JP2002102701A - Ordinary temperature catalyst - Google Patents

Ordinary temperature catalyst

Info

Publication number
JP2002102701A
JP2002102701A JP2000296968A JP2000296968A JP2002102701A JP 2002102701 A JP2002102701 A JP 2002102701A JP 2000296968 A JP2000296968 A JP 2000296968A JP 2000296968 A JP2000296968 A JP 2000296968A JP 2002102701 A JP2002102701 A JP 2002102701A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
noble metal
oxygen
ordinary temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000296968A
Other languages
Japanese (ja)
Other versions
JP4656353B2 (en
Inventor
Toshitaka Tanabe
稔貴 田辺
Hideo Sofugawa
英夫 曽布川
Kenichiro Suzuki
賢一郎 鈴木
Shigeru Sasaki
慈 佐々木
Akira Morikawa
彰 森川
Hiroaki Hayashi
宏明 林
Masahiro Sugiura
正洽 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2000296968A priority Critical patent/JP4656353B2/en
Publication of JP2002102701A publication Critical patent/JP2002102701A/en
Application granted granted Critical
Publication of JP4656353B2 publication Critical patent/JP4656353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an ordinary temperature catalyst which is activated at ordinary temperature below 50 deg.C so that it can decompose and remove environmentally pollution load materials such as CO, amines and formaldehyde. SOLUTION: This ordinary temperature catalyst is obtained by carrying a noble metal on an oxide with introduced oxygen deficiency, and >=90% of the noble metal is carried in the form of fine particles of <=2 nm particle diameter. Active oxygen contained in the oxygen deficiency reacts with environmentally pollution load materials adsorbed on the surface of the catalyst at ordinary temperature below 50 deg.C to oxidize and decompose the materials. Though the active oxygen is consumed by the reaction, gaseous oxygen contained in the air is incorporated into the catalyst and becomes active oxygen, which reacts further with environmentally pollution load materials. Since the noble metal is carried as the fine particles, numerous active sites are present and the catalyst has very high activity at ordinary temperature below 50 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば一酸化炭素
(CO)、炭化水素(HC)、アルデヒド類、エチレン、ア
ンモニアなどの環境負荷物質を、50℃以下の常温(室
温)で容易に分解除去できる常温触媒に関する。
The present invention relates to a method for easily decomposing environmentally hazardous substances such as carbon monoxide (CO), hydrocarbons (HC), aldehydes, ethylene and ammonia at room temperature (room temperature) of 50 ° C. or less. It relates to a room temperature catalyst that can be removed.

【0002】[0002]

【従来の技術】例えば合板用接着剤あるいは家具に塗装
されている塗膜などには遊離ホルムアルデヒドが含まれ
る場合があり、それが徐々に大気中に放出される。また
ホルムアルデヒドを原料とする接着剤や塗料を用いた工
業製品からは、劣化に伴ってホルムアルデヒドが発生す
る。このホルムアルデヒドは刺激臭があり、シックハウ
ス症候群の原因物質の1つとして指摘されている。その
ため住宅メーカでは、住宅の施工後施主に引き渡す前
に、住宅内をエージングしてホルムアルデヒド濃度を低
減する努力を行っているが、エージングだけでは必ずし
も厚生省の基準値を満たしているとは言えず、空気中の
ホルムアルデヒド濃度のさらなる低減が求められてい
る。
2. Description of the Related Art For example, adhesives for plywood or coatings applied to furniture may contain free formaldehyde, which is gradually released into the atmosphere. In addition, formaldehyde is generated from industrial products using adhesives and paints using formaldehyde as a raw material along with deterioration. This formaldehyde has a pungent odor and is pointed out as one of the causative substances of sick house syndrome. For this reason, house manufacturers are making efforts to reduce the formaldehyde concentration by aging the house before handing it over to the owner after the construction of the house, but aging alone does not necessarily meet the standards of the Ministry of Health and Welfare, There is a need for a further reduction in the formaldehyde concentration in the air.

【0003】そこで空気中の環境負荷物質を除去する方
法として、オゾンを用いる方法、あるいは活性炭やゼオ
ライトなどの吸着材を用いる方法が広く行われている。
例えば冷蔵庫、押入、下駄箱などに置いて脱臭する脱臭
剤として、吸着材を空気の流通可能な容器に収納したも
のが市販されている。また吸着材や光触媒を内蔵した空
気清浄機なども知られている。
[0003] Therefore, as a method for removing environmentally hazardous substances from the air, a method using ozone or a method using an adsorbent such as activated carbon or zeolite is widely used.
For example, as a deodorant which is placed in a refrigerator, a closet, a shoe box or the like to deodorize, a product in which an adsorbent is stored in a container through which air can flow is commercially available. Also, an air purifier with a built-in adsorbent or photocatalyst is known.

【0004】また空気中に含まれているエチレンは、青
果物の生理作用を促進させ追熟老化を進行させるため
に、エチレンによって青果物の鮮度が低下すると考えら
れている。したがって青果物の鮮度保持には大気からの
エチレンの除去が有効であり、オゾンや過酸化水素によ
りエチレンを分解させたり、エチレンを吸着除去したり
する方法が提案されている。
[0004] In addition, ethylene contained in the air promotes the physiological action of the fruits and vegetables to promote ripening and aging, so that it is thought that the freshness of the fruits and vegetables is reduced by ethylene. Therefore, the removal of ethylene from the atmosphere is effective for maintaining the freshness of fruits and vegetables, and methods of decomposing ethylene by ozone and hydrogen peroxide and adsorbing and removing ethylene have been proposed.

【0005】例えば特開平7-260331号公報には、生鮮野
菜類を収容する貯蔵容器内に光触媒と紫外線光源を配置
し、光触媒作用によってエチレン、アセトアルデヒドな
ど生鮮野菜類の鮮度保持に有害なガスを分解除去する装
置が開示されている。
[0005] For example, Japanese Patent Application Laid-Open No. 7-260331 discloses that a photocatalyst and an ultraviolet light source are arranged in a storage container for accommodating fresh vegetables, and a gas harmful to freshness maintenance of fresh vegetables such as ethylene and acetaldehyde is provided by the photocatalytic action. An apparatus for disassembly and removal is disclosed.

【0006】また例えば特開平10−296087号公報には、
ジルコニアまたはセリアを含む担体に貴金属を担持した
触媒が開示されている。この触媒によれば、 200℃程度
の温度で用いることによってトリメチルアミンを酸化分
解することができる。
For example, Japanese Patent Application Laid-Open No. 10-296087 discloses that
A catalyst in which a noble metal is supported on a support containing zirconia or ceria is disclosed. According to this catalyst, trimethylamine can be oxidatively decomposed at a temperature of about 200 ° C.

【0007】そしてCOやHCを酸化する触媒、あるいはNO
x を還元する触媒として、アルミナなどの担体に貴金属
を担持した触媒が知られ、排ガス浄化用触媒などとして
広く用いられている。
A catalyst for oxidizing CO or HC, or NO
As a catalyst for reducing x , a catalyst in which a noble metal is supported on a carrier such as alumina is known, and is widely used as an exhaust gas purifying catalyst and the like.

【0008】[0008]

【発明が解決しようとする課題】ところがオゾンを用い
る方法では、オゾンの効果を発現させるためには規制値
を上回るオゾン濃度が必要であり、環境負荷物質を除去
した後にもオゾンが残留する恐れがある。そのため残留
オゾンを処理するための触媒が必要となるなど、実用的
でない。
However, in the method using ozone, an ozone concentration exceeding a regulated value is required in order to exert the effect of ozone, and there is a possibility that ozone will remain even after removing environmental load substances. is there. Therefore, it is not practical because a catalyst for treating residual ozone is required.

【0009】また吸着材によって空気中の環境負荷物質
を吸着して除去する方法では、吸着材の吸着容量を越え
て吸着することは困難であり、吸着量が飽和する前に吸
着材を交換する必要がある。
In the method of adsorbing and removing environmentally hazardous substances in the air by the adsorbent, it is difficult to adsorb the adsorbent in excess of the adsorbing capacity of the adsorbent. There is a need.

【0010】そして光触媒を利用する方法では、光触媒
の励起源となる人工光源が必要であり、常時光源を光触
媒に照射するとなると光源を作動させる電気代も必要と
なり、コスト的に高いものとなっている。
In the method using a photocatalyst, an artificial light source is required as an excitation source of the photocatalyst. If the light source is constantly irradiated with the light source, an electricity cost for operating the light source is also required, which is expensive. I have.

【0011】さらに触媒を利用する方法では、貴金属の
活性化温度まで温度を上げなければならず、50℃以下の
常温で活性化する触媒はまだ知られていない。
Further, in the method using a catalyst, the temperature must be raised to the activation temperature of the noble metal, and a catalyst that activates at a normal temperature of 50 ° C. or less has not yet been known.

【0012】本発明はこのような事情に鑑みてなされた
ものであり、50℃以下の常温で活性化してCO、アミン
類、ホルムアルデヒドなどの環境負荷物質を分解除去で
きる触媒を提供することを目的とする。
The present invention has been made in view of such circumstances, and has as its object to provide a catalyst which can be activated at room temperature of 50 ° C. or lower to decompose and remove environmentally harmful substances such as CO, amines and formaldehyde. And

【0013】[0013]

【課題を解決するための手段】上記課題を解決する本発
明の常温触媒の特徴は、酸素欠損が導入された酸化物に
貴金属を担持してなり、貴金属はその90%以上が粒径2
nm以下の微粒子状態で担持されていることにある。
The room temperature catalyst of the present invention which solves the above-mentioned problems is characterized in that a noble metal is supported on an oxide into which oxygen deficiency has been introduced, and 90% or more of the noble metal has a particle diameter of 2%.
That is, it is supported in the state of fine particles of nm or less.

【0014】この酸化物としては、遷移金属酸化物及び
希土類酸化物から選ばれる少なくとも一種が望ましく、
遷移金属酸化物は、Zr、Fe、Mn、Co、Ni、Cu、Cr、Mo及
びNbの酸化物から選ばれる少なくとも一種であり、希土
類酸化物はCe、Y、Nd、Pr及びSmの酸化物及びCeO2−Zr
O2から選ばれる少なくとも一種であることが望ましい。
また貴金属としてはPt,Pd,Rh,Ir,Ru及びAuが望まし
く、Ptが特に望ましい。
This oxide is preferably at least one selected from transition metal oxides and rare earth oxides.
Transition metal oxide is at least one selected from oxides of Zr, Fe, Mn, Co, Ni, Cu, Cr, Mo and Nb, and rare earth oxides are oxides of Ce, Y, Nd, Pr and Sm And CeO 2 -Zr
Desirably, it is at least one selected from O 2 .
Pt, Pd, Rh, Ir, Ru and Au are desirable as the noble metal, and Pt is particularly desirable.

【0015】[0015]

【発明の実施の形態】本発明の常温触媒は、酸素欠損が
導入された酸化物に貴金属を担持している。酸素欠損と
は、酸化物を形成している酸素の一部が脱離したきわめ
て活性の高い状態をいい、酸化物として結合している酸
素のモル量が規定値より少ない状態をいう。例えばCe酸
化物の場合はCeO2が酸素欠損の無い状態であるので、酸
素原子がCe原子に対して2倍モル未満であれば酸素欠損
が導入されているということになる。
BEST MODE FOR CARRYING OUT THE INVENTION The room temperature catalyst of the present invention has a noble metal supported on an oxide into which oxygen deficiency has been introduced. Oxygen deficiency refers to a highly active state in which part of oxygen forming an oxide is eliminated, and a state in which the molar amount of oxygen bonded as an oxide is smaller than a specified value. For example, in the case of Ce oxide, CeO 2 has no oxygen deficiency. Therefore, if the oxygen atom is less than twice the mole of Ce atom, it means that oxygen deficiency has been introduced.

【0016】この酸素欠損には活性酸素が含まれ、この
活性酸素は、触媒表面に吸着した環境負荷物質と50℃以
下の常温で反応し、環境負荷物質を酸化分解する。触媒
中に含まれていた活性酸素は、環境負荷物質との反応に
よって消費されるが、空気中に含まれる酸素ガスが触媒
中に取り込まれて活性酸素となり、それがさらに環境負
荷物質と反応する。このように酸化反応が触媒的に進行
することにより、環境負荷物質を酸化分解して除去する
ことができる。
This oxygen deficiency contains active oxygen, and this active oxygen reacts with the environmental load substance adsorbed on the catalyst surface at a room temperature of 50 ° C. or lower, and oxidatively decomposes the environmental load substance. The active oxygen contained in the catalyst is consumed by the reaction with environmentally harmful substances, but the oxygen gas contained in the air is taken into the catalyst to become active oxygen, which further reacts with the environmentally harmful substances . As described above, the oxidation reaction proceeds catalytically, whereby the environmentally hazardous substance can be oxidatively decomposed and removed.

【0017】本発明の常温触媒は、この酸素欠損が導入
された酸化物に貴金属を担持している。酸素欠損によっ
て酸化物自体の活性が高められ、その結果、環境負荷物
質の貴金属への吸着性が弱まる。これにより貴金属の活
性が高まり、酸素欠損部を経由して活性化された活性酸
素を利用して環境負荷物質の酸化反応が進行する。
The room temperature catalyst of the present invention carries a noble metal on the oxide into which the oxygen deficiency has been introduced. The activity of the oxide itself is enhanced by the oxygen deficiency, and as a result, the ability of the environmentally hazardous substance to be adsorbed on the noble metal is reduced. As a result, the activity of the noble metal is increased, and the oxidation reaction of the environmentally hazardous substance proceeds using active oxygen activated via the oxygen deficient portion.

【0018】例えばCOは活性酸素によって酸化されてCO
2 となり、ホルムアルデヒド(HCHO)あるいはエチレン
(C2H4)などは酸化されてCO2 及び H2Oとなって無害化
される。
For example, CO is oxidized by active oxygen to form CO.
2 and formaldehyde (HCHO) or ethylene (C 2 H 4 ) is oxidized to CO 2 and H 2 O and made harmless.

【0019】さらに本発明の常温触媒では、貴金属はそ
の90%以上が粒径2nm以下の微粒子状態で担持されてい
る。貴金属をこのように微細な状態で担持しているた
め、その活性点がきわめて多く、50℃以下の常温におけ
る活性がきわめて高い。
Further, in the room temperature catalyst of the present invention, 90% or more of the noble metal is supported in the form of fine particles having a particle size of 2 nm or less. Since the noble metal is carried in such a fine state, its active sites are extremely large and its activity at room temperature of 50 ° C. or less is extremely high.

【0020】酸化物としては、酸素欠損を導入可能なも
のであればよいが、Zr、Fe、Mn、Co、Ni、Cu、Cr、Mo及
びNbから選ばれる少なくとも一種の遷移金属の酸化物、
あるいはCe、Y、Nd、Pr及びSmから選ばれる少なくとも
一種の希土類元素の酸化物が好ましい。このうちの一種
でもよいし、複数種類併用することもできる。
As the oxide, any oxide can be introduced as long as it can introduce oxygen deficiency, and an oxide of at least one transition metal selected from Zr, Fe, Mn, Co, Ni, Cu, Cr, Mo and Nb;
Alternatively, an oxide of at least one rare earth element selected from Ce, Y, Nd, Pr and Sm is preferable. One of these may be used, or a plurality of them may be used in combination.

【0021】中でもCe酸化物は酸素欠損を導入しやす
く、かつ酸素欠損状態を安定して保持できるので特に好
ましい酸化物である。またCe酸化物とZr酸化物とを併用
すれば、Ce酸化物の酸素欠損状態の安定性が一層向上す
る。この場合、Ce酸化物とZr酸化物とは、複合酸化物又
は固溶体を形成していることがさらに望ましい。複合酸
化物又は固溶体とすることにより、酸素欠損をさらに多
く形成することができ、また酸素欠損状態の安定性もさ
らに向上する。
Among them, Ce oxide is a particularly preferred oxide because it easily introduces oxygen deficiency and can stably maintain the oxygen deficiency state. If Ce oxide and Zr oxide are used together, the stability of the oxygen deficiency state of Ce oxide is further improved. In this case, it is more desirable that the Ce oxide and the Zr oxide form a composite oxide or a solid solution. By using a composite oxide or a solid solution, more oxygen vacancies can be formed, and the stability of the oxygen deficiency state is further improved.

【0022】酸化物に酸素欠損を形成するには、酸化物
を還元処理する方法が例示される。例えば上記の酸化物
を 100℃〜 800℃の温度範囲において、還元ガス気流中
でおよそ1時間程度処理すればよい。酸化物が高温下で
還元ガスと接触することで酸化物の酸素の一部が還元ガ
スと結合して除去され、その結果、酸化物の一部が酸素
欠損状態となり酸素欠損を導入することができる。還元
処理温度が 100℃未満では還元反応が進行せず所望の酸
素欠損状態を形成することが困難となる。また、処理温
度が 800℃を超えると酸化物の比表面積が小さくなり触
媒活性が低下するので好ましくない。なおヒドラジン、
水素化硼素アルミニウム等に代表される還元性薬剤を用
いて還元処理することも可能である。
In order to form oxygen vacancies in the oxide, a method of reducing the oxide is exemplified. For example, the above oxide may be treated in a reducing gas stream at a temperature of 100 ° C. to 800 ° C. for about 1 hour. When the oxide comes in contact with the reducing gas at a high temperature, part of the oxygen of the oxide is combined with the reducing gas and removed, and as a result, part of the oxide becomes an oxygen-deficient state and oxygen deficiency may be introduced. it can. When the temperature of the reduction treatment is lower than 100 ° C., the reduction reaction does not proceed, and it is difficult to form a desired oxygen deficiency state. On the other hand, if the treatment temperature exceeds 800 ° C., the specific surface area of the oxide becomes small, and the catalytic activity is undesirably reduced. Hydrazine,
The reduction treatment can also be performed using a reducing agent represented by aluminum borohydride or the like.

【0023】還元処理に使用される還元ガスとしては、
水素、一酸化炭素などの還元性ガスの他、メタンなどの
炭化水素やアルデヒド類などが挙げられる。還元処理時
の還元ガス濃度としては、 0.1体積%〜 100体積%、よ
り好ましくは1体積%から 100体積%が良い。
The reducing gas used in the reduction treatment includes:
In addition to reducing gases such as hydrogen and carbon monoxide, hydrocarbons such as methane and aldehydes may be mentioned. The concentration of the reducing gas at the time of the reduction treatment is preferably 0.1% by volume to 100% by volume, more preferably 1% by volume to 100% by volume.

【0024】そして、含まれる活性酸素量と酸素欠損の
量との関係を予め知っておくことにより、還元処理の温
度、時間などを調整することで酸素欠損の量を容易に調
整することができる。例えば、活性酸素を40μモル/g
以上含有することが望ましい。活性酸素の含有量が40μ
モル/g未満であると、50℃以下の常温における環境負
荷物質との反応が十分でない。活性酸素量を40μモル/
g以上とすれば、環境負荷物質の酸化反応が速やかに進
行し、常温域での環境負荷物質の浄化活性がきわめて高
くなる。なお50℃を超える高温でも環境負荷物質の酸化
浄化は可能であるが、酸素欠損が喪失する場合があるの
で50℃以下、より好ましくは10〜40℃の範囲で使用する
ことが望ましい。
By knowing the relationship between the amount of active oxygen contained and the amount of oxygen deficiency in advance, the amount of oxygen deficiency can be easily adjusted by adjusting the temperature and time of the reduction treatment. . For example, 40 μmol / g of active oxygen
It is desirable to contain the above. Active oxygen content is 40μ
If it is less than mol / g, the reaction with the environmentally harmful substance at room temperature of 50 ° C. or less is not sufficient. The amount of active oxygen is 40 μmol /
When the amount is greater than or equal to g, the oxidation reaction of the environmentally harmful substance proceeds rapidly, and the activity of purifying the environmentally harmful substance in a normal temperature range becomes extremely high. Although oxidative purification of environmentally harmful substances is possible even at a high temperature exceeding 50 ° C., it is desirable to use it at 50 ° C. or lower, more preferably 10 to 40 ° C., because oxygen deficiency may be lost.

【0025】本発明の常温触媒に担持される貴金属とし
ては、Pt、Pd、Rh、Ir、Au、Ruから選ばれる少なくとも
一種を用いることができる。このうち一種でもよいし、
複数種類を担持することもできる。活性の高いPtが特に
望ましい。この貴金属の担持量は、酸素欠損が導入され
た酸化物に対して 0.1〜10重量%とするのが好ましい。
0.1重量%未満では50℃以下での触媒活性が得られない
ので好ましくない。また、貴金属を10重量%を超えて担
持しても添加の割に浄化効率が向上せず、高価な貴金属
を多量使用することになりコストアップとなる。
As the noble metal supported on the room temperature catalyst of the present invention, at least one selected from Pt, Pd, Rh, Ir, Au and Ru can be used. One of these may be
A plurality of types can be carried. Highly active Pt is particularly desirable. The amount of the noble metal carried is preferably 0.1 to 10% by weight based on the oxide into which oxygen vacancies have been introduced.
If the content is less than 0.1% by weight, the catalytic activity at 50 ° C. or less cannot be obtained, which is not preferable. Further, even if the precious metal is supported in an amount exceeding 10% by weight, the purification efficiency is not improved for the addition, and a large amount of expensive precious metal is used, resulting in an increase in cost.

【0026】貴金属の担持には、吸着担持法、蒸発乾固
法、超臨界流体法など公知の担持方法を利用することが
できる。そして貴金属をその90%以上が粒径2nm以下の
微粒子状態で担持するには、貴金属薬液として担持した
後の焼成条件を調整する方法、あるいは酸化物の比表面
積を調整することで容易に行うことができる。大気中で
焼成する場合には、例えば焼成温度を 500℃以下とすれ
ばよい。また例えばCeO2−ZrO2固溶体に担持する場合に
は、CeO2−ZrO2固溶体の比表面積が 100m2/g以上のも
のを用いるとよい。酸化物を還元処理する前に貴金属を
担持しておき、それを還元処理することにより、より効
果的に酸素欠損を導入することができる。
For supporting the noble metal, a known supporting method such as an adsorption supporting method, an evaporation to dryness method and a supercritical fluid method can be used. In order to support the noble metal in a fine particle state in which 90% or more of the noble metal has a particle size of 2 nm or less, it is easy to adjust the firing conditions after supporting the noble metal as a chemical solution or to adjust the specific surface area of the oxide. Can be. When firing in the air, for example, the firing temperature may be set to 500 ° C. or lower. Also for example, when supported on CeO 2 -ZrO 2 solid solution, the specific surface area of CeO 2 -ZrO 2 solid solution is preferably used as more than 100 m 2 / g. By preserving a noble metal before reducing the oxide and subjecting the noble metal to a reducing treatment, oxygen vacancies can be more effectively introduced.

【0027】以下、酸化物として固溶体又は複合酸化物
となっているCeO2−ZrO2を用いた場合について、本発明
の常温触媒の構成を具体的に説明する。
Hereinafter, the structure of the room temperature catalyst of the present invention will be described in detail when CeO 2 -ZrO 2 which is a solid solution or a composite oxide is used as the oxide.

【0028】CeO2−ZrO2は、Ce化合物とZr化合物の少な
くとも一方が溶解した溶液を用い、必要に応じて他方の
酸化物粉末を混合して、共沈法、アルコキシド法などで
析出させた後、それを焼成することで形成することがで
きる。またCeO2粉末とZrO2粉末との混合物を高温で焼成
してもよい。
CeO 2 -ZrO 2 was precipitated by a co-precipitation method, an alkoxide method, or the like, using a solution in which at least one of a Ce compound and a Zr compound was dissolved, mixing the other oxide powder as necessary. Thereafter, it can be formed by firing. Further, a mixture of CeO 2 powder and ZrO 2 powder may be fired at a high temperature.

【0029】CeO2−ZrO2におけるCeとZrのモル比は、C
e:Zr= 100:1〜1: 100の範囲が好ましく、Ce:Zr
=20:1〜1:10の範囲がより好ましく、Ce:Zr=5:
1〜1:1の範囲がさらに好ましい。この範囲とするこ
とで酸素欠損状態をより安定に維持することができる。
またCeのモル量をZrのモル量より多くするのが望まし
い。これにより酸素欠損状態をより容易に形成すること
ができ、活性酸素量をより多くすることができる。
The molar ratio of Ce and Zr in CeO 2 —ZrO 2 is
e: Zr = 100: 1 to 1: 100 is preferable, and Ce: Zr
= 20: 1 to 1:10, more preferably Ce: Zr = 5:
A range of 1 to 1: 1 is more preferred. By setting it in this range, the oxygen deficiency state can be more stably maintained.
It is desirable that the molar amount of Ce be larger than the molar amount of Zr. This makes it possible to more easily form an oxygen deficiency state and increase the amount of active oxygen.

【0030】CeO2−ZrO2には、さらに第3成分として
Y、La、Nd、Prなどの希土類元素の酸化物、Fe、Mn、C
o、Cr、Ni、Cuなどの遷移金属の酸化物から選ばれる1
種を含んでいても良い。これらの第3成分を配合するこ
とで、CeO2−ZrO2の酸素欠損状態をさらに安定に維持す
ることができる。この第3成分の含有量は、全体の1〜
30モル%とすることが好ましい。この範囲より少ないと
含有させた効果が得られず、30モル%を超えて含有させ
ると酸素欠損を形成しにくくなる場合がある。
CeO 2 -ZrO 2 has, as a third component, oxides of rare earth elements such as Y, La, Nd, Pr, Fe, Mn, C
1 selected from transition metal oxides such as o, Cr, Ni, and Cu
May contain seeds. By blending these third components, the oxygen-deficient state of CeO 2 —ZrO 2 can be more stably maintained. The content of the third component is 1 to
Preferably it is 30 mol%. If the amount is less than this range, the effect of containing the compound cannot be obtained, and if the amount exceeds 30 mol%, it may be difficult to form oxygen vacancies.

【0031】CeO2−ZrO2に酸素欠損を導入するには、上
記したように還元ガスを用いて還元処理することで行う
ことができる。これにより主としてCeO2に酸素欠損が導
入される。この場合CeOnにおけるnの構成比を 1.5≦n
<2、より好ましくは 1.5≦n≦ 1.8の範囲の酸素欠損
状態とすれば、ホルムアルデヒドの浄化に特に優れた効
果を示す。n値が 1.5未満の状態は通常の還元処理では
形成が困難であると考えられ、もしそうなっていたとし
ても通常の元素分析条件では同定が困難である。酸化物
の酸素欠損状態は、例えばX線回折などによって測定す
ることができる。なお触媒活性の面からは、触媒粒子の
内部よりも、触媒粒子の表面から 100nm程度の表層にお
ける構成比を 1.5≦n≦ 1.8の範囲とすることが望まし
い。
The introduction of oxygen deficiency into CeO 2 —ZrO 2 can be carried out by a reduction treatment using a reducing gas as described above. As a result, oxygen vacancies are mainly introduced into CeO 2 . In this case, the composition ratio of n in CeOn is 1.5 ≦ n
If the oxygen deficiency state is in the range of <2, more preferably 1.5 ≦ n ≦ 1.8, a particularly excellent effect on the purification of formaldehyde is exhibited. A state where the n value is less than 1.5 is considered to be difficult to form by ordinary reduction treatment, and even if it is, it is difficult to identify it under ordinary elemental analysis conditions. The oxygen deficiency state of the oxide can be measured by, for example, X-ray diffraction. From the viewpoint of catalytic activity, it is desirable that the composition ratio in the surface layer of about 100 nm from the surface of the catalyst particles be in the range of 1.5 ≦ n ≦ 1.8 rather than the inside of the catalyst particles.

【0032】CeO2−ZrO2に担持される貴金属としては、
Pt、Pd、Rh、Au、Ruの少なくとも一種が好ましく、Ptが
特に好ましい。また貴金属の担持量は、CeO2−ZrO2の 1
50gに対して 0.1gから20g、より好ましくは 0.5gか
ら5gとすることが好ましい。貴金属を担持するには、
還元処理の前に担持し、貴金属担持後に還元処理を行
う。またCeO2−ZrO2を共沈法などで製造する場合には、
貴金属の共存下で共沈させた後焼成して担持することも
できる。
The noble metals supported on CeO 2 —ZrO 2 include:
At least one of Pt, Pd, Rh, Au, and Ru is preferable, and Pt is particularly preferable. The supported amount of the noble metal is 1 of CeO 2 -ZrO 2 .
The amount is preferably 0.1 g to 20 g, more preferably 0.5 g to 5 g per 50 g. To support precious metals,
It is carried before the reduction treatment, and the reduction treatment is carried out after the noble metal is carried. When producing CeO 2 -ZrO 2 by a coprecipitation method or the like,
After coprecipitation in the coexistence of a noble metal, baking can be carried.

【0033】本発明の触媒は粉末状として調製され、そ
れをペレット状に成形して用いることができる。またハ
ニカム基材の表面に定法と同様にして触媒粉末からコー
ト層を形成することもできる。
The catalyst of the present invention is prepared as a powder, which can be formed into pellets for use. In addition, a coat layer can be formed from the catalyst powder on the surface of the honeycomb substrate in the same manner as in the usual method.

【0034】[0034]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。
The present invention will be specifically described below with reference to examples and comparative examples.

【0035】(実施例1)CeO2粉末(比表面積 120m2
g) 150gに、所定濃度のジニトロジアンミン白金水溶
液の所定量を含浸させ、撹拌後に加熱して蒸発乾固し、
その後大気中で 500℃で3時間焼成してPtを担持した。
Ptの担持量はCeO2粉末 150gに対して2gである。
Example 1 CeO 2 powder (specific surface area: 120 m 2 /
g) Impregnating 150 g with a predetermined amount of a dinitrodiammine platinum aqueous solution having a predetermined concentration, heating after stirring, and evaporating to dryness;
Then, it was calcined in the air at 500 ° C. for 3 hours to carry Pt.
The supported amount of Pt is 2 g per 150 g of CeO 2 powder.

【0036】次に、得られたPt担持CeO2粉末を、COを1
体積%含む窒素気流中に配置し、 500℃で15分の還元処
理を行って酸素欠損を導入して実施例1の常温触媒を調
製した。
Next, the obtained Pt-supported CeO 2 powder was
A normal temperature catalyst of Example 1 was prepared by placing it in a nitrogen stream containing volume% and performing a reduction treatment at 500 ° C. for 15 minutes to introduce oxygen vacancies.

【0037】(実施例2)CeO2粉末に代えて共沈法にて
製造されたCe:Zr=5:1のCeO2−ZrO2固溶体粉末(比
表面積 120m2/g)を用いたこと以外は実施例1と同様
にして、実施例2の常温触媒を調製した。
Example 2 Except that CeO 2 -ZrO 2 solid solution powder (specific surface area: 120 m 2 / g) of Ce: Zr = 5: 1 produced by a coprecipitation method was used instead of CeO 2 powder. In the same manner as in Example 1, a room temperature catalyst of Example 2 was prepared.

【0038】(実施例3)Pt担持時の焼成温度を 300℃
としたこと以外は実施例1と同様にして、実施例3の常
温触媒を調製した。
(Example 3) The sintering temperature at the time of carrying Pt was 300 ° C.
A normal temperature catalyst of Example 3 was prepared in the same manner as in Example 1 except that

【0039】(比較例1)CeO2粉末に代えて共沈法にて
製造されたCe:Zr=5:5のCeO2−ZrO2固溶体粉末(比
表面積30m2/g)を用いたこと以外は実施例1と同様に
して、比較例1の常温触媒を調製した。
(Comparative Example 1) A CeO 2 -ZrO 2 solid solution powder (specific surface area: 30 m 2 / g) of Ce: Zr = 5: 5 produced by a coprecipitation method was used instead of the CeO 2 powder. In the same manner as in Example 1, a room temperature catalyst of Comparative Example 1 was prepared.

【0040】(比較例2)低比表面積のCeO2粉末(比表
面積3m2/g)を用いたこと以外は実施例1と同様にし
て、比較例2の常温触媒を調製した。
Comparative Example 2 A room temperature catalyst of Comparative Example 2 was prepared in the same manner as in Example 1 except that CeO 2 powder having a low specific surface area (specific surface area: 3 m 2 / g) was used.

【0041】(比較例3)Pt担持時の焼成温度を 700℃
としたこと以外は実施例1と同様にして、比較例3の常
温触媒を調製した。
(Comparative Example 3) The sintering temperature at the time of carrying Pt was 700 ° C.
A room temperature catalyst of Comparative Example 3 was prepared in the same manner as in Example 1 except that

【0042】(比較例4)Pt担持時の焼成温度を 800℃
としたこと以外は実施例1と同様にして、比較例4の常
温触媒を調製した。
(Comparative Example 4) The firing temperature at the time of carrying Pt was 800 ° C.
A normal temperature catalyst of Comparative Example 4 was prepared in the same manner as in Example 1 except that

【0043】(比較例5)Pt担持時の焼成温度を 900℃
としたこと以外は実施例1と同様にして、比較例5の常
温触媒を調製した。
(Comparative Example 5) The firing temperature at the time of carrying Pt was 900 ° C.
A normal temperature catalyst of Comparative Example 5 was prepared in the same manner as in Example 1 except that

【0044】(比較例6)ジニトロジアンミン白金水溶
液に代えて、粒径が約5nm程度に制御されたPtコロイド
溶液を用いたこと以外は実施例1と同様にして、比較例
6の常温触媒を調製した。
Comparative Example 6 The room temperature catalyst of Comparative Example 6 was prepared in the same manner as in Example 1 except that a Pt colloid solution having a controlled particle size of about 5 nm was used instead of the dinitrodiammine platinum aqueous solution. Prepared.

【0045】(比較例7)ジニトロジアンミン白金水溶
液に代えて、粒径が約10nm程度に制御されたPtコロイド
溶液を用いたこと以外は実施例1と同様にして、比較例
7の常温触媒を調製した。
Comparative Example 7 The room temperature catalyst of Comparative Example 7 was prepared in the same manner as in Example 1 except that a Pt colloid solution having a controlled particle diameter of about 10 nm was used instead of the dinitrodiammine platinum aqueous solution. Prepared.

【0046】(比較例8)ジニトロジアンミン白金水溶
液に代えて、粒径が約15nm程度に制御されたPtコロイド
溶液を用いたこと以外は実施例1と同様にして、比較例
8の常温触媒を調製した。
Comparative Example 8 The ordinary temperature catalyst of Comparative Example 8 was used in the same manner as in Example 1 except that a Pt colloid solution having a controlled particle size of about 15 nm was used instead of the dinitrodiammine platinum aqueous solution. Prepared.

【0047】(比較例9)吸着材として一般に用いられ
ているヤシ殻活性炭(比表面積 700m2/g)を比較例9
とした。
Comparative Example 9 A coconut shell activated carbon (specific surface area: 700 m 2 / g), which is generally used as an adsorbent, was used in Comparative Example 9.
And

【0048】<試験・評価> (試験例1)実施例1〜3及び比較例1〜8の触媒につ
いて、担持されているPtの粒径を測定した。Pt粒径の測
定は、主として透過型電子顕微鏡観察によって行い、他
にCO吸着量による測定とX線回折による測定も同時に行
って、それらの平均値を算出した。結果を表1に示す。
<Test / Evaluation> (Test Example 1) The particle size of Pt carried on the catalysts of Examples 1 to 3 and Comparative Examples 1 to 8 was measured. The measurement of the Pt particle size was mainly performed by observation with a transmission electron microscope. In addition, the measurement based on the amount of adsorbed CO and the measurement based on X-ray diffraction were simultaneously performed, and the average value was calculated. Table 1 shows the results.

【0049】また実施例1〜3及び比較例1〜8の触媒
をそれぞれ評価装置に5g配置し、CO濃度250ppm、O2
度20体積%、残部N2からなるモデルガスをガス流量10リ
ットル/分で流して、室温(25℃)におけるCO転化率を
測定した。結果を表1に示す。
5 g of each of the catalysts of Examples 1 to 3 and Comparative Examples 1 to 8 were placed in an evaluation device, and a model gas consisting of a CO concentration of 250 ppm, an O 2 concentration of 20% by volume and a balance of N 2 was supplied at a gas flow rate of 10 liter / liter. Min, and the CO conversion at room temperature (25 ° C.) was measured. Table 1 shows the results.

【0050】そして表1のPt粒径とCO転化率との関係を
プロットし、結果を図1に示す。
The relationship between the Pt particle size and the CO conversion in Table 1 was plotted, and the results are shown in FIG.

【0051】[0051]

【表1】 [Table 1]

【0052】表1及び図1より、各実施例の触媒はPt粒
径が2nm以下である。そしてPt粒径が2nm以下であれ
ば、常温におけるCO転化率は90%以上ときわめて高いこ
とが明らかであり、Pt粒径が大きくなるほど常温におけ
る触媒活性が低下していることがわかる。
As shown in Table 1 and FIG. 1, the catalyst of each embodiment has a Pt particle size of 2 nm or less. When the Pt particle size is 2 nm or less, the CO conversion at room temperature is clearly as high as 90% or more, and it is understood that the catalyst activity at room temperature decreases as the Pt particle size increases.

【0053】(試験例2)実施例1の触媒と比較例9の
吸着材を選び、メチルメルカプタンを900ppm含む大気を
充填した5リットルの密閉容器中にそれぞれ 0.1g入
れ、室温(25℃)雰囲気にある密閉容器中のメチルメル
カプタン濃度の経時変化をガスクロマトグラフィによっ
て測定した。結果を図2に示す。
(Test Example 2) The catalyst of Example 1 and the adsorbent of Comparative Example 9 were selected, and 0.1 g of each was placed in a 5 liter closed container filled with an atmosphere containing 900 ppm of methyl mercaptan at room temperature (25 ° C.). The change over time of the methyl mercaptan concentration in the closed container was measured by gas chromatography. The results are shown in FIG.

【0054】図2より、実施例1の触媒は比較例9の吸
着材よりもメチルメルカプタンの除去特性に優れている
ことが明らかであり、高い常温浄化活性を有しているこ
とがわかる。
From FIG. 2, it is clear that the catalyst of Example 1 is superior to the adsorbent of Comparative Example 9 in the removal characteristics of methyl mercaptan, and it is understood that the catalyst has a high normal-temperature purification activity.

【0055】(試験例3)実施例1の触媒と比較例9の
吸着材を選び、メチルメルカプタンに代えてトリエチル
アミン又はエチレンをそれぞれ900ppm含む大気を用いた
こと以外は試験例2と同様にして、トリエチルアミン濃
度及びエチレン濃度の経時変化を測定した。結果を図3
及び図4に示す。
(Test Example 3) The procedure of Test Example 2 was repeated except that the catalyst of Example 1 and the adsorbent of Comparative Example 9 were selected, and instead of methyl mercaptan, air containing 900 ppm of triethylamine or ethylene was used. The changes over time in the triethylamine concentration and the ethylene concentration were measured. Fig. 3 shows the results.
And FIG.

【0056】図3及び図4より、実施例1の触媒は比較
例9の吸着材よりもトリエチルアミン及びエチレンの除
去特性に優れていることが明らかであり、高い常温浄化
活性を有していることがわかる。
3 and 4, it is clear that the catalyst of Example 1 is superior to the adsorbent of Comparative Example 9 in removing triethylamine and ethylene, and has a high normal-temperature purifying activity. I understand.

【0057】[0057]

【発明の効果】すなわち本発明の常温触媒によれば、50
℃以下の常温でCO、アミン類、ホルムアルデヒドなどの
環境負荷物質を効率よく分解除去することができる。
According to the room temperature catalyst of the present invention, 50
Environmentally hazardous substances such as CO, amines and formaldehyde can be efficiently decomposed and removed at room temperature of not more than ℃.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例及び比較例の触媒のPt粒径と室
温におけるCO転化率との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the Pt particle size and the CO conversion at room temperature of the catalysts of Examples and Comparative Examples of the present invention.

【図2】実施例1の触媒と比較例9の吸着材を入れた密
閉容器中の室温におけるメチルメルカプタン濃度の経時
変化を示すグラフである。
FIG. 2 is a graph showing the change over time in the concentration of methyl mercaptan at room temperature in a closed container containing the catalyst of Example 1 and the adsorbent of Comparative Example 9.

【図3】実施例1の触媒と比較例9の吸着材を入れた密
閉容器中の室温におけるトリエチルアミン濃度の経時変
化を示すグラフである。
FIG. 3 is a graph showing a time-dependent change in the concentration of triethylamine at room temperature in a closed container containing the catalyst of Example 1 and the adsorbent of Comparative Example 9.

【図4】実施例1の触媒と比較例9の吸着材を入れた密
閉容器中の室温におけるエチレン濃度の経時変化を示す
グラフである。
FIG. 4 is a graph showing the change over time of the ethylene concentration at room temperature in a closed vessel containing the catalyst of Example 1 and the adsorbent of Comparative Example 9.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // A61L 9/00 B01D 53/36 104Z (72)発明者 鈴木 賢一郎 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 佐々木 慈 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 森川 彰 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 林 宏明 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 杉浦 正洽 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 4C080 AA07 AA09 BB02 CC05 CC08 CC09 HH05 KK08 LL03 LL10 MM07 NN01 QQ03 4D048 AA01 AA08 AA13 AA17 AA19 AB01 BA08X BA08Y BA18Y BA19X BA19Y BA24Y BA25Y BA26Y BA28Y BA30X BA30Y BA31Y BA33Y BA34Y BA35Y BA36Y BA37Y BA38Y BD03 4G069 AA03 AA08 BB06A BB06B BC29A BC31A BC33A BC38A BC40A BC43A BC43B BC44A BC51A BC51B BC55A BC58A BC59A BC62A BC66A BC67A BC68A BC69A BC70A BC71A BC72A BC74A BC75A BC75B CA07 CA11 CA14 CA15 CA17 DA05 FA02 FB09 FB14 FB44──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) // A61L 9/00 B01D 53/36 104Z (72) Inventor Kenichiro Suzuki Ken-ichiro Suzuki 41, Yokomichi No. 1, Toyota Central Research Laboratory Co., Ltd. (72) Inventor J. Sasaki 41, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Yokomichi No. 41 Inside Toyota Central Research Laboratory Co., Ltd. (72) Akira Morikawa Aichi Aichi 41, Toyoda Central Research Institute Co., Ltd. (72) Inventor Hiroaki Hayashi Hiroaki Hayashi 41st, Toyoda Central Research Institute Co., Ltd. Sugiura Masaki Sugiura 41, Nagakute-machi, Aichi-gun, Aichi-gun, 41-cho, Yokomichi Yokomichi F-term in Toyota Central R & D Laboratories, Inc. 4C080 AA07 AA09 BB02 CC05 CC08 CC09 HH05 KK08 LL03 LL10 MM07 NN01 QQ03 4D048 AA01 AA08 AA13 AA17 AA19 AB01 BA08X BA08Y BA18Y BA19X BA19Y BA24Y BA25A BA26Y BA28Y BA30A BABAYA33 BA33ABABAY BA33A BAAY BC BC44A BC51A BC51B BC55A BC58A BC59A BC62A BC66A BC67A BC68A BC69A BC70A BC71A BC72A BC74A BC75A BC75B CA07 CA11 CA14 CA15 CA17 DA05 FA02 FB09 FB14 FB44

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸素欠損が導入された酸化物に貴金属を
担持してなり、該貴金属はその90%以上が粒径2nm以下
の微粒子状態で担持されていることを特徴とする常温触
媒。
1. A room-temperature catalyst comprising a noble metal supported on an oxide into which oxygen deficiency has been introduced, wherein 90% or more of the noble metal is supported in the form of fine particles having a particle size of 2 nm or less.
【請求項2】 前記酸化物は遷移金属酸化物及び希土類
酸化物から選ばれる少なくとも一種である請求項1に記
載の常温触媒。
2. The room temperature catalyst according to claim 1, wherein the oxide is at least one selected from transition metal oxides and rare earth oxides.
【請求項3】前記遷移金属酸化物は、ジルコニウム、
鉄、マンガン、コバルト、ニッケル、銅、クロム、モリ
ブデン及びニオブの酸化物から選ばれる少なくとも一種
であり、前記希土類酸化物は、セリウム、イットリウ
ム、ネオジム、プラセオジム及びサマリウムの酸化物及
びセリアージルコニアから選ばれる少なくとも一種であ
る請求項2に記載の常温触媒。
3. The transition metal oxide is zirconium,
At least one selected from oxides of iron, manganese, cobalt, nickel, copper, chromium, molybdenum and niobium, wherein the rare earth oxide is selected from oxides of cerium, yttrium, neodymium, praseodymium and samarium and ceria-zirconia The room-temperature catalyst according to claim 2, which is at least one of the following.
【請求項4】前記貴金属はPt,Pd,Rh,Ir,Ru及びAuか
ら選ばれる少なくとも一種であることを特徴とする請求
項1に記載の常温触媒。
4. The room temperature catalyst according to claim 1, wherein the noble metal is at least one selected from Pt, Pd, Rh, Ir, Ru and Au.
JP2000296968A 2000-09-28 2000-09-28 Room temperature catalyst Expired - Fee Related JP4656353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000296968A JP4656353B2 (en) 2000-09-28 2000-09-28 Room temperature catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000296968A JP4656353B2 (en) 2000-09-28 2000-09-28 Room temperature catalyst

Publications (2)

Publication Number Publication Date
JP2002102701A true JP2002102701A (en) 2002-04-09
JP4656353B2 JP4656353B2 (en) 2011-03-23

Family

ID=18779158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000296968A Expired - Fee Related JP4656353B2 (en) 2000-09-28 2000-09-28 Room temperature catalyst

Country Status (1)

Country Link
JP (1) JP4656353B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263449A (en) * 2001-03-09 2002-09-17 Equos Research Co Ltd Activated carbon filter
WO2005092493A1 (en) * 2004-03-25 2005-10-06 Tanaka Kikinzoku Kogyo K.K. Catalyst and method for producing catalyst
WO2005092494A1 (en) * 2004-03-25 2005-10-06 Tanaka Kikinzoku Kogyo K.K. Catalyst
EP1676625A1 (en) * 2004-12-28 2006-07-05 Mitsubishi Denki Kabushiki Kaisha Method and catalyst for the oxidative decomposition of formaldehyde gas
JP2006297188A (en) * 2005-04-15 2006-11-02 Mitsubishi Heavy Ind Ltd Catalyst for treating exhaust gas and production method of catalyst for treating exhaust gas
JP2009254979A (en) * 2008-04-17 2009-11-05 Nippon Shokubai Co Ltd Method of manufacturing ammonia decomposing catalyst
JP2013237045A (en) * 2013-07-08 2013-11-28 Nippon Shokubai Co Ltd Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst
JP2016055289A (en) * 2016-01-29 2016-04-21 日立造船株式会社 Method for starting catalytic reactor
JP2016147256A (en) * 2015-02-13 2016-08-18 新日鐵住金株式会社 Method for producing catalyst and catalyst
JP2017074591A (en) * 2016-12-22 2017-04-20 日立造船株式会社 Method for starting catalytic reactor
CN116474765A (en) * 2022-11-18 2023-07-25 江苏环保产业股份有限公司 Ozone catalyst based on bimetal composite oxide, preparation method and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290251A (en) * 1989-01-24 1990-11-30 Nkk Corp Gold-containing catalyst for contact combustion
JPH093033A (en) * 1995-06-02 1997-01-07 Basf Ag Production of amine oxide
JPH09299796A (en) * 1996-05-14 1997-11-25 Toyota Central Res & Dev Lab Inc Catalyst for purification of exhaust gas and its production
JPH10296087A (en) * 1997-04-30 1998-11-10 Daikin Ind Ltd Deodorizing catalyst and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290251A (en) * 1989-01-24 1990-11-30 Nkk Corp Gold-containing catalyst for contact combustion
JPH093033A (en) * 1995-06-02 1997-01-07 Basf Ag Production of amine oxide
JPH09299796A (en) * 1996-05-14 1997-11-25 Toyota Central Res & Dev Lab Inc Catalyst for purification of exhaust gas and its production
JPH10296087A (en) * 1997-04-30 1998-11-10 Daikin Ind Ltd Deodorizing catalyst and its manufacture

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263449A (en) * 2001-03-09 2002-09-17 Equos Research Co Ltd Activated carbon filter
US7691772B2 (en) * 2004-03-25 2010-04-06 Tanaka Kikinzoku Kogyo K.K. Catalyst and method for producing catalyst
WO2005092493A1 (en) * 2004-03-25 2005-10-06 Tanaka Kikinzoku Kogyo K.K. Catalyst and method for producing catalyst
WO2005092494A1 (en) * 2004-03-25 2005-10-06 Tanaka Kikinzoku Kogyo K.K. Catalyst
US7576029B2 (en) 2004-03-25 2009-08-18 Tanaka Kikinzoku Kogyo K.K. Catalyst
EP1676625A1 (en) * 2004-12-28 2006-07-05 Mitsubishi Denki Kabushiki Kaisha Method and catalyst for the oxidative decomposition of formaldehyde gas
JP2006297188A (en) * 2005-04-15 2006-11-02 Mitsubishi Heavy Ind Ltd Catalyst for treating exhaust gas and production method of catalyst for treating exhaust gas
JP2009254979A (en) * 2008-04-17 2009-11-05 Nippon Shokubai Co Ltd Method of manufacturing ammonia decomposing catalyst
JP2013237045A (en) * 2013-07-08 2013-11-28 Nippon Shokubai Co Ltd Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst
JP2016147256A (en) * 2015-02-13 2016-08-18 新日鐵住金株式会社 Method for producing catalyst and catalyst
JP2016055289A (en) * 2016-01-29 2016-04-21 日立造船株式会社 Method for starting catalytic reactor
JP2017074591A (en) * 2016-12-22 2017-04-20 日立造船株式会社 Method for starting catalytic reactor
CN116474765A (en) * 2022-11-18 2023-07-25 江苏环保产业股份有限公司 Ozone catalyst based on bimetal composite oxide, preparation method and application

Also Published As

Publication number Publication date
JP4656353B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
Ye et al. Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation
JP4759739B2 (en) Ethylene decomposition catalyst
US6492298B1 (en) Ordinary-temperature purifying catalyst
JP4573320B2 (en) Nitrous oxide decomposition catalyst, production method thereof, and decomposition method of nitrous oxide
RU2237514C1 (en) Nitrogen monoxide decomposition catalyst and a way of carrying out processes including formation of nitrogen oxide
WO2006103754A1 (en) Ammonia decomposition catalyst and process for decomposition of ammonia using the catalyst
JPWO2010007978A1 (en) Deodorizing catalyst, deodorizing method using the same, and regenerating method of the catalyst
JP2005516767A (en) Novel catalyst for reducing NO to N2 using hydrogen under NOx oxidation conditions
JP3799945B2 (en) Room temperature purification catalyst and method of using the same
JP4656353B2 (en) Room temperature catalyst
JP5227363B2 (en) Exhaust gas purification catalyst
JP3404739B2 (en) Filter, and air cleaner and air conditioner using the same
JP4656352B2 (en) Room temperature catalyst
JP5503155B2 (en) Carbon monoxide removal filter
JP4780490B2 (en) Activated carbon filter
JP2018176014A (en) Ozonolytic catalyst and ozonolytic method using the same, and voc removal catalyst and voc removal method using the same
JP4417030B2 (en) Deodorizing device and deodorizing method
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
JP3348407B2 (en) Adsorbent for carbon monoxide in inert gas
EP3560590A1 (en) Method for manufacturing low-temperature oxidation catalyst
WO1996022827A1 (en) Deodorant material, process for producing the same, and method of deodorization
JP5706476B2 (en) Carbon monoxide oxidation catalyst and production method thereof
JP6225807B2 (en) VOC decomposition removal catalyst, method for producing the same, and VOC decomposition removal method using the same
JP2001058130A (en) Catalyst for nitrogen oxide decomposition
JP3470496B2 (en) Deodorization treatment method using ozone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees