JP2004105787A - Manufacturing method for catalyst for cleaning exhaust gas - Google Patents

Manufacturing method for catalyst for cleaning exhaust gas Download PDF

Info

Publication number
JP2004105787A
JP2004105787A JP2002268131A JP2002268131A JP2004105787A JP 2004105787 A JP2004105787 A JP 2004105787A JP 2002268131 A JP2002268131 A JP 2002268131A JP 2002268131 A JP2002268131 A JP 2002268131A JP 2004105787 A JP2004105787 A JP 2004105787A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
component
gas purifying
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002268131A
Other languages
Japanese (ja)
Inventor
Masatoshi Fujisawa
藤澤 雅敏
Yasuyoshi Kato
加藤 泰良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2002268131A priority Critical patent/JP2004105787A/en
Publication of JP2004105787A publication Critical patent/JP2004105787A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a high active catalyst for cleaning exhaust gas in which a porous carrier is uniformly carried with a catalyst component. <P>SOLUTION: In the manufacturing method for a catalyst for cleaning exhaust gas, after the base material is carried with the catalyst component, it is dried and calcined. A pH adjusting agent is added to acidic sol containing the catalyst component to adjust the pH to a pH area where the sol becomes unstable. Thereafter, it is impregnated to the porous carrier in the state that urine or a urine derivative coexists and is heated in the state that drying is restricted. The impregnated catalyst component-containing sol is subjected to gelation and is dried and calcined. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス浄化用触媒の製造方法に係り、特に、多孔質担体に触媒成分を担持した触媒担持微粒子除去フィルタをはじめとする排ガス浄化用触媒であって、ディーゼルエンジンなどの内燃機関から排出される排ガス中の微粒子を効率よく除去することができる排ガス浄化用触媒の製造方法に関する。
【0002】
【従来の技術】
排ガス浄化用触媒の製造法としては、金属または無機繊維製基材に触媒成分を塗布する方法や触媒成分を成型機により、例えばハニカム状に押し出す方法などが広く知られている。また、ハニカム状の触媒については、コージェライトなどの多孔質担体をあらかじめ成型した後、触媒成分を担持する製造法が知られており、強度に優れ、触媒成分も少量で済むので、高価な貴金属を触媒成分とする場合に多く適用されている。
【0003】
しかしながら、上記の触媒製造方法では、触媒の容積が大きくなるほど乾燥時における内部温度の上昇速度が遅くなるとともに、触媒は表面から乾燥することから乾燥時に触媒内部の水分が表面へ移動し、この水分の移行に伴って触媒成分も表面へ移動するので、触媒の中心部と表層部において触媒成分の担持量にムラが生じるという問題があった。また、乾燥を制限しながら内部温度を上げようとすると水分の液だれが多くなり、触媒成分担持量のムラをなくすことは困難であった。
【0004】
触媒成分の担持量にムラが生じると担持量の少ない部分で触媒活性が低下し、全体として十分な触媒性能が得られなくなる。従って、このような問題を解決するために、全体的に触媒成分担持量を増加させることも考えられるが、それでは必要触媒成分量が多くなり、コストが嵩むことになる。
【0005】
そこで、触媒活性成分または触媒担体成分(以下、単に触媒成分ともいう)を触媒基材に均一に担持させる技術の開発が望まれ、触媒成分を含浸させた基材を乾燥する際に、熱投入速度を制限することによって水分発生速度を制限し、これによって触媒成分の均一分散性を確保しようとする技術が提案された(例えば、特許文献1参照。)。また、これに関連する技術として、加水分解可能な液状または可溶性化合物を含む溶液をpH調整したのち水性酸性触媒を添加して重合させ、得られたゲルをゆっくり乾燥し、焼成する微孔質無定形混合金属酸化物の製造方法がある(例えば、特許文献2参照。)。
【特許文献1】特開平9−117668号公報
【特許文献2】特表平11−500995号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来技術においても、触媒成分を触媒基材である多孔質担体に十分に均一に担持させることができず、その改善が望まれていた。
本発明の課題は、上記従来技術の問題点を解決し、触媒活性成分または触媒担体成分を多孔質担体に均一に担持させた、高活性の排ガス浄化用触媒の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明者は、多孔質担体に触媒成分を含浸、担持させる方法、および得られた含浸体の乾燥、焼成方法等について鋭意研究した結果、(1)触媒成分を含んだゾルは種類によって安定なpH領域は異なるが、安定pH領域を外れるとゲル化、沈殿し易くなることから、あらかじめ、pH調整剤を添加して触媒成分含有酸性ゾルが不安定なpH領域になるように調整した後、または尿素もしくは尿素誘導体を共存させた状態で多孔質担体に含浸、担持させ、担持後にゲル化、沈殿させることにより、乾燥による水分の移動の影響が少なく、触媒成分が多孔質担体に均一に担持されること、および(2)酸性ゾルのゲル化、沈殿を促進させるためには、加熱が有効であるが、乾燥を制限した状態で加熱することにより、乾燥速度が速すぎることに起因する担持ムラおよび蒸気圧の増加に伴う液だれ等が防止されることを見出し、本発明に到達したものである。
【0008】
すなわち、本願で特許請求する発明は以下のとおりである。
(1)触媒活性成分および/または触媒担体成分を基材に担持させた後、乾燥、焼成する排ガス浄化用触媒の製造方法において、前記触媒活性成分および/または触媒担体成分を含む酸性ゾルを、pH調整剤を添加して該酸性ゾルが不安定となるpH領域に調整した後、または尿素もしくは尿素誘導体を共存させた状態で多孔質担体に含浸させ、乾燥を制限した状態で加熱し、前記多孔質担体に含浸させた触媒活性成分および/または触媒担体成分を含むゾルをゲル化した後、乾燥、焼成することを特徴とする排ガス浄化用触媒の製造方法。
【0009】
(2)前記pH調整剤として、アルカリ土類金属元素または希土類元素を含む溶液を用いることを特徴とする上記(1)に記載の排ガス浄化用触媒の製造方法。
(3)前記乾燥を制限した状態での加熱は、前記触媒活性成分および/または触媒担体成分含浸多孔質担体の実用時におけるガス流れ方向に対して平行となる側面を耐熱性ゴムで覆うか、または全体をビニールシートで覆った状態で加熱空気と接触させることであることを特徴とする上記(1)または(2)に記載の排ガス浄化用触媒の製造方法。
(4)上記(1)〜(3)の何れかの方法で製造した排ガス浄化用触媒に、さらに触媒活性成分を含浸させ、乾燥、焼成することを特徴とする排ガス浄化用触媒の製造方法。
【0010】
本発明において触媒活性成分としては、Pt、Pd、Rh等が挙げられ、触媒担体成分としては、例えばAl2 3 、SiO2 、ZrO2 、TiO2 等が挙げられる。また、多孔質担体としては、例えば多孔質コージェライト、ペーパハニカム等が好適に使用される。
【0011】
本発明において、触媒成分を含む酸性ゾルの安定pH領域および不安定pH領域は、ゾルの種類によって異なるが、例えばアルミナゾルとセリウムゾルを重量比2:1で混合した酸性ゾルの安定pH領域は、例えばpH=3〜4.5であり、不安定pH領域は、例えばpH=5以上である。
【0012】
本発明において、触媒成分を含む酸性ゾルに添加されるpH調整剤としては、アルカリ土類金属元素または希土類元素を含む溶液が好適に用いられ、前記アルカリ土類金属元素または希土類元素は触媒成分として機能するものであることがより好ましい。また、pH調整剤として、例えばアンモニア水などの焼成により分解されるアルカリ性水溶液を用いることもできる。
【0013】
本発明において、触媒成分を含む酸性ゾルをpH調整する代わりに、前記酸性ゾルを尿素または尿素誘導体を共存させた状態で多孔質担体に含浸させ、その後、加熱するようにしてもよい。この場合、酸性ゾル含浸多孔質担体を、尿素または尿素誘導体の熱分解温度以上に加熱すると熱分解によりアンモニアが生成し、これによって前記酸性ゾルを中和して不安定pH領域とすることができる。例えば尿素を用いた場合、酸性ゾル含浸多孔質担体を約90℃以上に加熱すると次のような熱分解反応が進行する。
【0014】
すなわち、酸性側では下記(1)式のように、アンモニアが生成し、水に吸収され、中和反応に供される。
(NHCO + 3HO → 2NH + + CO2   + 2OH・・(1)
一方、アルカリ性側では下記(2)式のように、オキソニウムイオンが生成し、水に吸収され中和反応に供される。
(NHCO +4HO → 2NH3 + CO 2−+ 2H・・・(2)
このときゾル中の尿素の濃度分布は均一であり、溶液のゲル化は均一に激しく進行し、流動性がなくなるので、触媒成分は乾燥時の水分移動の影響を受けることなく均一に担持されるようになる。
【0015】
本発明において、酸性ゾルを含浸させた多孔質担体は、前記酸性ゾルのゲル化、沈殿を促進するため加熱されるが、加熱による乾燥速度の増大および液だれを防止するために、乾燥を制限した状態で加熱される。乾燥を制限した状態での加熱とは、例えば触媒を実際の排ガスに適用する場合(以下、実用時という)のガス流れ方向に対して平行となる触媒体側面を耐熱性ゴムで覆いつつ加熱空気と接触させる方法、または被加熱体全体をビニールシートで覆った状態で加熱する方法等が挙げられる。これによって乾燥ムラに起因する触媒成分の担持ムラをなくすことができるうえ、製造時のハンドリングによる触媒体の欠損を防止することができる。このとき、触媒成分含浸多孔質担体を上下反転させながら加熱空気と接触させることが好ましい。また、マイクロウェーブ等により全体を均一に加熱するようにしてもよい。
【0016】
本発明において、触媒成分の多孔質担体への含浸は、例えば多孔質担体を触媒成分含有ゾルに浸漬することによって行われる。
本発明において、調製された排ガス浄化用触媒に、必要に応じてさらに触媒活性成分を含浸、担持させ、より高活性の触媒とすることもできる。
【0017】
【発明の実施の形態】
次に、本発明を実施例を用いて詳細に説明する。
実施例1
アルミナゾル(日産化学社製、アルミナゾル200)とセリウムゾル(多木化学社製、ニードラール)を重量比2:1で混合した水溶液に尿素を3.5重量%添加した含浸液を調製し、これにディーゼルパティキュレートフィルタ(日立金属社製、多孔質コージェライト)を浸漬して含浸し、遠心分離により液切りを行った後、ビニール袋に入れ密閉して乾燥を制限した状態とし、10〜30分置きに上下を反転させて100℃で8時間養生し、その後、ビニール袋から取り出し、150℃で6時間乾燥し、500℃で2時間焼成して触媒体とした。得られた触媒体にジニトロジアンミン白金硝酸液を含浸、担持させ、上記同様の条件で養生した後、150℃で6時間乾燥し、550℃で2時間焼成して排ガス浄化用酸化触媒体とした。
【0018】
得られた触媒体をガス流れ方向に沿って半分に切断した断面図を図1に示す。図1における点A〜Dでの触媒組成を蛍光X線分析により測定し、担持量を求めたところ、点A〜Dにおける触媒担体成分の担持量は、それぞれ47(g/L)、43(g/L)、60(g/L)および54(g/L)であった。また、点A〜Dにおける触媒活性成分の担持量は、それぞれ1.0(g/L)、1.0(g/L)、1.1(g/L)および1.0(g/L)であった。
【0019】
実施例2
実施例1における尿素の代わりにアンモニア水を少量添加し、pH=4.5に調製した含浸液を用いた以外は、上記実施例1と同様の条件で触媒を調製し、同様の分析を行ったところ、図1における点A〜Dにおける触媒担体成分の担持量は、それぞれ39(g/L)、36(g/L)、88(g/L)および86(g/L)であった。また、点A〜Dにおける触媒活性成分の担持量は、それぞれ0.8(g/L)、0.7(g/L)、1.4(g/L)および1.3(g/L)であった。
【0020】
比較例1
実施例1、2における尿素またはアンモニア水を添加しない以外は上記各実施例と同様の条件で触媒を調製し、同様の分析を行ったところ、図1における点A〜Dにおける触媒担体成分の担持量は、それぞれ27(g/L)、22(g/L)、140(g/L)および134(g/L)であった。また、点A〜Dにおける触媒活性成分の担持量は、それぞれ0.6(g/L)、0.6(g/L)、4.4(g/L)および4.8(g/L)であった。
【0021】
実施例3
実施例1における、ビニール袋に入れる代わりに、実用時のガス流れ方向に対して平行となる側面をシリコンゴムで覆い、100℃に加熱した空気と3時間接触して乾燥させた後、シリコンゴムを外し、その後は上記実施例1と同様の条件で乾燥、焼成して触媒を調製し、同様の分析を行ったところ、図1における点A〜Dにおける担体成分の担持量は、それぞれ44(g/L)、46(g/L)、73(g/L)および82(g/L)であった。また、点A〜Dにおける触媒活性成分の担持量は、それぞれ0.9(g/L)、1.0(g/L)、1.1(g/L)および1.4(g/L)であった。
【0022】
比較例2
実施例3におけるシリコンゴムによる被覆を行わない以外は上記実施例3と同様の条件で触媒を調製し、同様の分析を行ったところ、図1における点A〜Dにおける触媒担体成分の担持量は、それぞれ20(g/L)、28(g/L)、172(g/L)および165(g/L)であった。また、点A〜Dにおける触媒活性成分の担持量は、それぞれ0.3(g/L)、0.3(g/L)、6.4(g/L)および5.8(g/L)であった。
【0023】
実施例1〜3および比較例1、2における分析結果、ならびにガス流れ方向に対して平行または垂直方向における担持量比率をまとめて表1に示した。
【表1】

Figure 2004105787
【0024】
表1から、触媒体寸法が50mmと短いために、実用時のガス流れ方向と平行方向での担持量に大きな差は見られなかったが、垂直方向の分布は比較例で担持量が大きく変化し、表面の担持量が多くなっていることが分かる。これに対し、各実施例では表面から中心部まで触媒成分が均一に担持されていることが分かる。
【0025】
なお、垂直方向の担持量の分布は、
Figure 2004105787
として、平行方向の担持量の分布は、
Figure 2004105787
として求めたものである。
【0026】
【発明の効果】
本願の請求項1に記載の発明によれば、触媒活性成分および/または触媒担体成分が均一に担持され、安定した高活性の排ガス浄化用触媒が得られる。
本願の請求項2に記載の発明によれば、上記発明の効果に加え、より触媒活性に優れた排ガス浄化用触媒が得られる。
【0027】
本願の請求項3に記載の発明によれば、上記発明の効果に加え、水分移動の影響を極力排除して触媒成分の担持量がより均一な触媒が得られる。
本願の請求項4に記載の発明によれば、上記発明の効果に加え、触媒活性がより高い排ガス浄化用触媒が得られる。
【図面の簡単な説明】
【図1】触媒成分の濃度分布測定位置を示す説明図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an exhaust gas purifying catalyst, and more particularly to an exhaust gas purifying catalyst including a catalyst-supporting particulate removal filter in which a catalyst component is supported on a porous carrier, and which is discharged from an internal combustion engine such as a diesel engine. The present invention relates to a method for producing an exhaust gas purifying catalyst capable of efficiently removing fine particles in exhaust gas to be discharged.
[0002]
[Prior art]
As a method for producing an exhaust gas purifying catalyst, a method of applying a catalyst component to a metal or inorganic fiber base material and a method of extruding the catalyst component into a honeycomb shape by a molding machine are widely known. In addition, for a honeycomb catalyst, a production method is known in which a porous carrier such as cordierite is preliminarily molded, and then a catalyst component is supported. Is widely used as a catalyst component.
[0003]
However, in the above catalyst production method, as the volume of the catalyst increases, the rate of increase in the internal temperature during drying decreases, and since the catalyst dries from the surface, the water inside the catalyst moves to the surface during drying, and this water content increases. Since the catalyst component also moves to the surface with the transfer of the catalyst, there has been a problem that the amount of the catalyst component carried becomes uneven at the central portion and the surface layer portion of the catalyst. Further, when the internal temperature is increased while restricting the drying, the dripping of the water increases, and it is difficult to eliminate the unevenness in the amount of the catalyst component carried.
[0004]
If the carried amount of the catalyst component becomes uneven, the catalytic activity is reduced in the portion where the carried amount is small, and it becomes impossible to obtain sufficient catalytic performance as a whole. Therefore, in order to solve such a problem, it is conceivable to increase the supported amount of the catalyst component as a whole. However, this would increase the required amount of the catalyst component and increase the cost.
[0005]
Therefore, it is desired to develop a technique for uniformly supporting a catalyst active component or a catalyst carrier component (hereinafter, also simply referred to as a catalyst component) on a catalyst substrate. When drying the substrate impregnated with the catalyst component, heat input is required. A technique has been proposed in which the rate of water generation is limited by limiting the rate, thereby ensuring uniform dispersibility of the catalyst component (for example, see Patent Document 1). In addition, as a related technique, a solution containing a hydrolyzable liquid or soluble compound is adjusted to pH, and then an aqueous acidic catalyst is added to polymerize the obtained gel. The obtained gel is slowly dried and calcined. There is a method for producing a fixed mixed metal oxide (for example, see Patent Document 2).
[Patent Document 1] Japanese Patent Application Laid-Open No. Hei 9-117668 [Patent Document 2] Japanese Patent Application Laid-Open No. 11-500995 [0006]
[Problems to be solved by the invention]
However, even in the above-mentioned prior art, the catalyst component cannot be sufficiently uniformly supported on the porous carrier as the catalyst base material, and an improvement thereof has been desired.
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for producing a highly active exhaust gas purifying catalyst in which a catalytically active component or a catalyst carrier component is uniformly supported on a porous carrier. .
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted extensive studies on a method of impregnating and supporting a catalyst component on a porous carrier, and a method of drying and calcining the obtained impregnated body. Although the stable pH range differs depending on the type of sol, gelation and precipitation tend to occur if the sol is outside the stable pH range. After being adjusted so that the porous carrier is impregnated with urea or a urea derivative in the presence of the urea derivative, and supported, and then gelled and precipitated, the influence of moisture transfer by drying is small, and the catalyst component is reduced. Heating is effective to uniformly support the porous carrier and (2) promote gelation and precipitation of the acidic sol, but by heating in a state where drying is restricted, It found that liquid dripping like with increasing carrier unevenness and vapor pressure due to 燥速 is too fast is prevented, in which have reached the present invention.
[0008]
That is, the invention claimed in the present application is as follows.
(1) In a method for producing an exhaust gas purifying catalyst in which a catalyst active component and / or a catalyst carrier component is supported on a substrate, and then dried and calcined, the acidic sol containing the catalyst active component and / or the catalyst carrier component is preferably After adding a pH adjuster to adjust the acidic sol to a pH range in which the acid sol becomes unstable, or impregnating the porous carrier in the presence of urea or a urea derivative, heating with limiting drying, A method for producing an exhaust gas purifying catalyst, comprising: gelling a sol containing a catalyst active component and / or a catalyst carrier component impregnated in a porous carrier, followed by drying and calcining.
[0009]
(2) The method for producing an exhaust gas purifying catalyst according to the above (1), wherein a solution containing an alkaline earth metal element or a rare earth element is used as the pH adjuster.
(3) The heating in a state where the drying is restricted is performed by covering a side surface of the porous carrier impregnated with the catalytically active component and / or the catalytic carrier component, which is parallel to a gas flow direction in practical use, with a heat-resistant rubber, Alternatively, the method for producing an exhaust gas purifying catalyst according to the above (1) or (2), wherein the whole is covered with a vinyl sheet and brought into contact with heated air.
(4) A method for producing an exhaust gas purifying catalyst, characterized by further impregnating the exhaust gas purifying catalyst produced by any one of the above methods (1) to (3) with a catalytically active component, followed by drying and calcining.
[0010]
In the present invention, examples of the catalytically active component include Pt, Pd, Rh and the like, and examples of the catalyst carrier component include Al 2 O 3 , SiO 2 , ZrO 2 , TiO 2 and the like. As the porous carrier, for example, porous cordierite, paper honeycomb or the like is suitably used.
[0011]
In the present invention, the stable pH range and unstable pH range of an acidic sol containing a catalyst component differ depending on the type of sol. For example, the stable pH range of an acidic sol obtained by mixing alumina sol and cerium sol at a weight ratio of 2: 1 is, for example, The pH is 3-4.5, and the unstable pH region is, for example, pH = 5 or more.
[0012]
In the present invention, as the pH adjusting agent added to the acidic sol containing the catalyst component, a solution containing an alkaline earth metal element or a rare earth element is suitably used, and the alkaline earth metal element or the rare earth element is used as a catalyst component. More preferably, it functions. Further, as the pH adjuster, for example, an alkaline aqueous solution that is decomposed by baking such as ammonia water can be used.
[0013]
In the present invention, instead of adjusting the pH of the acidic sol containing the catalyst component, the acidic sol may be impregnated into a porous carrier in the presence of urea or a urea derivative, and then heated. In this case, when the acidic sol-impregnated porous carrier is heated above the thermal decomposition temperature of urea or a urea derivative, ammonia is generated by thermal decomposition, whereby the acidic sol can be neutralized to an unstable pH range. . For example, when urea is used, the following thermal decomposition reaction proceeds when the acidic sol-impregnated porous carrier is heated to about 90 ° C. or higher.
[0014]
That is, on the acidic side, as shown in the following formula (1), ammonia is generated, absorbed by water, and subjected to a neutralization reaction.
(NH 2) 2 CO + 3H 2 O → 2NH 4 + + CO 2 + 2OH - ·· (1)
On the other hand, on the alkaline side, oxonium ions are generated, absorbed by water and subjected to a neutralization reaction as shown in the following formula (2).
(NH 2) 2 CO + 4H 2 O → 2NH 3 + CO 3 2- + 2H 3 O + ··· (2)
At this time, the concentration distribution of urea in the sol is uniform, the gelation of the solution proceeds uniformly and vigorously, and the fluidity is lost, so that the catalyst component is uniformly supported without being affected by the movement of moisture during drying. Become like
[0015]
In the present invention, the porous carrier impregnated with the acidic sol is heated to promote the gelation and precipitation of the acidic sol, but the drying is restricted in order to increase the drying speed and prevent dripping due to the heating. It is heated in the state. Heating in a state where drying is restricted means, for example, when the catalyst is applied to actual exhaust gas (hereinafter referred to as “practical use”), the side of the catalyst body which is parallel to the gas flow direction is heated with heat-resistant rubber. And a method in which the object to be heated is heated while being covered with a vinyl sheet. As a result, it is possible to eliminate unevenness in loading of the catalyst component caused by unevenness in drying, and to prevent loss of the catalyst body due to handling during manufacture. At this time, it is preferable that the catalyst component-impregnated porous support is brought into contact with heated air while being turned upside down. Further, the whole may be uniformly heated by a microwave or the like.
[0016]
In the present invention, impregnation of the porous carrier with the catalyst component is performed, for example, by immersing the porous carrier in a catalyst component-containing sol.
In the present invention, the prepared catalyst for purifying exhaust gas may be further impregnated with a catalytically active component and supported thereon, if necessary, to obtain a more active catalyst.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail with reference to examples.
Example 1
An impregnating solution was prepared by adding 3.5% by weight of urea to an aqueous solution in which alumina sol (Nissan Chemical Co., Alumina Sol 200) and cerium sol (Taki Chemical Co., Ltd., Niedral) were mixed at a weight ratio of 2: 1. A particulate filter (manufactured by Hitachi Metals, porous cordierite) is immersed and impregnated, drained by centrifugation, placed in a plastic bag and sealed to limit drying, and placed for 10 to 30 minutes After curing at 100 ° C. for 8 hours, the product was taken out of a plastic bag, dried at 150 ° C. for 6 hours, and calcined at 500 ° C. for 2 hours to obtain a catalyst. The obtained catalyst was impregnated with dinitrodiammineplatinum nitrate and supported, cured under the same conditions as above, dried at 150 ° C. for 6 hours, and calcined at 550 ° C. for 2 hours to obtain an oxidation catalyst for exhaust gas purification. .
[0018]
FIG. 1 shows a cross-sectional view of the obtained catalyst body cut in half along the gas flow direction. The catalyst composition at points A to D in FIG. 1 was measured by X-ray fluorescence analysis to determine the supported amount. The supported amounts of the catalyst carrier components at points A to D were 47 (g / L) and 43 ( g / L), 60 (g / L) and 54 (g / L). The supported amounts of the catalytically active components at points A to D are 1.0 (g / L), 1.0 (g / L), 1.1 (g / L), and 1.0 (g / L), respectively. )Met.
[0019]
Example 2
A catalyst was prepared and analyzed in the same manner as in Example 1 except that a small amount of aqueous ammonia was added instead of urea in Example 1 and an impregnating solution adjusted to pH = 4.5 was used. As a result, the supported amounts of the catalyst carrier components at points A to D in FIG. 1 were 39 (g / L), 36 (g / L), 88 (g / L), and 86 (g / L), respectively. . The supported amounts of the catalytically active components at points A to D are 0.8 (g / L), 0.7 (g / L), 1.4 (g / L), and 1.3 (g / L), respectively. )Met.
[0020]
Comparative Example 1
Except that urea or ammonia water was not added in Examples 1 and 2, catalysts were prepared under the same conditions as in each of the above Examples, and the same analysis was performed. As a result, the loading of the catalyst carrier components at points A to D in FIG. The amounts were 27 (g / L), 22 (g / L), 140 (g / L) and 134 (g / L), respectively. The supported amounts of the catalytically active components at points A to D are 0.6 (g / L), 0.6 (g / L), 4.4 (g / L), and 4.8 (g / L), respectively. )Met.
[0021]
Example 3
Instead of being put in a plastic bag in Example 1, the side parallel to the gas flow direction in practical use is covered with silicon rubber, and dried by contacting with air heated to 100 ° C. for 3 hours. After that, the catalyst was prepared by drying and calcining under the same conditions as in Example 1 above, and the same analysis was performed. As a result, the supported amount of the carrier component at points A to D in FIG. g / L), 46 (g / L), 73 (g / L) and 82 (g / L). The supported amounts of the catalytically active components at points A to D are 0.9 (g / L), 1.0 (g / L), 1.1 (g / L), and 1.4 (g / L), respectively. )Met.
[0022]
Comparative Example 2
A catalyst was prepared under the same conditions as in Example 3 except that the coating with the silicone rubber in Example 3 was not performed, and the same analysis was performed. As a result, the amount of the supported catalyst carrier component at points A to D in FIG. 20 (g / L), 28 (g / L), 172 (g / L) and 165 (g / L), respectively. The supported amounts of the catalytically active components at points A to D are 0.3 (g / L), 0.3 (g / L), 6.4 (g / L), and 5.8 (g / L), respectively. )Met.
[0023]
Table 1 summarizes the analysis results in Examples 1 to 3 and Comparative Examples 1 and 2, and the loading ratio in the direction parallel or perpendicular to the gas flow direction.
[Table 1]
Figure 2004105787
[0024]
From Table 1, there was no significant difference in the supported amount in the direction parallel to the gas flow direction in practical use because the catalyst body size was as short as 50 mm, but the distribution in the vertical direction was significantly different in the comparative example. It can be seen that the amount of supported on the surface increased. In contrast, in each of the examples, it can be seen that the catalyst component is uniformly supported from the surface to the center.
[0025]
The distribution of the amount of loading in the vertical direction is
Figure 2004105787
As a distribution of the carried amount in the parallel direction,
Figure 2004105787
It was obtained as.
[0026]
【The invention's effect】
According to the first aspect of the present invention, the catalyst active component and / or the catalyst carrier component are uniformly supported, and a stable and highly active exhaust gas purifying catalyst can be obtained.
According to the invention described in claim 2 of the present application, in addition to the effects of the above invention, an exhaust gas purifying catalyst having more excellent catalytic activity can be obtained.
[0027]
According to the invention described in claim 3 of the present application, in addition to the effects of the above invention, a catalyst having a more uniform loading amount of the catalyst component can be obtained by minimizing the influence of water movement.
According to the invention described in claim 4 of the present application, in addition to the effects of the above invention, an exhaust gas purifying catalyst having higher catalytic activity can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a concentration distribution measurement position of a catalyst component.

Claims (4)

触媒活性成分および/または触媒担体成分を基材に担持させた後、乾燥、焼成する排ガス浄化用触媒の製造方法において、前記触媒活性成分および/または触媒担体成分を含む酸性ゾルを、pH調整剤を添加して該酸性ゾルが不安定となるpH領域に調整した後、または尿素もしくは尿素誘導体を共存させた状態で多孔質担体に含浸させ、乾燥を制限した状態で加熱し、前記多孔質担体に含浸させた触媒活性成分および/または触媒担体成分を含むゾルをゲル化した後、乾燥、焼成することを特徴とする排ガス浄化用触媒の製造方法。In a method for producing an exhaust gas purifying catalyst in which a catalyst active component and / or a catalyst carrier component is supported on a substrate, and then dried and calcined, the acidic sol containing the catalyst active component and / or the catalyst carrier component is subjected to a pH adjuster. Is added to adjust the pH range so that the acidic sol becomes unstable, or impregnated in a porous carrier in the presence of urea or a urea derivative, and heated in a state in which drying is restricted, thereby heating the porous carrier. A method for producing an exhaust gas purifying catalyst, comprising: gelling a sol containing a catalytically active component and / or a catalyst carrier component impregnated in a gel, followed by drying and calcining. 前記pH調整剤として、アルカリ土類金属元素または希土類元素を含む溶液を用いることを特徴とする請求項1に記載の排ガス浄化用触媒の製造方法。The method for producing an exhaust gas purifying catalyst according to claim 1, wherein a solution containing an alkaline earth metal element or a rare earth element is used as the pH adjuster. 前記乾燥を制限した状態での加熱は、前記触媒活性成分および/または触媒担体成分含浸多孔質担体の実用時におけるガス流れ方向に対して平行となる側面を耐熱性ゴムで覆うか、または全体をビニールシートで覆った状態で加熱空気と接触させることであることを特徴とする請求項1または2に記載の排ガス浄化用触媒の製造方法。The heating in a state where the drying is restricted is performed by covering a side surface of the porous carrier impregnated with the catalyst active component and / or the catalyst carrier component, which is parallel to a gas flow direction in practical use, with a heat-resistant rubber, or covering the entire surface. The method for producing an exhaust gas purifying catalyst according to claim 1, wherein the catalyst is brought into contact with heated air while being covered with a vinyl sheet. 請求項1〜3の何れかの方法で製造した排ガス浄化用触媒に、さらに触媒活性成分を含浸させ、乾燥、焼成することを特徴とする排ガス浄化用触媒の製造方法。A method for producing an exhaust gas purifying catalyst, characterized by further impregnating the exhaust gas purifying catalyst produced by the method according to claim 1 with a catalytically active component, followed by drying and calcining.
JP2002268131A 2002-09-13 2002-09-13 Manufacturing method for catalyst for cleaning exhaust gas Pending JP2004105787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002268131A JP2004105787A (en) 2002-09-13 2002-09-13 Manufacturing method for catalyst for cleaning exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002268131A JP2004105787A (en) 2002-09-13 2002-09-13 Manufacturing method for catalyst for cleaning exhaust gas

Publications (1)

Publication Number Publication Date
JP2004105787A true JP2004105787A (en) 2004-04-08

Family

ID=32266434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002268131A Pending JP2004105787A (en) 2002-09-13 2002-09-13 Manufacturing method for catalyst for cleaning exhaust gas

Country Status (1)

Country Link
JP (1) JP2004105787A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144359A (en) * 2005-11-30 2007-06-14 Ngk Insulators Ltd Method for carrying catalyst on honeycomb structure body
JP2011147904A (en) * 2010-01-22 2011-08-04 Chugoku Electric Power Co Inc:The Catalyst for ammonia gas cleaning
EP4213971A4 (en) * 2020-09-21 2024-04-24 Unifrax I Llc Homogeneous catalytic fiber coatings and methods of preparing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144359A (en) * 2005-11-30 2007-06-14 Ngk Insulators Ltd Method for carrying catalyst on honeycomb structure body
JP2011147904A (en) * 2010-01-22 2011-08-04 Chugoku Electric Power Co Inc:The Catalyst for ammonia gas cleaning
EP4213971A4 (en) * 2020-09-21 2024-04-24 Unifrax I Llc Homogeneous catalytic fiber coatings and methods of preparing same

Similar Documents

Publication Publication Date Title
US7601671B2 (en) Drying method for exhaust gas catalyst
US6991720B2 (en) Structured catalysts incorporating thick washcoats and method
CN1052262A (en) The purification method of diesel exhaust
JPH04118053A (en) Catalyst for cleaning exhaust gas from engine
JPH0626672B2 (en) Exhaust purification catalyst and method of manufacturing the same
CN107921417A (en) Exhaust emission control catalyst
JP2002525198A (en) Method for producing catalyst body
JP2000015097A (en) Production of catalyst
JP3793283B2 (en) Exhaust gas purification catalyst and exhaust gas purification apparatus using the same
JP2004105787A (en) Manufacturing method for catalyst for cleaning exhaust gas
JP4730947B2 (en) Method for regenerating exhaust gas purification catalyst
JPH0568890A (en) Exhaust gas purifying catalyst and its production
JP2003326175A (en) Carrier and manufacturing method therefor, and catalyst body
JP2002361092A (en) Catalyst slurry for denitrating exhaust gas, denitration catalyst and method of producing them
JP2537510B2 (en) Exhaust gas purification catalyst
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JPS58119343A (en) Catalyst for purifying exhaust gas
JP4697796B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP3340268B2 (en) Method for producing exhaust gas purifying catalyst
EP0365801A1 (en) Process for producing alumina with high specific surface area
JP2005152775A (en) Method for manufacturing catalyst for cleaning exhaust gas and catalyst for cleaning exhaust gas
JP4661437B2 (en) Method for producing exhaust gas purification catalyst
JPS6260937B2 (en)
JPS60225652A (en) Preparation of monolithic catalyst having catalyst non-supporting part
JP4071516B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080916