JP2005254194A - Environmental cleanup microreacter system - Google Patents

Environmental cleanup microreacter system Download PDF

Info

Publication number
JP2005254194A
JP2005254194A JP2004072750A JP2004072750A JP2005254194A JP 2005254194 A JP2005254194 A JP 2005254194A JP 2004072750 A JP2004072750 A JP 2004072750A JP 2004072750 A JP2004072750 A JP 2004072750A JP 2005254194 A JP2005254194 A JP 2005254194A
Authority
JP
Japan
Prior art keywords
catalyst
dimensional structure
gas
environmental purification
microreactor system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004072750A
Other languages
Japanese (ja)
Inventor
Yoshiteru Nakasaki
義晃 中▲崎▼
Keiko Shimizu
恵子 清水
Mamoru Maruyama
護 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARU ENTERPRISE KK
NAGASAWA WIRE CLOTH CO
PLANET KK
Planet Co Ltd
Original Assignee
MARU ENTERPRISE KK
NAGASAWA WIRE CLOTH CO
PLANET KK
Planet Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARU ENTERPRISE KK, NAGASAWA WIRE CLOTH CO, PLANET KK, Planet Co Ltd filed Critical MARU ENTERPRISE KK
Priority to JP2004072750A priority Critical patent/JP2005254194A/en
Priority to PCT/JP2004/010241 priority patent/WO2005087352A1/en
Publication of JP2005254194A publication Critical patent/JP2005254194A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)
  • Micromachines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a very safe and small environmental cleanup microreactor system capable of reducing ethylene oxide (EO) to 1 ppm or less, discharged from an EO-using sterilizer of a hospital or the like with a high performance and low cost. <P>SOLUTION: This system is provided with an air heating part 1 sucking air of the outside of an apparatus, heating it by a heater and sending at a constant flow rate; a gas mixing chamber 2 mixing toxic gas introduced from the outside of the apparatus with air sent from the heating part 1; and a catalytic reaction part 3 containing a three-dimensionally structured catalyst 32 having numerous fine passages structure with diameters of several to several hundred μm in a reactor 31, in which the mixed gas mixed in the mixing chamber 2 makes to contact with the catalyst while flowing and moving in the catalyst 32, to treat the toxic gas. The catalyst 32 has numerous fine passages (microchannels) with diameters of several to several hundred μm three-dimensionally crossing, joining or branching. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、マイクロリアクターを用いることによって病院や工場等から排出される有害なガスを無害化処理するための環境浄化マイクロリアクターシステムに関する。   The present invention relates to an environmental purification microreactor system for detoxifying harmful gas discharged from a hospital or factory by using a microreactor.

平成8年(1996年)5月9日に公布された「大気汚染物質法の一部を改正する法律」において有害大気汚染物質(優先取組物質)のひとつに挙げられているエチレンオキサイド(酸化エチレン)には発癌性及び人体への有害な影響があることが知られており、この物質は、病院や産業用器材の滅菌作業や工業用の中間物質に多く使用されていることから労働安全衛生法令でも規制されている。そして、改正労働安全衛生法(施行令第21条)により、病院や工場などで滅菌作業を行う屋内作業場では、平成14年9月1日より、6カ月ごとに1回作業環境測定を行うことが義務付けられ、その作業環境評価基準第2条(測定結果の評価)の管理濃度は1ppmとされている。   Ethylene oxide (ethylene oxide) listed as one of the harmful air pollutants (priority action substances) in the “Act on Amending Part of the Air Pollutant Law” promulgated on May 9, 1996 ) Is known to have carcinogenic and harmful effects on the human body, and since this substance is often used for sterilization of hospitals and industrial equipment and industrial intermediates, occupational safety and health It is also regulated by law. And, according to the revised Industrial Safety and Health Law (Enforcement Ordinance Article 21), in an indoor workplace where sterilization work is performed in hospitals and factories, the working environment shall be measured once every six months from September 1, 2002. And the management concentration in Article 2 (Evaluation of measurement results) of the work environment evaluation standard is 1 ppm.

これまでに病院用又は産業用の滅菌器において使用されてきている滅菌ガスとしては、10〜30%(10万ppm〜30万ppm)のエチレンオキサイドと90〜70%の炭酸ガスとからなる混合ガスや、100%(100万ppm)エチレンオキサイドガスなどが一般的であり、エチレンオキサイド処理器を装着していない滅菌器の場合、滅菌処理を行った後に数十回のエアーレーションを繰り返し、そのまま局所廃棄、あるいは通気口から排出しているのが現状である。このため、排出されるエチレンオキサイドガスの濃度は各設置場所により異なり、又エアーレーション浄化回数も使用者の判断によって回数が異なり、相当な回数のエアーレーションを行わない限りかなりの高濃度でエチレンオキサイドガスが排出され、周辺環境に対して非常に悪影響を与えている。一般に、局所廃棄型滅菌器はダクト、配管、排気口から数百ppm〜数千ppmの濃度のエチレンオキサイドを大気中に排出しているのが現状である。   The sterilization gas that has been used in hospital or industrial sterilizers so far is a mixture of 10 to 30% (100,000 ppm to 300,000 ppm) ethylene oxide and 90 to 70% carbon dioxide gas. Gas or 100% (1 million ppm) ethylene oxide gas is common, and in the case of a sterilizer that is not equipped with an ethylene oxide treatment device, after a sterilization treatment, aeration is repeated several tens of times. The current situation is local disposal or discharge from the vent. For this reason, the concentration of discharged ethylene oxide gas varies depending on the installation location, and the number of times of aeration purification varies depending on the judgment of the user, and the ethylene oxide gas has a considerably high concentration unless a considerable number of aerations are performed. Gas is exhausted, which has a very bad influence on the surrounding environment. Generally, the local waste sterilizer currently discharges ethylene oxide having a concentration of several hundred ppm to several thousand ppm from the ducts, pipes, and exhaust ports into the atmosphere.

このような現状にもかかわらず、現在市場に出ているエチレンオキサイド処理装置の中で、管理基準値である1ppmをクリアできるものはほとんどなく、又、装置全体が非常に大きくて業務用の冷蔵庫程度のサイズであるため設置場所の点でも問題があり、しかも装置自体が高価で(一般的には500万円以上)、メンテナンス費用、ランニングコストも高く、病院や企業側にとって高負担であるという問題点もある。また、産業用滅菌装置のエチレンオキサイド処理の技術は、大量のエチレンオキサイドを利用するので2日間にわたり連続燃焼処理を行っているが、ランニングコストに膨大な費用を要し、企業にとって高負担を強いられている。   Despite the current situation, there are few ethylene oxide treatment equipment currently on the market that can clear the management standard value of 1 ppm, and the whole equipment is very large and is a commercial refrigerator. Because of its size, there is a problem in terms of installation location, and the device itself is expensive (generally 5 million yen or more), maintenance costs and running costs are high, and it is a heavy burden for hospitals and companies. There are also problems. In addition, the ethylene oxide treatment technology of industrial sterilizers uses a large amount of ethylene oxide, so continuous combustion treatment is carried out for 2 days. However, it requires enormous costs for running costs, and it imposes a high burden on companies. It has been.

今後、屋外排出基準の規制(ISO1400関係)も益々強まると予想されるので、それをクリアする高性能、安価、コンパクトな機器の開発が重要になると考えられ、その開発が遅れるほど地球環境に大きな影響を与えることにもなる。さらに、エチレンオキサイドは有害であるだけでなく、その爆発限界が3〜100%と大きいために、安全に処理可能な装置を開発することも要望されている。   In the future, the regulations on outdoor emission standards (related to ISO 1400) are expected to become stronger, so it is considered important to develop high-performance, low-cost, compact equipment that clears it. It will also have an impact. Furthermore, since ethylene oxide is not only harmful, but its explosion limit is as large as 3 to 100%, it is desired to develop a device that can be safely processed.

最近提案されているエチレンオキサイドガス処理装置としては、例えば特許文献1〜3に記載されているものが挙げられる。   Examples of the ethylene oxide gas treatment apparatus recently proposed include those described in Patent Documents 1 to 3.

上記特許文献1に記載されている発明の装置は、滅菌処理した後に滅菌槽内に残ったエチレンオキサイドガスを排出し、空気を滅菌槽内に導入する作業を複数回繰り返すものであり、滅菌槽の排気側に排気ガス処理槽が設けられ、この処理槽からの排気ガスを滅菌槽に還流する還流路が設けられ、処理槽内に吸着剤として活性炭や水などが充填された構造を有しているが、吸着剤による吸着や水との接触を利用した処理の場合には処理に時間がかかるだけでなく、エチレンオキサイドガスが未処理のままで滅菌槽に戻される恐れもあり、また装置を小型化することは困難である。   The apparatus of the invention described in the above-mentioned Patent Document 1 repeats the work of discharging ethylene oxide gas remaining in the sterilization tank after sterilization and introducing air into the sterilization tank a plurality of times. An exhaust gas treatment tank is provided on the exhaust side of the exhaust gas, and a reflux path for refluxing the exhaust gas from the treatment tank to the sterilization tank is provided, and the treatment tank has a structure filled with activated carbon or water as an adsorbent. However, in the case of treatment using adsorption with an adsorbent or contact with water, the treatment takes time, and the ethylene oxide gas may be returned to the sterilization tank without being treated. It is difficult to reduce the size.

又、特許文献2に記載されている装置は、滅菌庫からのエチレンオキサイドガスを水とともに送出するための水封式真空ポンプや、滅菌庫からのエチレンオキサイドを取り入れて加熱処理し、活性炭処理し、冷却処理するための排出処理装置本体を具備するものであり、この装置の場合にも、処理時間がかかり、装置の小型化が困難であるという問題点がある。   The device described in Patent Document 2 is a water-sealed vacuum pump for sending ethylene oxide gas from a sterilization chamber together with water, heat treatment by incorporating ethylene oxide from a sterilization chamber, and activated carbon treatment. The apparatus includes a main body of a discharge processing apparatus for performing a cooling process. This apparatus also has a problem that it takes a long time to process and it is difficult to reduce the size of the apparatus.

更に特許文献3においても、エチレンオキサイドガス処理装置として、水槽内にエチレンオキサイドガスを導入してグリセリンとして排出させるものが開示されているが、この装置の場合も一般的な滅菌装置から排出される量のエチレンオキサイドガスを処理するには大きな水槽が必要となる。   Further, Patent Document 3 discloses an ethylene oxide gas treatment device that introduces ethylene oxide gas into a water tank and discharges it as glycerin. However, this device is also discharged from a general sterilization device. A large water tank is required to process the amount of ethylene oxide gas.

このように、これまでに提案されているエチレンオキサイドガス処理装置はいずれも小型化するのに適した構造を有するものではなく、又、これらの装置を用いた場合には、労働安全衛生法が目的としているエチレンオキサイドの排出基準(排出濃度1ppm以下)を達成することは困難である。   Thus, none of the ethylene oxide gas treatment apparatuses proposed so far has a structure suitable for downsizing, and when these apparatuses are used, the Industrial Safety and Health Act is It is difficult to achieve the target ethylene oxide emission standard (emission concentration of 1 ppm or less).

そのような観点から、本発明者等は、高性能(排出濃度1ppm以下)、超小型、低価格、安全であり、人体にも無害である濃度にまで低減できて無害化処理できるエチレンオキサイドガス処理装置の量産試作機を研究開発してきた。   From such a point of view, the present inventors have found that ethylene oxide gas that can be detoxified with high performance (emission concentration of 1 ppm or less), ultra-compact, low price, safe, can be reduced to a concentration that is harmless to the human body. We have been researching and developing mass production prototypes of processing equipment.

特開2000−312709号公報JP 2000-312709 A

特開2000−325751号公報JP 2000-325751 A 特開2001−205032号公報JP 2001-205032 A

本発明の課題は、上述の従来技術における問題点を解決し、病院や産業用におけるエチレンオキサイド利用滅菌器等から排出されるエチレンオキサイドを1ppm以下にするなど高性能、超小型、低価格、極めて安全なエチレンオキサイド処理装置、又、その他の有害ガスの無害化処理にも好適な環境浄化マイクロリアクターシステムを提供しようとするものである。   The object of the present invention is to solve the above-mentioned problems in the prior art and to have high performance, ultra-small size, low price, extremely low ethylene oxide discharged from sterilizers using ethylene oxide in hospitals and industries, etc. It is an object of the present invention to provide an environment purification microreactor system suitable for a safe ethylene oxide treatment apparatus and other detoxification treatment of harmful gases.

本発明者等は種々検討を行った結果、エチレンオキサイドガスを加熱空気と混合し、その後、触媒が担持された三次元構造体触媒の三次元的に交差、合流もしくは分岐する数μmから数百μm径の多数の微細流路(マイクロチャンネル)を通過させたところ、エチレンオキサイドガスが飛躍的に効率よく無害化処理できるとともに、上記課題を解決できることを見出して本発明を完成した。また、このようなマイクロリアクターシステムは、エチレンオキサイド以外の各種有害ガス、すなわち、アクリロニトリル、アセトアルデヒド、塩化ビニルモノマー、クロロホルム、クロロメチルメチルエーテル、1,2−ジクロロエタン、ジクロロメタン、ダイオキシン類、テトラクロロエチレン、トリクロロエチレン、1,3−ブタジエン、ベンゼン、ベンゾ[a]ピレン、及びホルムアルデヒドなどの無害化処理にも有効であり、環境浄化マイクロリアクターシステムとして適用できることを見出した。   As a result of various investigations, the present inventors have mixed ethylene oxide gas with heated air, and then three-dimensionally crossed, joined, or branched three-dimensionally of the three-dimensional structure catalyst on which the catalyst is supported. As a result of passing through a large number of micro flow channels (micro channels) having a diameter of μm, it was found that ethylene oxide gas can be detoxified with great efficiency and the above problems can be solved, thereby completing the present invention. In addition, such a microreactor system includes various harmful gases other than ethylene oxide, that is, acrylonitrile, acetaldehyde, vinyl chloride monomer, chloroform, chloromethyl methyl ether, 1,2-dichloroethane, dichloromethane, dioxins, tetrachloroethylene, trichloroethylene, It has been found that it is also effective for detoxification treatment of 1,3-butadiene, benzene, benzo [a] pyrene, formaldehyde and the like, and can be applied as an environmental purification microreactor system.

即ち、本発明の環境浄化マイクロリアクターシステムは、装置外部の空気を吸入し、当該空気をヒーターにより加熱して一定流量にて送出可能な空気加熱部と、装置外部より導入される有害ガスと前記空気加熱部より送出された加熱空気とが流入し混合が行われる気体混合室と、反応器内に数μm〜数百μm径の多数の微細流路構造を有する三次元構造体触媒を収納してなり、前記気体混合室にて混合された混合気体が当該三次元構造体触媒内を流動しながら移動する間に触媒と接触することによって前記有害ガスの無害化処理が達成される触媒反応部とを具備し、前記三次元構造体触媒は、三次元的に交差、合流もしくは分岐する数μm〜数百μm径の多数の微細流路(マイクロチャンネル)を有してなり、前記三次元構造体触媒には、前記微細流路を通過する有害ガスを無害化処理するための触媒が担持されていることに特徴を有するものである。   That is, the environmental purification microreactor system of the present invention includes an air heating unit capable of inhaling air outside the apparatus, heating the air with a heater, and sending the air at a constant flow rate, the harmful gas introduced from the outside of the apparatus, A gas mixing chamber in which heated air sent from the air heating unit flows in and mixes, and a three-dimensional structure catalyst having a number of microchannel structures with a diameter of several μm to several hundred μm are accommodated in the reactor. A catalytic reaction section in which the harmful gas is rendered harmless by contacting the catalyst while the mixed gas mixed in the gas mixing chamber moves while flowing in the three-dimensional structure catalyst. The three-dimensional structure catalyst comprises a plurality of microchannels having a diameter of several μm to several hundreds of μm that intersect, merge or branch three-dimensionally, and the three-dimensional structure The body catalyst includes Catalyst for detoxifying noxious gas passing through the narrow flow paths are those having features that are supported.

この場合において、前記三次元構造体触媒は、多数の微細孔を有する金属薄板と、ディンプル加工した薄い金網又はディンプル加工しない平らな薄い金網からなるスペーサーとを重ねてロール状に巻いて成り、このロール巻き状の三次元構造体触媒に前記有害ガスを通過させることができる。この場合、各微細孔に切起片を付けることができる。
また、前記三次元構造体触媒は、薄い平畳織金網を複数枚重ねて接合一体化した金網積層体と、ディンプル加工した薄い金網又はディンプル加工しない平らな薄い金網からなるスペーサーとを交互に積層状に配列して成るものとすることもできる。また、前記三次元構造体触媒は、多数の微細孔を有する金属薄板を、前記混合気体の流れ方向に対して実質的に垂直となる方向に、互いに間隔をあけた状態で平行に複数枚配列して成るものとすることができる。
In this case, the three-dimensional structure catalyst is formed by laminating a metal thin plate having a large number of fine holes and a spacer made of a thin dimple-processed wire mesh or a flat thin metal mesh that is not dimple-processed. The harmful gas can be passed through a roll-shaped three-dimensional structure catalyst. In this case, a cut and raised piece can be attached to each fine hole.
The three-dimensional structure catalyst is formed by alternately laminating a plurality of thin flat woven wire meshes and joining them together and spacers made of dimple-processed thin wire meshes or flat thin wire meshes that are not dimple-processed. It can also be arranged in a shape. Further, the three-dimensional structure catalyst includes a plurality of thin metal plates having a large number of fine holes arranged in parallel and spaced apart from each other in a direction substantially perpendicular to the flow direction of the mixed gas. It can be made up of.

本発明の上記構成の環境浄化マイクロリアクターシステムによれば、エチレンオキサイド等有害ガスを加熱空気と混合し、この混合気体を、三次元構造体触媒の三次元的に交差、合流もしくは分岐する数μmから数百μm径の多数の微細流路(マイクロチャンネル)に通すことにより、飛躍的に効率よく触媒反応させることができて高濃度の有害ガスも数秒間で1ppmにまで低減させることができ、しかも従来の装置の約1/10程度にまで超小型化でき、低価格で、極めて安全な環境浄化マイクロリアクターシステムを提供できる。超小型の特徴を生かして既存の滅菌装置等にも簡単に装着できる。   According to the environmental purification microreactor system having the above-described configuration of the present invention, a harmful gas such as ethylene oxide is mixed with heated air, and this mixed gas is several μm that crosses, merges, or branches three-dimensionally in the three-dimensional structure catalyst. By passing through a large number of micro flow channels (micro channels) with a diameter of several hundred μm, the catalytic reaction can be made remarkably efficient, and high-concentration harmful gases can be reduced to 1 ppm in a few seconds. In addition, it is possible to provide a very safe environment-purifying microreactor system that can be downsized to about 1/10 of the conventional apparatus, is inexpensive, and is extremely safe. It can be easily mounted on existing sterilizers by taking advantage of its ultra-small features.

三次元構造体触媒として、多数の微細孔を有する金属薄板と、ディンプル加工した薄い金網又はディンプル加工しない平らな薄い金網からなるスペーサーとを重ねてロール状に巻いて成るものとすることにより、三次元的に交差、合流もしくは分岐する数μmから数百μm径の多数の微細流路を有するマイクロリアクターを簡単に製作でき、量産化を可能にすることができる。また、三次元構造体触媒として、薄い平畳織金網を複数枚重ねて接合一体化した金網積層体と、ディンプル加工した薄い金網又はディンプル加工しない平らな薄い金網からなるスペーサーとを交互に積層状に配列して成るものとすることによっても数μmから数百μm径の多数の微細流路を有するマイクロリアクターの加工の容易化、量産化を可能にする。   As a three-dimensional structure catalyst, a three-dimensional structure is formed by winding a thin metal plate having a large number of fine holes and a spacer made of a thin dimple-processed wire mesh or a flat thin wire mesh not dimple-processed into a roll shape. A microreactor having a large number of microchannels with a diameter of several μm to several hundreds of μm that originally intersect, merge, or branch can be easily manufactured, enabling mass production. In addition, as a three-dimensional structure catalyst, a plurality of thin flat woven wire meshes are joined and integrated together, and a dimple-processed thin wire mesh or a spacer made of a flat thin wire mesh that is not dimple-processed is alternately laminated. Also, by arranging them in a simple manner, it is possible to facilitate the processing and mass production of a microreactor having a large number of micro flow channels with a diameter of several μm to several hundred μm.

本発明の環境浄化マイクロリアクターシステムをエチレンオキサイドガス処理装置に適用した場合の好ましい一実施例を図面に基づき説明するが、本発明はこれに限定されるものではない。   A preferred embodiment when the environmental purification microreactor system of the present invention is applied to an ethylene oxide gas processing apparatus will be described with reference to the drawings, but the present invention is not limited to this.

図1は、本発明の環境浄化マイクロリアクターシステムの好ましい一例におけるシステム図である。図2は、他例のシステム図、図3は三次元構造体触媒の構成要素の一つであるスペーサ6の部分拡大斜視図、図4は三次元構造体触媒の一部拡大の縦断正面図、図5は三次元構造体触媒の一部拡大の横断平面図である。   FIG. 1 is a system diagram of a preferred example of the environmental purification microreactor system of the present invention. 2 is a system diagram of another example, FIG. 3 is a partially enlarged perspective view of a spacer 6 which is one of the components of the three-dimensional structure catalyst, and FIG. 4 is a longitudinal front view of a partly enlarged view of the three-dimensional structure catalyst. FIG. 5 is a partially enlarged cross-sectional plan view of the three-dimensional structure catalyst.

図1において、環境浄化マイクロリアクターシステムは空気加熱部1と、気体混合室2、および触媒反応部3を備える。   In FIG. 1, the environmental purification microreactor system includes an air heating unit 1, a gas mixing chamber 2, and a catalyst reaction unit 3.

空気加熱部1は、装置外部の空気(常温)が吸入口1aから吸入され、その内部を通過する間に、内装のヒーター1cによって加熱されて一定流量にて排出口1bから送出されるが、この場合、一定流量で加熱空気を送出するには、予熱前の空気を流量計(図示せず)にて調節するのが一般的である。   In the air heating unit 1, air (room temperature) outside the apparatus is sucked from the suction port 1 a and is heated by the internal heater 1 c while passing through the inside, and is sent out from the discharge port 1 b at a constant flow rate. In this case, in order to send heated air at a constant flow rate, it is common to adjust the air before preheating with a flow meter (not shown).

尚、この図示例では、装置外部の空気は装置の下方側から吸入されるようになっているが、このような構造に限定されるものではない。また、ヒーター1cは、空気加熱部1の内周壁面、あるいは外周壁面に設けることもできる。   In the illustrated example, the air outside the apparatus is sucked from the lower side of the apparatus, but is not limited to such a structure. Moreover, the heater 1c can also be provided in the inner peripheral wall surface of the air heating part 1, or an outer peripheral wall surface.

この空気加熱部1では、一般的に、常温で吸入された空気がヒーター温度190〜210℃で加熱され、約70〜200℃の加熱空気にして気体混合室2へ送出される。空気加熱部1としては、迅速に所定の温度が得られ、微妙な温度コントロールが可能で、高温の熱風を長時間持続的に発生できる安定した温度特性を有するものが好ましく、発熱体の温度が空気へ伝達される熱伝導率が高い、例えば80%以上に設計されているものが好ましい。   In the air heating unit 1, generally, air sucked at room temperature is heated at a heater temperature of 190 to 210 ° C., and is heated to about 70 to 200 ° C. and sent to the gas mixing chamber 2. The air heating unit 1 preferably has a stable temperature characteristic in which a predetermined temperature can be quickly obtained, subtle temperature control is possible, and hot hot air can be generated continuously for a long time. It is preferable that the thermal conductivity transmitted to the air is high, for example, designed to be 80% or more.

空気加熱部1からの加熱空気は気体混合室2に送られ、滅菌器等から排出されるエチレンオキサイド等の有害ガスも気体混合室2に導入されて、気体混合室2内で両者の混合が行われる。本発明の装置において、予め加熱された空気と有害ガスとを混合するのは、無害化処理する有害ガスがエチレンオキサイドガスである場合、エチレンオキサイドの爆発限界が3%〜100%と広く、高濃度エチレンオキサイドを加熱すると爆発する可能性があり、これを防止するためである。   The heated air from the air heating unit 1 is sent to the gas mixing chamber 2, and harmful gases such as ethylene oxide discharged from the sterilizer are also introduced into the gas mixing chamber 2. Done. In the apparatus of the present invention, preheated air and harmful gas are mixed when the harmful gas to be detoxified is ethylene oxide gas, and the explosion limit of ethylene oxide is as wide as 3% to 100%. This is to prevent explosion when heated to a concentration of ethylene oxide.

本発明では、装置外部より導入される有害ガスと空気加熱部1より送出される加熱空気との混合比率(単位時間当たりの各気体流入量)を適宜選択することができるが、無害化処理する有害ガスがエチレンオキサイドガスである場合には、一般的に混合後の気体のエチレンオキサイド濃度が0.3%(3,000ppm)〜3%(30,000ppm)程度になるようにすることが好ましい。   In the present invention, the mixing ratio of the harmful gas introduced from the outside of the apparatus and the heated air sent from the air heating unit 1 (each gas inflow amount per unit time) can be appropriately selected. When the harmful gas is an ethylene oxide gas, it is generally preferable that the ethylene oxide concentration of the mixed gas is about 0.3% (3,000 ppm) to about 3% (30,000 ppm). .

触媒反応部3は、図1に示されるように、反応器31内に触媒の担持された三次元構造体触媒32を収納してなり、気体混合室2にて混合された混合気体が三次元構造体触媒32内を流動しながら移動する間に触媒と接触することによって有害ガスの無害化処理が達成される部分である。三次元構造体触媒32は、三次元的に交差、合流もしくは分岐する数μm〜数百μm径の無数の微細流路(マイクロチャンネル)を有してなり、この三次元構造体触媒32には、微細流路を通過する有害ガスを無害化処理するための触媒が担持されている。   As shown in FIG. 1, the catalyst reaction unit 3 contains a three-dimensional structure catalyst 32 on which a catalyst is supported in a reactor 31, and the mixed gas mixed in the gas mixing chamber 2 is three-dimensional. This is the part where the harmful gas detoxification process is achieved by contacting the catalyst while moving in the structure catalyst 32 while flowing. The three-dimensional structure catalyst 32 has innumerable fine channels (microchannels) having a diameter of several μm to several hundred μm that intersect, merge or branch three-dimensionally. A catalyst for detoxifying harmful gas passing through the fine flow path is supported.

尚、図2に示す他例の触媒反応部3は、三次元構造体触媒32をプレート状に形成し、この三次元構造体触媒32と同じくプレート状に形成された熱交換ユニット33とを、交互に積層して構成されたものである。また、図示しないが、例えば、多数の板状フィンに伝熱管を貫通配置してなる所謂「クロスフィン形熱交換器」の該フィン表面に触媒をコーティングしてこれを三次元構造体触媒32として触媒反応部3を構成することもできる。   In addition, the catalyst reaction part 3 of the other example shown in FIG. 2 forms the three-dimensional structure catalyst 32 in a plate shape, and a heat exchange unit 33 formed in the same plate shape as the three-dimensional structure catalyst 32, It is configured by alternately laminating. Although not shown, for example, a catalyst is coated on the surface of the fin of a so-called “cross fin heat exchanger” in which a heat transfer tube is disposed through a large number of plate fins, and this is used as a three-dimensional structure catalyst 32. The catalyst reaction part 3 can also be comprised.

さらに、図1には、反応器31を一つ備えた構造例を示しているが、該反応器31の配置数は処理ガス量等の条件に応じて任意に増減設定でき、またその配置形態としては直列配置、並列配置の何れも採用できる。また、図1において、符号3aはガス入口部であり、3bはガス排出口である。   Further, FIG. 1 shows a structural example provided with one reactor 31, but the number of reactors 31 can be arbitrarily increased or decreased according to the conditions such as the amount of processing gas. For example, either a serial arrangement or a parallel arrangement can be adopted. Moreover, in FIG. 1, the code | symbol 3a is a gas inlet part and 3b is a gas exhaust port.

三次元構造体触媒32は、図4、図5に示すように、多数の微細孔(角孔)4aと、各微細孔4aの打ち抜き時に切り起こされる切起片4bとを有するステンレス等の金属薄板4と、薄い平織金網5をディンプル加工してなるスペーサー6(図3参照)とを重ねて中心部までロール状に巻いてなる。このロール巻き状の三次元構造体触媒32はこれの中心軸が反応器31の中心軸に一致するよう反応器31内に収納される(図2参照)。例えば、金属薄板4の開孔率は30〜70%、板厚は、10〜500μm(好ましくは、50μm程度)、微細孔4aの孔径は30〜500μmである。平織金網5はステンレス鋼線等よりなる縦線5aと横線5bとが一定の間隔を保ち一本づつ相互に交わしてなり、メッシュ(25.4mm平方に含まれる網の目数)は10〜100である。金属薄板4の微細孔4a、金属薄板4と平織金網5間の隙間、及び平織金網5の網目により数μm〜数百μm径、好ましくは500μm以下、より好ましくは100〜300μm程度の微細流路(マイクロチャンネル)が100万〜200万個程度存在するよう形成される。スペーサー6としてはディンプル加工しない平らな平織金網5よりなるもの、また平織金網5以外の金網であってもよい。尚、図4中、矢印10はガス流入側、矢印11はガス流出側を示す。   As shown in FIGS. 4 and 5, the three-dimensional structure catalyst 32 is made of a metal such as stainless steel having a large number of fine holes (square holes) 4a and cut and raised pieces 4b that are cut and raised when the fine holes 4a are punched. The thin plate 4 and a spacer 6 (see FIG. 3) formed by dimple processing a thin plain woven wire mesh 5 are overlapped and wound in a roll shape to the center. The roll-shaped three-dimensional structure catalyst 32 is accommodated in the reactor 31 so that the central axis thereof coincides with the central axis of the reactor 31 (see FIG. 2). For example, the aperture ratio of the thin metal plate 4 is 30 to 70%, the plate thickness is 10 to 500 μm (preferably about 50 μm), and the hole diameter of the fine holes 4a is 30 to 500 μm. The plain weave wire mesh 5 is composed of a vertical line 5a and a horizontal line 5b made of stainless steel wire or the like, and intersecting each other at regular intervals, and the mesh (number of meshes included in 25.4 mm square) is 10 to 100. It is. Depending on the fine holes 4a of the metal thin plate 4, the gap between the metal thin plate 4 and the plain weave wire mesh 5, and the mesh of the plain weave wire mesh 5, a fine flow path having a diameter of several μm to several hundred μm, preferably not more than 500 μm, more preferably about 100 to 300 μm. It is formed so that there are about 1 to 2 million (microchannels). The spacer 6 may be made of a flat plain woven wire mesh 5 that is not dimple processed, or may be a wire mesh other than the plain woven wire mesh 5. In FIG. 4, arrow 10 indicates the gas inflow side, and arrow 11 indicates the gas outflow side.

三次元構造体触媒32に担持される触媒としては酸化アルミニウム、二酸化ケイ素、チタニア(酸化チタン)、酸化アルミニウムに白金を担持したもの、二酸化ケイ素にニッケル、酸化セリウム、及び白金を担持したもの等が用いられ、三次元構造体触媒32に約10〜100μm厚にウォッシュコート、電着等でコーティングされる。   Catalysts supported on the three-dimensional structure catalyst 32 include aluminum oxide, silicon dioxide, titania (titanium oxide), aluminum oxide supporting platinum, silicon dioxide supporting nickel, cerium oxide, and platinum. The three-dimensional structure catalyst 32 is used and coated with a wash coat, electrodeposition or the like to a thickness of about 10 to 100 μm.

上記三次元構造体触媒32においては、1枚の金属薄板4に孔径30〜100μmの微細孔4aが約1億数千万個存在するため、混合気体の流れが層流となる。そして、物質移動と熱移動の移動時間は、マイクロチャンネル径の二乗に比例するためにマイクロチャンネルでは非常に短時間となる(拡散時間1/10,000、比表面積100倍)。この結果、マイクロチャンネル内の混合気体の濃度・温度が均一となり、金属薄板4表面近傍での酸素濃度が常に高く保たれ、マイクロチャンネル化の効果にインレット、アウトレット部となる貫通孔の効果も相まって極めて大きい表面積と、交差、合流、分岐等の複雑な流れの相乗効果により、高効率の触媒反応を行わせることができる。   In the three-dimensional structure catalyst 32, since there are about 100 million fine holes 4a having a hole diameter of 30 to 100 μm in one metal thin plate 4, the flow of the mixed gas becomes a laminar flow. Since the movement time of mass transfer and heat transfer is proportional to the square of the microchannel diameter, it takes a very short time in the microchannel (diffusion time 1 / 10,000, specific surface area 100 times). As a result, the concentration and temperature of the mixed gas in the microchannel become uniform, the oxygen concentration in the vicinity of the surface of the metal thin plate 4 is always kept high, and the effect of the through-holes serving as inlets and outlets is combined with the effect of microchanneling. A highly efficient catalytic reaction can be performed by a synergistic effect of a very large surface area and a complicated flow such as crossing, merging, and branching.

こうした、三次元構造体触媒32からなるマイクロリアクターは、通常のセラミック、活性炭等粒状担体やハニカム担体に比べて、空間速度(SV)が大きいため、触媒反応量が多くなって単位時間当たりの処理量が飛躍的に大きい。   Such a microreactor composed of the three-dimensional structure catalyst 32 has a larger space velocity (SV) than a conventional ceramic or activated carbon granular carrier or honeycomb carrier, so that the amount of catalytic reaction is increased and the treatment per unit time is increased. The amount is tremendously large.

触媒として、特に、酸化アルミニウムに白金を担持した触媒や二酸化ケイ素にニッケル、酸化セリウム、及び白金を担持した触媒は、高濃度のエチレンオキサイド(3,000ppm)を数10m秒間で1ppmにまで低減させることができ、しかも約200℃の低温下化で反応が可能である。   As a catalyst, in particular, a catalyst in which platinum is supported on aluminum oxide or a catalyst in which nickel, cerium oxide, and platinum are supported on silicon dioxide reduces high-concentration ethylene oxide (3,000 ppm) to 1 ppm in several tens of milliseconds. In addition, the reaction can be performed at a low temperature of about 200 ° C.

多数の微細孔(角孔)4aを有する金属薄板4において、各微細孔4aに付けた切起片4bは触媒の表面積増大、マイクロミキサーとしての混合気体の混合促進作用を発揮する。平織金網5よりなるスペーサー6は、金属薄板4の層間の間隔保持機能や微細流路形成以外に、マイクロミキサーとしての混合気体の混合促進作用をも発揮し、特に図3に示すように、ディンプル加工してなる平織金網5よりなるスペーサー6は三次元構造体触媒32に弾性を付与することができる。   In the metal thin plate 4 having a large number of fine holes (square holes) 4a, the cut and raised pieces 4b attached to the respective fine holes 4a exert an effect of increasing the surface area of the catalyst and promoting the mixing of the mixed gas as a micromixer. The spacer 6 made of the plain woven wire mesh 5 exhibits not only the function of maintaining the distance between the layers of the thin metal plate 4 and the formation of a fine flow path, but also exhibits the effect of promoting the mixing of the mixed gas as a micromixer. In particular, as shown in FIG. The spacer 6 made of the processed plain woven wire mesh 5 can impart elasticity to the three-dimensional structure catalyst 32.

三次元構造体触媒32としては、その他に、図6に示すような薄い平畳織金網7を複数枚(図7では2枚)重ねて焼結等により接合一体化した金網積層体8(図7参照)と、ディンプル加工した薄い平織金網5又はディンプル加工しない平らな薄い平織金網5からなる上記スペーサー6と同様のスペーサー6とを交互に積層状に配列したものとすることもできる(図8参照)。   In addition, as the three-dimensional structure catalyst 32, a plurality of thin flat woven wire meshes 7 as shown in FIG. 6 (two in FIG. 7) are stacked and joined and integrated by sintering or the like (see FIG. 6). 7) and spacers 6 similar to the spacers 6 made of the thin plain woven wire mesh 5 that has been dimple processed or the flat thin woven wire mesh 5 that has not been dimple processed (see FIG. 8). reference).

平畳織金網7は、図6に示すように、ステンレス鋼線等よりなる縦線7aによる網目を大きくし、横線7bを順次密着させて織り上げたものであり、平織り等のような平面的な「網目の開き」はなく、混合気体は縦線7aと横線7bの交差部のμmオーダーの隙間を通過するようにしてある。この平畳織金網7のメッシュ(25.4mm平方にある縦線の数×横線の数)は、例えば、12×64である。図7に示すように、平畳織金網7を2枚重ねて焼結等により接合一体化する場合、上側の平畳織金網7と下側の平畳織金網7とは互いに縦横の向き90°変えて、つまり上側の平畳織金網7の縦線7aに対し下側の平畳織金網7の縦線7aが直交するように重ね合わせることにより両金網7,7同士が互いに高密度に密着し合うことなくその重合面間に適度の隙間が形成されるように重ね合わされる。平畳織金網7の網目、平畳織金網7,7同士間の隙間、平畳織金網7と平畳織金網5間の隙間、及び平織金網5の網目により数μm〜数百μm径の無数の微細流路(マイクロチャンネル)が形成される。なお、図8中、矢印10はガス流入側、矢印11はガス流出側を示す。   As shown in FIG. 6, the flat woven wire mesh 7 is woven by enlarging the mesh by the vertical lines 7a made of stainless steel wires and the like, and the horizontal lines 7b are in close contact with each other. There is no “open mesh”, and the mixed gas passes through a gap in the order of μm at the intersection of the vertical line 7a and the horizontal line 7b. The mesh of the flat woven wire mesh 7 (number of vertical lines × number of horizontal lines in 25.4 mm square) is, for example, 12 × 64. As shown in FIG. 7, when two flat woven wire meshes 7 are stacked and joined and integrated by sintering or the like, the upper flat woven wire mesh 7 and the lower flat woven wire mesh 7 are oriented vertically and horizontally 90. In other words, the metal meshes 7 and 7 are made dense with each other by overlapping each other so that the vertical lines 7a of the lower flat woven wire mesh 7 are orthogonal to the vertical lines 7a of the upper flat woven wire mesh 7. They are overlaid so that an appropriate gap is formed between the polymerization surfaces without sticking to each other. Depending on the mesh of the plain woven wire mesh 7, the gap between the plain woven wire meshes 7, 7, the gap between the plain woven wire mesh 7 and the plain woven wire mesh 5, and the mesh of the plain woven wire mesh 5, the diameter is several μm to several hundred μm. Innumerable fine channels (microchannels) are formed. In FIG. 8, arrow 10 indicates the gas inflow side, and arrow 11 indicates the gas outflow side.

また、三次元構造体触媒32として、図9に示すように、多数のスリット状の微細孔(幅400μm程度)9aを所定間隔(400μm程度)置きに列設したステンレス等の金属薄板9を製造し、この金属薄板9と、ディンプル加工した薄い平織金網5又はディンプル加工しない平らな薄い平織金網5からなる上記スペーサー6と同様のスペーサー6とを交互に積層状に配列したものとすることもできる。この場合、複数枚の金属薄板9は上側の金属薄板9のスリット状の微細孔9aに対し下側の金属薄板9のスリット状の微細孔9aが直交する方向となるように上下に積層配列される。   Further, as the three-dimensional structure catalyst 32, as shown in FIG. 9, a metal thin plate 9 such as stainless steel in which a large number of slit-like fine holes (width of about 400 μm) 9a are arranged at predetermined intervals (about 400 μm) is manufactured. In addition, the metal thin plate 9 and the spacer 6 similar to the spacer 6 made of the thin plain woven wire mesh 5 dimpled or the flat thin plain woven wire mesh 5 not dimpled may be alternately arranged in a laminated form. . In this case, the plurality of thin metal plates 9 are stacked in a vertical direction so that the slit-like fine holes 9a of the lower metal thin plate 9 are perpendicular to the slit-like fine holes 9a of the upper metal thin plate 9. The

上記実施例のマイクロリアクターは、数μm〜数百μm径の多数のマイクロチャンネルを有することがで、上記の性能を有しながら従来の装置の約1/10の大きさにまで超小型化することができる。また、三次元構造体触媒32に直接電流を流しヒーターとして使用できる。しかも三次元構造体触媒32に触媒を直接担持させるため、温度分布が均一で且つ反応効率が著しく増大する。三次元構造体触媒32に触媒を担持することにより、反応によって生ずる発生熱を利用し、予熱することができるので、処理ガスを熱交換器としての機能を持たすことができる。   The microreactor of the above embodiment can have a large number of microchannels with a diameter of several μm to several hundred μm, and can be downsized to about 1/10 the size of a conventional apparatus while having the above performance. be able to. Further, a current can be directly applied to the three-dimensional structure catalyst 32 and used as a heater. Moreover, since the catalyst is directly supported on the three-dimensional structure catalyst 32, the temperature distribution is uniform and the reaction efficiency is remarkably increased. By supporting the catalyst on the three-dimensional structure catalyst 32, the heat generated by the reaction can be used and preheated, so that the processing gas can have a function as a heat exchanger.

上記の特徴を有するマイクロリアクターからなる環境浄化マイクロリアクターシステムは、超小型でコストダウンが図れ、しかもランニングコストも大幅に低減できるものである。   The environmental purification microreactor system comprising the microreactor having the above-described features is ultra-compact and can be reduced in cost, and the running cost can be greatly reduced.

本発明の環境浄化マイクロリアクターシステムは、エチレンオキサイドの処理だけでなく、日本国が定めた優先取組物質のうち、アクリロニトリル、アセトアルデヒド、塩化ビニルモノマー、クロロホルム、クロロメチルメチルエーテル、1,2−ジクロロエタン、ジクロロメタン、ダイオキシン類、テトラクロロエチレン、トリクロロエチレン、1.3−ブタジエン、ベンゼン、ベンゾ[a]ピレン、及びホルムアルデヒドについても、エチレンオキサイド処理の場合と同等の性能が得られるので、上記の物質についても適用できる。   The environmental purification microreactor system of the present invention is not only for the treatment of ethylene oxide, but among the priority substances specified by Japan, acrylonitrile, acetaldehyde, vinyl chloride monomer, chloroform, chloromethyl methyl ether, 1,2-dichloroethane, Since dichloromethane, dioxins, tetrachloroethylene, trichloroethylene, 1.3-butadiene, benzene, benzo [a] pyrene, and formaldehyde can provide the same performance as in the case of ethylene oxide treatment, the above substances can be applied.

3%エチレンオキサイドガスを用いた触媒燃焼実験
触媒反応部3としては、図4、図5に示すような多数の微細孔(角孔)4aを有しかつ各微細孔4aに切起片4bを有するステンレス等金属薄板4と、薄い平織金網5をディンプル加工してなるスペーサー6とを重ねて中心部までロール状に巻くとともに、これにウォッシュコートにより酸化アルミニウム触媒を約100μm厚にコーティングしてなる三次元構造体触媒32を用意し、これを内径17cmで縦長さ10cmの反応器31内に三次元構造体触媒32の中心軸Xが上下縦方向になるように収納した。そして、空気加熱部としては、市販の熱風発生器(インフリッジ工業株式会社製、型番:SEN−100V−1000W−AS)を使用して、図1に示される構造の本発明の環境浄化マイクロリアクターシステムを作製し、装置外部の空気を吸引して約200℃に加熱できるようにし、空気加熱部から気体混合室への加熱空気導入量を10リットル/分とするとともに、3%エチレンオキサイドガス(EO)のEO導入量を20リットル/分とし、この濃度比を基に流量を増やし、触媒の性能限界を調べた。
Catalyst Combustion Experiment Using 3% Ethylene Oxide Gas The catalytic reaction section 3 has a large number of fine holes (square holes) 4a as shown in FIGS. 4 and 5, and a cut and raised piece 4b is provided in each fine hole 4a. A thin metal plate 4 such as stainless steel and a spacer 6 formed by dimple processing a thin plain woven wire mesh 5 are overlapped and wound in a roll shape to the center, and this is coated with an aluminum oxide catalyst to a thickness of about 100 μm by wash coating. A three-dimensional structure catalyst 32 was prepared and stored in a reactor 31 having an inner diameter of 17 cm and a vertical length of 10 cm so that the central axis X of the three-dimensional structure catalyst 32 was in the vertical and vertical directions. As the air heating unit, a commercially available hot air generator (manufactured by Infridge Industrial Co., Ltd., model number: SEN-100V-1000W-AS) is used, and the environment purification microreactor system of the present invention having the structure shown in FIG. The air outside the apparatus can be sucked and heated to about 200 ° C., the amount of heated air introduced from the air heating unit to the gas mixing chamber is 10 liters / minute, and 3% ethylene oxide gas (EO) ) Was introduced at 20 liters / minute, the flow rate was increased based on this concentration ratio, and the performance limit of the catalyst was investigated.

上記試験においては、図1に示されるガス排出口3cよりサンプルをテドラーバッグに採取後、ガスクロマトグラフ(GC)にて測定した。   In the above test, a sample was collected in a Tedlar bag from the gas outlet 3c shown in FIG. 1 and then measured with a gas chromatograph (GC).

(ガスクロマトグラフ)
測定値:ガスクロマトグラフ(GC−6A:島津製作所製)
検出器:FID
カラム:Flexol 8N8
カラム温度:50℃
上記の実験の結果は図11に示すとおりである。反応ガス(二酸化炭素希釈エチレンオキサイド 10000ppm 70l/min、及び空気 100l/min)を、1wt% pt/Al3/SUS構造体触媒を充填したマイクロリアクターに導入した。反応温度250℃以上では、反応率はほぼ100%に達し、流出ガス中にはガスクロマトグラフ(FID)では検出することができなかった。また、生成物は、水と二酸化炭素のみで、他の副生成物は生じなかった。
(Gas chromatograph)
Measurement value: gas chromatograph (GC-6A: manufactured by Shimadzu Corporation)
Detector: FID
Column: Flexol 8N8
Column temperature: 50 ° C
The results of the above experiment are as shown in FIG. Reaction gases (carbon dioxide diluted ethylene oxide 10000 ppm 70 l / min and air 100 l / min) were introduced into a microreactor packed with 1 wt% pt / Al 2 O 3 / SUS structure catalyst. At a reaction temperature of 250 ° C. or higher, the reaction rate reached almost 100% and could not be detected in the effluent gas by a gas chromatograph (FID). The product was only water and carbon dioxide, and no other by-products were produced.

上記実験結果からもわかるように、触媒反応部として触媒が担持され三次元的に交差、合流もしくは分岐する数μm〜数百μm径の多数の微細流路(マイクロチャンネル)を有するマイクロリアクターを備えた本発明の環境浄化マイクロリアクターシステムはエチレンオキサイドガスの処理に非常に有効であり、厳しい環境基準をクリアでき、マイクロリアクターの採用により装置が非常に小型化、コンパクト化できる。   As can be seen from the above experimental results, the catalyst reaction part is equipped with a microreactor having a large number of microchannels with a diameter of several μm to several hundreds of μm that intersect, merge or branch in three dimensions. In addition, the environmental purification microreactor system of the present invention is very effective for the treatment of ethylene oxide gas, can meet strict environmental standards, and the adoption of the microreactor can make the apparatus very small and compact.

エチレンオキサイド、アクリロニトリル、アセトアルデヒド等有害ガスの無害化処理に際し高性能、極めて安全で超小型の環境浄化マイクロリアクターシステムを低価格で提供できる。   A high performance, extremely safe and ultra-small environmental purification microreactor system can be provided at a low price for the detoxification of harmful gases such as ethylene oxide, acrylonitrile and acetaldehyde.

本発明の環境浄化マイクロリアクターシステムの好ましい一実施例を示すシステム図である。1 is a system diagram showing a preferred embodiment of an environmental purification microreactor system of the present invention. 環境浄化マイクロリアクターシステムの他例を示すシステム図である。It is a system diagram which shows the other example of an environmental purification microreactor system. 金網でなるスペーサのディンプル加工状態を示し斜視図である。It is a perspective view which shows the dimple processing state of the spacer which consists of metal meshes. 三次元構造体触媒の一部拡大の縦断正面図である。It is a longitudinal front view of a partial enlargement of the three-dimensional structure catalyst. 三次元構造体触媒の一部拡大の横断平面図である。It is a cross-sectional plan view of a partially enlarged three-dimensional structure catalyst. 他例の三次元構造体触媒を構成する平畳織金網を示し、6Aは平面図、6Bは図6AにおけるA−A線断面図、6Cは図6AにおけるB−B線断面図である。6A is a plan view, FIG. 6B is a cross-sectional view taken along the line AA in FIG. 6A, and FIG. 6C is a cross-sectional view taken along the line BB in FIG. 6A. 図6の平畳織金網を焼結してなる金網積層体の断面図である。It is sectional drawing of the wire-mesh laminated body formed by sintering the plain woven wire-mesh of FIG. 他例の三次元構造体触媒の断面図である。It is sectional drawing of the three-dimensional structure catalyst of another example. 更に他例の三次元構造体触媒を構成する金属薄板の斜視図である。Furthermore, it is a perspective view of the metal thin plate which comprises the three-dimensional structure catalyst of another example. 図9の金属薄板からなる三次元構造体触媒の断面図である。It is sectional drawing of the three-dimensional structure catalyst which consists of a metal thin plate of FIG. 実施例の実験より得られたエチレンオキサイド触媒燃焼の温度依存度を示すグラフである。It is a graph which shows the temperature dependence of the ethylene oxide catalyst combustion obtained from the experiment of the Example.

符号の説明Explanation of symbols

1 空気加熱部
2 気体混合室
3 触媒反応部
4 金属薄板
4a 微細孔
4b 切起片
5 平畳金網
6 スペーサー
7 平畳織金網
8 金網積層体
9 金属薄板
9a 微細孔
31 反応器
32 三次元構造体触媒
33 熱交換ユニット
DESCRIPTION OF SYMBOLS 1 Air heating part 2 Gas mixing chamber 3 Catalytic reaction part 4 Metal thin plate 4a Fine hole 4b Cut and raised piece 5 Flat tatami wire mesh 6 Spacer 7 Flat woven wire mesh 8 Wire mesh laminated body 9 Metal thin plate 9a Fine hole 31 Reactor 32 Three-dimensional structure Body catalyst 33 Heat exchange unit

Claims (8)

装置外部の空気を吸入し、当該空気をヒータにより加熱して一定流量にて送出可能な空気加熱部と、装置外部より導入される有害ガスと前記空気加熱部より送出された加熱空気とが流入し混合が行われる気体混合室と、反応器内に数μm〜数百μm径の多数の微細流路構造を有する三次元構造体触媒を収納してなり、前記気体混合室にて混合された混合気体が当該三次元構造体触媒内を流動しながら移動する間に触媒と接触することによって前記有害ガスの無害化処理が達成される触媒反応部とを具備し、前記三次元構造体触媒は、三次元的に交差、合流もしくは分岐する数μm〜数百μm径の多数の微細流路を有して成ることを特徴とする、環境浄化マイクロリアクターシステム。   Air heating unit that sucks air outside the device, heats the air with a heater and delivers it at a constant flow rate, harmful gas introduced from the outside of the device, and heated air sent from the air heating unit flow in A gas mixing chamber in which mixing is performed, and a three-dimensional structure catalyst having a large number of fine channel structures with a diameter of several μm to several hundred μm are housed in the reactor, and mixed in the gas mixing chamber. A catalytic reaction section in which a detoxification treatment of the harmful gas is achieved by contacting the catalyst while the mixed gas moves while flowing in the three-dimensional structure catalyst, and the three-dimensional structure catalyst comprises: An environmental purification microreactor system comprising a large number of micro flow channels having a diameter of several μm to several hundreds of μm that intersect, merge or branch three-dimensionally. 前記三次元構造体触媒が、多数の微細孔を有する金属薄板と、ディンプル加工した薄い金網又はディンプル加工しない平らな薄い金網からなるスペーサーとを重ねてロール状に巻いて成る、請求項1記載の環境浄化マイクロリアクターシステム。   2. The three-dimensional structure catalyst according to claim 1, wherein the three-dimensional structure catalyst is formed by laminating a metal thin plate having a large number of fine holes and a spacer made of a thin dimple-processed wire mesh or a flat thin metal mesh not dimple-processed. Environmental purification microreactor system. 前記金属薄板の各微細孔に切起片を付けている、請求項2記載の環境浄化マイクロリアクターシステム。   The environmental purification microreactor system according to claim 2, wherein a cut and raised piece is attached to each fine hole of the metal thin plate. 前記三次元構造体触媒が、薄い平畳織金網を複数枚重ねて接合一体化した金網積層体と、ディンプル加工した薄い金網又はディンプル加工しない平らな薄い金網からなるスペーサーとを交互に積層状に配列して成る、請求項1記載の環境浄化マイクロリアクターシステム。   The three-dimensional structure catalyst is formed by alternately laminating a wire mesh laminate in which a plurality of thin flat woven wire meshes are joined and integrated, and a spacer made of a dimple-processed thin wire mesh or a flat thin wire mesh that is not dimple-processed. The environmental purification microreactor system according to claim 1, which is arranged. 前記三次元構造体触媒が、多数の微細孔を有する金属薄板を、前記混合気体の流れ方向に対して実質的に垂直となる方向に、互いに間隔をあけた状態で平行に複数枚配列して成る、請求項1記載の環境浄化マイクロリアクターシステム。   The three-dimensional structure catalyst is formed by arranging a plurality of thin metal plates having a large number of fine holes in parallel with each other in a direction substantially perpendicular to the flow direction of the mixed gas. The environmental purification microreactor system according to claim 1, comprising: 前記有害ガスが、エチレンオキサイド、アクリロニトリル、アセトアルデヒド、塩化ビニルモノマー、クロロホルム、クロロメチルメチルエーテル、1,2−ジクロロエタン、ジクロロメタン、ダイオキシン類、テトラクロロエチレン、トリクロロエチレン、1.3−ブタジエン、ベンゼン、ベンゾ[a]ピレン、及びホルムアルデヒドからなるグループより選ばれたものである、請求項1ないし5のいずれか1項に記載の環境浄化マイクロリアクターシステム。   The harmful gas is ethylene oxide, acrylonitrile, acetaldehyde, vinyl chloride monomer, chloroform, chloromethyl methyl ether, 1,2-dichloroethane, dichloromethane, dioxins, tetrachloroethylene, trichloroethylene, 1.3-butadiene, benzene, benzo [a]. The environmental purification microreactor system according to any one of claims 1 to 5, which is selected from the group consisting of pyrene and formaldehyde. 前記触媒が、酸化アルミニウムに白金を担持したものである、請求項1ないし6のいずれか1項に記載の環境浄化マイクロリアクターシステム。   The environmental purification microreactor system according to any one of claims 1 to 6, wherein the catalyst is one in which platinum is supported on aluminum oxide. 前記触媒が、二酸化ケイ素にニッケル、酸化セリウム、及び白金を担持したものである、請求項1ないし6のいずれか1項に記載の環境浄化マイクロリアクターシステム。   The environmental purification microreactor system according to any one of claims 1 to 6, wherein the catalyst is a catalyst in which nickel, cerium oxide, and platinum are supported on silicon dioxide.
JP2004072750A 2004-03-15 2004-03-15 Environmental cleanup microreacter system Pending JP2005254194A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004072750A JP2005254194A (en) 2004-03-15 2004-03-15 Environmental cleanup microreacter system
PCT/JP2004/010241 WO2005087352A1 (en) 2004-03-15 2004-07-12 Environmental purification microreactor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004072750A JP2005254194A (en) 2004-03-15 2004-03-15 Environmental cleanup microreacter system

Publications (1)

Publication Number Publication Date
JP2005254194A true JP2005254194A (en) 2005-09-22

Family

ID=34975372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004072750A Pending JP2005254194A (en) 2004-03-15 2004-03-15 Environmental cleanup microreacter system

Country Status (2)

Country Link
JP (1) JP2005254194A (en)
WO (1) WO2005087352A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507039A (en) * 2005-09-01 2009-02-19 武田薬品工業株式会社 Imidazopyridine compounds
JP2009531170A (en) * 2006-03-31 2009-09-03 ロンザ ア−ゲ− Microreactor system
JP2011147904A (en) * 2010-01-22 2011-08-04 Chugoku Electric Power Co Inc:The Catalyst for ammonia gas cleaning
JP2012130921A (en) * 2012-04-13 2012-07-12 Chugoku Electric Power Co Inc:The Catalyst for cleaning ammonia gas
JP2013056301A (en) * 2011-09-08 2013-03-28 Chugoku Electric Power Co Inc:The Benzene cracking apparatus
JP2015134353A (en) * 2015-03-02 2015-07-27 中国電力株式会社 Catalyst for purifying ammonia gas
CN105289239A (en) * 2014-06-06 2016-02-03 北京化工大学 Method for removing low concentration NO by using microchannel reactor
US9302243B2 (en) 2009-05-12 2016-04-05 Lonza Ag Continuous reaction micro-reactor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT526265A1 (en) * 2022-10-03 2023-11-15 Avl List Gmbh Device for preparing a gaseous medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443472B2 (en) * 1974-06-10 1979-12-20
JPH04122454A (en) * 1990-09-10 1992-04-22 Sakai Chem Ind Co Ltd Exhaust gas purification catalyst
JPH10337441A (en) * 1997-06-03 1998-12-22 Motozu Enterp:Kk Obliquely perforated plate percolation type catalytic device
JPH1176746A (en) * 1997-09-12 1999-03-23 Ekika Tansan Kk Harmful exhaust gas treating device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507039A (en) * 2005-09-01 2009-02-19 武田薬品工業株式会社 Imidazopyridine compounds
JP2015211964A (en) * 2006-03-31 2015-11-26 ロンザ アーゲー Micro-reactor system
US8287824B2 (en) 2006-03-31 2012-10-16 Lonza Ag Micro-reactor system assembly
JP2013099746A (en) * 2006-03-31 2013-05-23 Lonza Ag Micro-reactor system
US8512653B2 (en) 2006-03-31 2013-08-20 Lonza Ag Micro-reactor system assembly
JP2009531170A (en) * 2006-03-31 2009-09-03 ロンザ ア−ゲ− Microreactor system
US9375698B2 (en) 2006-03-31 2016-06-28 Lonza Ag Micro-reactor system assembly
US9962678B2 (en) 2006-03-31 2018-05-08 Lonza Ag Micro-reactor system assembly
US9302243B2 (en) 2009-05-12 2016-04-05 Lonza Ag Continuous reaction micro-reactor
JP2011147904A (en) * 2010-01-22 2011-08-04 Chugoku Electric Power Co Inc:The Catalyst for ammonia gas cleaning
JP2013056301A (en) * 2011-09-08 2013-03-28 Chugoku Electric Power Co Inc:The Benzene cracking apparatus
JP2012130921A (en) * 2012-04-13 2012-07-12 Chugoku Electric Power Co Inc:The Catalyst for cleaning ammonia gas
CN105289239A (en) * 2014-06-06 2016-02-03 北京化工大学 Method for removing low concentration NO by using microchannel reactor
JP2015134353A (en) * 2015-03-02 2015-07-27 中国電力株式会社 Catalyst for purifying ammonia gas

Also Published As

Publication number Publication date
WO2005087352A1 (en) 2005-09-22

Similar Documents

Publication Publication Date Title
JP6952064B2 (en) Air treatment system and method
JP5948020B2 (en) HAZARDOUS SUBSTANCE REMOVING DEVICE, AIR PURIFICATION DEVICE USING THE SAME, AND TOXIC SUBSTANCE REMOVING METHOD
JP2005254194A (en) Environmental cleanup microreacter system
CN105311954A (en) Multiple plasma driven catalyst reactors
JP2011152497A (en) Photocatalyst element and ultraviolet air cleaner using the same
WO2001028633A1 (en) Method and apparatus for air purification
JP2011521783A5 (en)
JP2013501615A (en) Particulate air filter equipped with ozone catalyst and method for producing and using the same
EP1982734B1 (en) A method and apparatus for fluid purification
EP4209723A1 (en) Device for generating hydroxyl radicals
KR101631251B1 (en) Air Heater Having Air Cleaning Function
JP2007216188A (en) Photocatalytic reactor
US7041260B1 (en) Integral compact heat exchanger and catalytic reactor for scavenging contaminants from air
JP2013169502A (en) Photocatalyst apparatus
WO2006003987A1 (en) Environment cleanup micro reactor system
JP2018143636A (en) Reaction tube and air purification device
CN111542498A (en) Fluid purification device
JP2004105817A (en) Treatment method and treatment system for polluted water and organic exhaust gas
CN212819090U (en) Gas-liquid mixing plate and flue gas purification device
KR101898530B1 (en) photocatalysis purifier
JPH054026A (en) Harmful component heating and cleaning device
JP2005027709A (en) Air purification apparatus
Zhang Dechlorination of Chlorinated Phenols in Microscale Based Reactor; Mathematical Model, and Numerical Simulation
KR102148065B1 (en) Module for air cleaning comprising ceramic support body
JP2000271442A (en) Harmful gas treating device