JP2013203609A - Oxygen storable ceramic material, method for producing the same, and catalyst - Google Patents

Oxygen storable ceramic material, method for producing the same, and catalyst Download PDF

Info

Publication number
JP2013203609A
JP2013203609A JP2012075256A JP2012075256A JP2013203609A JP 2013203609 A JP2013203609 A JP 2013203609A JP 2012075256 A JP2012075256 A JP 2012075256A JP 2012075256 A JP2012075256 A JP 2012075256A JP 2013203609 A JP2013203609 A JP 2013203609A
Authority
JP
Japan
Prior art keywords
catalyst
iron
oxygen
ceramic material
storage capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012075256A
Other languages
Japanese (ja)
Inventor
Masakuni Ozawa
正邦 小澤
Kong Zhai Li
孔▲斎▼ 李
Masaaki Haneda
政明 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2012075256A priority Critical patent/JP2013203609A/en
Publication of JP2013203609A publication Critical patent/JP2013203609A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a material having a good oxygen storage capacity and exhaust gas purification performance, a method for producing the material, and a catalyst for gas purification.SOLUTION: There is provided a ceramic material: CeFeO, x is 0.03-0.4, containing cerium and iron, and comprising a composite metal oxide and/or a solid solution, the ceramic material having an oxygen storage capacity of at least 10 mL per g in terms of oxygen (O) gas. A method for producing the ceramic material includes a process in which a precipitate, after being formed from a solution containing cerium and iron by being added with a precipitant and separated, is dried and fired at a temperature of 600-1,000°C in air, and the fired precipitate, after being heated at a temperature of 800°C or below in a reducing atmosphere, is further heat-treated in an oxidizing atmosphere. In addition, a catalyst for exhaust gas purification and mixed gas treatment using the ceramic material is provided.

Description

本発明は、排気処理技術で用いられる、酸素貯蔵能を有する材料とその製造法およびその特性が活かされるような触媒に関するものである。 The present invention relates to a material having an oxygen storage capacity, a method for producing the same, and a catalyst that makes use of the characteristics thereof, which are used in an exhaust treatment technique.

自動車エンジン等の内燃機関からの排ガス中には、炭化水素(HC)等が含まれるが、これらの物質は、燃焼触媒や排ガス浄化用触媒によって除去できる。また、エンジン排気浄化触媒では、一酸化炭素(CO)及び炭化水素を酸化すると同時に、窒素酸化物(NOx)を還元できる三元触媒によって除去できる。近年では、セリア(セリウム酸化物、CeO)とジルコニア(ジルコニウム酸化物、ZrO)の固溶体もしくは複合酸化物が
、排ガス中の酸素濃度の変動を吸収して排ガス浄化能力を高める酸素吸蔵能(OSC)を有する材料であることが広く知られており、これを含む触媒としてあるいは排ガス浄化触媒担体として用いることが行われている。
The exhaust gas from an internal combustion engine such as an automobile engine contains hydrocarbon (HC) and the like, but these substances can be removed by a combustion catalyst or an exhaust gas purification catalyst. Further, in the engine exhaust purification catalyst, carbon monoxide (CO) and hydrocarbons can be oxidized and simultaneously removed by a three-way catalyst that can reduce nitrogen oxides (NOx). In recent years, a solid solution or composite oxide of ceria (cerium oxide, CeO x ) and zirconia (zirconium oxide, ZrO x ) absorbs fluctuations in oxygen concentration in the exhaust gas and enhances the exhaust gas purification ability ( It is widely known that it is a material having OSC), and is used as a catalyst containing this or as an exhaust gas purification catalyst carrier.

三元触媒では、内燃機関の空燃比が理論空燃比であることが必要であるので、排ガス中の酸素濃度の変動を吸収して理論空燃比付近の酸素濃度を維持することは高い排ガス浄化能力を発揮するために好ましい。また、揮発性有機化合物(VOC)の除去においても、このOSCが酸素の活性化機能をもたらし酸化反応による浄化が可能になるといわれている。さらには、炭化水素を含む混合ガスの処理や改質にもこのような性質が利用される。 In a three-way catalyst, the air-fuel ratio of the internal combustion engine needs to be the stoichiometric air-fuel ratio, so it is high exhaust gas purification ability to absorb oxygen concentration fluctuations in the exhaust gas and maintain the oxygen concentration near the stoichiometric air-fuel ratio. It is preferable to exhibit It is also said that this OSC provides an oxygen activation function and can be purified by an oxidation reaction in removing volatile organic compounds (VOC). Furthermore, such a property is also used for processing and reforming of a mixed gas containing hydrocarbons.

また、酸素貯蔵能材料は、酸素の貯蔵そのものからくる種々の可能性ある用途があり、例えば酸素を貯留する性質や化学反応において水素を生成する工程において有用な触媒となるなどの提案があり、自動車触媒ほどは広く工業化には至っていないが、混合ガス処理用の触媒としてその用途が期待されている。 In addition, the oxygen storage capacity material has various potential uses derived from oxygen storage itself, for example, there are proposals such as a property that stores oxygen and a useful catalyst in a process of generating hydrogen in a chemical reaction, Although it is not as widely industrialized as an automobile catalyst, its use is expected as a catalyst for treating mixed gas.

このように酸素貯蔵能材料とその利用は、現在まで実現されまた将来も期待されている技術であるが、セリアもしくはセリアジルコニアがもっとも好ましい性質を有するとされている。一方、セリウムが高価である点においてしばしば必要とされる価格面での低減に対応することが困難となることが問題となっている。さらに、良質のセリウム原料の利用では、資源、経済上制限があり、その代替材料や低減化が必要となっており、他の元素や特徴ある性質を有する成分との複合や代替、併用によって、これに代わる新規な組成物が求められる。 As described above, the oxygen storage capacity material and the use thereof are technologies that have been realized and expected in the future, but ceria or ceria zirconia is said to have the most preferable properties. On the other hand, there is a problem that it is difficult to cope with the reduction in price that is often required in that cerium is expensive. In addition, the use of high-quality cerium raw materials is limited in terms of resources and economy, and it is necessary to use alternative materials and reductions.By combining with other elements and components having characteristic properties, substitution, There is a need for new compositions to replace this.

酸素貯蔵能(OSC)用触媒およびその材料では、セリウム含有材料が特に優れており、その利用量が多いため、これらと同等の性質を示す他の元素によるOSC性能向上がこれを用いた各種の排気浄化技術で資源利用の観点から課題となってきた。さらに、他の元素を用いた材料やその形態や組織の制御を達成できる製造法によって、その性能向上も期待される。 Among the catalysts for oxygen storage capacity (OSC) and their materials, cerium-containing materials are particularly excellent, and their usage is large. Therefore, the improvement of OSC performance by other elements exhibiting the same properties as these is various. Exhaust purification technology has become a problem from the viewpoint of resource utilization. Furthermore, the performance improvement is anticipated by the manufacturing method which can achieve control of the material using other elements, its form, and structure | tissue.

例えば、特公平6−44999には、セリアジルコニア固溶体が高い酸素貯蔵能を有する触媒として利用されることを記載しており、自動車排ガス浄化触媒において酸素貯蔵能材が有効に使用されている顕著な例である。性能面ではこの組成物の酸素貯蔵能が優れることが広く知られており、非常な有用性を有している。しかし、セリウムおよびジルコニウムを利用するため、その製品価格が低減できないことから、製造される触媒のコストが高くなる問題を解決しがたい。 For example, Japanese Patent Publication No. 6-44999 describes that ceria zirconia solid solution is used as a catalyst having a high oxygen storage capacity, and that oxygen storage capacity materials are effectively used in automobile exhaust gas purification catalysts. It is an example. In terms of performance, it is widely known that the oxygen storage capacity of this composition is excellent, and it has great utility. However, since cerium and zirconium are used, the product price cannot be reduced, so that it is difficult to solve the problem that the cost of the produced catalyst is high.

また、特開2007−83126には新規な酸素貯蔵能材料として、アルミノケイ酸カルシウムを酸素貯蔵能物質として用い、このCaの一部を銅や鉄等の遷移金属で置換してもよいとされる、酸素貯蔵能を発現した材料が提案され、汎用的な組成によって価格低減ができるものと考えらえる。しかし、この材料では、酸素量自体が多くない、また繰り返し使用に関する特性において性能が十分でないという問題がある。 Japanese Patent Laid-Open No. 2007-83126 states that as a novel oxygen storage capacity material, calcium aluminosilicate is used as an oxygen storage capacity material, and a part of this Ca may be replaced with a transition metal such as copper or iron. A material that exhibits oxygen storage capacity has been proposed, and it can be considered that the cost can be reduced by a general-purpose composition. However, this material has a problem in that the amount of oxygen itself is not large and the performance is not sufficient in the characteristics relating to repeated use.

さらに、特開2011−41912には、セリアまたはセリアジルコニアに鉄を混合し酸化還元処理をすることによりセリアジルコニアに鉄が固溶することなく鉄の高い触媒活性を維持するとした材料が提案されている。この触媒では、鉄成分によって触媒機能を代替することが提案されているが、主に酸化活性向上を目的としており、また還元処理による鉄の状態が、セリア粒子に担持されその表面で鉄自体の触媒作用を発現しているので、酸素貯蔵能自体の向上やその利用には適さない。さらに、その製造法においては、鉄は含浸法などの公知の工程を用いている。 Furthermore, Japanese Patent Application Laid-Open No. 2011-41912 proposes a material that maintains high catalytic activity of iron without solid-dissolving iron in ceria zirconia by mixing iron with ceria or ceria zirconia and performing oxidation-reduction treatment. Yes. In this catalyst, it has been proposed to replace the catalytic function with an iron component, but mainly for the purpose of improving oxidation activity, and the state of iron by reduction treatment is supported on ceria particles and the surface of the iron itself is supported. Since it exhibits a catalytic action, it is not suitable for improving the oxygen storage capacity itself or for its utilization. Further, in the manufacturing method, iron uses a known process such as an impregnation method.

特公平6−44999JP 6-44999 特開2007−83126JP2007-83126A 特開2011−41912JP2011-41912

本発明は上記従来の実情に鑑みてなされたものであって、セリウム量が低減され、資源上、価格上も問題なく資源を有効に代替でき、新規な酸素貯蔵能材料とその製造法、その触媒を提供する。また、資源上の問題から有効である、汎用的な成分であるセラミックの鉄成分での酸素貯蔵能材料が可能となる。   The present invention has been made in view of the above-described conventional situation, and the amount of cerium is reduced, and the resource can be effectively replaced without any problem in terms of resources and price. A catalyst is provided. In addition, an oxygen storage capacity material using a ceramic iron component, which is a general-purpose component, which is effective from a resource problem, is possible.

本発明者らは鋭意検討を重ねた結果、上記課題を解決できることを見出した。すなわち、本発明によれば、酸素貯蔵能セラミック材料とその製造方法、ならびに触媒が提供される。 As a result of intensive studies, the present inventors have found that the above problems can be solved. That is, according to the present invention, an oxygen storage capacity ceramic material, a method for producing the same, and a catalyst are provided.

[1]セリウムと鉄を含み、Ce1−xFeで、xが0.03〜0.4であり、酸素貯蔵能が1グラム当たり酸素(O)ガス換算で10ml以上である複合金属酸化物および/または固溶体からなるセラミック材料。 [1] It contains cerium and iron, is Ce 1-x Fe x O y , x is 0.03 to 0.4, and oxygen storage capacity is 10 ml or more in terms of oxygen (O 2 ) gas per gram. A ceramic material comprising a composite metal oxide and / or a solid solution.

[2]セリウムと鉄を含む溶液から沈殿剤を加え沈殿を形成、分離したのち、乾燥し、空気中600℃〜1000℃で焼成後に、800℃以下の還元雰囲気下で加熱、さらに酸化雰囲気で熱処理する工程を含むセラミック材料の製造方法。 [2] A precipitant is added from a solution containing cerium and iron to form and separate a precipitate, which is then dried, calcined at 600 ° C. to 1000 ° C. in air, heated in a reducing atmosphere of 800 ° C. or lower, and further in an oxidizing atmosphere. A method for producing a ceramic material, comprising a step of heat treatment.

[3]前記[1]のセラミック材料、あるいは前記[2]の製造方法により得られたセラミック材料を含む、排ガス浄化ならびに混合ガス処理用の触媒。 [3] A catalyst for exhaust gas purification and mixed gas treatment comprising the ceramic material of [1] or the ceramic material obtained by the production method of [2].

本発明で得られたセラミック材料の酸素放出特性を示す図である。It is a figure which shows the oxygen release characteristic of the ceramic material obtained by this invention.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

本発明は、セリウムと鉄を含み、Ce1−xFeで、xが0.03〜0.4であり、酸素貯蔵能が1グラム当たり酸素(O)ガス換算で10ml以上である複合金属酸化物および/または固溶体触媒材料であり、またセリウムと鉄を含む溶液から沈殿剤を加えて沈殿を形成、沈殿物を分離したのち、乾燥し、空気中600℃〜1000℃で焼成後に、800℃以下の還元雰囲気下で加熱、さらに酸化雰囲気で熱処理する工程によって製造され、その材料は排ガス浄化や各種混合ガスの処理に利用される。 The present invention includes the cerium and iron, with Ce 1-x Fe x O y , x is 0.03 to 0.4, an oxygen storage capacity per gram of oxygen (O 2) or 10ml with gas equivalent It is a composite metal oxide and / or solid solution catalyst material. Also, a precipitant is added from a solution containing cerium and iron to form a precipitate, the precipitate is separated, dried, and calcined in air at 600 ° C to 1000 ° C. Later, it is manufactured by a process of heating in a reducing atmosphere of 800 ° C. or lower and further heat-treating in an oxidizing atmosphere, and the material is used for exhaust gas purification and treatment of various mixed gases.

本発明の第1の発明である酸素貯蔵能セラミック材料は、セリウムと鉄を含み、酸素貯蔵能が1グラム当たりOガス換算で10ml以上、より好ましくは18ml以上である複合金属酸化物および/または固溶体触媒材料であり、化学組成式Ce1−xFeにおいて、xが0.03〜0.4、より好ましくはxが0.05〜0.3であり、さらに好ましくはxが0.1〜0.25である。なお、yはとくに限定しないが1.1〜2.0である。 The oxygen storage capacity ceramic material according to the first aspect of the present invention includes a composite metal oxide containing cerium and iron and having an oxygen storage capacity of 10 ml or more, more preferably 18 ml or more in terms of O 2 gas per gram, and / or or a solid solution catalyst material, in the chemical composition formula Ce 1-x Fe x O y , x is 0.03 to 0.4, more preferably x is 0.05 to 0.3, more preferably x 0.1 to 0.25. Although y is not particularly limited, it is 1.1 to 2.0.

本発明の材料の少なくとも一部はセリアと酸化鉄の固溶体もしく複合酸化物となっていることに特徴があり、その割合が体積比で80%以上であることが好ましい。さらに、本材料を含む組成物によって、排ガス浄化および各種混合ガス処理用の触媒が構成されることが好ましい。 At least a part of the material of the present invention is characterized in that it is a solid solution or composite oxide of ceria and iron oxide, and the ratio is preferably 80% or more by volume ratio. Furthermore, it is preferable that a catalyst for exhaust gas purification and various mixed gas treatments is constituted by the composition containing this material.

本複合材料の形態は粒子状であるか塊状であるかを問わず、本複合材の粒子径は0.1〜100μmが好ましく、0.05〜50μmがより好ましい。また、膜状や厚板上等のいわゆるバルク状態であることを妨げないが、それらはその際には粒子の集合体となっている。 Regardless of whether the form of the composite material is particulate or massive, the particle diameter of the composite material is preferably 0.1 to 100 μm, more preferably 0.05 to 50 μm. Moreover, although it does not prevent what is called a bulk state, such as a film form or on a thick plate, in that case, they are aggregates of particles.

さらには、本発明の酸素貯蔵能材料が、セリア−酸化鉄固溶体を含む場合に、これらがそれ以外の例えばジルコニウム(Zr)、希土類元素およびアルカリ土類金属からなる群より選択される金属を含んでいてもよい。希土類金属としてイットリウム、スカンジウム、ランタン、プラセオジム、ネオジム、プロメチウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、およびルテチウムの群から選ばれ、これら希土類金属の酸化物が加わる。特に、ジルコニア(Zr)、ランタン(La)、ネオジム(Nd)、プラセオジム(Pr)、イットリウム(Y)を単独もしくは混合状態で含むことがより好ましい。アルカリ土類金属としては、マグネシウム、カルシウムが好ましい。ジルコニウムの添加は特に好ましい。 Furthermore, when the oxygen storage capacity material of the present invention includes a ceria-iron oxide solid solution, these include other metals selected from the group consisting of, for example, zirconium (Zr), rare earth elements, and alkaline earth metals. You may go out. The rare earth metal is selected from the group of yttrium, scandium, lanthanum, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium, and oxides of these rare earth metals are added. In particular, it is more preferable to contain zirconia (Zr), lanthanum (La), neodymium (Nd), praseodymium (Pr), and yttrium (Y) alone or in a mixed state. As the alkaline earth metal, magnesium and calcium are preferable. The addition of zirconium is particularly preferred.

固溶体もしくは複合酸化物の構造によって、セリアや酸化鉄成分に由来するがそれらの単独では発現しない高い酸素貯蔵能を活かし、これを触媒担体もしくは触媒成分として使用するとき、大量の酸素の放出ならびに吸収の作用を発現する。その材料構造に関する発現機構は明らかではないが、鉄セリウム複合酸化物もしくは固溶体の状態が、酸化鉄の金属鉄への還元を抑制して安定で酸素貯蔵に適した構造体としていることが考えらえる。 Depending on the structure of the solid solution or composite oxide, taking advantage of the high oxygen storage capacity that is derived from ceria and iron oxide components but not expressed alone, when this is used as a catalyst carrier or catalyst component, large amounts of oxygen are released and absorbed. The effect of is expressed. The manifestation mechanism regarding the material structure is not clear, but the state of the iron cerium complex oxide or solid solution is considered to be a stable structure suitable for oxygen storage by suppressing the reduction of iron oxide to metallic iron. Yeah.

この複合酸化物粒子によれば、酸化鉄がセリアとの固溶体もしくは複合酸化物の形成によって酸化鉄の耐還元性を提供し、酸化鉄では具現しがたい酸化還元条件下で良好な繰り返し使用時に安定なOSCならびに酸化活性を付与する効果がある。 According to this composite oxide particle, iron oxide provides resistance to reduction of iron oxide by forming a solid solution or composite oxide with ceria. There is an effect of imparting stable OSC and oxidation activity.

本発明の第2の発明であるセリアジルコニア複合材粒子の製造方法は、セリウムと鉄を含む溶液から沈殿剤を加えて沈殿を形成、この沈殿物を分離したのち、乾燥し、空気中600℃〜1000℃で焼成後に、800℃以下の還元雰囲気下で加熱、さらに酸化雰囲気で熱処理する工程によって製造されるものである。 In the method for producing ceria zirconia composite particles according to the second invention of the present invention, a precipitant is added from a solution containing cerium and iron to form a precipitate, the precipitate is separated, dried, and then heated to 600 ° C. in air. After being fired at ˜1000 ° C., it is produced by a process of heating in a reducing atmosphere of 800 ° C. or lower and further heat-treating in an oxidizing atmosphere.

鉄およびセリウムイオンを含む水溶液内でさらに沈殿剤の添加もしくは共存によりアルカリ性溶液に調整して、鉄酸化物もしくはセリウム含有粒子を沈殿させたのち、空気中600℃〜1000℃で焼成工程を含み、かつその後800℃以下の還元雰囲気下で加熱し、さらに酸化雰囲気で熱処理する工程によって製造されるものである。水溶液やその他溶媒中で混合する工程、固液分離の工程、乾燥、ならびに焼成する工程は通常方法でよいが、とくに、800℃以下での酸化還元条件での熱処理が重要であり、特徴ある酸素貯蔵能特性を発現する触媒材料としてその活性の向上の点から好ましい。 In the aqueous solution containing iron and cerium ions, further adjusting to an alkaline solution by addition or coexistence of a precipitating agent, and precipitating iron oxide or cerium-containing particles, including a firing step at 600 ° C. to 1000 ° C. in air, And it is manufactured by the process of heating in a reducing atmosphere below 800 degreeC after that, and also heat-processing in an oxidizing atmosphere. The mixing process in an aqueous solution or other solvent, the solid-liquid separation process, the drying process, and the baking process may be performed by a normal method. In particular, heat treatment under oxidation / reduction conditions at 800 ° C. or lower is important, and characteristic oxygen It is preferable from the viewpoint of improving its activity as a catalyst material that exhibits storage ability characteristics.

本発明の材料の製造に用いる鉄ならびにセリウム原料については特に制限されるものではなく、広く水溶性の塩が利用できる。水溶液内に各金属成分の含ませるためには、塩類を水に溶解させることにより実現でき、金属塩としては、硝酸塩、塩化物、酢酸塩、硝酸アンモニウム塩など特に制限なく利用できる。さらに、金属もしくは金属酸化物やその他の各金属含有固体を硝酸やその他の溶解力の高い溶液を用いて溶解させ金属イオン含有水溶液としてもよい。さらには金属成分を含む有機酸、例えば各種のカルボン酸や水溶性錯体を原料とすることもできる。 The iron and cerium raw materials used in the production of the material of the present invention are not particularly limited, and a wide range of water-soluble salts can be used. The inclusion of each metal component in the aqueous solution can be realized by dissolving a salt in water, and the metal salt can be used without particular limitation such as nitrate, chloride, acetate, ammonium nitrate. Furthermore, it is good also as a metal ion containing aqueous solution by melt | dissolving a metal or a metal oxide, and each other metal containing solid using nitric acid or another solution with high solubility. Furthermore, organic acids containing metal components such as various carboxylic acids and water-soluble complexes can be used as raw materials.

上記の水溶液から沈殿を調製するときには、鉄およびセリウムイオンを含む水溶液内に、アルカリ性溶液を実現する添加剤を加えてこれらが水溶液内で共存した状態とする。典型的かつ簡易にはアンモニア水を用いればよく、さらにはジメチルアミンやトリメチルアミンなどの有機アミン類、さらには分解してアルカリ性を発現するヘキサメチレンテトラミンや尿素を水溶液内に含ませるなど、多くの添加剤やその混合形態での使用が可能であり、それらの室温以外の冷熱条件でも利用できる。また、アルカリ性を示す既知の金属含有水溶液、例えばアルカリ金属あるいはアルカリ土類の水酸化物等の溶液がアンモニア等と同様に利用できる。 When preparing a precipitate from the above aqueous solution, an additive for realizing an alkaline solution is added to the aqueous solution containing iron and cerium ions so that they coexist in the aqueous solution. Aqueous ammonia can be used typically and simply, and many additions such as adding organic amines such as dimethylamine and trimethylamine, and hexamethylenetetramine and urea that decompose to express alkalinity in the aqueous solution It can be used in the form of an agent or a mixture thereof, and can be used in cold conditions other than room temperature. Further, known metal-containing aqueous solutions showing alkalinity, for example, solutions of alkali metals or alkaline earth hydroxides can be used in the same manner as ammonia.

沈殿生成の現象は沈殿物の物性により多少の調整や分離上の操作を行うが、おおむねpHが10程度までのアルカリ性を発現させればよい。なお、このpHは、上記アンモニア水などのアルカリ性を示す添加剤の量ならびにその発生量によって調整すればよいので工程上のいずれの時点でもまたいかような濃度でも達成すればよい。 The phenomenon of precipitation formation is somewhat adjusted and separated depending on the physical properties of the precipitate, but it is sufficient that the pH is approximately 10 or so. The pH may be adjusted at any point in the process and at any concentration because the pH may be adjusted according to the amount of the alkaline additive such as ammonia water and the amount generated.

なお、沈殿の製造工程においては、有機溶媒やその他の溶媒を用いたいわゆるゾルゲル法や有機金属錯体からの無機誘導体合成法の適用を妨げるものではない。 In the precipitation production process, application of a so-called sol-gel method using an organic solvent or another solvent or an inorganic derivative synthesis method from an organometallic complex is not hindered.

このようにして得られた沈殿物は、遠心分離、ろ過等の操作により、固液分離されたのち、室温〜200℃で乾燥するか、あるいは乾燥せずに焼成する。乾燥条件はとくに問わないが、室温での風乾、凍結乾燥、80℃〜150℃付近の温度での熱乾燥法等によればよい。本発明では、600℃〜1000℃で焼成する工程を含み、かつその後800℃以下の還元雰囲気下で加熱し、さらに酸化雰囲気で熱処理することにより達成される。この工程において、とくに、酸化還元条件での熱処理が重要であり、特徴あるOSCを発現する触媒材料としてその活性の向上の点から好ましい。800℃以下での酸化還元下での熱処理は、セリアと酸化鉄の固溶体あるいは/ならびに複合酸化物を活性化させるのに重要であり、好ましくは600〜800℃で行うのがよい。800℃より高温になると凝集現象によって触媒活性や触媒担体性能が十分でないものとなる。低温側の温度はとくに問わないが、600℃より低くなると処理時間を長めにとる必要がある。また、その熱処理時間はとくに問わないが、通常30〜300分間で処理を行えばよい。 The precipitate thus obtained is solid-liquid separated by operations such as centrifugation and filtration, and then dried at room temperature to 200 ° C. or calcined without drying. The drying conditions are not particularly limited, but may be air drying at room temperature, freeze drying, a heat drying method at a temperature in the vicinity of 80 ° C. to 150 ° C., or the like. The present invention includes a step of baking at 600 ° C. to 1000 ° C., and then heating in a reducing atmosphere of 800 ° C. or lower and further heat-treating in an oxidizing atmosphere. In this step, heat treatment under oxidation / reduction conditions is particularly important, and it is preferable from the viewpoint of improving its activity as a catalyst material that expresses characteristic OSC. The heat treatment under oxidation / reduction at 800 ° C. or lower is important for activating the solid solution or / and composite oxide of ceria and iron oxide, preferably 600 to 800 ° C. When the temperature is higher than 800 ° C., the catalyst activity and the catalyst carrier performance become insufficient due to the aggregation phenomenon. The temperature on the low temperature side is not particularly limited, but if it is lower than 600 ° C., it is necessary to take a longer treatment time. The heat treatment time is not particularly limited, but the treatment may be usually performed for 30 to 300 minutes.

還元条件のためには通常は希薄な水素ガスを混合した不活性ガスが適しており、水素/アルゴンや水素/ヘリウム、水素/窒素の混合ガス等が利用できる。また、一酸化炭素 や一酸化炭素/二酸化炭素混合や炭化水素混合、水蒸気/水素共存ガス、あるいは炭素共存下での酸素含有ガスによる不完全燃焼条件による還元ガスなど、その条件については限定されない。また酸化処理条件は、簡易には大気中でよい。これらの酸化還元処理時の時間は上記時間程度で良く、また酸化還元の保持については少なくとも相互に1回以上あれば材料の好ましい状態に製造できる。 For reducing conditions, an inert gas mixed with dilute hydrogen gas is usually suitable, and hydrogen / argon, hydrogen / helium, hydrogen / nitrogen mixed gas, or the like can be used. The conditions are not limited, such as carbon monoxide, carbon monoxide / carbon dioxide mixture, hydrocarbon mixture, steam / hydrogen coexisting gas, or reducing gas under incomplete combustion conditions with oxygen-containing gas in the presence of carbon. The oxidation treatment condition may be simply in the air. The time for these oxidation-reduction treatments may be about the above-mentioned time, and the oxidation-reduction can be maintained in a preferable state of the material as long as it is at least once each other.

また、粉砕やボールミル等の処理を適宜行うことで触媒に適した粉末とする処理を行う工程、すなわち、原料の混合や、水中でのセリア添加ジルコニアの均一性保持のため沈殿時には十分撹拌すること、また場合により各種ミル操作やボーミル等の混合操作をしてもよく、さらに洗浄、ろ過あるいは乾燥後、あるいは熱処理後にミル操作やボーミル等の混合操作を施すことを妨げるものではない。 In addition, the step of processing into powder suitable for the catalyst by appropriately performing processing such as pulverization and ball milling, that is, mixing the raw materials and stirring sufficiently during precipitation to maintain the uniformity of ceria-added zirconia in water In some cases, various mill operations and mixing operations such as a bow mill may be performed, and further, after washing, filtration or drying, or after heat treatment, mixing operations such as a mill operation or a bow mill are not prevented.

本発明では、酸化還元処理を行うことで大量の酸素貯蔵能が低温で安定的に発現するようになることが重要である。その機構は明らかではないが、このような熱処理によって鉄セリウムからなる酸化物材料の状態が、さらに酸素貯蔵に適した構造体になることが考えられる。 In the present invention, it is important that a large amount of oxygen storage capacity is stably expressed at a low temperature by performing oxidation-reduction treatment. Although the mechanism is not clear, it is conceivable that the state of the oxide material made of cerium iron becomes a structure more suitable for oxygen storage by such heat treatment.

本発明の第3の発明である、排ガス等の浄化用触媒においては、第1の本発明および第2の発明によって達成された酸素貯蔵能材をそのまま成形等を施すか、あるいは他の金属酸化物に担持することにより、さらにまた白金、ロジウム、パラジウムのような貴金属を共存することにより触媒として利用できる。複合酸化物粒子への各種成分の混合は、公知の方法を使用して行うことができ、例えば、本発明の第二の発明である製造法において原料溶液を用いて成分を共存する粉体に添加する、さらに乾燥及び焼成する方法が挙げられる。また、好ましくは、アルミナもしくはジルコニアを共存させることが好ましく、またチタニア、水酸化アルミニウム、水和ジルコニア、水酸化ジルコニウム、ベーマイト等の金属酸化物やその他の触媒成分が共存することを妨げない。 In the third aspect of the present invention, a catalyst for purifying exhaust gas or the like, the oxygen storage capacity material achieved by the first and second aspects of the present invention is directly molded or other metal oxidation It can be used as a catalyst by being supported on a material and also by coexisting a noble metal such as platinum, rhodium or palladium. The mixing of the various components into the composite oxide particles can be performed using a known method. For example, in the production method according to the second invention of the present invention, the raw material solution is used to make the powder coexist with the components. Examples of the method include addition, drying and firing. Preferably, alumina or zirconia is preferably allowed to coexist, and metal oxides such as titania, aluminum hydroxide, hydrated zirconia, zirconium hydroxide, boehmite, and other catalyst components are not prevented from coexisting.

本発明の触媒は、優れた酸素貯蔵能を発現し、自動車排ガス浄化用触媒や有機物ガスを含む汚染空気の浄化触媒、各種の混合ガス処理の触媒として使用することができる。本発明の浄化用触媒は、それ自体を成形して用いるだけでなく、モノリス担体、例えばセラミクスハニカムにコートして用いることもできる。 The catalyst of the present invention exhibits an excellent oxygen storage capacity, and can be used as a catalyst for purifying automobile exhaust gas, a purifying catalyst for contaminated air containing organic gas, and a catalyst for treating various mixed gases. The purification catalyst of the present invention can be used not only by molding itself but also by coating a monolithic carrier such as a ceramic honeycomb.

(実施例1:Ce1−xFe複合材組成依存性)
Ce1−xFe(x=0、0.05、0.1、0.2、0.3)の組成の粉末を共沈法にて作製した。2L(リットル)の蒸留水に,Ce(NH)(NO)(和光純薬製95%)とFe(NO)(和光純薬製99%)をCeとFeの割合が上記組成となるように秤量し、加えて十分撹拌後,これに3倍に希釈した25wt%アンモニア水 (和光純薬製) をpH10となるまで撹拌しながら加えた.水中で3時間熟成させた沈殿を、ろ過,洗浄を行った後,110℃で24時間乾燥させたのち、600℃で仮焼、さらに800℃で3時間熱処理して一連の試料を得た。前記の各試料につき粉末X線回折法(XRD)により生成相を評価した。XRD図形から、xが0〜0.3の範囲では、CeOと似た回折図形が観察でき,酸化セリウムに酸化鉄が固溶した固溶体Ce1−xFeの生成が認められた。
(Example 1: Ce 1-x Fe x O y composite composition dependence)
The powder composition of Ce 1-x Fe x O y (x = 0,0.05,0.1,0.2,0.3) was prepared in the coprecipitation method. In 2 L (liter) of distilled water, Ce (NH 4 ) 2 (NO 3 ) 6 (Wako Pure Chemicals 95%) and Fe (NO 3 ) 3 (Wako Pure Chemicals 99%) After weighing and adding enough to the above composition, 25 wt% aqueous ammonia (manufactured by Wako Pure Chemical Industries, Ltd.) diluted 3-fold was added to this while stirring until pH 10. A precipitate aged in water for 3 hours was filtered, washed, dried at 110 ° C. for 24 hours, calcined at 600 ° C., and further heat treated at 800 ° C. for 3 hours to obtain a series of samples. The produced phase was evaluated by powder X-ray diffraction (XRD) for each of the above samples. From the XRD pattern, when x is in the range of 0 to 0.3, a diffraction pattern similar to CeO 2 can be observed, and the formation of a solid solution Ce 1-x Fe x O y in which iron oxide is dissolved in cerium oxide was observed. .

前記複合材粉末試料の酸素貯蔵能を評価するため,ガス吸着量測定装置BP-1S(大倉理研製、特殊仕様)を用いて以下の操作を行った。石英試料管に0.1グラムの試料を入れ,室温で排気処理後、 室温から800℃まで流量毎分30mlの水素5%/Ar95%混合ガスを石英試料管に流しながら昇温速度毎分10℃で昇温し800℃で20分保持して還元した。この間,TCD検出器でガス組成変化をモニターした。さらに,ガスをAr(アルゴン)にして流通させ600℃まで降温後保持し,酸素ガスをパルスで導入し,TCD検出器で酸素吸収量を測定した。
これらの結果を表1に示す。
In order to evaluate the oxygen storage capacity of the composite powder sample, the following operation was performed using a gas adsorption amount measuring device BP-1S (manufactured by Okura Riken, special specification). A 0.1 gram sample is placed in a quartz sample tube, exhausted at room temperature, and then heated from room temperature to 800 ° C at a flow rate of 30 ml / min. The temperature was raised at 0 ° C. and held at 800 ° C. for 20 minutes for reduction. During this time, the gas composition change was monitored with a TCD detector. Further, the gas was circulated in Ar (argon), and the temperature was lowered to 600 ° C. and held, and oxygen gas was introduced in pulses, and the oxygen absorption amount was measured with a TCD detector.
These results are shown in Table 1.

表1より、酸化セリウムC1(x=0)に比較して、Ce1−xFe(x=0.05,0.1,0.2,0.3)においては、大幅な酸素貯蔵能の増大が観測されており、優れた酸素貯蔵能材となっていることがわかる。さらに、これらの特性は、上記800℃までの還元また酸化を伴う熱処理を繰り返しても維持されることにおいて、酸化セリウムと同様なOSCの性質を有していた。 From Table 1, as compared to cerium oxide C1 (x = 0), in the Ce 1-x Fe x O y (x = 0.05,0.1,0.2,0.3), significant oxygen An increase in storage capacity is observed, indicating that the material is an excellent oxygen storage capacity. Further, these characteristics were maintained even after repeated heat treatment with reduction or oxidation up to 800 ° C., and thus had the same OSC properties as cerium oxide.

比較例として酸化鉄(x=1.0)およびCe1−xFe(x=0.5、x=1.0)の酸化鉄の試料を、セリウム原料を用いないで実施例1と同様にして作製した。比較試料C2、また、Ce1−xFe(x=0.5)の組成の粉末を実施例1と同様に共沈法にて作製した(比較試料C3)。粉末X線回折法(XRD)により生成相を評価したところ、x=1.0では酸化鉄(Fe)が、またx=0.5では、上記固溶体とFeの共存が認められた。前記試料の酸素貯蔵能を評価するため,ガス吸着量測定装置BP−1S(大倉理研製、特殊仕様)を用いて実施例1と同様の操作を行った。
結果を表2に示す。
Iron oxide as a comparative example (x = 1.0) and Ce 1-x Fe x O y (x = 0.5, x = 1.0) A sample of iron oxide, Example 1 without using the starting cerium It produced similarly. Comparative Sample C2, also the powder of the composition of Ce 1-x Fe x O y (x = 0.5) was prepared by the same co-precipitation method as in Example 1 (comparative sample C3). When the generated phase was evaluated by powder X-ray diffraction (XRD), iron oxide (Fe 2 O 3 ) was present when x = 1.0, and coexistence of the solid solution and Fe 2 O 3 was observed when x = 0.5. Admitted. In order to evaluate the oxygen storage capacity of the sample, the same operation as in Example 1 was performed using a gas adsorption amount measuring device BP-1S (manufactured by Riken Okura, special specification).
The results are shown in Table 2.

比較試料C2,C3では十分なOSCが観測されていないことがわかる。さらに比較試料C2のFeにおいては800℃の還元処理後に試料内での変化が認められた。XRDで調べたところ、金属の鉄が生成しており、酸素の放出というより金属酸化物が金属に還元分解してしまう現象がみられた。そのため、酸素パルス測定において十分な再現性のある結果が得られなかった。また,x=0.5の試料C3においても、同様に金属鉄の生成があり、酸素貯蔵能の測定が再現性良くできなかった。これらの原因は酸化鉄が還元条件で金属鉄に変化し、その際の熱変化によってもとの酸化物に戻らないことが考えられた。したがって、繰り返し酸化還元下で利用する必要のある酸素貯蔵能材料として不適切であることが判明した。 It can be seen that sufficient OSC is not observed in the comparative samples C2 and C3. Further, in Fe 2 O 3 of the comparative sample C2, a change in the sample was observed after the reduction treatment at 800 ° C. When examined by XRD, metal iron was generated, and a phenomenon was observed in which metal oxide was reduced and decomposed into metal rather than release of oxygen. Therefore, a sufficiently reproducible result was not obtained in the oxygen pulse measurement. Further, in the sample C3 where x = 0.5, metallic iron was similarly generated, and the oxygen storage capacity could not be measured with good reproducibility. These causes were considered that iron oxide changed to metallic iron under reducing conditions and did not return to the original oxide due to thermal change at that time. Therefore, it was proved unsuitable as an oxygen storage capacity material that needs to be repeatedly used under redox.

(実施例2:Ce1−xFeの熱処理)
本実施例では、800℃での還元および酸化処理における酸素貯蔵能の改善に関する発明について、実施例1で作製したx=0.2の試料の結果によって示す。繰り返し使用時の酸素貯蔵能を評価するため,実施例1と同様にして操作を行った。同じ操作を6回繰り返し、すなわちこれによって800℃までの水素5%/Ar95%気流中での還元処理とその後の600℃での酸素パルス酸化処理(酸素吸収)を繰り返している。その都度の昇温還元時のTCDシグナルをモニターした(この図形を昇温還元スペクトルという)。この結果を図1に示す。
(Example 2: heat treatment of Ce 1-x Fe x O y )
In this example, the invention relating to the improvement of oxygen storage capacity in the reduction and oxidation treatment at 800 ° C. is shown by the result of the sample of x = 0.2 produced in Example 1. In order to evaluate the oxygen storage capacity at the time of repeated use, the same operation as in Example 1 was performed. The same operation is repeated 6 times, that is, the reduction treatment in a 5% hydrogen / Ar 95% gas stream up to 800 ° C. and the subsequent oxygen pulse oxidation treatment (oxygen absorption) at 600 ° C. are repeated. The TCD signal during each temperature reduction was monitored (this figure is called a temperature reduction spectrum). The result is shown in FIG.

図1の昇温還元スペクトルで縦軸のTCDシグナルによって示されるピークは、各温度で、試料上に導入した水素が固体内の酸素と反応して消費されている様子、すなわち固体内から酸素が放出され水素が酸化されている現象においてその温度における反応の程度を示している。800℃で空気中処理によって作製時の初期試料Ce0.8Fe0.2においては(最下段の曲線)、400〜500℃と700〜800℃付近で酸素放出が観測された。これを800℃で還元処理後に600℃で酸化する処理を行うことを繰り返すと、1回目から6回目でいずれも、600℃付近を中心に500〜700℃で幅広いピークが観測された。この結果は、800℃での還元またその後の酸化処理によって(1回目の曲線への変化)、主たる酸素の放出温度が700℃付近から500付近に低温化し、また300℃〜700℃まで連続的に酸素が放出できる特性に改善されていることを示している。さらに、この特性は、繰り返し酸化還元を行っても劣化することなく酸素放出と吸収が続く(1回目から6回目)ので酸素貯蔵能材として良好な性質を持っていることを示している。すなわち、酸化鉄自身や酸化鉄が含まれる比較例C2,C3では具現できない性質を示し,また金属鉄への還元による問題がなく,かつ高温でも繰り返し使用できることがわかる。さらに,酸化セリウムよりも高い酸素貯蔵能を有しており大量酸素貯蔵材として優れた性質を有している。以上のように、本発明の複合材料は性能が優れていることがわかる。 The peak indicated by the TCD signal on the vertical axis in the temperature-programmed reduction spectrum of FIG. 1 shows that hydrogen introduced onto the sample reacts with oxygen in the solid and is consumed at each temperature, that is, oxygen is absorbed from within the solid. It shows the degree of reaction at that temperature in the phenomenon of released hydrogen being oxidized. In the initial sample Ce 0.8 Fe 0.2 O y produced by treatment in air at 800 ° C. (lowermost curve), oxygen release was observed at 400 to 500 ° C. and around 700 to 800 ° C. When this was subjected to a reduction treatment at 800 ° C. and then an oxidation treatment at 600 ° C., a broad peak was observed at 500 to 700 ° C., mainly in the vicinity of 600 ° C., from the first time to the sixth time. This result shows that, by reduction at 800 ° C. and subsequent oxidation treatment (change to the first curve), the main oxygen release temperature is lowered from around 700 ° C. to around 500 ° C. and continuously from 300 ° C. to 700 ° C. It shows that the characteristics that oxygen can be released are improved. Furthermore, this characteristic shows that the oxygen storage capacity material has good properties because oxygen release and absorption continue without deterioration even after repeated oxidation-reduction (from the first time to the sixth time). That is, it can be seen that the comparative examples C2 and C3 containing iron oxide itself and iron oxide show properties that cannot be realized, there is no problem due to reduction to metallic iron, and it can be used repeatedly even at high temperatures. Furthermore, it has an oxygen storage capacity higher than that of cerium oxide and has excellent properties as a mass oxygen storage material. As mentioned above, it turns out that the composite material of this invention is excellent in performance.

(実施例3:炭化水素浄化活性)
触媒活性を調べるためプロピレン(C)浄化触媒活性を研究室で設計した固定床式触媒評価装置で評価した。実施例1で作製したCe1−xFeにおいて、x=0(比較試料),0.2(本発明),0.3(本発明)の粉末を用い、各100mgをガラス管に入れ、C濃度を炭素基準で 3345(ppmC) , O濃度0.5% および残部窒素ガスとして、流速毎分500ml,SVを約300,000 l・kg−1−1で流通させ、550℃での炭化水素燃焼活性をCO2生成量で判定した浄化性能試験を行った。その結果、x=0では浄化率10%、x=0.2で浄化率96%、x=0.3で浄化率98%を示した。これらの結果から、本材料を触媒として用いたときに高いガス処理能力が発現していることがわかる。
(Example 3: Hydrocarbon purification activity)
In order to examine the catalyst activity, the propylene (C 3 H 6 ) purification catalyst activity was evaluated by a fixed bed type catalyst evaluation apparatus designed in the laboratory. In Ce 1-x Fe x O y prepared in Example 1, x = 0 (comparative sample), 0.2 (present invention), using powder of 0.3 (present invention), each 100mg in a glass tube And the C 3 H 6 concentration is 3345 (ppmC) on the carbon basis, 0.5% O 2 concentration and the balance nitrogen gas, the flow rate is 500 ml per minute, and the SV is circulated at about 300,000 l · kg −1 h −1 Then, a purification performance test was performed in which the hydrocarbon combustion activity at 550 ° C. was determined by the amount of CO 2 produced. As a result, when x = 0, the purification rate was 10%, when x = 0.2, the purification rate was 96%, and when x = 0.3, the purification rate was 98%. From these results, it can be seen that when this material is used as a catalyst, a high gas processing capacity is developed.

一般に、酸化鉄は容易に還元されて金属状の鉄となって凝集し活性を回復しないが、本発明では、鉄成分が酸化力に優れる酸化セリウムと固溶体もしくは複合酸化物を形成して安定した状態にとなり、金属鉄まで還元され難く、耐還元性を有する触媒となりうるので、酸化還元においても繰り返し使用に耐え、自動車触媒用の酸素貯蔵能材ならび酸化反応による炭化水素浄化触媒として有用である。さらに、本発明の製造法においては酸化還元処理を行うと酸素放出の温度が低温化して広範囲の温度にわたって連続して発現するようになり、有用な酸素貯蔵能(放出能)を発現している。さらに、触媒として高活性を有する。このように、セリウムを低減するとともに、資源として豊富に利用できる鉄を用いた低コストの触媒材料を提供する。さらに、セリウム量を低減しているにもかかわらず、酸素貯蔵能が非常に高く、酸化還元の繰り返し使用に耐える触媒を提供しうる。 In general, iron oxide is easily reduced to agglomerate into metallic iron and does not recover its activity. However, in the present invention, the iron component is stable by forming a solid solution or composite oxide with cerium oxide having excellent oxidizing power. Because it becomes a state, it is difficult to reduce to metallic iron, and it can be a catalyst having reduction resistance, it can withstand repeated use in oxidation and reduction, and is useful as an oxygen storage capacity material for automobile catalysts and a hydrocarbon purification catalyst by oxidation reaction . Furthermore, in the production method of the present invention, when the oxidation-reduction treatment is performed, the temperature of oxygen release is lowered, and the oxygen release temperature is continuously expressed over a wide range of temperatures, so that a useful oxygen storage ability (release ability) is exhibited. . Furthermore, it has high activity as a catalyst. Thus, a low-cost catalyst material using iron that can reduce cerium and can be used abundantly as a resource is provided. Furthermore, despite the reduced amount of cerium, it is possible to provide a catalyst that has a very high oxygen storage capacity and can withstand repeated use of redox.

本発明のセラミック材料は、酸素を貯蔵あるいは放出する酸素貯蔵能材として、酸素貯留、混合ガス処理、あるいは自動車エンジン等の内燃機関からの排ガスの浄化等の触媒に利用できる。

The ceramic material of the present invention can be used as an oxygen storage capacity material for storing or releasing oxygen as a catalyst for oxygen storage, mixed gas treatment, or purification of exhaust gas from an internal combustion engine such as an automobile engine.

Claims (3)

セリウムと鉄を含み、Ce1−xFeで、xが0.03〜0.4であり、酸素貯蔵能が1グラム当たり酸素(O)ガス換算で10ml以上である複合金属酸化物および/または固溶体からなるセラミック材料。 Composite metal oxide containing cerium and iron, Ce 1-x Fe x O y , x is 0.03 to 0.4, and oxygen storage capacity is 10 ml or more in terms of oxygen (O 2 ) gas per gram. Ceramic material comprising a product and / or a solid solution. セリウムと鉄を含む溶液から沈殿剤を加え沈殿を形成、沈殿物を分離したのち乾燥し、空気中600℃〜1000℃で焼成後に、800℃以下の還元雰囲気下で加熱、さらに酸化雰囲気で熱処理する工程を含むセラミック材料の製造方法。 A precipitant is added from a solution containing cerium and iron to form a precipitate, the precipitate is separated, dried, fired in air at 600 ° C. to 1000 ° C., heated in a reducing atmosphere of 800 ° C. or lower, and further heat-treated in an oxidizing atmosphere. The manufacturing method of the ceramic material including the process to do. 請求項1のセラミック材料、あるいは請求項2の製造方法により得られたセラミック材料を含む、排ガス浄化ならびに混合ガス処理用の触媒。
A catalyst for exhaust gas purification and mixed gas treatment comprising the ceramic material of claim 1 or the ceramic material obtained by the production method of claim 2.
JP2012075256A 2012-03-29 2012-03-29 Oxygen storable ceramic material, method for producing the same, and catalyst Pending JP2013203609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012075256A JP2013203609A (en) 2012-03-29 2012-03-29 Oxygen storable ceramic material, method for producing the same, and catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012075256A JP2013203609A (en) 2012-03-29 2012-03-29 Oxygen storable ceramic material, method for producing the same, and catalyst

Publications (1)

Publication Number Publication Date
JP2013203609A true JP2013203609A (en) 2013-10-07

Family

ID=49523109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012075256A Pending JP2013203609A (en) 2012-03-29 2012-03-29 Oxygen storable ceramic material, method for producing the same, and catalyst

Country Status (1)

Country Link
JP (1) JP2013203609A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107824199A (en) * 2017-11-20 2018-03-23 山东理工大学 Magnetic Nano Au catalyst of the step oxidative esterification synthetic ester of aldehydes one and its preparation method and application
CN113398939A (en) * 2021-03-29 2021-09-17 上海中船临港船舶装备有限公司 Iron-cerium composite oxide catalyst for VOCs treatment and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107824199A (en) * 2017-11-20 2018-03-23 山东理工大学 Magnetic Nano Au catalyst of the step oxidative esterification synthetic ester of aldehydes one and its preparation method and application
CN107824199B (en) * 2017-11-20 2020-02-07 山东理工大学 Magnetic nano gold catalyst for synthesizing ester by aldehyde one-step oxidative esterification and preparation method and application thereof
CN113398939A (en) * 2021-03-29 2021-09-17 上海中船临港船舶装备有限公司 Iron-cerium composite oxide catalyst for VOCs treatment and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3623517B2 (en) Composition based on cerium oxide and zirconium oxide and having high specific surface area and high oxygen storage capacity, and method for producing the same
JP5459927B2 (en) Exhaust gas purification catalyst
JP3595874B2 (en) Zirconium-cerium composite oxide and method for producing the same
WO2007072690A1 (en) Catalyst for exhaust gas clean-up
JPWO2003022740A1 (en) Cerium oxide, its production method and exhaust gas purifying catalyst
WO2006049042A1 (en) Exhaust gas purification catalyst
KR20150115880A (en) Precipitated and calcinated composition based on zirconium oxide and cerium oxide
JP4979900B2 (en) Exhaust gas purification catalyst
US11291976B2 (en) Mixed valent manganese-based NOx adsorber
CN111889101A (en) Modified composite oxide catalyst for synergistic purification of VOCs and NO and preparation method thereof
CN112439408B (en) Rare earth manganese-loaded cerium-zirconium composite compound, preparation method and catalyst
CN109689205B (en) Use of vanadates as oxidation catalysts
US8357626B2 (en) Oxygen storage/release material and exhaust gas purifying catalyst comprising the same
JP5915520B2 (en) Exhaust gas purification catalyst
JP4450763B2 (en) Precious metal-containing composite metal oxide for exhaust gas purification catalyst and method for producing the same
JP4435750B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4979087B2 (en) Composite oxide powder, production method and production apparatus thereof, and exhaust gas purification catalyst
JP2013203609A (en) Oxygen storable ceramic material, method for producing the same, and catalyst
EP2155365B1 (en) Oxygen storage/release material and exhaust gas purifying catalyst comprising the same
JP2013180928A (en) Composite material of zirconia and ceria, method for producing the same, and catalyst containing the same
JP2014121686A (en) Catalyst for purifying exhaust gas
JP5967015B2 (en) Exhaust gas purification catalyst
JP5910486B2 (en) Exhaust gas purification catalyst
JP2018043177A (en) Catalyst composition for exhaust purification and catalyst for exhaust purification
JP2007260564A (en) Exhaust gas-purifying catalyst and method for regenerating the same