JP3595874B2 - Zirconium-cerium composite oxide and method for producing the same - Google Patents

Zirconium-cerium composite oxide and method for producing the same Download PDF

Info

Publication number
JP3595874B2
JP3595874B2 JP2000058924A JP2000058924A JP3595874B2 JP 3595874 B2 JP3595874 B2 JP 3595874B2 JP 2000058924 A JP2000058924 A JP 2000058924A JP 2000058924 A JP2000058924 A JP 2000058924A JP 3595874 B2 JP3595874 B2 JP 3595874B2
Authority
JP
Japan
Prior art keywords
cerium
composite oxide
zirconium
adsorption amount
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000058924A
Other languages
Japanese (ja)
Other versions
JP2000319019A (en
Inventor
禎親 梅本
利雄 中谷
公夫 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Kigenso Kagaku Kogyo Co Ltd
Original Assignee
Daiichi Kigenso Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Kigenso Kagaku Kogyo Co Ltd filed Critical Daiichi Kigenso Kagaku Kogyo Co Ltd
Priority to JP2000058924A priority Critical patent/JP3595874B2/en
Publication of JP2000319019A publication Critical patent/JP2000319019A/en
Application granted granted Critical
Publication of JP3595874B2 publication Critical patent/JP3595874B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規なジルコニウム−セリウム系複合酸化物及びその製造方法に関する。さらに、本発明は、上記の複合酸化物を含む排ガス浄化用触媒材料に関する。
【0002】
【従来技術】
自動車等の内燃機関から排出される排気ガス中の炭化水素、一酸化炭素及び窒素酸化物を同時に除去できる三元触媒においては、触媒活性成分として白金、ロジウム、パラジウム等の白金族元素とともに、その触媒活性を向上させるために酸化還元特性をもつ酸化セリウムが用いられている。
【0003】
ところが、白金族元素と酸化セリウムを含む触媒では、800℃以上の高温下で酸化セリウムの酸化還元特性が著しく低下するため、その触媒性能が劣化しやすいことが知られている。
【0004】
高温下での酸化セリウムの酸化還元特性を維持するために、セリウム以外の希土類金属及び/又はジルコニウムの酸化物を添加し、その結晶化を抑制する方法が提案されている(例えば、特開昭64−58347号、特開昭63−116741号等)。また、予め酸化セリウムと酸化ジルコニウムを複合酸化物として調製し、これを用いることも開示されている(例えば、特開昭62−168544号、特開平1−281144号、特開平4−284875号等)。
【0005】
また、排ガス処理触媒の助触媒又は触媒担体としての機能を高めるために、酸化セリウムと酸化ジルコニウムを含む複合酸化物における比表面積の安定性及び酸化還元特性を改善する方法も開示されている(例えば、特開平4−55315号、特許第2698302号、特開平5−286772号、特開平9−278444号等)。そして、地球環境の環境保全対策が進んでいる今日では、排出ガスに関する法規制の強化に伴い、助触媒及び触媒担体に要求される比表面積の安定性及び酸化還元特性の劣化に対する耐久温度は約1000℃までに改善されている。
【0006】
【発明が解決しようとする課題】
しかしながら、これら従来の酸化セリウム−酸化ジルコニウムの複合酸化物における比表面積の安定性は1000℃加熱処理後で20m/g程度、酸化還元特性は加熱処理していない複合酸化物でさえ酸素吸着量0.1mmol−O/g程度である。
【0007】
自動車の一定条件の走行下(例えば、日本では10モード走行時)では、浄化されなかった炭化水素の総排出量の大半が触媒が機能しはじめる温度よりも低温時に排出される。この触媒が機能しはじめる温度はT50(最高浄化率の50%の浄化率に達する温度)と呼ばれている。触媒をよりエンジンに近づけることにより触媒が加熱されるまでの時間を短縮する試みがなされている。この施策によれば、触媒に求められている耐久温度は1000℃を超え、しかも急速な加熱、常温までの冷却という繰り返し熱サイクルに曝されることとなる。このため、これらの要求を満足し得る新たな触媒材料の開発が必要となる。
【0008】
一方、酸化セリウムと酸化ジルコニウムを均一に一体化する製法としては、一般的にはセリウムイオンを含む水溶液とジルコニウムイオンを含む水溶液い塩基を添加し、複合塩沈殿物を回収する方法がある(特開平9−278444号)。
【0009】
ところが、上記方法による複合塩沈殿物は水分含有量の多いゲル状の嵩高い水酸化物であるため、不純物を除去するための濾過又は固液分離工程が余分に必要となる。そのため、1回当たりの処理速度が必然的に遅くなるだけでなく、酸化物に熱転換するために必要な熱エネルギーが膨大となる。このように、従来の製造方法は工業的規模での製造に適していると言い難い。
【0010】
従って、本発明は、かかる従来技術の問題点に鑑みてなされたものであり、特に、熱安定性及び酸化還元特性に優れたジルコニウム−セリウム系複合酸化物を提供することを主な目的とする。
【0011】
【課題を解決するための手段】
本発明者は、鋭意研究を重ねた結果、特定の製法により得られる複合酸化物が特異な性質を発現することを見出し、ついに本発明を完成するに至った。
【0012】
すなわち、本発明は、下記のジルコニウム−セリウム系複合酸化物及びその製造方法に係るものである。
【0013】
1.ジルコニウム及びセリウムを含む複合酸化物であって、
(1)結晶相の95体積%以上がジルコニア−セリア系固溶体の立方晶であり、かつ、(2)当該複合酸化物を1000℃で熱処理した後に室温まで冷却する工程を2回以上繰り返した後でも、当該立方晶比率が75体積%以上であることを特徴とするジルコニウム−セリウム系複合酸化物(第一発明)。
【0014】
2.ジルコニウム及びセリウムを含む複合酸化物であって、
(1)初期酸素吸着量が800μmol−O/g−CeO以上であり、かつ、(2)当該複合酸化物を1000℃で熱処理した後に室温まで冷却する工程を2回以上繰り返した後でも、当該初期酸素吸着量の70%以上の酸素吸着量を有することを特徴とするジルコニウム−セリウム系複合酸化物(第二発明)。
【0015】
3.塩基性硫酸ジルコニウムとセリウムイオンを含む溶液とを混合した後、当該混合液に塩基を添加することにより沈殿物を生成させることを特徴とするジルコニウム−セリウム系複合酸化物の製造方法。
【0016】
さらに、本発明は、上記第1項又は第2項に記載のジルコニウム−セリウム系複合酸化物を含む排ガス浄化用触媒材料に係るものである。
【0017】
【発明の実施の形態】
第一発明のジルコニウム−セリウム系複合酸化物は、ジルコニウム及びセリウムを含む複合酸化物であって、(1)結晶相の95体積%以上がジルコニア−セリア系固溶体の立方晶であり、かつ、(2)当該複合酸化物を1000℃で熱処理した後に室温まで冷却する工程を2回以上(特に3回以上)繰り返した後でも、当該立方晶比率が75体積%以上であることを特徴とする。
【0018】
複合酸化物における結晶相の95体積%以上、好ましくは99体積%以上がジルコニア−セリア系固溶体の立方晶である。この立方晶比率を95体積%以上とすることにより、触媒材料等として優れた性能を発揮することができる。
【0019】
また、上記複合酸化物を1000℃で熱処理した後に室温まで冷却する工程を2回以上繰り返した後でも、上記立方晶比率が75体積%以上、好ましくは80体積%以上である。従って、例えば上記工程を2回繰り返した場合に上記立方晶比率の範囲内にある複合酸化物は本発明に包含される。
【0020】
上記工程は、具体的には、上記複合酸化物5gをルツボにとり、予め1000℃に加熱されている電気炉中で酸化雰囲気中1000℃で3時間熱処理し、次いで電気炉からルツボを取り出してデシケーター中で室温(約18℃)まで放置冷却する。この加熱・冷却サイクルを2回以上繰り返す(以下、第二発明、実施例においても同じ)。
【0021】
第二発明のジルコニウム−セリウム系複合酸化物は、ジルコニウム及びセリウムを含む複合酸化物であって、(1)初期酸素吸着量が800μmol−O/g−CeO以上であり、かつ、(2)当該複合酸化物を1000℃で熱処理した後に室温まで冷却する工程を2回以上(特に3回以上)繰り返した後でも、当該初期酸素吸着量の70%以上の酸素吸着量を有することを特徴とする。
【0022】
初期酸素吸着量は、800μmol−O/g−CeO以上、好ましくは1000μmol−O/g−CeO以上である。
【0023】
また、上記複合酸化物を1000℃で熱処理した後に室温まで冷却する工程を2回以上繰り返した後でも、当該初期酸素吸着量の70%以上、好ましくは80%以上の酸素吸着量を有する。すなわち、第二発明では、酸素吸着量の劣化率が30%未満であることが好ましい。
【0024】
第二発明は、さらに第一発明の要件を備えていることが好ましい。すなわち、(1)結晶相の95体積%以上がジルコニア−セリア系固溶体の立方晶であり、かつ、(2)当該複合酸化物を1000℃で熱処理した後に室温まで冷却する工程を2回以上(特に3回以上)繰り返した後でも、当該立方晶比率が75体積%以上であることが好ましい。
【0025】
第一発明及び第二発明(以下、両者をまとめて「本発明」という)は、さらに、複合酸化物を1100℃で熱処理した後の比表面積(BET法)が10m/g以上、特に20m/g以上であることが好ましい。特に、1100℃で3時間熱処理した後の比表面積が上記値となることが好ましい。
【0026】
本発明における組成比率は、最終製品の用途等に応じて適宜設定すれば良いが、通常は酸化ジルコニウムとして30〜90重量%及び酸化セリウムとして10〜70重量%、好ましくは酸化ジルコニウムとして40〜70重量%及び酸化セリウムとして30〜60重量%とすれば良い。
【0027】
本発明では、必要に応じて他の金属(第三金属)が含まれていても良い。例えば、スカンジウム、イットリウム、ランタン、プラセオジウム、ネオジウム、サマリウム、ユーロピウム、ガドリウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム等の希土類金属のほか、チタン、ハフニウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、モリブデン、タングステン、インジウム、スズ、アンチモン、リン等が挙げられる。これらは1種又は2種以上で用いることができる。本発明では、この中でも、特に、希土類金属(セリウムを除く。)、チタン及びハフニウムの少なくとも1種が好ましい。この場合、少なくともランタン、プラセオジウム及びネオジウムの少なくとも1種を含んでいることがより好ましい。これらの第三金属を添加することにより、結晶相の制御又は酸化還元特性の熱サイクル安定性をより確実に向上させることができる。
【0028】
これら第三金属の含有量は、用いる第三金属の種類、最終製品の用途等に応じて適宜設定すれば良いが、通常は、酸化物として複合酸化物中30重量%以下、好ましくは1〜15重量%、より好ましくは5〜14重量%とすれば良い。
【0029】
さらに、本発明では、硫黄を硫酸態(SO)で含有させることもできる。これにより、特に酸化還元特性をさらに高めることができる。この硫酸態硫黄の含有量は、複合酸化物の組成、最終製品の用途等によって適宜変更することができるが、通常は複合酸化物中3重量%を超えない範囲、好ましくは0.05〜1.5重量%とすれば良い。
【0030】
本発明複合酸化物の製造方法としては、例えば塩基性硫酸ジルコニウムとセリウムイオンを含む溶液とを混合した後、当該混合液に塩基を添加することにより沈殿物を生成させることにより実施することができる。
【0031】
塩基性硫酸ジルコニウムとしては、特に制限されず、例えばZrOSO・ZrO、5ZrO・3SO、7ZrO・3SO等で示される化合物の水和物が挙げられる。これらは1種又は2種以上で使用することができる。
【0032】
一般に、これらの塩基性塩は、溶解度の小さい光学的測定による粒径が数十オングストロームの微粒子の凝集体として0.1〜十数μmの粒径を有する凝集粒子として得られるものであり、公知の製法で得られたもの又は市販品を用いることができる。例えば、「Gmelin Handbuch, TEIL 42; Zirkonium(ISBN3−540−93242−9, 334−353, 1958)」等に記載されたものも使用できる。
【0033】
セリウムイオンを含む溶液は、セリウムイオン(一般にCe3+、Ce4+で示されるもの)が安定に存在するものであれば特に制限されず、例えばセリウム塩を適当な溶媒に溶解させた溶液が使用できる。セリウム塩としては、例えばセリウムの硝酸塩、硫酸塩、塩化物等の無機酸塩、セリウムの酢酸塩、シュウ酸塩等の有機酸塩を用いることができる。より具体的には、硝酸セリウム(III)、硝酸セリウム(IV)、塩化セリウム(III)、硫酸セリウム(IV)、硝酸アンモニウム(III)等が挙げられる。
【0034】
また、上記溶媒としては、セリウム塩、ジルコニウム塩等を溶解できるものであれば特に制限されないが、通常は水、アルコール類(例えば、メタノール、エタノール等)等が使用できる。溶液の濃度は、複合酸化物の組成比率等によって適宜変更できるが、通常1〜25重量%程度、好ましくは10〜20重量%とすれば良い。
【0035】
さらに、複合酸化物に第三金属を含有させる場合は、混合液中に当該金属のイオンを含有させれば良い。例えば、第三金属を含む化合物(例えば、第三金属の硫酸塩、硝酸塩、塩化物等の無機酸塩、酢酸塩、シュウ酸塩等の有機酸塩等)をそのままセリウムイオンを含む溶液又は混合液に配合したり、あるいは予め上記化合物の溶液を調製し、この溶液を上記溶液、混合液又は塩基性硫酸ジルコニウムに配合しても良い。
【0036】
さらに、複合酸化物に硫酸態硫黄を含有させる場合は、硫酸イオンを含有する溶液を添加したり、あるいは塩基性硫酸ジルコニウムの硫酸イオンを保持するようにすれば良い。硫酸イオンを含有する溶液を添加する場合は、硫酸イオンを含む化合物(例えば、硫酸、あるいは硫酸アンモニウム、硫酸ナトリウム、硫酸カリウム、硫酸アルミニウム等の硫酸塩等)を前記溶液に添加したり、あるいは予め添加成分の溶液を調製し、この溶液を前記溶液又は塩基性硫酸ジルコニウムに配合すれば良い。塩基性硫酸ジルコニウムの硫酸イオンを保持する方法としては、例えば塩基を添加して水酸化物を生成させる時のpHを変化させ、硫酸イオンが脱離しないように制御すれば良い。
【0037】
塩基性硫酸ジルコニウムとセリウムイオンを含む溶液との配合割合は、前記の組成比率となるように、溶液の濃度等を適宜調節して決定することができる。また、混合液の温度は、通常80℃以下、好ましくは20〜50℃とすれば良い。
【0038】
次いで、塩基性硫酸ジルコニウムとセリウムイオンを含む溶液とを混合した後、当該混合液に塩基を添加して沈殿物を生成させる。
【0039】
塩基としては、特に制限されず、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸アンモニウム、アンモニア等の公知のアルカリ剤を用いることができる。本発明では、特に水酸化ナトリウム、水酸化カリウム等の強アルカリを用いることが好ましい。また、これら塩基は、水溶液として添加することが好ましい。この場合、水溶液の濃度は、pH調整が可能な限り特に限定されないが、通常5〜50重量%程度、好ましくは20〜25重量%とすれば良い。
【0040】
本発明では、塩基の添加量(すなわちpH)を変化させることにより、特に複合酸化物中の硫酸態硫黄の含有量を制御することができる。混合液のpHは、通常は12以上14未満とすれば良い。この範囲内で所望の含有量に応じた塩基の添加量を適宜設定すれば良い。
【0041】
生成した沈殿物は、公知の共沈法等で採用されている回収方法に従ってろ過、水洗等をした後、公知の固液分離方法により回収することができる。回収された沈殿物は、必要に応じて乾燥しても良い。乾燥は、自然乾燥又は加熱乾燥のいずれであっても良い。
【0042】
本発明では、さらに必要に応じて沈殿物を焼成しても良い。焼成条件は、特に制限されないが、通常は酸化性雰囲気中又は大気中で400℃以上で焼成すれば良い。焼成温度の上限は、所望の複合酸化物が得られる限り特に制限されない。焼成時間は、焼成温度等に応じて適宜設定すれば良いが、焼成物の温度が設定温度に達してから通常1〜8時間程度とすれば良い。焼成後は、必要に応じて公知の粉砕処理、分級処理等を行っても良い。
【0043】
本発明の排ガス浄化用触媒材料は、本発明ジルコニウム−セリウム系複合酸化物を含み、例えば触媒、助触媒、触媒担体等として用いることができる。特に、エンジン直下における排ガス浄化用の活性成分である貴金属(例えば、白金、ロジウム、パラジウム、イリジウム等)の働きを補助する助触媒として有用である。また、OBD−II規制のモニタリングに対応したOSC(酸素吸着)構成物としても好適に用いることができる。
【0044】
【作用】
本発明の製造方法では、塩基性硫酸ジルコニウムとセリウムイオンとを含む混合液に塩基を添加することにより。塩基性硫酸ジルコニウム中の硫酸イオンと塩基により供給される水酸化物イオン(OH)の中和反応と、セリウムイオンと水酸化物イオンの中和反応とが同時に進行する。
【0045】
このとき、セリウムイオンは、硫酸イオンとの化学的親和性により塩基性硫酸ジルコニウムの硫酸サイト近傍に選択的に存在し、塩基性硫酸ジルコニウム(中和反応の進行度合によっては水酸化ジルコニウム)の表面においても水酸化される。この現象は、一般的には後期沈殿又は共沈殿の原理に従うものである。
【0046】
本発明では、この特徴的な反応を利用することにより、ジルコニウムとセリウムが均一に一体化した沈殿物を効率的に得ることができる。また、この反応過程において、ジルコニウム及びセリウムと硫酸イオンの化学親和性の差により塩基性硫酸ジルコニウムに含まれる硫酸イオンは、ジルコニウムから脱離した後、いったんセリウムイオン(又は水酸化セリウム)と化合(又は化学吸着)した中間体を生成する。この現象は、硫酸態硫黄の複合酸化物中での含有量が、酸化ジルコニウムに起因する比表面積の熱安定性ではなく、酸化セリウムに起因する酸化還元特性に大きく影響することからも明らかである。
【0047】
【発明の効果】
本発明の製造方法では、特にジルコニウム前駆体として塩基性硫酸ジルコニウムを用いることから、化学的均一性の高いジルコニウム−セリウム系複合酸化物を再現性良く、かつ、効率的に製造することができ、工業的規模での生産に適している。
【0048】
本発明のジルコニウム−セリウム系複合酸化物は、化学的均一性の高い構造を有するので、熱安定性及び酸化還元特性に優れている。従って、特に、加熱−冷却サイクルに対しても、優れた熱安定性及び酸化還元特性を維持することができる。
【0049】
このため、これを内燃機関における排ガス浄化用触媒材料(触媒、助触媒、触媒担体等)として使用する場合、エンジンの停止−始動−加速−停止による加熱−冷却サイクルにおいても、結晶構造の変化がほとんどなく、優れた酸化還元特性が安定して得ることができる。
【0050】
【実施例】
以下に実施例及び比較例を示し、本発明の特徴をより明確にする。但し、本発明は、これら実施例に限定されるものではない。各物性値の測定方法は次の方法により行った。なお、実施例におけるジルコニウムには、不可避不純物としてハフニウム(酸化ハフニウムとして1.3〜2.5重量%)を含有している。
(1)複合酸化物の組成比率
ICP−発光分光分析法で調べた。
(2)酸素吸着量
装置「マルチタスクTPD(TPD−1−AT)」(日本ベル製)を用い、600℃における酸素パルス法により測定した。
(3)酸素吸着量の劣化率(OSC)
下式で示すように、複合酸化物の初期酸素吸着量(OSC)と加熱−冷却サイクル2回繰り返した後の酸素吸着量(OSC)との差を初期酸素吸着量で除することにより求めた。
【0051】
OSC(%)=[(OSC−OSC)/OSC]×100
(4)結晶相における立方晶比率
下式で示すように、複合酸化物の立方晶及び純酸化セリウム単体の立方晶の結晶面(111)の強度和(Ia+Ib)で複合酸化物の立方晶の結晶面(111)の強度(Ia)を除することにより求めた。なお、各強度は、装置「ガイガーフレックスRAD−2C」(リガク製)を用いて測定した。
【0052】
立方晶比率(体積%)=[Ia/(Ia+Ib)]×100
(5)硫酸態硫黄含有量
装置「HORIBA EMIA−520」(堀場製作所製)を用い、プラズマ燃焼−赤外線吸収法により測定した。
【0053】
実施例1
塩基性硫酸ジルコニウム(酸化ジルコニウムとして86g含有)を水1000g中に分散し、さらに硝酸セリウム水溶液(酸化セリウムとして88g含有)、硝酸ランタン水溶液(酸化ランタンとして18g含有)及び硝酸プラセオジウム水溶液(酸化プラセオジウムとして8g含有)を添加して混合液を調製した。
【0054】
次いで、25重量%水酸化ナトリウム水溶液を、混合液のpHが13.5となるまで添加して沈殿物を得た。生成した沈殿物を固液分離して回収し、固形分を大気中660℃で3時間焼成した。
【0055】
得られた複合酸化物の結晶相は単一の立方晶であり、初期酸素吸着量は412μmol−O/g(940μmol−O/g−CeO)であった。組成比率は、酸化ジルコニウム42.9重量%、酸化セリウム43.8重量%、酸化ランタン9.1重量%及び酸化プラセオジウム4.1重量%であった。硫酸態硫黄含有量は0.1重量%であった。また、加熱−冷却サイクル後における立方晶比率は100体積%、酸素吸着量の劣化率は7%であった。1100℃で3時間熱処理した後のBET比表面積は22m/gであり、また酸素吸着量は840μmol−O/g−CeOであった。
【0056】
実施例2〜5
塩基性硫酸ジルコニウム、硝酸セリウム水溶液、硝酸ランタン水溶液及び硝酸プラセオジウムを表1に示す比率(g)で配合したほかは、実施例1と同様にして複合酸化物を作製した。得られた各複合酸化物の立方晶率はいずれも95体積%以上であった。
【0057】
各複合酸化物の組成比率、硫酸態硫黄の含有量、初期酸素吸着量、加熱−冷却サイクル後における立方晶比率及び酸素吸着量の劣化率、ならびに1100℃で3時間熱処理した後の酸素吸着量及びBET比表面積をそれぞれ表2に示す。
【0058】
【表1】

Figure 0003595874
【0059】
【表2】
Figure 0003595874
【0060】
比較例1
硝酸ジルコニウム水溶液(酸化ジルコニウムとして24g含有)に、硝酸セリウム水溶液(酸化セリウムとして74g含有)及び硝酸ランタン水溶液(酸化ランタンとして2g)を添加して混合液を調製し、さらに硫酸アンモニウム2g添加した。この混合液に、25重量%アンモニア水をpHが10.2となるまで添加して沈殿物を生成させた。沈殿物を固液分離し、得られた固形分を大気中660℃で3時間焼成した。この複合酸化物の結晶相は、2種類の立方晶、すなわち複合酸化物の立方晶と酸化セリウム単体の立方晶とが混在していた。実施例1と同様にして、得られた複合酸化物の各物性を調べた。その結果を表3に示す。
【0061】
比較例2
水酸化ジルコニウム水溶液(酸化ジルコニウムとして84g含有)に、硝酸セリウム水溶液(酸化セリウムとして116g含有)を添加して混合液を調製した。混合液に、25重量%アンモニア水をpHが10.2となるまで添加して沈殿物を生成させた。沈殿物を固液分離し、得られた固形分を大気中660℃で3時間焼成した。この複合酸化物の結晶相は、2種類の立方晶、すなわち複合酸化物の立方晶と酸化セリウム単体の立方晶とが混在していた。実施例1と同様にして、得られた複合酸化物の各物性を調べた。その結果を表3に示す。
【0062】
【表3】
Figure 0003595874
【0063】
試験例1
実施例1、比較例1及び比較例2で得られた複合酸化物について、加熱・冷却サイクル(熱処理サイクル)試験を4回繰り返した。各試料について加熱・冷却サイクル1回ごとにX線回折分析を行った。その結果をそれぞれ図1〜3に示す。また、各試料について、加熱・冷却サイクル1回ごとにOSCを測定した。その結果を図4に示す。
【0064】
図1〜3から、比較例1及び2の複合酸化物では、熱処理サイクルを繰り返すことによって、セリア(111)面に相当するピークの強度が強くなり、ジルコニア−セリア系固溶体の立方晶(111)面に相当するピークの強度が低下していることがわかる。これは、セリアのシンタリングが進行し、触媒性能が低下していることを示すものである。これに対し、実施例1の複合酸化物は、熱処理サイクルを繰り返しても、ジルコニア−セリア系固溶体の立方晶が優位であり、純粋なセリアの生成が阻止され、安定化していることがわかる。
【0065】
また、図4より、比較例1及び2の複合酸化物では、熱処理サイクルを繰り返すことによって、酸素吸着量が大幅に低下していることがわかる。これに対し、実施例1では、そのような低下が認められず、比較的安定した性能を発揮できることがわかる。
【0066】
試験例2
実施例5で得られた複合酸化物について、試験例1と同様の加熱・冷却サイクル(熱処理サイクル)試験を行った。その結果を図5に示す。また、試験例1と同様に、加熱・冷却サイクル1回ごとにOSCを測定した。その結果を図6に示す。
【0067】
図5より、実施例5の複合酸化物は、実施例1と同様、熱処理サイクルを繰り返しても、ジルコニア−セリア系固溶体の立方晶が優位であり、純粋なセリアの生成が阻止され、安定化していることがわかる。また、図6より、実施例5では、酸素吸着量の大幅な低下が認められず、比較的安定した性能を発揮できることがわかる。
【図面の簡単な説明】
【図1】実施例1の複合酸化物について熱処理サイクル試験を行ったときのX線回折分析の結果を示す図である。
【図2】比較例1の複合酸化物について熱処理サイクル試験を行ったときのX線回折分析の結果を示す図である。
【図3】比較例2の複合酸化物について熱処理サイクル試験を行ったときのX線回折分析の結果を示す図である。
【図4】実施例1、比較例1及び比較例2の各複合酸化物について熱処理サイクル試験を行ったときのOSC測定結果を示す図である。
【図5】実施例5の複合酸化物について熱処理サイクル試験を行ったときのX線回折分析の結果を示す図である。
【図6】実施例5の複合酸化物について熱処理サイクル試験を行ったときのOSC測定結果を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel zirconium-cerium composite oxide and a method for producing the same. Further, the present invention relates to an exhaust gas purifying catalyst material containing the above composite oxide.
[0002]
[Prior art]
In a three-way catalyst capable of simultaneously removing hydrocarbons, carbon monoxide and nitrogen oxides in exhaust gas discharged from an internal combustion engine of an automobile or the like, a platinum group element such as platinum, rhodium or palladium is used as a catalytically active component. Cerium oxide having redox properties has been used to improve catalytic activity.
[0003]
However, it is known that a catalyst containing a platinum group element and cerium oxide has a significantly reduced oxidation-reduction characteristic at a high temperature of 800 ° C. or higher, so that its catalytic performance tends to be deteriorated.
[0004]
In order to maintain the oxidation-reduction properties of cerium oxide at high temperatures, a method has been proposed in which a rare earth metal other than cerium and / or an oxide of zirconium is added to suppress crystallization thereof (for example, see Japanese Patent Application Laid-Open 64-58347, JP-A-63-116741, etc.). It is also disclosed that cerium oxide and zirconium oxide are prepared in advance as a composite oxide and used (for example, JP-A-62-168544, JP-A-1-281144, JP-A-4-284875, etc.). ).
[0005]
Also disclosed is a method for improving the stability of specific surface area and the oxidation-reduction characteristics of a composite oxide containing cerium oxide and zirconium oxide in order to enhance the function of the exhaust gas treatment catalyst as a promoter or a catalyst carrier (for example, disclosed). JP-A-4-55315, JP-A-2698302, JP-A-5-286772, JP-A-9-278444 and the like. Nowadays, as environmental protection measures for the global environment are progressing, due to stricter regulations on exhaust gas, the durability temperature for the stability of the specific surface area required for the co-catalyst and the catalyst carrier and the deterioration temperature of the oxidation-reduction characteristics are reduced. It has been improved to 1000 ° C.
[0006]
[Problems to be solved by the invention]
However, the stability of the specific surface area of these conventional cerium oxide-zirconium oxide composite oxides is about 20 m 2 / g after heat treatment at 1000 ° C., and the oxidation-reduction characteristics show that even the composite oxides not heat-treated have an oxygen adsorption amount. it is 0.1mmol-O 2 / g approximately.
[0007]
When the vehicle is traveling under certain conditions (for example, in 10 mode traveling in Japan), most of the total amount of unpurified hydrocarbons is discharged at a temperature lower than the temperature at which the catalyst starts to function. The temperature at which this catalyst begins to function is called T 50 (the temperature at which the purification rate reaches 50% of the maximum purification rate). Attempts have been made to reduce the time it takes for the catalyst to heat up by bringing the catalyst closer to the engine. According to this measure, the endurance temperature required for the catalyst exceeds 1000 ° C., and the catalyst is exposed to repeated heat cycles of rapid heating and cooling to room temperature. For this reason, it is necessary to develop a new catalyst material that can satisfy these requirements.
[0008]
On the other hand, as a method for uniformly integrating cerium oxide and zirconium oxide, there is generally a method of adding an aqueous solution containing cerium ions and an aqueous solution containing zirconium ions or a base to recover a complex salt precipitate (particularly). Kaihei 9-278444).
[0009]
However, since the composite salt precipitate obtained by the above method is a gel-like bulky hydroxide having a high water content, an extra filtration or solid-liquid separation step for removing impurities is required. Therefore, not only does the processing speed per operation inevitably slow, but also the heat energy required for heat conversion to oxides becomes enormous. Thus, it is difficult to say that the conventional manufacturing method is suitable for manufacturing on an industrial scale.
[0010]
Accordingly, the present invention has been made in view of the problems of the related art, and has a main object of, in particular, to provide a zirconium-cerium-based composite oxide having excellent thermal stability and oxidation-reduction properties. .
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and as a result, found that a composite oxide obtained by a specific production method expresses unique properties, and finally completed the present invention.
[0012]
That is, the present invention relates to the following zirconium-cerium-based composite oxide and a method for producing the same.
[0013]
1. A composite oxide containing zirconium and cerium,
(1) 95% by volume or more of the crystal phase is a cubic crystal of a zirconia-ceria-based solid solution, and (2) after repeating the step of heat-treating the composite oxide at 1000 ° C. and then cooling to room temperature at least twice. However, the cubic crystal ratio is 75% by volume or more, a zirconium-cerium-based composite oxide (first invention).
[0014]
2. A composite oxide containing zirconium and cerium,
(1) Even after the initial oxygen adsorption amount is 800 μmol-O 2 / g-CeO 2 or more, and (2) the step of heat-treating the composite oxide at 1000 ° C. and then cooling to room temperature is repeated twice or more. A zirconium-cerium-based composite oxide having an oxygen adsorption amount of 70% or more of the initial oxygen adsorption amount (second invention).
[0015]
3. A method for producing a zirconium-cerium-based composite oxide, comprising mixing a basic zirconium sulfate with a solution containing cerium ions, and then adding a base to the mixed solution to form a precipitate.
[0016]
Furthermore, the present invention relates to an exhaust gas purifying catalyst material containing the zirconium-cerium-based composite oxide described in the above item 1 or 2.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The zirconium-cerium-based composite oxide of the first invention is a composite oxide containing zirconium and cerium, wherein (1) 95% by volume or more of a crystal phase is a cubic crystal of a zirconia-ceria-based solid solution, and ( 2) The cubic crystal ratio is at least 75% by volume even after the step of heat-treating the composite oxide at 1000 ° C. and then cooling to room temperature is repeated twice or more (especially three or more times).
[0018]
95% by volume or more, preferably 99% by volume or more of the crystal phase in the composite oxide is a cubic crystal of a zirconia-ceria-based solid solution. By setting the cubic ratio to 95% by volume or more, excellent performance as a catalyst material or the like can be exhibited.
[0019]
Further, even after repeating the step of heat-treating the composite oxide at 1000 ° C. and then cooling to room temperature twice or more, the cubic crystal ratio is at least 75% by volume, preferably at least 80% by volume. Therefore, for example, a composite oxide which is within the above range of the cubic ratio when the above step is repeated twice is included in the present invention.
[0020]
Specifically, in the above step, 5 g of the above composite oxide is placed in a crucible and heat-treated in an electric furnace preheated to 1000 ° C. in an oxidizing atmosphere at 1000 ° C. for 3 hours. It is left to cool to room temperature (about 18 ° C.) in it. This heating / cooling cycle is repeated two or more times (hereinafter, the same applies to the second invention and Examples).
[0021]
The zirconium-cerium-based composite oxide of the second invention is a composite oxide containing zirconium and cerium, wherein (1) the initial oxygen adsorption amount is 800 μmol-O 2 / g-CeO 2 or more, and (2) After the heat treatment of the composite oxide at 1000 ° C. and cooling to room temperature are repeated twice or more (especially three or more times), the composite oxide has an oxygen adsorption amount of 70% or more of the initial oxygen adsorption amount. And
[0022]
The initial oxygen adsorption amount is 800 μmol-O 2 / g-CeO 2 or more, preferably 1000 μmol-O 2 / g-CeO 2 or more.
[0023]
Even after the step of heat-treating the composite oxide at 1000 ° C. and cooling to room temperature is repeated twice or more, the composite oxide has an oxygen adsorption amount of 70% or more, preferably 80% or more of the initial oxygen adsorption amount. That is, in the second invention, the deterioration rate of the oxygen adsorption amount is preferably less than 30%.
[0024]
The second invention preferably further satisfies the requirements of the first invention. That is, (1) 95% by volume or more of the crystal phase is a cubic crystal of a zirconia-ceria-based solid solution, and (2) a step of cooling the composite oxide to room temperature after heat treatment at 1000 ° C. twice or more ( Even after repeating (especially three or more times), the cubic crystal ratio is preferably 75% by volume or more.
[0025]
The first invention and the second invention (hereinafter collectively referred to as “the present invention”) further have a specific surface area (BET method) after heat treatment of the composite oxide at 1100 ° C. of 10 m 2 / g or more, particularly 20 m 2 / g. It is preferably at least 2 / g. In particular, it is preferable that the specific surface area after the heat treatment at 1100 ° C. for 3 hours has the above value.
[0026]
The composition ratio in the present invention may be appropriately set according to the use of the final product or the like, but is usually 30 to 90% by weight as zirconium oxide and 10 to 70% by weight as cerium oxide, preferably 40 to 70% as zirconium oxide. The weight percentage and the cerium oxide may be 30 to 60 weight%.
[0027]
In the present invention, another metal (third metal) may be included as needed. For example, scandium, yttrium, lanthanum, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium and other rare earth metals, titanium, hafnium, vanadium, chromium, manganese, iron, Cobalt, nickel, copper, zinc, molybdenum, tungsten, indium, tin, antimony, phosphorus and the like can be mentioned. These can be used alone or in combination of two or more. In the present invention, among these, at least one of rare earth metals (excluding cerium), titanium and hafnium is particularly preferred. In this case, it is more preferable to include at least one of lanthanum, praseodymium and neodymium. By adding these third metals, the control of the crystal phase or the thermal cycle stability of the oxidation-reduction characteristics can be more reliably improved.
[0028]
The content of the third metal may be appropriately set according to the type of the third metal to be used, the use of the final product, and the like. It may be 15% by weight, more preferably 5 to 14% by weight.
[0029]
Further, in the present invention, sulfur can be contained in a sulfuric acid form (SO 4 ). Thereby, especially the oxidation-reduction characteristics can be further enhanced. The content of the sulfated sulfur can be appropriately changed depending on the composition of the composite oxide, the use of the final product, and the like, but is usually not more than 3% by weight in the composite oxide, preferably 0.05 to 1%. It may be set to 0.5% by weight.
[0030]
The method for producing the composite oxide of the present invention can be carried out, for example, by mixing a solution containing basic zirconium sulfate and cerium ions and then adding a base to the mixture to form a precipitate. .
[0031]
The basic zirconium sulfate is not particularly limited, for example ZrOSO 4 · ZrO 2, 5ZrO 2 · 3SO 3, 7ZrO hydrates of the compounds represented by 2 · 3SO 3 and the like. These can be used alone or in combination of two or more.
[0032]
In general, these basic salts are obtained as aggregated particles having a particle size of 0.1 to several tens μm as an aggregate of fine particles having a small solubility and a particle size of several tens of angstroms by optical measurement, which are known in the art. Or a commercially available product can be used. For example, those described in "Gmelin Handbuch, TEIL 42; Zirkonium (ISBN 3-540-93242-9, 334-353, 1958)" and the like can also be used.
[0033]
The solution containing cerium ions is not particularly limited as long as cerium ions (generally represented by Ce 3+ and Ce 4+ ) are stably present. For example, a solution in which a cerium salt is dissolved in an appropriate solvent can be used. . As the cerium salt, for example, inorganic acid salts such as cerium nitrate, sulfate and chloride, and organic acid salts such as cerium acetate and oxalate can be used. More specifically, cerium (III) nitrate, cerium (IV) nitrate, cerium (III) chloride, cerium (IV) sulfate, ammonium (III) nitrate and the like can be mentioned.
[0034]
The solvent is not particularly limited as long as it can dissolve a cerium salt, a zirconium salt or the like, but usually, water, alcohols (eg, methanol, ethanol, etc.) can be used. The concentration of the solution can be changed as appropriate depending on the composition ratio of the composite oxide and the like, but is usually about 1 to 25% by weight, preferably 10 to 20% by weight.
[0035]
Further, when a third metal is contained in the composite oxide, ions of the metal may be contained in the mixed solution. For example, a solution or mixture of a compound containing a third metal (for example, an inorganic acid salt such as a sulfate, a nitrate, or a chloride of a third metal, or an organic acid salt such as an acetate or an oxalate) containing cerium ions as it is The compound may be mixed with a liquid, or a solution of the compound may be prepared in advance, and the solution may be mixed with the solution, the mixed solution, or the basic zirconium sulfate.
[0036]
Further, when sulfated sulfur is contained in the composite oxide, a solution containing sulfate ions may be added or sulfate ions of basic zirconium sulfate may be retained. When a solution containing sulfate ions is added, a compound containing sulfate ions (for example, sulfuric acid or a sulfate such as ammonium sulfate, sodium sulfate, potassium sulfate, aluminum sulfate, or the like) is added to the solution, or added in advance. A solution of the components may be prepared, and this solution may be blended with the solution or basic zirconium sulfate. As a method for retaining the sulfate ion of the basic zirconium sulfate, for example, the pH may be changed when a hydroxide is formed by adding a base to control the sulfate ion so as not to be desorbed.
[0037]
The mixing ratio of the basic zirconium sulfate and the solution containing cerium ions can be determined by appropriately adjusting the concentration of the solution and the like so as to have the above-mentioned composition ratio. The temperature of the mixed solution is usually 80 ° C. or lower, preferably 20 to 50 ° C.
[0038]
Next, after mixing basic zirconium sulfate and a solution containing cerium ions, a base is added to the mixed solution to form a precipitate.
[0039]
The base is not particularly limited, and known alkali agents such as sodium hydroxide, potassium hydroxide, sodium carbonate, ammonium carbonate, and ammonia can be used. In the present invention, it is particularly preferable to use a strong alkali such as sodium hydroxide and potassium hydroxide. Further, these bases are preferably added as an aqueous solution. In this case, the concentration of the aqueous solution is not particularly limited as long as the pH can be adjusted, but may be generally about 5 to 50% by weight, preferably 20 to 25% by weight.
[0040]
In the present invention, the content of sulfated sulfur in the composite oxide can be particularly controlled by changing the amount of the base (ie, pH). The pH of the mixed solution may be usually 12 or more and less than 14. The amount of the base to be added may be appropriately set within this range according to the desired content.
[0041]
The generated precipitate can be collected by filtration, washing with water, etc., according to a recovery method employed in a known coprecipitation method or the like, and then by a known solid-liquid separation method. The collected precipitate may be dried if necessary. Drying may be either natural drying or heat drying.
[0042]
In the present invention, the precipitate may be further baked if necessary. The firing conditions are not particularly limited, but usually firing may be performed at 400 ° C. or higher in an oxidizing atmosphere or air. The upper limit of the firing temperature is not particularly limited as long as a desired composite oxide is obtained. The firing time may be appropriately set according to the firing temperature or the like, and may be generally about 1 to 8 hours after the temperature of the fired product reaches the set temperature. After the firing, a known pulverization treatment, classification treatment, or the like may be performed as necessary.
[0043]
The exhaust gas purifying catalyst material of the present invention contains the zirconium-cerium-based composite oxide of the present invention, and can be used, for example, as a catalyst, a co-catalyst, a catalyst carrier and the like. In particular, it is useful as a co-catalyst for assisting the action of a noble metal (eg, platinum, rhodium, palladium, iridium, etc.) which is an active component for purifying exhaust gas immediately below an engine. In addition, it can be suitably used as an OSC (oxygen adsorption) component corresponding to monitoring of OBD-II regulations.
[0044]
[Action]
In the production method of the present invention, by adding a base to a mixed solution containing basic zirconium sulfate and cerium ions. The neutralization reaction of the hydroxide ion (OH ) supplied by the sulfate and base in the basic zirconium sulfate and the neutralization reaction of the cerium ion and the hydroxide ion proceed simultaneously.
[0045]
At this time, the cerium ions are selectively present in the vicinity of the sulfate sites of the basic zirconium sulfate due to the chemical affinity with the sulfate ions, and the surface of the basic zirconium sulfate (or zirconium hydroxide depending on the progress of the neutralization reaction). Is also hydroxylated. This phenomenon generally follows the principle of late precipitation or co-precipitation.
[0046]
In the present invention, by utilizing this characteristic reaction, a precipitate in which zirconium and cerium are uniformly integrated can be efficiently obtained. Further, in this reaction process, sulfate ions contained in basic zirconium sulfate are desorbed from zirconium and then combined with cerium ions (or cerium hydroxide) due to the difference in chemical affinity between zirconium and cerium and sulfate ions. Or chemisorbed). This phenomenon is evident from the fact that the content of sulfated sulfur in the composite oxide has a large effect not on the thermal stability of the specific surface area caused by zirconium oxide but on the oxidation-reduction properties caused by cerium oxide. .
[0047]
【The invention's effect】
In the production method of the present invention, in particular, since basic zirconium sulfate is used as the zirconium precursor, a highly chemically uniform zirconium-cerium-based composite oxide can be produced with good reproducibility, and efficiently. Suitable for industrial scale production.
[0048]
Since the zirconium-cerium-based composite oxide of the present invention has a structure with high chemical uniformity, it has excellent thermal stability and oxidation-reduction properties. Accordingly, excellent heat stability and oxidation-reduction characteristics can be maintained, especially even in a heating-cooling cycle.
[0049]
Therefore, when this is used as an exhaust gas purifying catalyst material (catalyst, co-catalyst, catalyst carrier, etc.) in an internal combustion engine, the crystal structure changes even in the heating-cooling cycle by stopping, starting, accelerating, and stopping the engine. Almost no excellent redox properties can be obtained stably.
[0050]
【Example】
Examples and comparative examples are shown below to further clarify the features of the present invention. However, the present invention is not limited to these examples. Each physical property was measured by the following method. The zirconium in the examples contains hafnium (1.3 to 2.5% by weight as hafnium oxide) as an unavoidable impurity.
(1) Composition ratio of composite oxide It was examined by ICP-emission spectroscopy.
(2) Using an oxygen adsorption apparatus “Multitask TPD (TPD-1-AT)” (manufactured by Nippon Bell), the measurement was performed by the oxygen pulse method at 600 ° C.
(3) Deterioration rate of OSC (OSC)
As shown by the following equation, the difference between the initial oxygen adsorption amount (OSC 0 ) of the composite oxide and the oxygen adsorption amount (OSC 2 ) after repeating the heating-cooling cycle twice is divided by the initial oxygen adsorption amount. I asked.
[0051]
OSC (%) = [(OSC 0 −OSC 2 ) / OSC 0 ] × 100
(4) Cubic Crystal Ratio in Crystal Phase As shown by the following formula, the sum of the intensities (Ia + Ib) of the cubic crystal plane (111) of the cubic crystal of the composite oxide and the pure cerium oxide alone represents the cubic crystal of the composite oxide. It was determined by dividing the intensity (Ia) of the crystal plane (111). In addition, each intensity | strength was measured using the device "Geigerflex RAD-2C" (made by Rigaku).
[0052]
Cubic ratio (% by volume) = [Ia / (Ia + Ib)] × 100
(5) Using a sulfuric acid sulfur content analyzer “HORIBA EMIA-520” (manufactured by HORIBA, Ltd.), it was measured by a plasma combustion-infrared absorption method.
[0053]
Example 1
Basic zirconium sulfate (containing 86 g as zirconium oxide) is dispersed in 1000 g of water, and an aqueous cerium nitrate solution (containing 88 g as cerium oxide), an aqueous lanthanum nitrate solution (containing 18 g as lanthanum oxide) and an aqueous praseodymium nitrate solution (containing 8 g as praseodymium oxide) Was added to prepare a mixed solution.
[0054]
Next, a 25% by weight aqueous sodium hydroxide solution was added until the pH of the mixed solution became 13.5 to obtain a precipitate. The generated precipitate was collected by solid-liquid separation and the solid content was calcined at 660 ° C. in the air for 3 hours.
[0055]
The crystal phase of the obtained composite oxide was a single cubic crystal, and the initial oxygen adsorption amount was 412 μmol-O 2 / g (940 μmol-O 2 / g-CeO 2 ). The composition ratio was 42.9% by weight of zirconium oxide, 43.8% by weight of cerium oxide, 9.1% by weight of lanthanum oxide and 4.1% by weight of praseodymium oxide. The sulfated sulfur content was 0.1% by weight. The cubic crystal ratio after the heating-cooling cycle was 100% by volume, and the rate of deterioration of the amount of adsorbed oxygen was 7%. The BET specific surface area after heat treatment at 1100 ° C. for 3 hours was 22 m 2 / g, and the amount of adsorbed oxygen was 840 μmol-O 2 / g-CeO 2 .
[0056]
Examples 2 to 5
A composite oxide was prepared in the same manner as in Example 1, except that basic zirconium sulfate, cerium nitrate aqueous solution, lanthanum nitrate aqueous solution, and praseodymium nitrate were blended in the ratio (g) shown in Table 1. The cubic crystal ratio of each of the obtained composite oxides was 95% by volume or more.
[0057]
Composition ratio of each composite oxide, sulfated sulfur content, initial oxygen adsorption amount, cubic ratio after heating-cooling cycle and deterioration rate of oxygen adsorption amount, and oxygen adsorption amount after heat treatment at 1100 ° C. for 3 hours Table 2 shows the BET specific surface area.
[0058]
[Table 1]
Figure 0003595874
[0059]
[Table 2]
Figure 0003595874
[0060]
Comparative Example 1
An aqueous cerium nitrate solution (containing 74 g as cerium oxide) and an aqueous lanthanum nitrate solution (2 g as lanthanum oxide) were added to an aqueous zirconium nitrate solution (containing 24 g as zirconium oxide) to prepare a mixed solution, and 2 g of ammonium sulfate was further added. To this mixture, 25% by weight aqueous ammonia was added until the pH became 10.2, to generate a precipitate. The precipitate was subjected to solid-liquid separation, and the obtained solid content was calcined at 660 ° C. in the air for 3 hours. The crystal phase of this composite oxide was a mixture of two types of cubic crystals, namely, a cubic crystal of the composite oxide and a cubic crystal of cerium oxide alone. In the same manner as in Example 1, each physical property of the obtained composite oxide was examined. Table 3 shows the results.
[0061]
Comparative Example 2
An aqueous cerium nitrate solution (containing 116 g as cerium oxide) was added to an aqueous zirconium hydroxide solution (containing 84 g as zirconium oxide) to prepare a mixed solution. A 25% by weight aqueous ammonia solution was added to the mixture until the pH reached 10.2 to form a precipitate. The precipitate was subjected to solid-liquid separation, and the obtained solid content was calcined at 660 ° C. in the air for 3 hours. The crystal phase of this composite oxide was a mixture of two types of cubic crystals, namely, a cubic crystal of the composite oxide and a cubic crystal of cerium oxide alone. In the same manner as in Example 1, each physical property of the obtained composite oxide was examined. Table 3 shows the results.
[0062]
[Table 3]
Figure 0003595874
[0063]
Test example 1
The heating / cooling cycle (heat treatment cycle) test was repeated four times for the composite oxides obtained in Example 1, Comparative Example 1 and Comparative Example 2. X-ray diffraction analysis was performed on each sample for each heating / cooling cycle. The results are shown in FIGS. The OSC of each sample was measured for each heating / cooling cycle. The result is shown in FIG.
[0064]
From FIGS. 1 to 3, in the composite oxides of Comparative Examples 1 and 2, the intensity of the peak corresponding to the ceria (111) plane was increased by repeating the heat treatment cycle, and the cubic (111) zirconia-ceria solid solution was obtained. It can be seen that the intensity of the peak corresponding to the plane has decreased. This indicates that sintering of ceria has progressed and the catalytic performance has been reduced. On the other hand, it can be seen that the cubic crystal of the zirconia-ceria-based solid solution is dominant in the composite oxide of Example 1 even when the heat treatment cycle is repeated, and that the formation of pure ceria is prevented and stabilized.
[0065]
Further, from FIG. 4, it can be seen that in the composite oxides of Comparative Examples 1 and 2, the amount of adsorbed oxygen is significantly reduced by repeating the heat treatment cycle. On the other hand, in Example 1, such a decrease was not recognized, and it can be seen that relatively stable performance can be exhibited.
[0066]
Test example 2
The same heating / cooling cycle (heat treatment cycle) test as in Test Example 1 was performed on the composite oxide obtained in Example 5. The result is shown in FIG. Also, as in Test Example 1, the OSC was measured for each heating / cooling cycle. FIG. 6 shows the result.
[0067]
As shown in FIG. 5, the cubic crystal of the zirconia-ceria-based solid solution is superior to the composite oxide of Example 5, even when the heat treatment cycle is repeated. You can see that it is. In addition, FIG. 6 shows that in Example 5, a significant decrease in the amount of adsorbed oxygen was not observed, and relatively stable performance could be exhibited.
[Brief description of the drawings]
FIG. 1 is a view showing a result of an X-ray diffraction analysis when a heat treatment cycle test is performed on the composite oxide of Example 1.
FIG. 2 is a view showing a result of an X-ray diffraction analysis when a heat treatment cycle test is performed on the composite oxide of Comparative Example 1.
FIG. 3 is a view showing a result of an X-ray diffraction analysis when a heat treatment cycle test is performed on the composite oxide of Comparative Example 2.
FIG. 4 is a view showing OSC measurement results when a heat treatment cycle test was performed on each of the composite oxides of Example 1, Comparative Examples 1 and 2.
FIG. 5 is a diagram showing the results of X-ray diffraction analysis when a heat treatment cycle test was performed on the composite oxide of Example 5.
FIG. 6 is a view showing an OSC measurement result when a heat treatment cycle test is performed on the composite oxide of Example 5.

Claims (10)

ジルコニウム及びセリウムを含む複合酸化物であって、
(1)結晶相の95体積%以上がジルコニア−セリア系固溶体の立方晶であり、かつ、(2)当該複合酸化物を1000℃で熱処理した後に室温まで冷却する工程を2回以上繰り返した後でも、当該立方晶比率が75体積%以上であることを特徴とするジルコニウム−セリウム系複合酸化物。
A composite oxide containing zirconium and cerium,
(1) 95% by volume or more of the crystal phase is a cubic crystal of a zirconia-ceria-based solid solution, and (2) after repeating the step of heat-treating the composite oxide at 1000 ° C. and then cooling to room temperature at least twice. However, the cubic crystal ratio is 75% by volume or more, a zirconium-cerium-based composite oxide.
ジルコニウム及びセリウムを含む複合酸化物であって、
(1)初期酸素吸着量が800μmol−O/g−CeO以上であり、かつ、(2)当該複合酸化物を1000℃で熱処理した後に室温まで冷却する工程を2回以上繰り返した後でも、当該初期酸素吸着量の70%以上の酸素吸着量を有することを特徴とするジルコニウム−セリウム系複合酸化物。
A composite oxide containing zirconium and cerium,
(1) Even after the initial oxygen adsorption amount is 800 μmol-O 2 / g-CeO 2 or more, and (2) the step of heat-treating the composite oxide at 1000 ° C. and then cooling to room temperature is repeated twice or more. A zirconium-cerium-based composite oxide having an oxygen adsorption amount of 70% or more of the initial oxygen adsorption amount.
ジルコニウム及びセリウムを含む複合酸化物であって、
(1)初期酸素吸着量が800μmol−O/g−CeO以上であり、かつ、(2)当該複合酸化物を1000℃で熱処理した後に室温まで冷却する工程を2回以上繰り返した後でも、当該初期酸素吸着量の70%以上の酸素吸着量を有することを特徴とする請求項1記載のジルコニウム−セリウム系複合酸化物。
A composite oxide containing zirconium and cerium,
(1) Even after the initial oxygen adsorption amount is 800 μmol-O 2 / g-CeO 2 or more, and (2) the step of heat-treating the composite oxide at 1000 ° C. and then cooling to room temperature is repeated twice or more. 2. The zirconium-cerium-based composite oxide according to claim 1, having an oxygen adsorption amount of 70% or more of the initial oxygen adsorption amount.
複合酸化物を1100℃で熱処理した後の比表面積が10m/g以上である請求項1〜3のいずれかに記載のジルコニウム−セリウム系複合酸化物。The zirconium-cerium composite oxide according to any one of claims 1 to 3, wherein a specific surface area of the composite oxide after heat treatment at 1100 ° C is 10 m 2 / g or more. 組成比率が、酸化ジルコニウムとして30〜90重量%及び酸化セリウムとして10〜70重量%である請求項1〜4のいずれかに記載のジルコニウム−セリウム系複合酸化物。The zirconium-cerium-based composite oxide according to any one of claims 1 to 4, wherein a composition ratio is 30 to 90% by weight as zirconium oxide and 10 to 70% by weight as cerium oxide. さらに、希土類金属(セリウムを除く。)、チタン及びハフニウムの少なくとも1種を含有する請求項1〜5のいずれかに記載のジルコニウム−セリウム系複合酸化物。The zirconium-cerium-based composite oxide according to any one of claims 1 to 5, further comprising a rare earth metal (excluding cerium), at least one of titanium and hafnium. さらに、硫黄を硫酸態として3重量%を超えない範囲で含有する請求項1〜6のいずれかに記載のジルコニウム−セリウム系複合酸化物。The zirconium-cerium-based composite oxide according to any one of claims 1 to 6, further comprising sulfur in a sulfated form in a range not exceeding 3% by weight. 塩基性硫酸ジルコニウムとセリウムイオンを含む溶液とを混合した後、当該混合液に塩基を添加し、pHを12以上14未満とすることにより沈殿物を生成させることを特徴とするジルコニウムーセリウム系複合酸化物の製造方法。After mixing a basic zirconium sulfate and a solution containing cerium ions, a base is added to the mixed solution, and a pH is adjusted to 12 or more and less than 14 to form a precipitate, thereby producing a zirconium-cerium composite. A method for producing an oxide. 混合液が、希土類金属(セリウムを除く。)、チタン及びハフニウムの少なくとも1種のイオンを含有する請求項8記載の製造方法。9. The production method according to claim 8, wherein the mixture contains at least one ion of rare earth metals (excluding cerium), titanium and hafnium. 請求項1〜7のいずれかに記載のジルコニウム−セリウム系複合酸化物を含む排ガス浄化用触媒材料。An exhaust gas purifying catalyst material comprising the zirconium-cerium-based composite oxide according to claim 1.
JP2000058924A 1999-03-05 2000-03-03 Zirconium-cerium composite oxide and method for producing the same Expired - Lifetime JP3595874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000058924A JP3595874B2 (en) 1999-03-05 2000-03-03 Zirconium-cerium composite oxide and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5796899 1999-03-05
JP11-57968 1999-03-05
JP2000058924A JP3595874B2 (en) 1999-03-05 2000-03-03 Zirconium-cerium composite oxide and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000319019A JP2000319019A (en) 2000-11-21
JP3595874B2 true JP3595874B2 (en) 2004-12-02

Family

ID=26399056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000058924A Expired - Lifetime JP3595874B2 (en) 1999-03-05 2000-03-03 Zirconium-cerium composite oxide and method for producing the same

Country Status (1)

Country Link
JP (1) JP3595874B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150264A (en) * 2006-12-20 2008-07-03 Nippon Denko Kk Ceria-zirconia-based compound oxide and its manufacturing method

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2841547B1 (en) 2002-06-26 2005-05-06 Rhodia Elect & Catalysis COMPOSITION BASED ON ZIRCONIUM OXIDE AND CERIUM OXIDES, LANTHAN AND ANOTHER RARE EARTH, PROCESS FOR PREPARING THE SAME AND USE THEREOF AS CATALYST
JP3797313B2 (en) 2002-10-28 2006-07-19 トヨタ自動車株式会社 Method for producing metal oxide particles and catalyst for exhaust gas purification
FR2852591B1 (en) * 2003-03-18 2006-06-16 Rhodia Elect & Catalysis COMPOSITION BASED ON ZIRCONIUM OXIDE AND CERIUM OXIDE AT MAXIMUM TEMPERATURE OF REDUCED REDUCIBILITY, PROCESS FOR PREPARING THE SAME AND USE THEREOF AS CATALYST
FR2852592B1 (en) * 2003-03-18 2007-02-23 Rhodia Elect & Catalysis COMPOSITIONS BASED ON A CERIUM OXIDE, A ZIRCONIUM OXIDE AND, POSSIBLY, AN OXIDE OF ANOTHER RARE EARTH, WITH A HIGH SPECIFIC SURFACE AT 1100 C, PROCESS FOR THEIR PREPARATION AND THEIR USE AS A CATALYST
FR2866871B1 (en) 2004-02-26 2007-01-19 Rhodia Chimie Sa COMPOSITION BASED ON ZIRCONIUM, PRASEODYM, LANTHAN OR NEODYME OXIDES, PREPARATION METHOD AND USE IN A CATALYTIC SYSTEM
JP4165419B2 (en) 2004-03-09 2008-10-15 トヨタ自動車株式会社 Method for producing metal oxide particles and exhaust gas purification catalyst
KR100881300B1 (en) 2004-04-27 2009-02-03 도요타 지도샤(주) Process for producing metal oxide particle and exhaust gas purifying catalyst
JP4165443B2 (en) 2004-04-27 2008-10-15 トヨタ自動車株式会社 Method for producing metal oxide particles and exhaust gas purification catalyst
JP4972868B2 (en) * 2005-03-17 2012-07-11 東ソー株式会社 Surface-modified ceria / zirconia hydrated oxide, oxide thereof, production method thereof, and use thereof
FR2884732B1 (en) * 2005-04-20 2007-08-24 Rhodia Chimie Sa COLLOIDAL DISPERSION OF A CERIUM COMPOUND AND ANOTHER ELEMENT SELECTED FROM ZIRCONIUM, RARE EARTHS, TITANIUM AND TIN, DISPERSIBLE SOLID BASED ON THIS COMPOUND AND METHODS OF PREPARATION
JP5344805B2 (en) * 2006-06-20 2013-11-20 第一稀元素化学工業株式会社 Zirconia-based composite oxide and method for producing the same
JP5008355B2 (en) * 2006-06-30 2012-08-22 第一稀元素化学工業株式会社 Cerium oxide-zirconium oxide composite oxide and method for producing the same
JP5063252B2 (en) * 2006-08-22 2012-10-31 第一稀元素化学工業株式会社 Porous zirconia-based powder and method for producing the same
JP5251521B2 (en) 2007-02-02 2013-07-31 旭硝子株式会社 Method for producing solid solution fine particles
JP2008289971A (en) 2007-05-23 2008-12-04 Toyota Motor Corp Core-shell structure and its manufacturing method, and exhaust gas cleaning catalyst containing the core-shell structure
JP2009067666A (en) * 2007-09-14 2009-04-02 Daiichi Kigensokagaku Kogyo Co Ltd Ceria-zirconia solid solution sol and its production method
JP5330777B2 (en) * 2008-09-08 2013-10-30 トヨタ自動車株式会社 Oxygen storage / release material and exhaust gas purification catalyst containing the same
FR2959735B1 (en) * 2010-05-06 2012-06-22 Rhodia Operations COMPOSITION BASED ON ZIRCONIUM OXIDES, CERIUM OF AT LEAST ANOTHER RARE EARTH, WITH SPECIFIC POROSITY, PROCESS FOR PREPARATION AND USE IN CATALYSIS.
JP5816648B2 (en) 2013-04-18 2015-11-18 三井金属鉱業株式会社 Exhaust gas purification catalyst composition and exhaust gas purification catalyst
CN111417452B (en) 2018-01-08 2023-04-04 太平洋工业发展公司 Catalyst comprising a ceria-zirconia-oxygen storage material and method for producing the catalyst
EP4269351A4 (en) * 2020-12-24 2024-06-26 Mitsui Mining & Smelting Co., Ltd. Composite oxide and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150264A (en) * 2006-12-20 2008-07-03 Nippon Denko Kk Ceria-zirconia-based compound oxide and its manufacturing method

Also Published As

Publication number Publication date
JP2000319019A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
JP3595874B2 (en) Zirconium-cerium composite oxide and method for producing the same
JP4029233B2 (en) Cerium-zirconium composite oxide, method for producing the same, and catalyst material for exhaust gas purification
US6255242B1 (en) Zirconium- and cerium-based mixed oxide and method of production thereof
US5945370A (en) Composite oxide having oxygen absorbing and desorbing capability and method for preparing the same
JP3429967B2 (en) Oxygen storage cerium-based composite oxide
JP3623517B2 (en) Composition based on cerium oxide and zirconium oxide and having high specific surface area and high oxygen storage capacity, and method for producing the same
EP1872851B1 (en) Cerium oxide-zirconium oxide-based mixed oxide and method for the production thereof
JP5216189B2 (en) Exhaust gas purification catalyst
JPH10182155A (en) Multiple oxide, multiple oxide support and catalyst containing the multiple oxide
EP3067322B1 (en) Cerium-zirconium-based composite oxide and method for producing same
WO2008004385A1 (en) Exhaust gas purification catalyst
JPWO2003022740A1 (en) Cerium oxide, its production method and exhaust gas purifying catalyst
JPH06211525A (en) Composition based on cerium(iv) oxide, preparation and use thereof
JP2003238159A (en) Composite oxide having low temperature reduction activity and its manufacturing method
JP2000507877A (en) Method for treating exhaust gas from an internal combustion engine operated with a sulfur-containing fuel
WO2006134787A1 (en) Exhaust gas purifying catalyst
JP2003277059A (en) Ceria-zirconia compound oxide
US8097556B2 (en) Exhaust gas-purifying catalyst and method of manufacturing the same
RU2440299C1 (en) Composition based on zirconium oxide, yttrium oxide and tungsten oxide, method of production and use as catalyst or catalyst support
EP2155365B1 (en) Oxygen storage/release material and exhaust gas purifying catalyst comprising the same
JP2013203609A (en) Oxygen storable ceramic material, method for producing the same, and catalyst
JP2003265958A (en) Exhaust gas cleaning catalyst
JP2005281021A (en) Rare earth multiple oxide
JP2019189484A (en) Oxygen storage material and manufacturing method therefor
JP2000344523A (en) Cerium-zirconium based composite oxide excellent in oxigen absorbing and discharging power and manufacture for the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3595874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term