol or a mixed aqueous solution of a soluble titanium compound, a soluble tungsten compound, a soluble silicon compound and/or silica sol and neutralizing it and after meta-titanic acid, a soluble silicon compound and/or silica sol are added to the composite hydroxide slurry, a basic aqueous solution is added thereto; (2) and at least one metal oxide (B component) selected from the group consisting of vanadium, molybdenum and tungsten.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、窒素酸化物除去用
触媒およびその製造方法に関し、更に詳しくは、重油や
石炭焚きボイラ、火力発電所、製鉄所などをはじめ各種
工場の燃焼炉などから排出される排ガス中に含有される
窒素酸化物(以下NOxと略記する)の除去用触媒およ
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for removing nitrogen oxides and a method for producing the same, and more specifically, it discharges from heavy oil, coal-fired boilers, thermal power plants, iron mills, and other combustion furnaces The present invention relates to a catalyst for removing nitrogen oxides (hereinafter abbreviated as NOx) contained in exhaust gas and a method for producing the same.

【0002】[0002]

【従来技術】排ガス中のNOxを、アンモニアなどの還
元剤を使用して除去する脱硝触媒としては、一般に酸化
チタン担体に酸化タングステン、酸化バナジウムなどの
活性成分を担持した、ハニカム形状の触媒が工業的に使
用されている。工業的に使用される脱硝触媒は、排ガス
中に含まれるダスト、硫黄化合物(以下SOxと略記す
る)などにも対処することが必要であるため、ただ単に
脱硝活性が高いのみだけでなく、SOへの酸化能(S
転化率)が低いこと等の種々の性能が要求される。
2. Description of the Related Art As a denitration catalyst for removing NOx in exhaust gas by using a reducing agent such as ammonia, a honeycomb-shaped catalyst in which an active component such as tungsten oxide or vanadium oxide is supported on a titanium oxide carrier is generally used. Is being used for. Since a denitration catalyst used industrially needs to deal with dust and sulfur compounds (hereinafter abbreviated as SOx) contained in exhaust gas, it is not only high in denitrification activity but also SO Ability to oxidize to 3 (S
Various performances such as low O 3 conversion) are required.

【0003】一般に、排ガス中に含まれるSOxの大部
分はSOであるが、このSOの一部は脱硝触媒上で
酸化されてSOとなり、このSOは還元剤として使
用するNHの未反応分と結合して酸性硫安を生成し、
後流の熱交換器などの装置の閉塞を起こすため、またS
そのものが装置などの腐蝕を起こすなどの問題があ
った。そこでSOへの転化率の低い脱硝触媒が望まれ
ていた。
Generally, most of SOx contained in the exhaust gas is SO 2 , but a part of this SO 2 is oxidized on the denitration catalyst to become SO 3 , and this SO 3 is used as a reducing agent, NH 3 Combines with the unreacted component of to produce acidic ammonium sulfate,
In order to cause blockage of devices such as heat exchangers in the wake, S
There is a problem that O 3 itself causes corrosion of the device. Therefore, a denitration catalyst with a low conversion rate to SO 3 has been desired.

【0004】前述のSOへの転化率を抑制した触媒に
関して、特公平4−17091号公報には、予めチタン
とタングステン及びケイ素の三元系酸化物を形成せしめ
た後該酸化物にバナジウム化合物を添加することを特徴
とする脱硝触媒の調製方法が提案されている。
Regarding the above-mentioned catalyst in which the conversion rate to SO 3 is suppressed, Japanese Patent Publication No. 4-17091 discloses a ternary oxide of titanium, tungsten, and silicon, which is then formed, and then the vanadium compound is added to the oxide. There has been proposed a method for preparing a denitration catalyst, which is characterized by adding

【0005】また、特許第2825343号公報には、
窒素酸化物をアンモニアと共に接触的に反応せしめて選
択還元する触媒を製造する方法において、可溶性チタン
化合物と、可溶性ケイ素化合物および/またはシリカゾ
ルとを出発原料として用い、水性媒体中で該原料をアン
モニアによって中和せしめて共沈物を得、該共沈物スラ
リーをpHが8.5以上の範囲で20時間以上熟成せし
めた後、これを洗浄し、乾燥し、次いで焼成して得られ
るチタンおよびケイ素からなる二元系複合酸化物を触媒
(イ)成分とし、バナジウム酸化物を触媒(ロ)成分と
し、タングステン酸化物を触媒(ハ)成分として用いて
なり、その組成がそれぞれ(イ)成分は82〜97重量
%、(ロ)成分は0.3〜3重量%および(ハ)成分は
3〜15重量%の範囲、さらに(イ)成分の組成が原子
百分率でチタン70〜90%、ケイ素30〜10%の範
囲に調整されてなることを特徴とする窒素酸化物除去用
触媒の製造方法が提案されている。しかし、該発明の製
造方法では、ハニカム形状など複雑な形状の触媒に成形
する場合には、二元系複合酸化物が単純な粒度分布であ
るため、可塑性が低く、粒子間結合力が弱く、成形性が
悪いという問題があった。また、成形性を向上させ、成
形体強度を向上させるために大量の成形助剤や粘土を使
用する必要があり、そのため、触媒性能が低下する問題
もあった。
Further, Japanese Patent No. 2825343 discloses that
In a method for producing a catalyst for catalytically reducing nitrogen oxides by catalytically reacting with ammonia, a soluble titanium compound and a soluble silicon compound and / or silica sol are used as starting materials, and the materials are treated with ammonia in an aqueous medium. The coprecipitate is neutralized to obtain a coprecipitate, and the coprecipitate slurry is aged in a pH range of 8.5 or more for 20 hours or more, washed, dried, and then fired to obtain titanium and silicon. The binary composite oxide consisting of is used as a catalyst (a) component, vanadium oxide is used as a catalyst (b) component, and tungsten oxide is used as a catalyst (ha) component. 82 to 97% by weight, component (B) in the range of 0.3 to 3% by weight and component (C) in the range of 3 to 15% by weight, and the composition of component (A) is titanium 7 in atomic percentage. 90%, the production method of the nitrogen oxide removing catalyst, characterized by comprising been adjusted to a range of 30 to 10% silicon has been proposed. However, in the production method of the present invention, when a catalyst having a complicated shape such as a honeycomb shape is formed, since the binary composite oxide has a simple particle size distribution, the plasticity is low and the interparticle bonding force is weak, There was a problem of poor moldability. Further, it is necessary to use a large amount of a molding aid or clay in order to improve the moldability and the strength of the molded body, which causes a problem that the catalytic performance is lowered.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、NO
x、特にNOxおよびSOxを同時に含有する排ガスに
アンモニアを加え、接触的に反応させるに際して、従来
より提案されている窒素酸化物除去用触媒よりも更にN
Ox除去率が高くて、しかもSOへの転化率が低く、
耐久性に優れた工業触媒として有用な窒素酸化物除去用
触媒およびハニカム形状など複雑な形状の触媒でも成形
性が良好な該触媒の製造方法を提供することにある。
The object of the present invention is NO.
x, particularly when adding ammonia to the exhaust gas containing NOx and SOx at the same time and reacting catalytically, N is more than the catalyst conventionally proposed for removing nitrogen oxides.
The Ox removal rate is high, and the conversion rate to SO 3 is low,
It is an object of the present invention to provide a catalyst for removing nitrogen oxides, which is useful as an industrial catalyst having excellent durability, and a method for producing the catalyst, which has good formability even for a catalyst having a complicated shape such as a honeycomb shape.

【0007】[0007]

【課題を解決するための手段】本発明の第1は、(1)
可溶性チタン化合物、可溶性ケイ素化合物および/また
はシリカゾルの混合水溶液、もしくは可溶性チタン化合
物、可溶性タングステン化合物、可溶性ケイ素化合物お
よび/またはシリカゾルの混合水溶液に塩基性水溶液を
添加・中和して複合水酸化物(y成分)スラリーを得、
ついで該複合水酸化物スラリーにメタチタン酸と可溶性
ケイ素化合物および/またはシリカゾルを添加した後、
塩基性水溶液を添加して得られる複合水酸化物(a成
分)スラリーから得られた複合酸化物(A成分)と
(2)バナジウム、モリブデン、タングステンからなる
群から選ばれた少なくとも一種の金属酸化物(B成
分)、とを含有することを特徴とする窒素酸化物除去用
触媒に関する。
Means for Solving the Problems The first aspect of the present invention is (1)
A basic aqueous solution is added to and neutralized with a mixed aqueous solution of a soluble titanium compound, a soluble silicon compound and / or a silica sol, or a mixed aqueous solution of a soluble titanium compound, a soluble tungsten compound, a soluble silicon compound and / or a silica sol to form a complex hydroxide ( y component) slurry is obtained,
Then, after adding metatitanic acid and a soluble silicon compound and / or silica sol to the composite hydroxide slurry,
Complex oxide (component A) obtained from a complex hydroxide (component a) slurry obtained by adding a basic aqueous solution and (2) at least one metal oxide selected from the group consisting of vanadium, molybdenum and tungsten And a substance (component B).

【0008】該窒素酸化物除去用触媒では、前記複合酸
化物(A成分)中に含まれるy成分由来の複合酸化物
(Y成分)の量が5〜30重量%の範囲にあることが好
ましい。
In the catalyst for removing nitrogen oxides, the amount of the composite oxide derived from the y component (Y component) contained in the composite oxide (A component) is preferably in the range of 5 to 30% by weight. .

【0009】また、前記y成分由来の複合酸化物(Y成
分)の組成が、酸化チタンとして75〜90重量%、酸
化ケイ素として10〜20重量%、酸化タングステンと
して0〜5重量%の範囲にあることが好ましい。
The composition of the composite oxide derived from the y component (Y component) is in the range of 75 to 90% by weight as titanium oxide, 10 to 20% by weight as silicon oxide, and 0 to 5% by weight as tungsten oxide. Preferably there is.

【0010】前記複合酸化物(A成分)が酸化物基準で
硫酸根をSOとして1〜10重量%含有することが好
ましい。
It is preferable that the complex oxide (component A) contains 1 to 10% by weight of sulfate as SO 4 based on the oxide.

【0011】さらに、前記複合酸化物(A成分)を85
〜99.9重量%、金属酸化物(B成分)を0.1〜1
5重量%の割合で含有することが好ましい。
Further, the complex oxide (component A) is added to 85
~ 99.9 wt%, metal oxide (B component) 0.1 to 1
It is preferably contained in a proportion of 5% by weight.

【0012】本発明の第2は、可溶性チタン化合物、可
溶性ケイ素化合物および/またはシリカゾルの混合水溶
液、もしくは可溶性チタン化合物、可溶性タングステン
化合物、可溶性ケイ素化合物および/またはシリカゾル
の混合水溶液に塩基性水溶液を添加・中和して複合水酸
化物(y成分)スラリーを得、ついで該複合水酸化物ス
ラリーにメタチタン酸スラリーと可溶性ケイ素化合物お
よび/またはシリカゾルを添加した後、塩基性水溶液を
添加して得られた複合水酸化物(a成分であるこの水酸
化物が酸化されて複合酸化物となったのがA成分であ
る)スラリーを熟成、洗浄、乾燥して得られた複合酸化
物(A成分)(焼成していないのでまだ水酸化物の段階
のものを1部含有していることがある)に、バナジウ
ム、モリブデン、タングステンからなる群から選ばれた
少なくとも一種の金属酸化物(B成分)の前駆物質(b
成分)を担持し、乾燥、焼成するか、もしくは前記塩基
性水溶液を添加して得られた複合水酸化物(a成分)を
乾燥、焼成して得られた複合酸化物(A成分)に、バナ
ジウム、モリブデン、タングステンからなる群から選ば
れた少なくとも一種の金属酸化物(B成分)を担持し、
乾燥することを特徴とする窒素酸化物除去用触媒の製造
方法に関する。
The second aspect of the present invention is to add a basic aqueous solution to a mixed aqueous solution of a soluble titanium compound, a soluble silicon compound and / or a silica sol, or a mixed aqueous solution of a soluble titanium compound, a soluble tungsten compound, a soluble silicon compound and / or a silica sol. Obtained by adding a metatitanic acid slurry and a soluble silicon compound and / or silica sol to the composite hydroxide slurry after neutralization to obtain a composite hydroxide (y component) slurry, and then adding a basic aqueous solution. A complex oxide (component A) obtained by aging, washing, and drying a slurry of a complex hydroxide (the component A is the component a that is oxidized by the component a). (Since it has not been fired, it may still contain 1 part of hydroxide stage), vanadium, molybdenum, tan At least one metal oxide selected from the group consisting of stainless (B component) of the precursor (b
Component) and dried and calcined, or the composite hydroxide (a component) obtained by adding the basic aqueous solution to the composite oxide (component A) obtained by drying and calcining, Carrying at least one metal oxide (component B) selected from the group consisting of vanadium, molybdenum, and tungsten,
The present invention relates to a method for producing a nitrogen oxide removing catalyst, which is characterized by drying.

【0013】[0013]

【発明の実施の形態】以下、本発明の好適な実施形態に
ついて、詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described in detail below.

【0014】本発明の窒素酸化物除去用触媒では、可溶
性チタン化合物、可溶性ケイ素化合物および/またはシ
リカゾルの混合水溶液、もしくは可溶性チタン化合物、
可溶性タングステン化合物、可溶性ケイ素化合物および
/またはシリカゾルの混合水溶液に塩基性水溶液を添加
・中和して得られた複合水酸化物(y成分)スラリーを
使用する。該複合水酸化物(y成分)は、熱履歴を受け
て複合酸化物(Y成分)に転化する前駆物質である。該
複合酸化物(Y成分)は、酸化チタンおよび酸化ケイ
素、または、酸化チタン、酸化タングステンおよび酸化
ケイ素の単なる混合物ではなく、いわゆる二元系複合酸
化物(TiO−SiO)または三元系複合酸化物
(TiO−WO−SiO)を形成する。
In the catalyst for removing nitrogen oxides of the present invention, a mixed aqueous solution of a soluble titanium compound, a soluble silicon compound and / or silica sol, or a soluble titanium compound,
A composite hydroxide (y component) slurry obtained by adding and neutralizing a basic aqueous solution to a mixed aqueous solution of a soluble tungsten compound, a soluble silicon compound and / or silica sol is used. The composite hydroxide (y component) is a precursor that undergoes thermal history and is converted into a composite oxide (Y component). The complex oxide (Y component) is not a simple mixture of titanium oxide and silicon oxide, or titanium oxide, tungsten oxide and silicon oxide, but a so-called binary complex oxide (TiO 2 —SiO 2 ) or ternary system oxide. A composite oxide (TiO 2 —WO 3 —SiO 2 ) is formed.

【0015】本発明での複合酸化物(A成分)は、前述
の複合水酸化物(y成分)スラリーに、メタチタン酸と
可溶性ケイ素化合物および/またはシリカゾルを添加し
た後塩基性水溶液を添加して得られた複合水酸化物(a
成分)スラリーが熱履歴を受けた状態の物質である。本
発明ではこのような特殊な複合酸化物(A成分)を触媒
成分に用いるため、脱硝活性が高くて、しかもSO
化活性が低く、耐久性に優れた触媒が得られるのであ
る。
The complex oxide (component A) according to the present invention is obtained by adding metatitanic acid, a soluble silicon compound and / or silica sol to the above-mentioned complex hydroxide (component y) and then adding a basic aqueous solution. The obtained composite hydroxide (a
Ingredient) A substance whose slurry has undergone heat history. In the present invention, since such a special complex oxide (component A) is used as the catalyst component, a catalyst having high denitration activity and low SO 2 oxidation activity and excellent durability can be obtained.

【0016】本発明の窒素酸化物除去用触媒では、前記
複合酸化物(A成分)中に含まれるy成分由来の複合酸
化物(Y成分)の割合(Y/A)が5〜30重量%の範
囲にあることが好ましい。Y/Aの値が5重量%よりも
小さい場合は、脱硝活性は高くなるがSO酸化活性も
高くなる傾向にあり、また、Y/Aの値が30重量%よ
りも大きい場合は、触媒の成形性が悪くなる傾向にあ
り、また、SO酸化活性は低くなるが脱硝活性も低く
なる傾向にある。好ましいY/Aの範囲は10〜20重
量%である。
In the catalyst for removing nitrogen oxides of the present invention, the ratio (Y / A) of the composite oxide (Y component) derived from the y component contained in the composite oxide (A component) is 5 to 30% by weight. It is preferably in the range of. When the value of Y / A is smaller than 5% by weight, the denitration activity tends to be high, but the SO 2 oxidation activity tends to be high, and when the value of Y / A is larger than 30% by weight, the catalyst The moldability tends to be poor, and the SO 2 oxidation activity is low but the denitration activity is also low. The preferable range of Y / A is 10 to 20% by weight.

【0017】また、前記y成分由来の複合酸化物(Y成
分)の組成は、酸化チタンとして75〜90重量%、酸
化ケイ素として10〜20重量%、酸化タングステンと
して0〜5重量%の範囲にあることが好ましい。酸化ケ
イ素の量が10重量%より少ない場合には低いSO
化活性が得られないことがあり、また、20重量%より
多い場合には脱硝活性が低くなり、また、成形性が悪く
なることがある。酸化タングステンの量が5重量%より
多くなると、タングステンは複合酸化物を形成しない状
態で存在することがあるので効果的でない。
The composition of the composite oxide derived from the y component (Y component) is in the range of 75 to 90% by weight as titanium oxide, 10 to 20% by weight as silicon oxide, and 0 to 5% by weight as tungsten oxide. Preferably there is. When the amount of silicon oxide is less than 10% by weight, low SO 2 oxidation activity may not be obtained, and when it is more than 20% by weight, the denitration activity becomes low and the formability becomes poor. There is. When the amount of tungsten oxide is more than 5% by weight, tungsten may exist without forming a complex oxide, which is not effective.

【0018】また、前記複合酸化物(A成分)は、硫酸
根をSOとして1〜10重量%含有することが好まし
い。A成分中に硫酸根を含有させることにより脱硝活性
が高くなる傾向を示し、1重量%より少ない場合にはそ
の効果が少なく、10重量%より多く含有させてもその
効果は変わらない。好ましい硫酸根の量は2〜8重量%
の範囲である。
The composite oxide (component A) preferably contains 1 to 10% by weight of sulfate as SO 4 . The inclusion of sulfate in component A tends to increase the denitration activity, and when it is less than 1% by weight, its effect is small, and when it is contained in more than 10% by weight, its effect is not changed. The preferred amount of sulfate is 2-8% by weight
Is the range.

【0019】本発明の窒素酸化物除去用触媒では、バナ
ジウム、モリブデン、タングステンからなる群から選ば
れた少なくとも一種の金属酸化物(B成分)を含有する
が、その他の金属酸化物を含有していてもよい。特に、
酸化バナジウムおよび酸化タングステンは好適な金属酸
化物である。
The catalyst for removing nitrogen oxides of the present invention contains at least one metal oxide (component B) selected from the group consisting of vanadium, molybdenum and tungsten, but contains other metal oxides. May be. In particular,
Vanadium oxide and tungsten oxide are the preferred metal oxides.

【0020】本発明の窒素酸化物除去用触媒は、前記複
合酸化物(A成分)を85〜99.9重量%、前記金属
酸化物(B成分)を0.1〜15重量%の割合で含有す
ることが好ましい。B成分の割合が0.1重量%より少
ない場合には、所望の脱硝活性が得られないことがあ
り、また、15重量%より多い場合には、SO酸化活
性が高くなることがある。好ましくは、A成分が90〜
99.5重量%、B成分が0.5〜10重量%の範囲で
ある。
In the catalyst for removing nitrogen oxides of the present invention, the composite oxide (component A) is 85 to 99.9% by weight, and the metal oxide (component B) is 0.1 to 15% by weight. It is preferable to contain. When the ratio of the B component is less than 0.1% by weight, the desired denitration activity may not be obtained, and when it exceeds 15% by weight, the SO 2 oxidation activity may be increased. Preferably, the A component is 90 to
It is in the range of 99.5% by weight and the component B is 0.5 to 10% by weight.

【0021】次に、本発明の窒素酸化物除去用触媒の製
造方法について述べる。本発明の方法で使用される可溶
性チタン化合物としては、塩化チタン、硫酸チタンなど
の無機チタン化合物およびシュウ酸チタン、テトライソ
プロピルチタネートなどの有機チタン化合物が例示さ
れ、また、ケイ素源としては、シリカゾルの他、可溶性
ケイ素化合物として、四塩化ケイ素など無機ケイ素化合
物およびエチルシリケート、メチルシリケートなどの有
機ケイ素化合物が例示される。可溶性タングステン化合
物としては、パラタングステン酸アンモン、メタタング
ステン酸アンモンなどが例示される。
Next, a method for producing the nitrogen oxide removing catalyst of the present invention will be described. Examples of soluble titanium compounds used in the method of the present invention include inorganic titanium compounds such as titanium chloride and titanium sulfate, and organic titanium compounds such as titanium oxalate and tetraisopropyl titanate, and the silicon source includes silica sol. Other examples of the soluble silicon compound include inorganic silicon compounds such as silicon tetrachloride and organic silicon compounds such as ethyl silicate and methyl silicate. Examples of soluble tungsten compounds include ammonium paratungstate and ammonium metatungstate.

【0022】本発明の方法では、前述の可溶性チタン化
合物と前述の可溶性ケイ素化合物および/またはシリカ
ゾルとの混合水溶液、もしくは前述の可溶性チタン化合
物と前述の可溶性タングステン化合物と前述の可溶性ケ
イ素化合物および/またはシリカゾルとの混合水溶液に
塩基性水溶液を添加・中和して複合水酸化物(y成分)
スラリーを調製するが、中和はpH9〜10.5の範囲
で行うのが望ましい。本発明で使用される塩基性水溶液
としては、アンモニア水、尿素水溶液、アミン水溶液な
ど周知の塩基性水溶液が使用可能であるが、特にアンモ
ニア水は好適である。
In the method of the present invention, a mixed aqueous solution of the aforementioned soluble titanium compound and the aforementioned soluble silicon compound and / or silica sol, or the aforementioned soluble titanium compound, the aforementioned soluble tungsten compound and the aforementioned soluble silicon compound and / or Complex hydroxide (y component) by adding and neutralizing basic aqueous solution to mixed aqueous solution with silica sol
Although a slurry is prepared, it is desirable that the neutralization is performed within a pH range of 9 to 10.5. As the basic aqueous solution used in the present invention, known basic aqueous solutions such as ammonia water, urea aqueous solution and amine aqueous solution can be used, but ammonia aqueous solution is particularly preferable.

【0023】前述の複合水酸化物(y成分)スラリー
を、必要に応じて、pH9〜10.5の範囲で熟成した
後、該スラリーにメタチタン酸スラリーと可溶性ケイ素
化合物および/またはシリカゾルを添加し、次いで塩基
性水溶液を添加して得られる複合水酸化物(a成分)ス
ラリーを調製するが、該複合水酸化物(a成分)スラリ
ーのpHは9〜10.5の範囲に調整するのが望まし
い。該複合水酸化物(a成分)スラリーを、必要に応じ
て、pH9〜10.5の範囲で熟成、洗浄した後、該ス
ラリーにバナジウム、モリブデン、タングステンからな
る群から選ばれた少なくとも一種の金属酸化物(B成
分)の前駆物質(b成分)および必要に応じて粘土、可
塑剤などを添加して混練捏和し、所望の形状に成形し、
乾燥、300〜800℃で焼成することが好ましい。そ
のほかB成分の担持は、他の周知の担持方法が採用で
き、例えば、前述の複合水酸化物(a成分)を所望の形
状に成形し、乾燥、焼成し、複合酸化物(A成分)とし
た後、B成分を含浸することもできる。
The above-mentioned composite hydroxide (y component) slurry is aged, if necessary, in the range of pH 9 to 10.5, and then the metatitanic acid slurry and the soluble silicon compound and / or silica sol are added to the slurry. Then, a composite hydroxide (a component) slurry obtained by adding a basic aqueous solution is prepared, and the pH of the composite hydroxide (a component) slurry is adjusted to a range of 9 to 10.5. desirable. The composite hydroxide (a component) slurry is, if necessary, aged and washed in the range of pH 9 to 10.5, and then at least one metal selected from the group consisting of vanadium, molybdenum and tungsten is added to the slurry. A precursor (component b) of the oxide (component B) and, if necessary, clay, a plasticizer, etc. are added, and the mixture is kneaded and kneaded to form a desired shape,
It is preferable to dry and bake at 300 to 800 ° C. In addition, other well-known supporting methods can be used for supporting the B component. For example, the above-mentioned composite hydroxide (a component) is formed into a desired shape, dried and baked to obtain a composite oxide (A component). After that, the component B can be impregnated.

【0024】本発明の製造方法の概略を下記フローシー
トに示す。
An outline of the manufacturing method of the present invention is shown in the following flow sheet.

【表1】 [Table 1]

【0025】前記バナジウム、モリブデン、タングステ
ンからなる群から選ばれた少なくとも一種の金属酸化物
(B成分)を形成するための前駆物質(b成分)として
は、バナジウム源にはメタバナジン酸アンモン、硫酸バ
ナジル、シュウ酸バナジル、五酸化バナジウムなど、モ
リブデン源にはパラモリブデン酸アンモン、三酸化モリ
ブデンなど、タングステン源にはパラタングステン酸ア
ンモン、酸化タングステンなどが例示される。
As the precursor (component b) for forming at least one metal oxide (component B) selected from the group consisting of vanadium, molybdenum and tungsten, the vanadium source is ammonium metavanadate, vanadyl sulfate. , Vanadium oxalate, vanadium pentoxide, etc., examples of the molybdenum source include ammonium paramolybdate, molybdenum trioxide, etc., and examples of the tungsten source include ammonium paratungstate, tungsten oxide and the like.

【0026】本発明の窒素酸化物除去用触媒は、NOx
を含有する排ガス、特にボイラー排ガスなどのようにN
Ox、SOxを含有するほか重金属、ダストを含有する
排ガスに、アンモニアなどの還元剤を添加して接触還元
するNOx除去法に好適に使用される。また、該触媒の
使用条件は、通常の脱硝処理条件が採用され、具体的に
は、反応温度は150〜600℃、空間速度1000〜
100000hr−1の範囲などが例示される。
The catalyst for removing nitrogen oxides of the present invention is NOx.
Exhaust gas containing nitrogen, especially N such as boiler exhaust gas
It is preferably used for a NOx removal method in which a reducing agent such as ammonia is added to exhaust gas containing Ox, SOx, heavy metals, and dust, and catalytically reduced. In addition, as the use conditions of the catalyst, ordinary denitration treatment conditions are adopted. Specifically, the reaction temperature is 150 to 600 ° C., and the space velocity is 1000 to
An example is a range of 100,000 hr −1 .

【0027】[0027]

【実施例】以下に実施例を示し本発明を具体的に説明す
るが、本発明はこれらに限定されるものではない。
The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto.

【0028】実施例1 チタン源として硫酸チタニル結晶〔TiO濃度32w
t%、(株)テイカ製〕4.22Kgをとり、水16.
88Kgに溶解希釈した硫酸チタニル水溶液にシリカゾ
ル(SiO濃度20wt%、商品名“カタロイドS−
20”、触媒化成工業(株)製)0.75Kgを15分
間かけて添加混合し、これに、温度60℃以下を維持し
ながら3規定アンモニア水9.11Kgを15分間かけ
て添加・中和してTiO−SiO複合水酸化物(y
成分)スラリーを生成し、更にpH9.5〜10を維持
し温度60℃で1時間加温熟成した。この得られたTi
−SiO複合水酸化物スラリーにメタチタン酸ス
ラリー〔TiO濃度30wt%、石原産業(株)製〕
40.50Kgを10分間で添加し、更にシリカゾル
〔SiO濃度20wt%、商品名“カタロイドS−2
0”、触媒化成工業(株)製〕6.75Kgを10分間
かけて添加混合した後、3規定アンモニア水2.43K
gを添加して該スラリーのpHを9.5に調製して複合
水酸化物(a成分)スラリーを得た。該複合水酸化物ス
ラリーを温度60℃でpH9.5〜10に維持しながら
1時間加温熟成後、この複合水酸化物スラリーを脱水洗
浄後、400℃以下の温度で5時間乾燥してチタン−シ
リカからなる2元系複合酸化物(A成分)を得た。な
お、該2元系複合酸化物中のSO含有量は4.7%で
あった。次に、モノエタノールアミン0.30Kgと水
3.0Kgを混合し、これにメタバナジン酸アンモニウ
ム(b成分)0.205Kgを添加、加熱溶解した。こ
の溶解液と前述の2元系複合酸化物(A成分)12.6
4Kgをニーダーにて混練し、更に、粘土、ガラス繊維
などの成形助剤を加えて混練捏和後、ハニカム状に押し
出し成形したが、成形性は良好であった。その後、成形
物を110℃で乾燥した後、マツフル炉にて600℃で
焼成して触媒Iを調製した。
Example 1 Titanyl sulfate crystal [TiO 2 concentration 32 w as titanium source]
t%, manufactured by Teika Co., Ltd.] 4.22 kg, and water 16.
Silica sol (SiO 2 concentration 20 wt%, trade name “Cataloid S-
20 ", 0.75 kg of Catalyst Kasei Kogyo Co., Ltd. is added and mixed for 15 minutes, and thereto, 9.11 kg of 3N ammonia water is added and neutralized for 15 minutes while maintaining the temperature at 60 ° C or lower. Then, the TiO 2 —SiO 2 composite hydroxide (y
Ingredients) A slurry was produced, and the pH was maintained at 9.5 to 10 and aged by heating at a temperature of 60 ° C for 1 hour. This obtained Ti
O 2 -SiO 2 composite hydroxide slurry to metatitanic acid slurry [TiO 2 concentration 30 wt%, Ishihara Sangyo Co., Ltd.]
40.50 Kg was added in 10 minutes, and silica sol [SiO 2 concentration 20 wt%, trade name “Cataloid S-2
0 ", manufactured by Catalysts & Chemicals Industry Co., Ltd.] 6.75 kg was added and mixed for 10 minutes, and then 3N ammonia water 2.43 K was added.
g was added to adjust the pH of the slurry to 9.5 to obtain a composite hydroxide (a component) slurry. After heating and aging the composite hydroxide slurry for 1 hour while maintaining the pH at 9.5 to 10 at 60 ° C., the composite hydroxide slurry was dehydrated and washed, and then dried at a temperature of 400 ° C. or less for 5 hours to obtain titanium. -A binary composite oxide (component A) made of silica was obtained. The SO 4 content in the binary composite oxide was 4.7%. Next, 0.30 kg of monoethanolamine and 3.0 kg of water were mixed, to which 0.205 kg of ammonium metavanadate (component b) was added and dissolved by heating. This solution and the above-mentioned binary complex oxide (component A) 12.6
4 Kg was kneaded in a kneader, kneading and kneading were performed by adding a molding aid such as clay or glass fiber, and the mixture was extruded into a honeycomb shape. The moldability was good. Then, the molded product was dried at 110 ° C., and then calcined at 600 ° C. in a matsufur furnace to prepare a catalyst I.

【0029】実施例2 チタン源として硫酸チタニル結晶〔TiO濃度32w
t%、(株)テイカ製〕12.70Kgをとり、水5
0.80Kgに溶解希釈した硫酸チタニル水溶液にシリ
カゾル〔SiO濃度20wt%、商品名“カタロイド
S−20”、触媒化成工業(株)製〕2.25Kgを1
5分間かけて添加混合し、これに、温度60℃以下を維
持しながら3規定アンモニア水27.34Kgを15分
間かけて添加・中和してTiO−SiO複合水酸化
物(y成分)スラリーを生成し、更にpH9.5〜10
を維持し温度60℃で1時間加温熟成した。この得られ
たTiO−SiO複合水酸化物スラリーにメタチタ
ン酸スラリー〔TiO濃度30wt%、石原産業
(株)製〕31.50Kgを10分間かけて添加し、更
に、シリカゾル〔SiO濃度20wt%、商品名“カ
タロイドS−20”、触媒化成工業(株)製〕5.25
Kgを10分間かけて添加混合した後、3規定アンモニ
ア水1.89Kgを添加して該スラリーのpHを9.5
に調製して複合水酸化物(a成分)スラリーを得た。該
複合水酸化物スラリーを温度60℃でpH9.5〜10
に維持しながら1時間加温熟成後、この複合水酸化物ス
ラリーを脱水洗浄後、400℃以下の温度で5時間乾燥
してチタン−シリカからなる2元系複合酸化物(A成
分)を得た。該2元系複合酸化物中のSO含有量は
4.9%であった。次に、モノエタノールアミン0.3
0Kgと水3.0Kgを混合し、これにメタバナジン酸
アンモニウム(b成分)0.205Kgを添加、加熱溶
解した。この溶解液と前述の2元系複合酸化物(A成
分)12.64Kgをニーダーにて混練し、更に、粘
土、ガラス繊維などの成形助剤を加えて混練捏和後、ハ
ニカム状に押し出し成形したが、成形性は良好であっ
た。その後、成形物を110℃で乾燥した後、マツフル
炉にて600℃で焼成して触媒IIを調製した。
Example 2 Titanyl sulfate crystal [TiO 2 concentration 32 w as titanium source]
t%, manufactured by Teika Co., Ltd.] 12.70 kg, and water 5
2.25 kg of silica sol [SiO 2 concentration 20 wt%, trade name “Cataloid S-20”, manufactured by Catalysts & Chemicals Industry Co., Ltd.] was added to an aqueous solution of titanyl sulfate dissolved and diluted in 0.80 Kg.
The mixture was added and mixed over 5 minutes, and 27.34 Kg of 3N ammonia water was added and neutralized over 15 minutes while maintaining the temperature at 60 ° C. or lower to TiO 2 —SiO 2 composite hydroxide (y component). Produces a slurry with a pH of 9.5-10
The temperature was maintained at 60 ° C. for 1 hour while aging by heating. To the obtained TiO 2 —SiO 2 composite hydroxide slurry, 31.50 kg of metatitanic acid slurry [TiO 2 concentration 30 wt%, manufactured by Ishihara Sangyo Co., Ltd.] was added over 10 minutes, and silica sol [SiO 2 concentration was added. 20 wt%, trade name “Cataloid S-20”, manufactured by Catalysts & Chemicals Co., Ltd.] 5.25
After adding and mixing Kg over 10 minutes, 1.89 Kg of 3N ammonia water was added to adjust the pH of the slurry to 9.5.
To prepare a composite hydroxide (a component) slurry. The composite hydroxide slurry had a pH of 9.5 to 10 at a temperature of 60 ° C.
After heating and aging for 1 hour while maintaining the above, the composite hydroxide slurry is dehydrated and washed, and then dried at a temperature of 400 ° C. or lower for 5 hours to obtain a binary composite oxide (component A) composed of titanium-silica. It was The SO 4 content in the binary complex oxide was 4.9%. Next, monoethanolamine 0.3
0 Kg and 3.0 Kg of water were mixed, to which was added 0.205 Kg of ammonium metavanadate (component b) and the mixture was heated and dissolved. This solution and 12.64 kg of the above-mentioned binary complex oxide (A component) are kneaded in a kneader, further kneaded and kneaded with a molding aid such as clay or glass fiber, and then extruded into a honeycomb shape. However, the moldability was good. Then, the molded product was dried at 110 ° C., and then calcined at 600 ° C. in a pineapple furnace to prepare catalyst II.

【0030】実施例3 チタン源として硫酸チタニル結晶〔TiO濃度32w
t%、(株)テイカ製〕1.88Kgをとり、水7.5
2Kgに溶解希釈した硫酸チタニル水溶液にシリカゾル
〔SiO濃度20wt%、商品名“カタロイドS−2
0”、触媒化成工業(株)製〕0.75Kgを15分間
かけて添加混合し、これに、温度60℃以下を維持しな
がら3規定アンモニア水4.05Kgを15分間かけて
添加・中和してTiO−SiO複合水酸化物(y成
分)スラリーを生成し、更にpH9.5〜10を維持し
温度60℃で1時間加温熟成した。この得られたTiO
−SiO複合水酸化物(y成分)スラリーに、メタ
チタン酸スラリー〔TiO濃度30wt%、石原産業
(株)製〕38.00Kgを10分間かけて添加し、更
にシリカゾル〔SiO濃度20wt%、商品名“カタ
ロイドS−20”、触媒化成工業(株)製〕14.25
Kgを10分間かけて添加混合した後、3規定アンモニ
ア水2.28Kgを添加して該スラリーのpHを9.5
に調製して複合水酸化物(a成分)スラリーを得た。該
複合水酸化物スラリーを温度60℃でpH9.5〜10
を維持しながら1時間加温熟成後、この複合水酸化物ス
ラリーを脱水洗浄後、400℃以下の温度で5時間乾燥
してチタン−シリカからなる2元系複合酸化物(A成
分)を得た。該2元系複合酸化物中のSO含有量は
4.9%であった。次に、モノエタノールアミン0.3
0Kgと水3.0Kgを混合し、これにメタバナジン酸
アンモニウム(b成分)0.205Kgを添加、加熱溶
解した。この溶解液と前述の2元系複合酸化物(A成
分)12.64Kgをニーダーにて混練し、更に、粘
土、ガラス繊維などの成形助剤を加えて混練捏和後、ハ
ニカム状に押出成形したが、成形性は良好であった。そ
の後、成形物を110℃で乾燥した後、マツフル炉中6
00℃で焼成して触媒IIIを調製した。
Example 3 Titanyl sulfate crystal [TiO 2 concentration 32 w as titanium source]
t%, manufactured by Teika Co., Ltd.] 1.88 kg, water 7.5
Silica sol [SiO 2 concentration 20 wt%, trade name "Cataloid S-2" in an aqueous solution of titanyl sulfate dissolved and diluted to 2 kg.
0 ", manufactured by Catalyst Kasei Kogyo Co., Ltd.] 0.75 Kg was added and mixed over 15 minutes, and 4.05 Kg of 3N ammonia water was added and neutralized over 15 minutes while maintaining the temperature at 60 ° C or lower. Then, a TiO 2 —SiO 2 composite hydroxide (y component) slurry was generated, and further, the pH was maintained at 9.5 to 10 and aged by heating at a temperature of 60 ° C. for 1 hour.
To 2 -SiO 2 composite hydroxide (y component) slurry, metatitanic acid slurry [TiO 2 concentration 30 wt%, manufactured by Ishihara Sangyo Kaisha, Ltd.] was added over 38.00Kg 10 minutes, further a silica sol [SiO 2 concentration 20wt %, Trade name “Cataloid S-20”, manufactured by Catalysts & Chemicals Co., Ltd.] 14.25
After adding and mixing Kg over 10 minutes, 2.28 Kg of 3N aqueous ammonia was added to adjust the pH of the slurry to 9.5.
To prepare a composite hydroxide (a component) slurry. The composite hydroxide slurry had a pH of 9.5 to 10 at a temperature of 60 ° C.
After heating and aging for 1 hour while maintaining the temperature, this composite hydroxide slurry is dehydrated and washed, and then dried at a temperature of 400 ° C. or lower for 5 hours to obtain a binary composite oxide (component A) composed of titanium-silica. It was The SO 4 content in the binary complex oxide was 4.9%. Next, monoethanolamine 0.3
0 Kg and 3.0 Kg of water were mixed, to which was added 0.205 Kg of ammonium metavanadate (component b) and the mixture was heated and dissolved. This solution and 12.64 kg of the above-mentioned binary complex oxide (component A) are kneaded in a kneader, and a molding aid such as clay or glass fiber is further added, and the mixture is kneaded and kneaded, and then extruded into a honeycomb shape. However, the moldability was good. After that, the molded product was dried at 110 ° C.
Catalyst III was prepared by calcining at 00 ° C.

【0031】実施例4 チタン源として硫酸チタニル結晶〔TiO濃度32w
t%、(株)テイカ製〕7.50Kgをとり、水30.
00Kgに溶解希釈した硫酸チタニル水溶液にシリカゾ
ル〔SiO濃度20wt%、商品名“カタロイドS−
20”、触媒化成工業(株)製〕3.00Kgを15分
間かけて添加混合し、これに、温度60℃以下を維持し
ながら3規定アンモニア水16.20Kgを15分間か
けて添加・中和してTiO−SiO複合水酸化物
(y成分)スラリーを生成し、更にpH9.5〜10を
維持し温度60℃で1時間加温熟成した。得られたTi
−SiO複合水酸化物(y成分)スラリーにメタ
チタン酸スラリー〔TiO濃度30wt%、石原産業
(株)製〕32.00Kgを10分間かけて添加し、更
に、シリカゾル〔SiO濃度20wt%、商品名“カ
タロイドS−20”、触媒化成工業(株)製〕12.0
0Kgを10分間かけて添加混合した後、3規定アンモ
ニア水1.92Kgを添加して該スラリーのpHを9.
5に調製して複合水酸化物(a成分)スラリーを得た。
該複合水酸化物スラリーを温度60℃でpH9.5〜1
0を維持しながら1時間加温熟成後、この複合水酸化物
スラリーを脱水洗浄し、その後400℃以下の温度で5
時間乾燥してチタン−シリカからなる2元系複合酸化物
(A成分)を得た。該2元系複合酸化物中のSO含有
量は4.9%であった。次に、モノエタノールアミン
0.30Kgと水3.0Kgを混合し、これにメタバナ
ジン酸アンモニウム(b成分)0.205Kgを添加、
加熱溶解した。この溶解液と前述の2元系複合酸化物
(A成分)12.64Kgをニーダーにて混練し、更
に、粘土、ガラス繊維などの成形助剤を加えて混練捏和
後、ハニカム状に押出成形したが、成形性は良好であっ
た。その後、成形物を110℃で乾燥した後、マツフル
炉中600℃で焼成して触媒IV調製した。
Example 4 Titanyl sulfate crystal [TiO 2 concentration 32 w as titanium source]
t%, manufactured by Teika Co., Ltd.] 7.50 kg, and water 30.
Silica sol [SiO 2 concentration 20 wt%, trade name “Cataloid S-
20 ", manufactured by Catalysts & Chemicals Industry Co., Ltd.] 3.00 Kg was added and mixed over 15 minutes, and 16.20 Kg of 3N ammonia water was added and neutralized over 15 minutes while maintaining the temperature at 60 ° C or lower. Then, a TiO 2 —SiO 2 composite hydroxide (y component) slurry was generated, and further maintained at pH 9.5 to 10 and aged by heating at 60 ° C. for 1 hour.
32.00 Kg of metatitanic acid slurry [TiO 2 concentration 30 wt%, manufactured by Ishihara Sangyo Co., Ltd.] was added to O 2 —SiO 2 composite hydroxide (y component) slurry over 10 minutes, and silica sol [SiO 2 concentration was added. 20 wt%, trade name "Cataloid S-20", manufactured by Catalyst Kasei Kogyo Co., Ltd.] 12.0
After 0 Kg was added and mixed for 10 minutes, 1.92 Kg of 3N ammonia water was added to adjust the pH of the slurry to 9.
5 was obtained to obtain a composite hydroxide (a component) slurry.
The composite hydroxide slurry had a pH of 9.5 to 1 at a temperature of 60 ° C.
After heating and aging for 1 hour while maintaining 0, the composite hydroxide slurry was dehydrated and washed, and then 5 times at a temperature of 400 ° C. or lower.
After drying for an hour, a binary composite oxide (component A) composed of titanium-silica was obtained. The SO 4 content in the binary complex oxide was 4.9%. Next, 0.30 kg of monoethanolamine and 3.0 kg of water are mixed, and 0.205 kg of ammonium metavanadate (component b) is added thereto,
It melted by heating. This solution and 12.64 kg of the above-mentioned binary complex oxide (A component) are kneaded in a kneader, and a molding aid such as clay or glass fiber is further added and kneaded and kneaded, followed by extrusion molding into a honeycomb shape. However, the moldability was good. Then, the molded product was dried at 110 ° C. and then calcined at 600 ° C. in a pine-furnace to prepare a catalyst IV.

【0032】実施例5 チタン源として硫酸チタニル結晶〔TiO濃度32w
t%、(株)テイカ製〕7.50Kgをとり、水30.
00Kgに溶解希釈した硫酸チタニル水溶液にシリカゾ
ル〔SiO濃度20wt%、商品名“カタロイドS−
20”、触媒化成工業(株)製〕2.10Kgを15分
間かけて添加混合し、更に、0.17Kgパラタングス
テン酸アンモニウム結晶を添加し、これに、温度60℃
以下を維持しながら3規定アンモニア水16.20Kg
を15分間かけて添加・中和してTiO−SiO
WO複合水酸化物(y成分)スラリーを生成し、更に
pH9.5〜10を維持し温度60℃で5時間加温熟成
した。得られたTiO−SiO−WO複合水酸化
物(y成分)スラリーにメタチタン酸スラリー〔TiO
濃度30wt%、石原産業(株)製〕32.00Kg
を10分間かけて添加し、更に、シリカゾル〔SiO
濃度20wt%、商品名“カタロイドS−20”、触媒
化成工業(株)製〕12.00Kgを10分間かけて添
加混合した後、3規定アンモニア水1.92Kgを添加
して該スラリーのpHを9.5に調製して複合水酸化物
(a成分)スラリーを得た。該複合水酸化物スラリーを
温度60℃でpH9.5〜10を維持しながら1時間加
温熟成後、この複合水酸化物スラリーを脱水洗浄し、そ
の後400℃以下の温度で5時間乾燥してチタン−シリ
カ−タングステンからなる3元系複合酸化物(A成分)
を得た。該3元系複合酸化物中のSO含有量は4.9
%であった。次いで、モノエタノールアミン0.30K
gと水3.0Kgを混合し、これにメタバナジン酸アン
モニウム(b成分)0.205Kgを添加、加熱溶解し
た。この溶解液と前述の3元系複合酸化物(A成分)1
2.64Kgをニーダーにて混練し、更に、粘土、ガラ
ス繊維などの成形助剤を加えて混練捏和後、ハニカム状
に押出成形したが、成形性は良好であった。その後、成
形物を110℃で乾燥した後、マツフル炉中600℃で
焼成して触媒Vを調製した。
Example 5 Titanyl sulfate crystal [TiO 2 concentration 32 w as titanium source]
t%, manufactured by Teika Co., Ltd.] 7.50 kg, and water 30.
Silica sol [SiO 2 concentration 20 wt%, trade name “Cataloid S-
20 ", manufactured by Catalysts & Chemicals Industry Co., Ltd.] 2.10 Kg was added and mixed over 15 minutes, and 0.17 Kg ammonium paratungstate crystal was added, and the temperature was 60 ° C.
16.20 Kg of 3N ammonia water while maintaining the following
Is added / neutralized over 15 minutes to form TiO 2 —SiO 2
A WO 3 composite hydroxide (y component) slurry was produced, and the temperature was maintained at pH 9.5 to 10 and aged by heating at 60 ° C. for 5 hours. The obtained TiO 2 —SiO 2 —WO 3 composite hydroxide (y component) slurry was added to a metatitanic acid slurry [TiO 2
2 concentration 30 wt%, Ishihara Sangyo Co., Ltd.] 32.00 Kg
Was added over 10 minutes, and silica sol [SiO 2
Concentration 20 wt%, trade name "Cataloid S-20", manufactured by Catalysts & Chemicals Industry Co., Ltd.] 12.00 Kg was added and mixed over 10 minutes, and then 3N ammonia water 1.92 Kg was added to adjust the pH of the slurry. It was adjusted to 9.5 to obtain a composite hydroxide (a component) slurry. The composite hydroxide slurry was heated and aged for 1 hour while maintaining the pH at 9.5 to 10 at a temperature of 60 ° C., then the composite hydroxide slurry was dehydrated and washed, and then dried at a temperature of 400 ° C. or lower for 5 hours. Ternary complex oxide composed of titanium-silica-tungsten (component A)
Got The SO 4 content in the ternary complex oxide was 4.9.
%Met. Next, monoethanolamine 0.30K
g and water (3.0 kg) were mixed, and ammonium metavanadate (b component) (0.205 kg) was added thereto and dissolved by heating. This solution and the above-mentioned ternary complex oxide (component A) 1
2.64 kg was kneaded with a kneader, kneading and kneading were performed by adding a molding aid such as clay or glass fiber, and extrusion molding was performed into a honeycomb shape, but the moldability was good. Then, the molded product was dried at 110 ° C. and then calcined at 600 ° C. in a pineapple furnace to prepare a catalyst V.

【0033】実施例6 チタン源として硫酸チタニル結晶〔TiO濃度32w
t%、(株)テイカ製〕7.50Kgをとり、水30.
00Kgに溶解希釈した硫酸チタニル水溶液にシリカゾ
ル〔SiO濃度20wt%、商品名“カタロイドS−
20”、触媒化成工業(株)製〕2.10Kgを15分
間かけて添加混合し、温度60℃以下を維持しながら3
規定アンモニア水16.20Kgを15分間かけて添加
・中和してTiO−SiO複合水酸化物(y成分)
スラリーを生成し、更にpH9.5〜10を維持し温度
60℃で5時間加温熟成した。得られたTiO−Si
複合水酸化物スラリーにメタチタン酸スラリー〔T
iO濃度30wt%、石原産業(株)製〕32.00
Kgを10分間かけて添加し、更に、シリカゾル〔Si
濃度20wt%、商品名“カタロイドS−20”、
触媒化成工業(株)製〕12.00Kgを10分間かけ
て添加混合した後、3規定アンモニア水1.92Kgを
添加して該スラリーのpHを9.5に調製して複合水酸
化物(a成分)スラリーを得た。該複合水酸化物スラリ
ーを温度60℃でpH9.5〜10を維持しながら1時
間加温熟成後、この複合水酸化物(a成分)スラリーを
脱水洗浄後、400℃以下の温度で5時間乾燥してチタ
ン−シリカからなる2元系複合酸化物(A成分)を得
た。該2元系複合酸化物中のSO含有量は4.9%で
あった。次いで、モノエタノールアミン0.30Kgと
水3.0Kgを混合し、これにメタバナジン酸アンモニ
ウム(b成分)0.205Kgを添加、加熱溶解した。
この溶解液と前述の2元系複合酸化物(A成分)12.
64Kg、更に0.17Kgパラタングステン酸アンモ
ニウム結晶を添加し、これをニーダーにて混練し、更
に、粘土、ガラス繊維などの成形助剤を加えて混練捏和
後、ハニカム状に押出成形したが、成形性は良好であっ
た。その後、成形物を110℃で乾燥した後、マツフル
炉中600℃で焼成して触媒VIを調製した。
Example 6 Titanyl sulfate crystal [TiO 2 concentration 32 w as titanium source]
t%, manufactured by Teika Co., Ltd.] 7.50 kg, and water 30.
Silica sol [SiO 2 concentration 20 wt%, trade name “Cataloid S-
20 ", manufactured by Catalysts & Chemicals Industry Co., Ltd.] 2.10 Kg was added and mixed over 15 minutes, while maintaining the temperature below 60 ° C.
16.20 kg of specified ammonia water is added and neutralized over 15 minutes to form a TiO 2 —SiO 2 composite hydroxide (y component).
A slurry was produced, and the pH was maintained at 9.5 to 10 and aged by heating at a temperature of 60 ° C. for 5 hours. Obtained TiO 2 -Si
O 2 composite hydroxide slurry metatitanic acid slurry [T
iO 2 concentration 30 wt%, Ishihara Sangyo Co., Ltd.] 32.00
Kg was added over 10 minutes, and silica sol [Si
O 2 concentration 20 wt%, trade name “Cataloid S-20”,
Catalyst Catalysis Co., Ltd.] 12.00 Kg was added and mixed for 10 minutes, and then 3N ammonia water 1.92 Kg was added to adjust the pH of the slurry to 9.5 to prepare a composite hydroxide (a). Ingredient) A slurry was obtained. After heating and aging the composite hydroxide slurry at a temperature of 60 ° C. for 1 hour while maintaining pH 9.5 to 10, the composite hydroxide (a component) slurry was dehydrated and washed, and then at a temperature of 400 ° C. or lower for 5 hours. It was dried to obtain a binary composite oxide (component A) composed of titanium-silica. The SO 4 content in the binary complex oxide was 4.9%. Next, 0.30 Kg of monoethanolamine and 3.0 Kg of water were mixed, and 0.205 Kg of ammonium metavanadate (component b) was added thereto and heated and dissolved.
This solution and the above-mentioned binary complex oxide (component A) 12.
64 kg, further 0.17 kg ammonium paratungstate crystal was added, and this was kneaded in a kneader, and further, a molding aid such as clay or glass fiber was added and kneaded and kneaded, and then extruded into a honeycomb shape. The moldability was good. Then, the molded product was dried at 110 ° C. and then calcined at 600 ° C. in a pine-furnace to prepare a catalyst VI.

【0034】比較例1 チタン源として硫酸チタニル結晶〔TiO濃度32w
t%、(株)テイカ製〕43.60Kgをとり、水17
4.40Kgに溶解希釈した硫酸チタニル水溶液にシリ
カゾル〔SiO濃度20wt%、商品名“カタロイド
S−20”、触媒化成工業(株)製〕5.25Kgを1
5分間かけて添加混合し、これに、温度60℃以下を維
持しながら3規定アンモニア水94.16Kgを15分
間かけて添加・中和してTiO−SiO複合水酸化
物(y成分)スラリーを生成し、更にpH9.5〜10
を維持し温度60℃で1時間加温熟成した。得られたT
iO−SiO複合水酸化物スラリーを脱水洗浄後、
400℃以下の温度で5時間乾燥してチタン−シリカか
らなる2元系複合酸化物(Y成分)を得た。該2元系複
合酸化物中のSO含有量は6.9%であった。次い
で、モノエタノールアミン0.30Kgと水3.0Kg
を混合し、これにメタバナジン酸アンモニウム(b成
分)0.205Kgを添加、加熱溶解した。この溶解液
と前述の2元系複合酸化物(Y成分)12.64Kgを
添加し、これをニーダーにて混練し、更に、粘土、ガラ
ス繊維などの成形助剤を加えて混練捏和後、ハニカム状
に押出成形したが、ハニカム状に成形するのが困難であ
った。活性測定用試料分を何とか成形し、得られた成形
物を110℃で乾燥した後、マツフル炉中600℃で焼
成して触媒VIIを調製した。
Comparative Example 1 Titanyl sulfate crystal [TiO 2 concentration 32 w as titanium source]
t%, manufactured by Teika Co., Ltd.] 43.60 kg, and water 17
5.25 Kg of silica sol [SiO 2 concentration 20 wt%, trade name “Cataloid S-20”, manufactured by Catalysts & Chemicals Industry Co., Ltd.] was added to an aqueous solution of titanyl sulfate dissolved and diluted to 4.40 Kg.
The mixture was added and mixed over 5 minutes, and 94.16 Kg of 3N ammonia water was added and neutralized over 15 minutes while maintaining the temperature at 60 ° C. or lower to TiO 2 —SiO 2 composite hydroxide (y component). Produces a slurry with a pH of 9.5-10
The temperature was maintained at 60 ° C. for 1 hour while aging by heating. Obtained T
After dehydration cleaning of the iO 2 —SiO 2 composite hydroxide slurry,
It was dried at a temperature of 400 ° C. or lower for 5 hours to obtain a binary composite oxide (Y component) composed of titanium-silica. The SO 4 content in the binary complex oxide was 6.9%. Next, 0.30 kg of monoethanolamine and 3.0 kg of water
Was mixed, to this was added 0.205 Kg of ammonium metavanadate (component b), and the mixture was heated and dissolved. 12.64 Kg of the above-mentioned binary complex oxide (Y component) was added to this solution, and this was kneaded with a kneader. Further, a molding aid such as clay or glass fiber was added, and after kneading and kneading, It was extruded into a honeycomb shape, but it was difficult to form into a honeycomb shape. The sample for activity measurement was somehow molded, and the obtained molded product was dried at 110 ° C., and then calcined at 600 ° C. in a pine fur furnace to prepare a catalyst VII.

【0035】比較例2 メタチタン酸スラリー〔TiO濃度30wt%、石原
産業(株)製〕40.00Kgとシリカゾル〔SiO
濃度20wt%、商品名“カタロイドS−20”、触媒
化成工業(株)製〕15.00Kgを混合した後、3規
定アンモニア水10.80Kgを添加して該スラリーの
pHを9.5に調製して複合水酸化物スラリーを得た。
該複合水酸化物スラリーを温度60℃でpH9.5〜1
0を維持しながら1時間加温熟成後、この複合水酸化物
スラリーを脱水洗浄し、その後、400℃以下の温度で
5時間乾燥してチタン−シリカからなる2元系複合酸化
物を得た。該2元系複合酸化物中のSO含有量は4.
2%であった。次に、モノエタノールアミン0.30K
gと水3.0Kgを混合し、これにメタバナジン酸アン
モニウム(b成分)0.205Kgを添加、加熱溶解し
た。この溶解液と前述の2元系複合酸化物12.64K
gをニーダーにて混練し、更に、粘土、ガラス繊維など
の成形助剤を加えて混練捏和後、ハニカム状に押出成形
したが、成形性は良好であった。その後、成形物を11
0℃で乾燥した後、マツフル炉中600℃で焼成して触
媒VIIIを調製した。
Comparative Example 2 Metatitanic acid slurry [TiO 2 concentration 30 wt%, Ishihara Sangyo Co., Ltd.] 40.00 kg and silica sol [SiO 2
20 wt% concentration, trade name "Cataloid S-20", manufactured by Catalysts & Chemicals Industry Co., Ltd.] 15.00 Kg was mixed, and then 10.80 Kg of 3N ammonia water was added to adjust the pH of the slurry to 9.5. Then, a composite hydroxide slurry was obtained.
The composite hydroxide slurry had a pH of 9.5 to 1 at a temperature of 60 ° C.
After heating and aging for 1 hour while maintaining 0, the composite hydroxide slurry was dehydrated and washed, and then dried at a temperature of 400 ° C. or lower for 5 hours to obtain a binary composite oxide composed of titanium-silica. . The SO 4 content in the binary complex oxide is 4.
It was 2%. Next, monoethanolamine 0.30K
g and water (3.0 kg) were mixed, and ammonium metavanadate (b component) (0.205 kg) was added thereto and dissolved by heating. This solution and the above-mentioned binary complex oxide 12.64K
g was kneaded with a kneader, kneading was further performed by adding a molding aid such as clay or glass fiber, and the mixture was kneaded and kneaded, and then extrusion-molded into a honeycomb shape, but the moldability was good. Then, the molded product 11
After being dried at 0 ° C., it was calcined at 600 ° C. in a pine oven to prepare catalyst VIII.

【0036】触媒使用例 実施例1〜6および比較例1〜2の触媒I〜VIIIについ
て脱硝性能を評価した。脱硝性能試験は、各ハニカム触
媒(セルピッチ7.4mm、壁厚1.0mm)から長さ
300mmで3×3目に切り出したものを流通式反応器
に充填し、下記条件で脱硝率を測定した。脱硝率は、触
媒接触前後のガス中の窒素酸化物NOx濃度をケミルミ
式窒素酸化物分析計により測定し、次式により求めたも
のである。
Example of Use of Catalyst The denitration performance of the catalysts I to VIII of Examples 1 to 6 and Comparative Examples 1 and 2 was evaluated. In the denitration performance test, each honeycomb catalyst (cell pitch 7.4 mm, wall thickness 1.0 mm) cut into 3 × 3 pieces with a length of 300 mm was filled in a flow reactor, and the denitration rate was measured under the following conditions. . The denitrification rate is obtained by measuring the nitrogen oxide NOx concentration in the gas before and after contacting the catalyst with a Chemilumi type nitrogen oxide analyzer and using the following equation.

【数1】脱硝率(容量%)=〔未接触ガス中のNOx
(容量ppm)−接触ガス中のNOx(容量ppm)〕
÷〔未接触ガス中のNOx(容量ppm)〕×100 試験条件 触媒形状:3×3目、長さ:300mm 反応温度:380℃、SV=10,000hr―1 ガス組成:NOx=180容量ppm、NH=216
容量ppm、O=2容量%、SO=500容量pp
m、HO=10容量%、N=バランス また、SOx酸化能試験は、ハニカム触媒から長さ30
0mmの3×3目に切り出したものを流通式反応器に充
填し、下記条件でSO転化率を測定した。SO転化
率は、触媒接触前後のガス中のSO濃度を赤外線式S
ガス濃度測定計により測定し、次式により求めたも
のである。
[Equation 1] Denitration rate (volume%) = [NOx in non-contact gas
(Volume ppm) -NOx in contact gas (Volume ppm)]
÷ [NOx in non-contact gas (volume ppm)] x 100 Test condition Catalyst shape: 3 x 3 mesh, length: 300 mm Reaction temperature: 380 ° C., SV = 10,000 hr-1 Gas composition: NOx = 180 volume ppm, NHThree= 216
Capacity ppm, OTwo= 2% by volume, SOTwo= 500 capacity pp
m, HTwoO = 10% by volume, NTwo= Balance In addition, the SOx oxidation capacity test was conducted using a honeycomb catalyst with a length of 30
Fill the flow-type reactor with 0 mm cut into 3 x 3 pieces.
And SO under the following conditionsThreeThe conversion rate was measured. SOThreeConversion
The ratio is SO in the gas before and after contact with the catalyst.TwoConcentration is infrared type S
OTwoMeasured with a gas concentration meter and calculated by the following formula
Of.

【数2】SO転化率(容量%)=〔未接触ガス中のS
(容量ppm)−接触ガス中のSO(容量pp
m)〕÷〔未接触ガス中のSO(容量ppm)〕×1
00 試験条件 触媒形状:3×3目、長さ:300mm 反応温度:380℃、SV=10,000hr―1 ガス組成:O=2容量%、SO=500容量pp
m、N=バランス 評価結果を表1に示す。
[Equation 2] SOThreeConversion rate (% by volume) = [S in non-contact gas
OTwo(Volume ppm) -SO in contact gasTwo(Capacity pp
m)] ÷ [SO in uncontacted gasTwo(Capacity ppm)] × 1
00 Test condition Catalyst shape: 3 x 3 mesh, length: 300 mm Reaction temperature: 380 ° C., SV = 10,000 hr-1 Gas composition: OTwo= 2% by volume, SOTwo= 500 capacity pp
m, NTwo= Balance The evaluation results are shown in Table 1.

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【発明の効果】表から明らかなように、本発明の触媒は
高い脱硝率を維持しつつ、極めて低いSO転化率を示
す優れた触媒であることが判る。なお、SO転化率が
0.20%以下の所では±0.01%の差はかなり大き
い優位差である。この様な性能を持つ触媒は硫黄成分を
多く含む燃料を使用するボイラー排ガスの処理用触媒と
して極めて有効である。また、本発明の触媒はハニカム
状に成形した場合にも成形性が良好であるため、工業触
媒としての生産性も高い。
As is apparent from the table, the catalyst of the present invention is an excellent catalyst showing an extremely low SO 3 conversion rate while maintaining a high denitration rate. The difference of ± 0.01% is a significant difference when the SO 3 conversion rate is 0.20% or less. A catalyst having such performance is extremely effective as a catalyst for treating boiler exhaust gas that uses a fuel containing a large amount of sulfur components. Further, since the catalyst of the present invention has good moldability even when formed into a honeycomb shape, it has high productivity as an industrial catalyst.

フロントページの続き (72)発明者 増田 浩司 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内 (72)発明者 内田 雅昭 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内 (72)発明者 西井 一博 神奈川県横浜市戸塚区川上町645−4−301 Fターム(参考) 4D048 AA06 AB02 AC04 BA06X BA07X BA23X BA26Y BA27X BA42X BA46X BB02 4G069 AA03 AA08 BA02A BA02B BA04A BA04B BA20A BA20B BA21C BA47C BB04A BB04B BB06A BB06B BB08C BB10A BB10B BB10C BC50C BC54A BC54B BC59A BC60A BC60B BC60C BD01C BD02C BD05C BD06C BD12C BE06C BE08C CA02 CA08 CA13 EA19 FA01 FA02 FB06 FB08 FB09 FB57 FB67 FC01 FC03 FC08 Continued front page    (72) Inventor Koji Masuda             13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu, Fukuoka             Kasei Industry Co., Ltd. Wakamatsu factory (72) Inventor Masaaki Uchida             13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu, Fukuoka             Kasei Industry Co., Ltd. Wakamatsu factory (72) Inventor Kazuhiro Nishii             Kanagawa Prefecture Yokohama City Totsuka Ward Kawakami Town 645-4-301 F-term (reference) 4D048 AA06 AB02 AC04 BA06X                       BA07X BA23X BA26Y BA27X                       BA42X BA46X BB02                 4G069 AA03 AA08 BA02A BA02B                       BA04A BA04B BA20A BA20B                       BA21C BA47C BB04A BB04B                       BB06A BB06B BB08C BB10A                       BB10B BB10C BC50C BC54A                       BC54B BC59A BC60A BC60B                       BC60C BD01C BD02C BD05C                       BD06C BD12C BE06C BE08C                       CA02 CA08 CA13 EA19 FA01                       FA02 FB06 FB08 FB09 FB57                       FB67 FC01 FC03 FC08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 (1)可溶性チタン化合物、可溶性ケイ
素化合物および/またはシリカゾルの混合水溶液、もし
くは可溶性チタン化合物、可溶性タングステン化合物、
可溶性ケイ素化合物および/またはシリカゾルの混合水
溶液に塩基性水溶液を添加・中和して複合水酸化物(y
成分)スラリーを得、ついで該複合水酸化物スラリーに
メタチタン酸と可溶性ケイ素化合物および/またはシリ
カゾルを添加した後、塩基性水溶液を添加して得られる
複合水酸化物(a成分)スラリーから得られた複合酸化
物(A成分)と(2)バナジウム、モリブデン、タング
ステンからなる群から選ばれた少なくとも一種の金属酸
化物(B成分)、とを含有することを特徴とする窒素酸
化物除去用触媒。
1. A mixed aqueous solution of a soluble titanium compound, a soluble silicon compound and / or a silica sol, or a soluble titanium compound, a soluble tungsten compound,
A basic aqueous solution is added to and neutralized with a mixed aqueous solution of a soluble silicon compound and / or silica sol to form a composite hydroxide (y
Component) slurry is obtained, and then metatitanic acid, a soluble silicon compound and / or silica sol are added to the composite hydroxide slurry, and then a basic aqueous solution is added to obtain a composite hydroxide (a component) slurry. Catalyst for removing nitrogen oxides, which contains a complex oxide (component A) and (2) at least one metal oxide (component B) selected from the group consisting of vanadium, molybdenum and tungsten. .
【請求項2】 前記複合酸化物(A成分)中に含まれる
前記y成分由来の複合酸化物(Y成分)の量が5〜30
重量%の範囲内である請求項1記載の窒素酸化物除去用
触媒。
2. The amount of the composite oxide (Y component) derived from the y component contained in the composite oxide (A component) is 5 to 30.
The nitrogen oxide removing catalyst according to claim 1, which is in a range of weight%.
【請求項3】 前記y成分由来の複合酸化物(Y成分)
の組成が、酸化チタンとして75〜90重量%、酸化ケ
イ素として10〜20重量%、酸化タングステンとして
0〜5重量%の範囲内である請求項1または2記載の窒
素酸化物除去用触媒。
3. A composite oxide derived from the y component (Y component).
The catalyst for removing nitrogen oxides according to claim 1 or 2, wherein the composition is in the range of 75 to 90% by weight as titanium oxide, 10 to 20% by weight as silicon oxide, and 0 to 5% by weight as tungsten oxide.
【請求項4】 前記複合酸化物(A成分)が酸化物基準
で硫酸根をSOとして1〜10重量%含有するもので
ある請求項1〜3いずれか記載の窒素酸化物除去用触
媒。
4. The catalyst for removing nitrogen oxides according to claim 1, wherein the complex oxide (component A) contains 1 to 10% by weight of SO 4 as SO 4 based on the oxide.
【請求項5】 前記複合酸化物(A成分)を85〜9
9.9重量%、金属酸化物(B成分)を0.1〜15重
量%の割合で含有するものである請求項1〜4いずれか
記載の窒素酸化物除去用触媒。
5. The composite oxide (component A) is added to 85-9.
The nitrogen oxide removing catalyst according to any one of claims 1 to 4, which contains 9.9% by weight and a metal oxide (component B) in a proportion of 0.1 to 15% by weight.
【請求項6】 可溶性チタン化合物、可溶性ケイ素化合
物および/またはシリカゾルの混合水溶液、もしくは可
溶性チタン化合物、可溶性タングステン化合物、可溶性
ケイ素化合物および/またはシリカゾルの混合水溶液に
塩基性水溶液を添加・中和して複合水酸化物(y成分)
スラリーを得、ついで該複合水酸化物スラリーにメタチ
タン酸スラリーと可溶性ケイ素化合物および/またはシ
リカゾルを添加した後、塩基性水溶液を添加して得られ
た複合水酸化物(a成分であるこの水酸化物が酸化され
て複合酸化物となったのがA成分である)スラリーを熟
成、洗浄、乾燥して得られた複合酸化物(A成分)(焼
成していないのでまだ水酸化物の段階のものを1部含有
していることがある)に、バナジウム、モリブデン、タ
ングステンからなる群から選ばれた少なくとも一種の金
属酸化物(B成分)の前駆物質(b成分)を担持し、乾
燥、焼成するか、もしくは前記塩基性水溶液を添加して
得られた複合水酸化物(a成分)を乾燥、焼成して得ら
れた複合酸化物(A成分)に、バナジウム、モリブデ
ン、タングステンからなる群から選ばれた少なくとも一
種の金属酸化物(B成分)を担持し、乾燥することを特
徴とする窒素酸化物除去用触媒の製造方法。
6. A basic aqueous solution is added to and neutralized with a mixed aqueous solution of a soluble titanium compound, a soluble silicon compound and / or a silica sol, or a mixed aqueous solution of a soluble titanium compound, a soluble tungsten compound, a soluble silicon compound and / or a silica sol. Complex hydroxide (y component)
A slurry is obtained, and then a metatitanic acid slurry, a soluble silicon compound and / or a silica sol are added to the composite hydroxide slurry, and then a basic aqueous solution is added to obtain the composite hydroxide (a hydroxide of the component a). It is the component A that has been oxidized into a complex oxide) The complex oxide (component A) obtained by aging, washing and drying the slurry (since it has not been fired, it is still in the hydroxide stage). (A component may be contained in 1 part), and a precursor (component b) of at least one metal oxide (component B) selected from the group consisting of vanadium, molybdenum, and tungsten is supported, dried, and fired. Or the complex oxide (component A) obtained by drying and firing the complex hydroxide (component a) obtained by adding the basic aqueous solution to vanadium, molybdenum, or tungsten. At least one metal oxide (B component) carrying method of the nitrogen oxide removing catalyst, characterized by drying selected from the group consisting.
JP2001296569A 2001-09-27 2001-09-27 Nitrogen oxide removing catalyst and method for producing the same Expired - Lifetime JP4798908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001296569A JP4798908B2 (en) 2001-09-27 2001-09-27 Nitrogen oxide removing catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001296569A JP4798908B2 (en) 2001-09-27 2001-09-27 Nitrogen oxide removing catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003093881A true JP2003093881A (en) 2003-04-02
JP4798908B2 JP4798908B2 (en) 2011-10-19

Family

ID=19117784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001296569A Expired - Lifetime JP4798908B2 (en) 2001-09-27 2001-09-27 Nitrogen oxide removing catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP4798908B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003093880A (en) * 2001-09-27 2003-04-02 Catalysts & Chem Ind Co Ltd Catalyst for removing nitrogen oxide and manufacturing method therefor
WO2011042953A1 (en) * 2009-10-06 2011-04-14 三菱重工業株式会社 Nox reduction catalyst for high-temperature exhaust gas, method for producing same, and method for reducing nox in high-temperature exhaust gas
WO2012020557A1 (en) * 2010-08-09 2012-02-16 バブコック日立株式会社 Exhaust gas purification catalyst and production method therefor, and method for purifying nitrogen oxide in exhaust gas
JP2013078768A (en) * 2013-02-04 2013-05-02 Mitsubishi Heavy Ind Ltd Denitration catalyst for high-temperature exhaust gas, method for producing the catalyst, and method for denitrating high-temperature exhaust gas
JP2014065031A (en) * 2012-09-05 2014-04-17 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst and method of regenerating the same
CN104841420A (en) * 2015-05-05 2015-08-19 广州迪森热能技术股份有限公司 Denitration catalyst activity mother liquor preparation method and application of denitration catalyst activity mother liquor
CN106807360A (en) * 2017-03-13 2017-06-09 内蒙古科技大学 A kind of preparation method of sulfur resistive denitrating catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935027A (en) * 1982-08-19 1984-02-25 Mitsubishi Heavy Ind Ltd Preparation of calcined titanium oxide and catalyst
JPH01111443A (en) * 1987-10-26 1989-04-28 Babcock Hitachi Kk Nitrogen oxide removing catalyst
JPH0417091A (en) * 1990-05-11 1992-01-21 Hitachi Ltd Automatic transaction machine capable of inputting booking comment
JPH0788368A (en) * 1993-07-30 1995-04-04 Nippon Shokubai Co Ltd Denitration catalyst
JPH11342333A (en) * 1998-05-29 1999-12-14 Catalysts & Chem Ind Co Ltd Shared of nox removal catalyst and its production
JP2001276617A (en) * 2000-03-31 2001-10-09 Nippon Shokubai Co Ltd Denitration catalyst and denitration method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935027A (en) * 1982-08-19 1984-02-25 Mitsubishi Heavy Ind Ltd Preparation of calcined titanium oxide and catalyst
JPH01111443A (en) * 1987-10-26 1989-04-28 Babcock Hitachi Kk Nitrogen oxide removing catalyst
JPH0417091A (en) * 1990-05-11 1992-01-21 Hitachi Ltd Automatic transaction machine capable of inputting booking comment
JPH0788368A (en) * 1993-07-30 1995-04-04 Nippon Shokubai Co Ltd Denitration catalyst
JPH11342333A (en) * 1998-05-29 1999-12-14 Catalysts & Chem Ind Co Ltd Shared of nox removal catalyst and its production
JP2001276617A (en) * 2000-03-31 2001-10-09 Nippon Shokubai Co Ltd Denitration catalyst and denitration method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003093880A (en) * 2001-09-27 2003-04-02 Catalysts & Chem Ind Co Ltd Catalyst for removing nitrogen oxide and manufacturing method therefor
WO2011042953A1 (en) * 2009-10-06 2011-04-14 三菱重工業株式会社 Nox reduction catalyst for high-temperature exhaust gas, method for producing same, and method for reducing nox in high-temperature exhaust gas
EP2384807B1 (en) * 2009-10-06 2020-01-08 Mitsubishi Heavy Industries, Ltd. Nox reduction catalyst for high-temperature exhaust gas, method for producing same, and method for reducing nox in high-temperature exhaust gas
US9302251B2 (en) 2009-10-06 2016-04-05 Mitsubishi Heavy Industries, Ltd. NOx removal catalyst for high-temperature flue gas, manufacturing method thereof, and NOx removal method for high-temperature flue gas
RU2476258C2 (en) * 2009-10-06 2013-02-27 Мицубиси Хеви Индастриз, Лтд. CATALYST OF NOx REMOVAL FROM HIGH-TEMPERATURE SMOKE GAS, METHOD OF ITS OBTAINING AND METHOD OF NOx REMOVAL FROM HIGH-TEMPERATURE SMOKE GAS
JPWO2011042953A1 (en) * 2009-10-06 2013-02-28 三菱重工業株式会社 Denitration catalyst for high temperature exhaust gas and method for producing the same, high temperature exhaust gas denitration method
US8815194B2 (en) 2009-10-06 2014-08-26 Mitsubishi Heavy Industries, Ltd. NOx removal catalyst for high-temperature flue gas, manufacturing method thereof, and NOx removal method for high-temperature flue gas
US20130142719A1 (en) * 2010-08-09 2013-06-06 Babcock-Hitachi Kabushiki Kaisha Exhaust gas purification catalyst and production method therefor, and method for purifying nitrogen oxide in exhaust gas
US8673250B2 (en) * 2010-08-09 2014-03-18 Babcock-Hitachi Kabushiki Kaisha Exhaust gas purification catalyst and production method therefor, and method for purifying nitrogen oxide in exhaust gas
CN103025426A (en) * 2010-08-09 2013-04-03 巴布考克日立株式会社 Exhaust gas purification catalyst and production method therefor, and method for purifying nitrogen oxide in exhaust gas
JP2012035216A (en) * 2010-08-09 2012-02-23 Babcock Hitachi Kk Catalyst for treating exhaust gas, method for producing the same, and method for treating nitrogen oxide in exhaust gas
KR101843214B1 (en) 2010-08-09 2018-03-28 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Exhaust gas purification catalyst and production method therefor, and method for purifying nitrogen oxide in exhaust gas
WO2012020557A1 (en) * 2010-08-09 2012-02-16 バブコック日立株式会社 Exhaust gas purification catalyst and production method therefor, and method for purifying nitrogen oxide in exhaust gas
JP2014065031A (en) * 2012-09-05 2014-04-17 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst and method of regenerating the same
JP2013078768A (en) * 2013-02-04 2013-05-02 Mitsubishi Heavy Ind Ltd Denitration catalyst for high-temperature exhaust gas, method for producing the catalyst, and method for denitrating high-temperature exhaust gas
CN104841420A (en) * 2015-05-05 2015-08-19 广州迪森热能技术股份有限公司 Denitration catalyst activity mother liquor preparation method and application of denitration catalyst activity mother liquor
CN106807360A (en) * 2017-03-13 2017-06-09 内蒙古科技大学 A kind of preparation method of sulfur resistive denitrating catalyst

Also Published As

Publication number Publication date
JP4798908B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
GB2149680A (en) Catalysts for the purification of waste gases
JPH0768172A (en) Catalyst for catalyst production of nox and method thereof
KR20170009150A (en) SCR Catalyst for Nitrogen Oxide Removal and Manufacturing method thereof
JP2730987B2 (en) Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst
JP4798909B2 (en) Nitrogen oxide removing catalyst and method for producing the same
KR100456748B1 (en) Catalyst for purification of exhaust gases, production process therefor, and process for purification of exhaust gases
KR20170126837A (en) SCR Catalyst for Nitrogen Oxide Removal and Manufacturing Method Thereof
JP4798908B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JP4204692B2 (en) Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst
US20120225772A1 (en) So3 reduction catalyst for purifying an exhaust gas, preparation process thereof, and exhaust gas purifying method using the catalyst
JP3507906B2 (en) DeNOx catalyst
JP3495591B2 (en) Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas
JP2916377B2 (en) Ammonia decomposition catalyst and method for decomposing ammonia using the catalyst
JPH0824651A (en) Ammonia decomposition catalyst and method for decomposing ammonia using the same
JP3749078B2 (en) NOx removal catalyst and NOx removal method
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JPH11342333A (en) Shared of nox removal catalyst and its production
JPH09155190A (en) Catalyst for removing nitrogen oxides in exhaust gas, production thereof and method for removing nitrogen oxides in exhaust gas using the catalyst
JPS59213442A (en) Preparation of denitration catalyst
JPH08309188A (en) Ammonia decomposition catalyst and ammonia decomposition method
JP3860734B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JPH08257409A (en) Catalyst for removing nitrogen oxide and removing method of nitrogen oxide using the same
JP2012206058A (en) Denitration catalyst and denitrification method
JPH1085557A (en) Purifying method for ammonia-containing exhaust gas

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4798908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250