JP5005050B2 - Ammonia gas purification catalyst - Google Patents

Ammonia gas purification catalyst Download PDF

Info

Publication number
JP5005050B2
JP5005050B2 JP2010012436A JP2010012436A JP5005050B2 JP 5005050 B2 JP5005050 B2 JP 5005050B2 JP 2010012436 A JP2010012436 A JP 2010012436A JP 2010012436 A JP2010012436 A JP 2010012436A JP 5005050 B2 JP5005050 B2 JP 5005050B2
Authority
JP
Japan
Prior art keywords
catalyst
ammonia gas
selectivity
gas purification
cuo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010012436A
Other languages
Japanese (ja)
Other versions
JP2011147904A (en
Inventor
輝夫 田中
正志 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2010012436A priority Critical patent/JP5005050B2/en
Publication of JP2011147904A publication Critical patent/JP2011147904A/en
Application granted granted Critical
Publication of JP5005050B2 publication Critical patent/JP5005050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、アンモニアガス浄化用触媒に関する。   The present invention relates to an ammonia gas purification catalyst.

火力発電所などから排出される排ガスには、環境汚染の原因となるアンモニアガスが含まれている。そこで、従来より、アンモニアガスを浄化するための装置の開発が行われており、アンモニア浄化用触媒を用いた装置(例えば、図16の「アンモニアガス処理装置16」参照)が知られている。   The exhaust gas discharged from thermal power plants and the like contains ammonia gas that causes environmental pollution. Thus, conventionally, an apparatus for purifying ammonia gas has been developed, and an apparatus using an ammonia purifying catalyst (see, for example, “ammonia gas processing apparatus 16” in FIG. 16) is known.

これらの装置に用いられるアンモニアガス浄化用触媒(例えば、図17の「触媒層17」参照)は、一般的に、基材と、基材の表面に担持される多孔質物質と、多孔質物質に保持される触媒成分と、を備えており、その触媒作用によってアンモニアガスを浄化する性能を有する(例えば、特許文献1参照)。   The catalyst for purifying ammonia gas used in these apparatuses (see, for example, “catalyst layer 17” in FIG. 17) generally includes a base material, a porous material supported on the surface of the base material, and a porous material. And has a performance of purifying ammonia gas by its catalytic action (see, for example, Patent Document 1).

特開2004−105787号公報JP 2004-105787 A

ところで、アンモニアガスは、反応式(1)に示す通り、酸素と反応して浄化される。
4NH+3O→2N+6HO・・・反応式(1)
しかしながら、従来のアンモニアガス浄化用触媒では、触媒性能の限界から、高いNH転換率を得ることが困難であり、アンモニアガスを十分に浄化することができなかった。
また、反応式(1)に示される反応においては、副生成物として、NO、NOxなどが生成してしまう。これらの副生成物は、高温下でその生成量が増加する傾向にあり、しかも、反応式(1)に示される反応は、発熱反応である。そのため、従来のアンモニアガス浄化用触媒では、高いN選択率(すなわち、低いNO選択率、低いNOx選択率)を得ることが困難であり、副生成物の生成量を十分に抑制することができなかった。
By the way, the ammonia gas is purified by reacting with oxygen as shown in the reaction formula (1).
4NH 3 + 3O 2 → 2N 2 + 6H 2 O ... Reaction formula (1)
However, with conventional ammonia gas purification catalysts, it is difficult to obtain a high NH 3 conversion rate due to the limit of catalyst performance, and ammonia gas cannot be sufficiently purified.
Further, in the reaction shown in the reaction formula (1), N 2 O, NOx and the like are generated as by-products. The amount of these by-products tends to increase at a high temperature, and the reaction shown in the reaction formula (1) is an exothermic reaction. Therefore, it is difficult to obtain a high N 2 selectivity (that is, a low N 2 O selectivity and a low NOx selectivity) with a conventional ammonia gas purification catalyst, and the amount of by-products generated is sufficiently suppressed. I couldn't.

そこで、本発明は、優れたアンモニアガスの浄化性能を有し、副生成物の生成量を十分に抑制することが可能なアンモニアガス浄化用触媒を提供することを目的とする。   Accordingly, an object of the present invention is to provide an ammonia gas purification catalyst that has excellent ammonia gas purification performance and can sufficiently suppress the amount of by-products produced.

上記課題を解決するために、本発明は、基材と、基材の表面に担持される多孔質物質と、多孔質物質に保持される触媒成分と、を備えたアンモニアガス浄化用触媒であって、前記基材は、三次元的に交差、合流もしくは分岐する多数の微細流路を有するものであり、且つ、前記触媒成分は、Pt−CuO又はPdであることを特徴とする。   In order to solve the above problems, the present invention is an ammonia gas purification catalyst comprising a base material, a porous material supported on the surface of the base material, and a catalyst component held by the porous material. The base material has a large number of fine channels that intersect, merge or branch three-dimensionally, and the catalyst component is Pt—CuO or Pd.

また、本発明は、基材と、基材の表面に担持される多孔質物質と、多孔質物質に保持される触媒成分と、を備えたアンモニアガス浄化用触媒であって、前記基材は、三次元的に交差、合流もしくは分岐する多数の微細流路を有するものであり、且つ、前記触媒成分は、Pt−CuO−Clであることを特徴とする。   Further, the present invention is an ammonia gas purification catalyst comprising a base material, a porous material supported on the surface of the base material, and a catalyst component held by the porous material, wherein the base material is In addition, the catalyst component has a large number of fine channels that intersect, merge, or branch three-dimensionally, and the catalyst component is Pt—CuO—Cl.

また、本発明において、前記微細流路の孔径が30μm〜500μmであることを特徴とする。   In the present invention, the fine channel has a pore diameter of 30 μm to 500 μm.

また、本発明において、前記多孔質物質は、酸化アルミニウム(Al)であることを特徴とする。 In the present invention, the porous material is aluminum oxide (Al 2 O 3 ).

本発明によれば、優れたアンモニアガスの浄化性能を有し、副生成物の生成量を十分に抑制することが可能なアンモニアガス浄化用触媒を提供することができる。   According to the present invention, it is possible to provide an ammonia gas purification catalyst that has excellent ammonia gas purification performance and can sufficiently suppress the amount of by-products produced.

本発明の実施形態に係るアンモニアガス浄化用触媒を示す図である。It is a figure which shows the catalyst for ammonia gas purification which concerns on embodiment of this invention. 実施例1において、Pt−CuO−Al触媒についてのNH転換率及びN選択率を示すグラフである。In Example 1, a graph illustrating the NH 3 conversion and N 2 selectivity of about Pt-CuO-Al 2 O 3 catalyst. 実施例1において、Pd−Al触媒についてのNH転換率及びN選択率を示すグラフである。In Example 1, a graph illustrating the NH 3 conversion and N 2 selectivity for Pd-Al 2 O 3 catalyst. 実施例2の試験結果を示すグラフである。6 is a graph showing the test results of Example 2. 実施例3の試験結果を示すグラフである。10 is a graph showing test results of Example 3. 実施例4におけるNH転換率を示すグラフである。6 is a graph showing the NH 3 conversion rate in Example 4. 実施例4におけるNO選択率及びNOx選択率を示すグラフである。It is a graph showing the N 2 O selectivity and NOx selectivity in Example 4. 実施例5におけるNH転換率を示すグラフである。10 is a graph showing the NH 3 conversion rate in Example 5. 実施例5におけるNO選択率及びNOx選択率を示すグラフである。10 is a graph showing N 2 O selectivity and NOx selectivity in Example 5. 実施例6におけるNO選択率を示すグラフである。10 is a graph showing N 2 O selectivity in Example 6. 実施例6におけるNOx選択率を示すグラフである。10 is a graph showing the NOx selectivity in Example 6. 実施例7におけるNH転換率及びN選択率を示すグラフである。6 is a graph showing NH 3 conversion and N 2 selectivity in Example 7. 実施例7におけるNO選択率及びNOx選択率を示すグラフである。10 is a graph showing N 2 O selectivity and NOx selectivity in Example 7. 実施例8におけるNH転換率及びN選択率を示すグラフである。10 is a graph showing NH 3 conversion and N 2 selectivity in Example 8. 実施例8におけるNO選択率及びNOx選択率を示すグラフである。10 is a graph showing N 2 O selectivity and NOx selectivity in Example 8. 火力発電所におけるアンモニアガスの処理状況を示す図である。It is a figure which shows the processing condition of ammonia gas in a thermal power plant. アンモニアガス処理装置の概念図である。It is a conceptual diagram of an ammonia gas processing apparatus.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

===アンモニアガス浄化用触媒の基本構成について===
まず、本発明の実施形態に係るアンモニアガス浄化用触媒の基本構成について説明する。
=== Basic Configuration of Ammonia Gas Purification Catalyst ===
First, a basic configuration of an ammonia gas purification catalyst according to an embodiment of the present invention will be described.

図1(a)は、本発明の実施形態に係るアンモニアガス浄化用触媒を説明するための概略図、図1(b)は、基材(SUS)の拡大図である。図1(a)に示すアンモニアガス浄化用触媒は、基材(SUS)と、基材(SUS)の表面に担持される多孔質物質(同図の場合には、酸化アルミニウム(Al))と、多孔質物質に保持される触媒成分(Pt−CuO又はPd)と、を備えている。 Fig.1 (a) is the schematic for demonstrating the catalyst for ammonia gas purification which concerns on embodiment of this invention, FIG.1 (b) is an enlarged view of a base material (SUS). The catalyst for purifying ammonia gas shown in FIG. 1A is composed of a base material (SUS) and a porous material supported on the surface of the base material (SUS) (in the case of FIG. 1, aluminum oxide (Al 2 O 3 )) And a catalyst component (Pt—CuO or Pd) retained by the porous material.

図1(b)に示すように、基材(SUS)は、いわゆるマイクロ空間を有するマイクロ・パーティション構造を有し、三次元的に交差、合流もしくは分岐する多数の微細流路を有するものである(例えば、特開2005−264199号公報、特開2005−254194号公報、特開2005−253799号公報、特開2005−307944号公報など参照)。微細流路の孔径は、30μm〜500μmが望ましい。 As shown in FIG. 1 (b), the base material (SUS) has a micro partition structure having a so-called micro space, and has a number of fine flow paths that intersect, merge or branch three-dimensionally. (For example, refer to JP 2005-264199 A, JP 2005-254194 A, JP 2005-253799 A, JP 2005-307944 A, etc.). As for the hole diameter of a microchannel, 30 micrometers-500 micrometers are desirable.

以下の実施例では、アンモニアガス浄化用触媒の一例として、株式会社ナノ・キューブ・ジャパンから提供されたマイクロ・フィン担持触媒を用いた。なお、マイクロ・フィンの直径はすべて14.8mmである。   In the following examples, a micro fin-supported catalyst provided by Nano Cube Japan Co., Ltd. was used as an example of an ammonia gas purification catalyst. The diameters of the micro fins are all 14.8 mm.

===アンモニアガス浄化用触媒の性能について===
次に、アンモニアガス浄化用触媒の性能について説明する。
=== About the performance of ammonia gas purification catalyst ===
Next, the performance of the ammonia gas purification catalyst will be described.

本発明者らは、アンモニアガスを浄化する際に、本発明の実施形態に係るアンモニアガス浄化用触媒を用いた場合には、高いNH転換率を得ることが可能であって、優れたアンモニアガスの浄化性能が得られるとともに、高いN選択率(すなわち、低いNO選択率、低いNOx選択率)を得ることも可能であって、副生成物の生成量を十分に抑制することができると考えた。そこで、本発明者らは、このようなアンモニアガス浄化用触媒の性能を確認するために、各種の条件下において触媒性能試験を行った。図2〜図15に触媒性能試験の結果を示す。これらの触媒性能試験では、高濃度(8,000ppm以上)且つ高SV(2,000以上)のアンモニアガスを用いた。 When purifying ammonia gas, the present inventors are able to obtain a high NH 3 conversion rate when using the ammonia gas purifying catalyst according to the embodiment of the present invention. Gas purification performance can be obtained, and high N 2 selectivity (that is, low N 2 O selectivity, low NOx selectivity) can be obtained, and the amount of by-products generated can be sufficiently suppressed. I thought it was possible. Therefore, the present inventors conducted a catalyst performance test under various conditions in order to confirm the performance of such an ammonia gas purification catalyst. 2 to 15 show the results of the catalyst performance test. In these catalyst performance tests, ammonia gas having a high concentration (8,000 ppm or more) and a high SV (2,000 or more) was used.

そして、図2及び図4〜図11における触媒性能試験では、アンモニアガス浄化用触媒として、図1(b)に示した基材(SUS)と、基材(SUS)の表面に担持される酸化アルミニウム(Al)と、酸化アルミニウム(Al)に保持されるPt−CuOと、を備えたもの(以下「Pt−CuO−Al触媒」という。)を用いた。 In the catalyst performance tests in FIGS . 2 and 4 to 11, as the ammonia gas purification catalyst, the base material (SUS) shown in FIG. 1B and the oxidation supported on the surface of the base material (SUS). aluminum (Al 2 O 3), an aluminum oxide (Al 2 O 3) that includes a Pt-CuO held, a (hereinafter referred to as "Pt-CuO-Al 2 O 3 catalyst".).

また、図3及び図12〜図15における触媒性能試験では、アンモニアガス浄化用触媒として、図1(b)に示した基材(SUS)と、基材(SUS)の表面に担持される酸化アルミニウム(Al)と、酸化アルミニウム(Al)に保持されるPdと、を備えたもの(以下「Pd−Al触媒」という。)を用いた。 Further, in the catalyst performance test in FIGS . 3 and 12 to 15, as the ammonia gas purification catalyst, the base material (SUS) shown in FIG. 1B and the oxidation supported on the surface of the base material (SUS). aluminum (Al 2 O 3), was used and Pd retained in aluminum oxide (Al 2 O 3) which, with a (hereinafter referred to as "Pd-Al 2 O 3 catalyst".).

<Pt−CuO−Al触媒を用いた場合>
(実施例1)
実施例1では、Pt−CuO−Al触媒及びPd−Al触媒について、酸素濃度を変化させた時の触媒活性を調べた。その結果を図2及び図3に示す。なお、実施例1は、SVが7000h−1、NH濃度が7.8%の試験条件で行った。図2及び図3に示すように、Pt−CuO−Al触媒を用いた場合及びPd−Al触媒を用いた場合には、いずれの場合にも、アンモニアガスが高濃度且つ大流量(高SV)であるにも関わらず、NH転換率が高く、しかも、N選択率が高くなった。また、酸素濃度が高いほど、NH転換率が高くなったが、N選択率が低くなった。
<When Pt—CuO—Al 2 O 3 catalyst is used>
Example 1
In Example 1, the catalytic activity of the Pt—CuO—Al 2 O 3 catalyst and Pd—Al 2 O 3 catalyst when the oxygen concentration was changed was examined. The results are shown in FIGS. In addition, Example 1 was performed on test conditions with SV of 7000 h −1 and NH 3 concentration of 7.8%. As shown in FIG. 2 and FIG. 3, in the case of using the Pt—CuO—Al 2 O 3 catalyst and the case of using the Pd—Al 2 O 3 catalyst, in any case, the ammonia gas has a high concentration and Despite the large flow rate (high SV), the NH 3 conversion rate was high and the N 2 selectivity was high. Further, the higher the oxygen concentration, the higher the NH 3 conversion rate, but the lower the N 2 selectivity.

(実施例2)
実施例2では、触媒成分量の影響、すなわちCuO担持量を変化させて触媒活性に及ぼす影響を調べた。その結果を図4に示す。図4に示すように、CuOの担持量が増加するほど、Pt上でのNHの過剰な酸化が抑制されることとなった。
(Example 2)
In Example 2, the influence of the catalyst component amount, that is, the influence on the catalyst activity by changing the amount of CuO supported was examined. The result is shown in FIG. As shown in FIG. 4, as the amount of CuO supported increases, excessive oxidation of NH 3 on Pt is suppressed.

(実施例3)
実施例3では、触媒成分量の影響、すなわちPt担持量を変化させて触媒活性に及ぼす影響を調べた。その結果を図5に示す。図5に示すように、Ptの担持量が増加するほど、Pt上でのNHの過剰な酸化が増加した。また、Ptの担持量が0.1g/lの触媒においては、T100が高くなり、副生成物であるNO及びNOxの生成量が多くなった。
(Example 3)
In Example 3, the influence of the catalyst component amount, that is, the influence on the catalyst activity by changing the Pt loading amount was examined. The result is shown in FIG. As shown in FIG. 5, as the amount of Pt supported increased, excessive oxidation of NH 3 on Pt increased. The loading amount of Pt in the catalyst of 0.1 g / l, the higher the T 100, the amount of N 2 O and NOx as a by-product is increased.

(実施例4)
実施例4では、触媒成分源の変化が触媒活性に及ぼす影響を調べた。その結果を図6及び図7に示す。図6及び図7に示すように、塩化白金酸水溶液(HPtCl・4HO)を含浸担持させたPt1−CuO10−Clは、塩化白金酸水溶液を含浸担持させていないPt1−CuO10よりも、NH転換率が高くなるとともに、NO選択率及びNOx選択率は低くなり、高い活性を示した。
Example 4
In Example 4, the influence of changes in the catalyst component source on the catalyst activity was examined. The results are shown in FIGS. As shown in FIGS. 6 and 7, Pt1-CuO10-Cl to aqueous chloroplatinic acid (H 2 PtCl 5 · 4H 2 O) was loaded by impregnation, from Pt1-CuO10 not impregnated bearing chloroplatinic acid solution In addition, the NH 3 conversion rate increased, and the N 2 O selectivity and NOx selectivity decreased, indicating high activity.

(実施例5)
実施例5では、マイクロ・フィン担持触媒の白金酸化物が触媒活性に及ぼす影響を調べた。その結果を図8及び図9に示す。図8及び図9に示すように、Pt0.1−CuO10−Cl−H触媒では、高いNH転換率(ほぼ100%)が得られるとともに、低いNO選択率(約4%)及び低いNOx選択率(ほぼ無視し得る程度に低い値)が得られており、極めて高い活性を示した。
(Example 5)
In Example 5, the influence of platinum oxide of the micro-fin supported catalyst on the catalyst activity was examined. The results are shown in FIGS. As shown in FIGS. 8 and 9, the Pt0.1-CuO10-Cl-H catalyst provides high NH 3 conversion (almost 100%), low N 2 O selectivity (about 4%) and low. The NOx selectivity (value almost low enough to be ignored) was obtained, indicating extremely high activity.

(実施例6)
実施例6では、マイクロ・フィン担持触媒の活性と、ハニカム触媒の活性とを比較した。その結果を図10及び図11に示す。図10及び図11に示すように、Pt−CuO−Al触媒(Pt:1g/l、CuO:10g/l、触媒長さ25mm)は、ハニカム触媒よりも、NO選択率及びNOx選択率が低くなり、高い活性を示した。
(Example 6)
In Example 6, the activity of the micro-fin supported catalyst was compared with the activity of the honeycomb catalyst. The results are shown in FIGS. As shown in FIGS. 10 and 11, the Pt—CuO—Al 2 O 3 catalyst (Pt: 1 g / l, CuO: 10 g / l, catalyst length: 25 mm) has a higher N 2 O selectivity than the honeycomb catalyst. The NOx selectivity was low and high activity was exhibited.

<Pd−Al触媒を用いた場合>
(実施例7)
実施例7では、Pd−Al触媒について酸素濃度を変化させた時の触媒活性を調べた。その結果を図12及び図13に示す。図12及び図13に示すように、Pd−Al触媒は、Pt−CuO−Al触媒よりも、NH転換率は高いが、NO選択率及びNOx選択率はいずれも低くなった。酸素濃度の変化がPd−Al触媒に及ぼす影響は、Pt−CuO−Al触媒の場合とほぼ同様であった。
<When Pd—Al 2 O 3 catalyst is used>
(Example 7)
In Example 7, the catalytic activity of the Pd—Al 2 O 3 catalyst when the oxygen concentration was changed was examined. The results are shown in FIGS. As shown in FIG. 12 and FIG. 13, the Pd—Al 2 O 3 catalyst has a higher NH 3 conversion rate than the Pt—CuO—Al 2 O 3 catalyst, but the N 2 O selectivity and the NOx selectivity are higher. Was also low. The influence of the change in oxygen concentration on the Pd—Al 2 O 3 catalyst was almost the same as that of the Pt—CuO—Al 2 O 3 catalyst.

(実施例8)
実施例8では、Pd−Al触媒について空間速度を変化させた時の触媒活性を調べた。その結果を図14及び図15に示す。図14及び図15に示すように、Pd−Al触媒は、Pt−CuO−Al触媒よりも、高い触媒活性を保っており、SVによるN選択率への影響は、ほとんど認められなかった。このことは、Pd−Al触媒が高活性であり、触媒層上端部で反応が完結していることを示唆している。Pd−Al触媒は、Pt−CuO−Al触媒よりも、NH転換率は高いが、N選択率は低かった
(Example 8)
In Example 8, the catalytic activity of the Pd—Al 2 O 3 catalyst when the space velocity was changed was examined. The results are shown in FIGS. As shown in FIGS. 14 and 15, the Pd—Al 2 O 3 catalyst retains a higher catalytic activity than the Pt—CuO—Al 2 O 3 catalyst, and the effect of SV on N 2 selectivity is Almost not recognized. This suggests that the Pd—Al 2 O 3 catalyst is highly active and the reaction is completed at the upper end of the catalyst layer. Pd-Al 2 O 3 catalyst, than Pt-CuO-Al 2 O 3 catalyst is NH 3 conversion is high, N 2 selectivity of was lower.

Claims (3)

基材と、基材の表面に担持される多孔質物質と、多孔質物質に保持される触媒成分と、を備えたアンモニアガス浄化用触媒であって、
前記基材は、三次元的に交差、合流もしくは分岐する多数の微細流路を有するものであり、且つ、前記触媒成分は、Pt−CuO又はPdであって、
前記微細流路の孔径が30μm〜500μmであることを特徴とするアンモニアガス浄化用触媒。
A catalyst for purifying ammonia gas comprising a base material, a porous material supported on the surface of the base material, and a catalyst component held by the porous material,
The substrate is three-dimensionally intersect, are those having a number of micro-channel merging or branched, and the catalyst component, I Pt-CuO or Pd der,
A catalyst for purifying ammonia gas, wherein the pore diameter of the fine channel is 30 μm to 500 μm .
請求項1において、In claim 1,
前記基材は、マイクロ・フィンであることを特徴とするアンモニアガス浄化用触媒。The catalyst for purifying ammonia gas, wherein the substrate is a micro fin.
請求項1又は2において、
前記多孔質物質は、酸化アルミニウム(Al)であることを特徴とするアンモニアガス浄化用触媒。
In claim 1 or 2 ,
The catalyst for purifying ammonia gas, wherein the porous material is aluminum oxide (Al 2 O 3 ).
JP2010012436A 2010-01-22 2010-01-22 Ammonia gas purification catalyst Active JP5005050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010012436A JP5005050B2 (en) 2010-01-22 2010-01-22 Ammonia gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012436A JP5005050B2 (en) 2010-01-22 2010-01-22 Ammonia gas purification catalyst

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012092001A Division JP5756780B2 (en) 2012-04-13 2012-04-13 Ammonia gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2011147904A JP2011147904A (en) 2011-08-04
JP5005050B2 true JP5005050B2 (en) 2012-08-22

Family

ID=44535411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012436A Active JP5005050B2 (en) 2010-01-22 2010-01-22 Ammonia gas purification catalyst

Country Status (1)

Country Link
JP (1) JP5005050B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5844097B2 (en) * 2011-09-08 2016-01-13 中国電力株式会社 Ammonia treatment system and ammonia treatment method
JP6049993B2 (en) * 2011-10-24 2016-12-21 中国電力株式会社 Ammonia treatment system and ammonia treatment method
CN106824222B (en) * 2016-12-20 2019-12-13 国家纳米科学中心 Platinum nanoparticle/copper oxide sheet composite material and preparation method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3321190B2 (en) * 1991-11-27 2002-09-03 バブコック日立株式会社 Ammonia decomposition catalyst with denitration function and exhaust gas purification method
JP2004105787A (en) * 2002-09-13 2004-04-08 Babcock Hitachi Kk Manufacturing method for catalyst for cleaning exhaust gas
JP2005253799A (en) * 2004-03-12 2005-09-22 Yoshiteru Nakasaki Fluid purification device
JP2005254194A (en) * 2004-03-15 2005-09-22 Yoshiteru Nakasaki Environmental cleanup microreacter system
JP2005264199A (en) * 2004-03-17 2005-09-29 Yoshiteru Nakasaki Manufacturing method and manufacturing apparatus for superfine metallic particle
JP2005307944A (en) * 2004-04-26 2005-11-04 Yoshiteru Nakasaki Fine particle removing device
CN101668589B (en) * 2007-02-27 2013-06-12 巴斯福催化剂公司 Copper CHA zeolite catalysts

Also Published As

Publication number Publication date
JP2011147904A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
US6534022B1 (en) Conversion of nitrogen oxides in the presence of a catalyst supported on a mesh-like structure
CA2899149C (en) Method and catalyst for the simultaneous removal of carbon monoxide and nitrogen oxides from flue or exhaust gas
JP4751917B2 (en) Exhaust gas purification catalyst
BRPI1003707A2 (en) Process for reducing nitrogen oxides to nitrogen in an exhaust gas, catalyst system, and use thereof
JP5005050B2 (en) Ammonia gas purification catalyst
JP2019505370A (en) Catalyst bed and method for reducing nitric oxide
JP6276990B2 (en) Structural catalyst body, catalyst module and catalyst layer
US7850935B2 (en) Process and catalyst system for NOx reduction
BRPI0500789B1 (en) Catalyst application for N2O decomposition in Ostwald process
JP4924500B2 (en) Exhaust gas purification catalyst body
ES2763323T3 (en) Procedure for removing oxidizable gaseous compounds from a gas mixture by means of a platinum-containing oxidation catalyst
JP5756780B2 (en) Ammonia gas purification catalyst
JP6131281B2 (en) Ammonia gas purification catalyst
JP2019505372A (en) Catalyst bed and method for reducing nitric oxide
JP2015016394A (en) N2o decomposition catalyst and method for decomposing n2o-containing gas using the same
CN104324737A (en) Integral normal-temperature and low-concentration carbonic oxide catalyst as well as preparation and application thereof
Tu et al. Low temperature performance and sulfur resistance enhancement of Mn-Ce oxides supported on W-modified MWCNT for NH3-SCR removal of NOx
JP4639381B2 (en) Exhaust gas purification device
JP2009131759A (en) Exhaust gas treatment catalyst
JP5007691B2 (en) Particulate matter purification catalyst and particulate matter purification method using the same
Lee et al. Effect of Catalyst Crystallinity on V-Based Selective Catalytic Reduction with Ammonia. Nanomaterials 2021, 11, 1452
JP2011104498A (en) Apparatus for cleaning exhaust gas
JP2005279372A (en) Denitrification catalyst and denitrification method using it
Hung Synthesis, Structural and electrochemical characterization of honeycomb supported Pt-Pd-Rh composite catalyst for the decomposition of gaseous ammonia to nitrogen
ES2357092T3 (en) CONVERSION OF NITROGEN OXIDES IN THE PRESENCE OF SUPPORTED CATALYST ON A SIMILAR STRUCTURE TO A MESH.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120522

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5005050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350