JPH02290251A - Gold-containing catalyst for contact combustion - Google Patents

Gold-containing catalyst for contact combustion

Info

Publication number
JPH02290251A
JPH02290251A JP1112129A JP11212989A JPH02290251A JP H02290251 A JPH02290251 A JP H02290251A JP 1112129 A JP1112129 A JP 1112129A JP 11212989 A JP11212989 A JP 11212989A JP H02290251 A JPH02290251 A JP H02290251A
Authority
JP
Japan
Prior art keywords
oxide
gold
catalyst
particles
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1112129A
Other languages
Japanese (ja)
Inventor
Hiroshi Osada
長田 容
Tsutomu Shikada
鹿田 勉
Takao Ikariya
隆雄 碇屋
Takakazu Fukushima
福島 貴和
Sadao Ogasawara
小笠原 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Publication of JPH02290251A publication Critical patent/JPH02290251A/en
Pending legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To enhance catalyst activity and durability for water by carrying 1-5wt.% gold fine particles on the surfaces of a particle of titanium oxide, magnesium oxide, zirconium oxide, silicon oxide, aluminum oxide, tin oxide, cobalt oxide or lanthanum oxide. CONSTITUTION:1-5wt.% gold fine particles are carried on the surface of a particle of titanium oxide, magnesium oxide, zirconium oxide, silicon oxide, aluminum oxide, tin oxide, cobalt oxide or lanthanum oxide. Said catalyst, although the gold content is small, carries high catalyst activity, high durability for water content and is of a low cost.

Description

【発明の詳細な説明】 〔産業上の利川分野〕 本発明は、可燃性ガス、特に一酸化炭素の低温における
接触燃焼用触媒に関する。この触媒は、鉱山抗内用CO
マスク、ガスセンサー、石油ファンヒーター、湯沸器等
の燃焼器具から発生する不完全燃焼ガスの浄化などに利
用しうる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Icheon Field] The present invention relates to a catalyst for the catalytic combustion of combustible gases, particularly carbon monoxide, at low temperatures. This catalyst is suitable for CO for mine mines.
It can be used to purify incomplete combustion gas generated from combustion appliances such as masks, gas sensors, oil fan heaters, and water heaters.

[従来の技術] 触媒を用いた接触燃焼、すなわち触媒燃焼は無炎で燃焼
効率が高く、低温で完全燃焼するという特徴を有する。
[Prior Art] Catalytic combustion using a catalyst, that is, catalytic combustion, is flameless, has high combustion efficiency, and has the characteristics of complete combustion at low temperatures.

燃焼の着火思度に応じて低温(室温〜300゜C)、中
温(300〜800゜C)、高温(800’C〜)用に
分類されている.本発明は可燃性ガス、特に一酸化炭素
の低温燃焼用触媒を提供するものである。
They are classified into low temperature (room temperature to 300°C), medium temperature (300 to 800°C), and high temperature (800°C and above) depending on the degree of ignition. The present invention provides a catalyst for low temperature combustion of combustible gases, particularly carbon monoxide.

従来、低温用の一酸化炭素酸化触媒としては、酸化マン
ガン一酸化銅系のホブカライI− (M.I.B−ri
ttan,  II.旧iss,  C.八lalke
r,  AIChlミ.J.,  16305 (19
7.0) ”)、Pt, Pt/SnOz,活性炭素の
もの(G.C.ロond,  L.R.Molloy,
  M.J,Fuller,  J,Chem,Soc
.,CI+em.Comm., l’975, 796
,小林昌弘、老川進、清水建設研究所報、25. 77
(1975)、神野紘、特公昭54−22791(19
79))、CuC1z−PdCI 2/アルミナ系のも
の(M.N.Desai, J.B.ロutt, J.
S.IJranoff, J.Cat−al., 79
. 95(1983))、コバルトボルフィリン/酸化
チタン系のもの(1.Mochida, Y.rwai
, T.Kamo,11.Fujitsu, J.Ph
ys. Chem., 89. 5439(1985)
)、八g−Co,八g−Mn,八g − 11n − 
Co系のもの(M.llaruta,11.sano,
 ”Preparation of Catalyst
sll!’, G.PonceleL,  P.Gra
nge+  P.八.Jacobs  eds.,  
Elsevier,225 − 234 (1983)
 )などが知られている。これらの?らホブカライトは
、鉱山川COマスクに使用されており室温でCOを酸化
できる。I’d, I’t/SnO■、活性炭系のもの
で白金屈系金属は一般に酸化活性が高いために触媒燃焼
にしばしば用いられている。
Conventionally, as a low-temperature carbon monoxide oxidation catalyst, manganese oxide copper monoxide-based Hovkarai I- (M.I.B-ri
ttan, II. Old iss, C. 8 lalke
r, AIChl mi. J. , 16305 (19
7.0) ”), Pt, Pt/SnOz, activated carbon (G.C. Rond, L.R. Molloy,
M. J,Fuller, J,Chem,Soc.
.. , CI+em. Comm. , l'975, 796
, Masahiro Kobayashi, Susumu Oikawa, Shimizu Construction Research Institute Report, 25. 77
(1975), Hiro Kamino, Tokuko Sho 54-22791 (19
79)), CuC1z-PdCI2/alumina based (M.N. Desai, J.B. Routt, J.
S. IJranoff, J. Cat-al. , 79
.. 95 (1983)), cobalt vorphyrin/titanium oxide type (1. Mochida, Y. rwai
, T. Kamo, 11. Fujitsu, J. Ph
ys. Chem. , 89. 5439 (1985)
), 8g-Co, 8g-Mn, 8g-11n-
Co-based ones (M. llaruta, 11. sano,
”Preparation of Catalyst
sll! ', G. PonceleL, P. Gra
nge+P. Eight. Jacobs eds. ,
Elsevier, 225-234 (1983)
) etc. are known. these? Lahobcalite is used in Minekawa CO masks and can oxidize CO at room temperature. I'd, I't/SnO■, activated carbon-based metals and platinum-based metals are often used in catalytic combustion because they generally have high oxidation activity.

コバルトボルフィリン/酸化チタン系のものは、−79
”Cでも酸化活性がある、そして、Ag−Go,八g−
Mn, A8−Mn−Go系のものは室’/!Aで酸化
[1ヒを有する等の特1枚を有している。
Cobalt vorphyrin/titanium oxide type is -79
``C also has oxidation activity, and Ag-Go, 8g-
Mn, A8-Mn-Go series are room'/! It has one special feature such as having oxidation [1] in A.

一方、今まで一般に触媒作用がほとんどないと思われて
きた金が微粒子化すると触媒として使用しうろことが最
近報告されている。金含有触媒については、八u(5a
t$)/ (r−FC+2031 +1u(5atχ)
/CO.,a,八u (10a tχ)/NiO系のも
の(春田正毅、佐野寛、日化第52回春季年会IC44
 (1986)、M.Ilaruta, T.Ko− 
 bayashi.  Il.Sano,  N.Ya
mada,  Chem  Lett..  1987
.405−408、特開昭60−238148号公報)
、5〜10wL%静−Be酸化物系のもの(春田、酉家
、小林、坪田、中原、第60回触媒討論会(A)講演予
稿築31E25)、10−t%Au/Mg (Oil)
 Z系のもの(坪田、山III、春田、小林、中原、第
62回触媒討論会(A)講演予稿集30221)などが
報告されている。これらのうら、^u(5atχ)/ 
a −FezOt+  Au(5atχ)/CosOa
lAu(10a t!) /N to系のものは硝酸塩
と塩化金酸の混合溶液にアルカリを入れて共沈させ、焼
成する方法などで調製され、この触媒は−70’Cでも
lνol%CO/空気を完全酸化する能力があり、水分
に対する耐久性もある.時間とともに反応率が低下する
が200“Cの加熱処理で再生することができる笠の特
徴を有している。また、5〜10at%Qu−Be酸化
物系のものち共沈法で調製され、−70”Cでも長時間
安定な活性が得られる。一方、10wt%Au/Mg 
(DIυ2系のものはMgOの懸濁液に1(hrt%の
塩化金酸溶液を加え、飽和クエン酸マグネシウム溶液を
滴下して塩化金酸をクエン酸マグネシウムで還元するこ
とにより金の酸化物を析出させ、濾過後、乾燥250’
Cで焼成してMnl製している。
On the other hand, it has recently been reported that gold, which has been generally thought to have almost no catalytic activity, can be used as a catalyst if it becomes fine particles. For gold-containing catalysts, 8u (5a
t$)/ (r-FC+2031 +1u(5atχ)
/CO. ,a,8u (10a tχ)/NiO type (Masaki Haruta, Hiroshi Sano, Nikka 52nd Spring Annual Meeting IC44
(1986), M. Ilaruta, T. Ko-
bayashi. Il. Sano, N. Ya
mada, Chem Lett. .. 1987
.. 405-408, Japanese Unexamined Patent Publication No. 60-238148)
, 5-10 wL% static-Be oxide type (Haruta, Toriya, Kobayashi, Tsubota, Nakahara, 60th Catalyst Symposium (A) Lecture Preliminary Construction 31E25), 10-t% Au/Mg (Oil)
The Z series (Tsubota, Yama III, Haruta, Kobayashi, Nakahara, 62nd Catalyst Symposium (A) Lecture Proceedings 30221) has been reported. Behind these, ^u(5atχ)/
a −FezOt+ Au(5atχ)/CosOa
The lAu(10a t!) /N to type catalyst is prepared by adding an alkali to a mixed solution of nitrate and chloroauric acid, co-precipitating it, and calcining it, and this catalyst has lνol% CO / It has the ability to completely oxidize air and is resistant to moisture. Although the reaction rate decreases with time, it has the characteristic of being able to be regenerated by heat treatment at 200"C.Also, it has the characteristics of a cap that can be regenerated by heat treatment at 200"C. , -70''C also provides long-term stable activity. On the other hand, 10wt%Au/Mg
(DIυ2-based products are made by adding 1 (hrt%) chloroauric acid solution to a suspension of MgO, and adding dropwise a saturated magnesium citrate solution to reduce the chloroauric acid with magnesium citrate to produce gold oxide. After precipitation and filtration, dry 250'
It is made of Mnl by firing with C.

〔発明が解決しようとず.る課題〕[The invention is not going to solve the problem.] [Issues to be solved]

ホプカライト、コバルトボルフィリン/酸化チタン、A
B−Go−Mn例の触媒は湿気に対する耐久性が乏しい
。Pd, Pt/SnOz、活性炭、CIICl2  
PdCIz/アルミナの触媒は活性の発現ずる温度は1
50゜C以上であり室温程度での活性が乏しい。
Hopcalite, cobalt vorphyrin/titanium oxide, A
The catalyst of the B-Go-Mn example has poor resistance to moisture. Pd, Pt/SnOz, activated carbon, CIICl2
The temperature at which the PdCIz/alumina catalyst becomes active is 1.
The temperature is 50°C or higher, and the activity is poor at room temperature.

八u/α−FezO1, Co,Boa, Nio. 
Bed, Mg(ol1),の触媒は高活性な触媒では
あるが活性を発現させるためには5〜10aL%、to
wt%と高価な金を多鼠に13持させる必要がある。ま
たHIl!(Oil) zを除く他の触媒は共沈法によ
る調製法であるが、この方法では触媒の大部分を占める
金以外の酸化物の溶液を必要とし、またそれを沈澱させ
るために多里の沈R剤が必要となる。また共沈法では活
性金屈の金が担体成分である遷移金属Iu体中に包埋さ
れ、表面に出ないという欠点もある。一方、^u/}i
g(Oll) z触媒ではさらに金の沈澱剤として高価
なクエン酸マグネシウムを必要とする欠点もある。
8u/α-FezO1, Co, Boa, Nio.
Bed, Mg(ol1), is a highly active catalyst, but in order to develop its activity it requires 5-10aL%, to
It is necessary to have a mouse hold 13 wt% and expensive gold. HIl again! (Oil) Other catalysts except for z are prepared by the coprecipitation method, but this method requires a solution of oxides other than gold, which make up the majority of the catalyst, and requires a large amount of water to precipitate it. A precipitation R agent is required. The coprecipitation method also has the disadvantage that the active gold is embedded in the transition metal Iu body, which is a carrier component, and does not come out on the surface. On the other hand, ^u/}i
The g(Oll)z catalyst also has the disadvantage of requiring expensive magnesium citrate as a gold precipitant.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこのような問題点を解決した接触燃焼用触媒を
12供するものであり、酸化チタン、酸化マグネシウム
、酸化ジルコニウム、酸化ケイ素、酸化アルミニウム、
酸化スス、酸化コバル1・又は酸化ランタンの粒子の表
面に1〜5重■%の金i故?子が担持されてなる接触燃
焼用金含有触媒をJLI持せしめたことを特徴としてい
る。
The present invention provides a catalyst for catalytic combustion that solves these problems, and includes titanium oxide, magnesium oxide, zirconium oxide, silicon oxide, aluminum oxide,
Is it because there is 1 to 5% gold on the surface of soot oxide, cobal oxide, or lanthanum oxide particles? It is characterized by having a gold-containing catalyst for catalytic combustion supported on JLI.

金をJH持させる担体粒子はTiOz, MgO、Zr
Ot、Sint、八l20,、Snut, Co:+O
n、Laz01のいずれかである.これらのなかではT
i02がIυも好ましく、台gOが次に好ましい。
Support particles that hold gold on JH are TiOz, MgO, and Zr.
Ot, Sint, 8l20,, Snut, Co:+O
n, Laz01. Among these, T
i02 is also preferably Iυ, and gO is next most preferred.

本発明者らは、八hllh、SiOz、7,no, S
nOz、TiOz、MgO、Zr02、COsOa、F
e.O.、Laz02について金を沈着法で2wt%含
有する触媒を作製し、それぞれのCOの酸化活性を調べ
た。その結果、−78゜Cという低温でもCOを50%
以上転化する触媒の担体はTie2、MgOであり、特
にTiO■はCO転化率95%と最も高かった。室温で
は、TiO1、ZrOz、SnOt, CO304、L
azO,が100%の転化活性を有し、’gL Si0
2、AIzOiは次に高かった。一方、FetO.、Z
nO■は活性が低かった。したがってTiOzが最も優
れた金の担体であり、次にMgo、Zr02、Si02
、八!20,、SnOz、Co304、La203が優
れた担体であった。
The inventors of the present invention have found that 8 hllh, SiOz, 7, no, S
nOz, TiOz, MgO, Zr02, COsOa, F
e. O. , Laz02, a catalyst containing 2 wt % gold was prepared by a deposition method, and the CO oxidation activity of each was investigated. As a result, CO can be reduced by 50% even at temperatures as low as -78°C.
The catalyst carriers for the above conversion were Tie2 and MgO, and TiO2 in particular had the highest CO conversion rate of 95%. At room temperature, TiO1, ZrOz, SnOt, CO304, L
azO, has 100% conversion activity, 'gL Si0
2. AIzOi was the next highest. On the other hand, FetO. ,Z
nO■ had low activity. Therefore, TiOz is the best gold support, followed by Mgo, Zr02, Si02
,Eight! 20, SnOz, Co304, and La203 were excellent carriers.

これらの担体粒子の粒径は0.01μm〜0.5胴程度
が適当である。この世体粒子は大径化したものであって
もよい。また、2種以上のJEI体粒子を混合して使用
するごともできる。
The particle size of these carrier particles is suitably about 0.01 μm to 0.5 μm. This world particle may have a larger diameter. It is also possible to use a mixture of two or more types of JEI body particles.

金は平均粒径が50人以下のものであり、15〜50人
程度のものが好ましい。金の1旦持■は1〜5重■%程
度であり、金の有効利川の点で1〜3重■%程度が好ま
しい,金の粒子は担体粒子の表面に均一に分11kシて
担持されている。
Gold has an average particle size of 50 particles or less, preferably about 15 to 50 particles. Gold particles are supported on the surface of the carrier particles uniformly in 11k portions. has been done.

このような触媒は前記の担体粒子、塩化金酸及び弱アル
カリ性物質の共存ずる担体粒子の水性液中の}懸濁状態
を形成して水酸化金を成長抑制条1′i下で析出せしめ
、固液分離し、気相中において前記水酸化金を還元する
ことによって取得することができる。
Such a catalyst forms a suspension of the carrier particles in an aqueous solution in which the carrier particles, chloroauric acid and a weakly alkaline substance coexist, so that gold hydroxide is precipitated under the growth-inhibiting strips 1'i; It can be obtained by solid-liquid separation and reduction of the gold hydroxide in the gas phase.

担体粒子は予め水等の水性液に懸濁し、塩化金酸及び弱
アルカリ性物質も水等の水性液に熔解しておくのがよい
。弱アルカリ性物質の例としては炭酸水素アンモニウム
、炭酸水素ナトリウム、炭酸水素カリウム等を挙げるこ
とができる.弱アリカリ性物質の添加量は金の3倍当量
以上が適当である。水酸化金及び弱アルカリ性物質の添
加順序はいずれが先であってもよく両者を同時に加えて
もよい。塩化金酸に弱アルカリ性物質を接触させること
により水酸化金を析出する。この水酸化金は成長jnJ
R++I条件下で析出せしめる。成長抑制条件下とは得
られた触媒中の金粒子の平均粒径が50人以下になるよ
うな条件である。この条件は例えば担体粒子を弱アルカ
リ性物質溶液中に懸濁するとか担体粒子の懸濁液と弱ア
ルカリ性物質溶液を合わせるなどして弱アルカリ性物質
の存在する但体粒子懸濁液を作製し、撹拌下で塩化金酸
溶液を加えていくことにより形成される。逆に担体粒を
塩化金酸溶液に懸濁するとかIu体粒子の懸濁液と塩化
金酸溶液を合わせるなどして塩化金酸の存在する1u体
粒子!g濁液を作製し、これに弱アルカリ性物質を投入
し゜ζもよい.この場合には水酸化金が成長しないよう
に速かに投入し、撹1↑等により均一状態になるように
する。いずれの方法においても水酸化金の成長を抑制す
るために冷却下で行なうことができる。
The carrier particles are preferably suspended in an aqueous liquid such as water in advance, and the chloroauric acid and the weak alkaline substance are also dissolved in the aqueous liquid such as water. Examples of weakly alkaline substances include ammonium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and the like. The amount of the weakly alkaline substance added is suitably at least three times the equivalent of gold. The gold hydroxide and the weakly alkaline substance may be added in any order and both may be added at the same time. Gold hydroxide is precipitated by bringing a weakly alkaline substance into contact with chloroauric acid. This gold hydroxide grows
Precipitate under R++I conditions. Growth-inhibiting conditions are conditions such that the average particle size of gold particles in the obtained catalyst is 50 or less. These conditions include, for example, suspending carrier particles in a solution of a weakly alkaline substance, or combining a suspension of carrier particles with a solution of a weakly alkaline substance to prepare a suspension of particles in the presence of a weakly alkaline substance, and stirring. It is formed by adding a chloroauric acid solution below. Conversely, by suspending carrier particles in a chloroauric acid solution or combining a suspension of Iu particles with a chloroauric acid solution, 1u particles in which chloroauric acid exists! You can also prepare a suspension and add a weakly alkaline substance to it. In this case, add the gold hydroxide quickly so that it does not grow, and stir it to make it uniform by stirring 1↑ or the like. Either method can be carried out under cooling in order to suppress the growth of gold hydroxide.

投入後は必要により放置あるいは撹1↑を続けて過飽和
状態にさせてから固液分離を行なう.固液分乱は公知の
方法によって行なえばよく、濾過、遠心分離、デカンテ
ーションなどを利用することができる。固液分離後は得
られた粒子を必要により水洗し、乾燥する。
After charging, if necessary, leave it alone or continue stirring 1↑ to reach a supersaturated state before solid-liquid separation. Solid-liquid disturbance may be performed by a known method, such as filtration, centrifugation, decantation, etc. After solid-liquid separation, the obtained particles are washed with water and dried if necessary.

乾燥粒子を気相中で還元して水酸化金を金に変える。気
相は還元的雰囲気であり、水素、一酸化炭累等の運元性
ガスを存在させる。その際必要により不活性ガスを共存
させることができる。また還元は力(1熱下で行なう。
Dry particles are reduced in the gas phase to convert gold hydroxide to gold. The gas phase is a reducing atmosphere in which gases such as hydrogen and carbon monoxide are present. At that time, an inert gas may be present if necessary. In addition, reduction is performed under force (1 heat).

〔作用] 本発明の触媒においては金の微粒子に加えて世休粒子で
ある酸化物の表面も触媒作用に関与しているものと思わ
れ、触媒活性は金の微粒子の世休粒子の固着部近傍にあ
るものと思われる。
[Function] In the catalyst of the present invention, in addition to the fine gold particles, the surface of the oxide particles, which are the Sekyu particles, is thought to be involved in the catalytic action, and the catalytic activity is determined by the part of the fine gold particles to which the Sekyu particles are attached. It seems to be nearby.

この触媒を作成するに当っては、まず塩化金酸溶液を加
えて十分に撹拌してから弱アルカリ物質}容液をゆっく
り加えると生成する金の沈澱物粒子が成長して大粒子と
なり、酸化活性が低下する。
To create this catalyst, first add a chloroauric acid solution, stir thoroughly, and then slowly add a weak alkaline substance solution.The gold precipitate particles that are formed will grow into large particles, which will cause oxidation. Activity decreases.

また担体粒子である酸化物わ}末に塩化金酸溶液を?え
て溶媒を蒸発させる通常の含浸法でも金粒子は成長し高
い活性が得られない.さらに共沈法では酸化物の組合わ
せによっては再現性が得られない. 〔実施例〕 実施例I 酸化チタン粉末(TtJ) 1.96f丁を2 (1 
0 c cのビーカーに入れ、水を約100ml加えて
撹拌した。この懸濁液に4 .067x 10−Smo
l/mfの塩化金酸(llALIc14・411■O)
水溶液を5g(金として0.04g)加え、ただちに沈
澱剤として2N炭酸水素アンモニウム(N !I s1
1COff)溶液5 mlをすばやく注入して工時間十
分に132 1’t’ Lた。塩化金酸は炭酸水素アン
モニウムの添加によって水酸化金(III) Au(O
ll)sとなって析出し酸化チタン表面に沈着した.こ
れを濾過し、十分に水洗してからIIO’Cで乾燥した
。次に反応管中にて水素ガスを流通しつつ400’Cで
6時間加熱して還元した。還元後は窒素流通下で室温ま
で放冷し、空気を少量パルスとして加える操作を発熱が
生じなくなるまで行ったのち、反応管から取り出した。
Also, is there a chloroauric acid solution at the end of the oxide particles, which are carrier particles? Even with the usual impregnation method in which the solvent is evaporated, the gold particles grow and high activity cannot be obtained. Furthermore, the coprecipitation method cannot achieve reproducibility depending on the combination of oxides. [Example] Example I Titanium oxide powder (TtJ) 2 (1
The mixture was placed in a 0 cc beaker, and about 100 ml of water was added and stirred. Add 4. 067x 10-Smo
l/mf of chloroauric acid (llALIc14.411■O)
Add 5 g of aqueous solution (0.04 g as gold) and immediately add 2N ammonium hydrogen carbonate (N!I s1) as a precipitant.
5 ml of the 1Coff) solution was quickly injected to give a sufficient processing time of 132 1't'L. Chloroauric acid can be converted into gold(III) hydroxide Au(O
ll)s and deposited on the titanium oxide surface. This was filtered, thoroughly washed with water, and then dried on IIO'C. Next, while passing hydrogen gas through the reaction tube, the mixture was heated at 400'C for 6 hours for reduction. After reduction, the mixture was allowed to cool down to room temperature under nitrogen flow, and a small amount of air was added in pulses until no heat was generated, and then the mixture was taken out from the reaction tube.

触媒は2wt%Au/Ti02となった。透過型電子顕
微鏡で触媒表面を観4[リし1■持された金の粒径を測
定したと汀ろ平均32人のよくそろった粒子が均一に分
敗担持されていた。
The catalyst was 2wt% Au/Ti02. When the catalyst surface was observed using a transmission electron microscope and the diameter of the supported gold particles was measured, it was found that an average of 32 well-aligned particles were evenly separated and supported.

このように調製した触媒をガラス製の反応管に0.1g
充填し、閉鎖循環系反応装置にセットした。
0.1 g of the catalyst prepared in this way was placed in a glass reaction tube.
It was filled and set in a closed circulation reactor.

室温で真空Jl+2気してから、水素を4 X 10−
’mol加え、昇温しで300゜Cで30分間還元した
。迎元後同じク300゜Cで30分間真空脱気したのち
、反応温度の100″C1室温−78゛Cに冷却した。
After applying a vacuum of Jl+2 at room temperature, add 4 x 10-
'mol was added, and the temperature was raised to 300°C for 30 minutes. After pick-up, the same tank was vacuum degassed at 300°C for 30 minutes, and then cooled to the reaction temperature of 100"C1 room temperature - 78°C.

反応は設定した反応温度下で、一酸化炭素と酸素をそれ
ぞれ3X 10−’mol加えて循環させ30分間反応
させた。2、5、10、20、30分後にCOtをガス
クロマトグラフィーで分析して反応率を求めた。結果を
他の触媒とともに表1に示す. 反応後2分のCO添加率は反応温度が室温100゜Cで
は100%、−78℃でも95%に達した。
In the reaction, carbon monoxide and oxygen were added in an amount of 3 x 10-' mol each at a predetermined reaction temperature, and the mixture was circulated for 30 minutes. After 2, 5, 10, 20, and 30 minutes, COt was analyzed by gas chromatography to determine the reaction rate. The results are shown in Table 1 along with other catalysts. The CO addition rate 2 minutes after the reaction reached 100% when the reaction temperature was 100°C, and 95% even at -78°C.

実施例2 酸化マグネシウム粉末(MgO)を担休として2wt%
Au/MgO触媒を調製した。εI!]製方法および反
応?法は実施例1と同様とした。
Example 2 2wt% magnesium oxide powder (MgO)
An Au/MgO catalyst was prepared. εI! ]Production method and reaction? The method was the same as in Example 1.

結果を表1に示す。この触媒は−78゜Cでは反応後2
分で60%、5分で68%転化し以後変化しなかった。
The results are shown in Table 1. This catalyst has a temperature of 2 after the reaction at -78°C.
The conversion was 60% in 1 minute, 68% in 5 minutes, and there was no change thereafter.

室温では反応後2分の転化率は18(3イであったが徐
々に増加し30分後には85%に達した。100゜Cで
はかえって活性は低下し、反応後2分で6%、30分後
では33%の転化率であった。
At room temperature, the conversion rate at 2 minutes after reaction was 18 (3 I), but it gradually increased and reached 85% after 30 minutes.At 100°C, the activity decreased to 6% at 2 minutes after reaction. After 30 minutes, the conversion rate was 33%.

実施例3 酸化ジルコニウム粉末(ZrO■)を11体として2w
L%flu/ZrQ!触媒を調製した。調製方法おJ二
び反応方決は実施例1と同様とした。
Example 3 2w with 11 pieces of zirconium oxide powder (ZrO■)
L%flu/ZrQ! A catalyst was prepared. The preparation method and reaction procedure were the same as in Example 1.

結果を表1に示す。この触媒は−78゜Cでは反応後3
0分でも2%しか転化しなかったが、室温及び100″
Cでは2分後に100%転化した。
The results are shown in Table 1. At -78°C, this catalyst
Even at 0 minutes, only 2% conversion was achieved, but at room temperature and 100″
C had 100% conversion after 2 minutes.

実施例4 酸化スズj5}末(SnO■)を担体として2wt%A
u/SnO■触媒を調製した.調袈方法および反応方法
は実施例lと同様とした。
Example 4 2wt%A using tin oxide j5} powder (SnO■) as a carrier
A u/SnO■ catalyst was prepared. The preparation method and reaction method were the same as in Example 1.

結果を表1に示す。この触媒は−78“Cでは反応後3
0分でも1%しか転化しなかったが室温及び100゜C
では2分後にすでに100%転化していた。
The results are shown in Table 1. At -78"C, this catalyst
Even at 0 minutes, only 1% conversion occurred, but at room temperature and 100°C.
After two minutes, the conversion was already 100%.

実施例5 酸化コハルト粉末(COJa)を世体として2誓(%A
u/Co304触媒を調製した。調製方法および反応方
法は実施例Iと同様とした。
Example 5 Cohart oxide powder (COJa) was used as a worldly product (%A
A u/Co304 catalyst was prepared. The preparation method and reaction method were the same as in Example I.

結果を表1に示す。The results are shown in Table 1.

反応温度−78゜Cでは反応後2分?:I29<、3〔
}分後には49%転化した。一方、室温及び100”(
:では2分後にすでに100%転化していた。
2 minutes after reaction at reaction temperature -78°C? :I29<, 3[
} minutes later, the conversion was 49%. On the other hand, room temperature and 100” (
: After 2 minutes, 100% conversion was already achieved.

実施例6 酸化ランタン粉末(LazO*)を世体として2wL%
Au/Laz’Jt触媒を調製した。調製方法および反
応方法は実施例1と同様とした。
Example 6 Lanthanum oxide powder (LazO*) 2wL%
An Au/Laz'Jt catalyst was prepared. The preparation method and reaction method were the same as in Example 1.

結果を表1に示す。反応後2分で3.3%、30分後に
は17.9%転化した。一方室温及び100゜Cでは2
分後にすでに100%転化していた。
The results are shown in Table 1. The conversion was 3.3% two minutes after the reaction and 17.9% after 30 minutes. On the other hand, at room temperature and 100°C, 2
After minutes there was already 100% conversion.

実施例7 最も活性が高かったTiOzlLj持金触媒について金
の含有届を変えた触媒を調製した。調製方法、実験方法
ともに実施例1と同トpとした。
Example 7 Catalysts with different gold content were prepared from the TiOzlLj gold-bearing catalyst that had the highest activity. Both the preparation method and the experimental method were the same as in Example 1.

?の含有量は0.5、■、2(実施例I)、5−(?イ
とした。
? The content of is 0.5, ■, 2 (Example I), and 5-(?A).

結果を表2に示す。The results are shown in Table 2.

金含有量0.5L%では−78゜Cでは全く転化しなか
った。室温及びI00’Cでは2分後にそれぞれ3.3
%、3.7%、30分後にそれぞれ20。7%、21.
5%転化したが、活性が低かった。
With a gold content of 0.5 L%, there was no conversion at all at -78°C. 3.3 after 2 minutes at room temperature and I00'C, respectively.
%, 3.7%, and 20.7% and 21.30 minutes after 30 minutes, respectively.
Although the conversion was 5%, the activity was low.

金含有呈5hL%では実施例lで示した反応結果と全く
同様であり、高い活性を示した。
When the gold content was 5 hL%, the reaction results were exactly the same as those shown in Example 1, indicating high activity.

実施例8 最も高い活性を示した2wt%Au/TiO■触媒につ
いて活性の持続性を調べた。触媒0. 1gを充填した
反応管を常圧流通式反応装置にセットした。室温で真空
脱気後300゜Cで30分水素を流通させてぷ元してか
らlieでパージしつつ室温まで冷却した。室温に達し
てからlvol%COを空気でバランスした標準ガスを
33.5me/min流通して反応した。転化率は出口
ガス中のCO■をガスクロマトグラフィーで分1斤して
求めた。
Example 8 The sustainability of the activity of the 2wt% Au/TiO2 catalyst, which showed the highest activity, was investigated. Catalyst 0. A reaction tube filled with 1 g was set in a normal pressure flow reactor. After vacuum degassing at room temperature, hydrogen was passed through the reactor at 300°C for 30 minutes to purify the reactor, and the reactor was cooled to room temperature while purging with a sieve. After reaching room temperature, a standard gas in which lvol% CO was balanced with air was flowed at 33.5 me/min for reaction. The conversion rate was determined by dividing 1 kg of CO in the outlet gas by gas chromatography.

処理活性は100%であり、反応開始後30時間経?し
ても94%以上活性が持続した。
The treatment activity is 100%, and 30 hours have passed since the start of the reaction? However, the activity remained more than 94%.

実施例9 2wL%Au/ZrO,触媒について、実施例8と同様
の方法で活性の持続性を調べた。
Example 9 The sustainability of activity of the 2wL% Au/ZrO catalyst was examined in the same manner as in Example 8.

初期活性は100%であり、反応開始後3時間経過して
も95%以上活性が持続した。
The initial activity was 100%, and the activity remained at 95% or more even after 3 hours from the start of the reaction.

実施例1() 1!!体をシリカ(SiO■)として実力缶例lと同様
の方法で2wt%の金を担持した。この2詰(%Au/
Sift触媒について、実施例日と同様の方法で活性と
その持続性を調べた。初[υ1活性および反応後2時間
を経てもCOの酸化活性は99%以上が維持された。
Example 1 () 1! ! The body was made of silica (SiO2) and 2 wt % of gold was supported in the same manner as in Example 1 of the actual can. These two packs (%Au/
The activity and sustainability of the Sift catalyst were examined in the same manner as in the example day. The initial [υ1 activity and the CO oxidation activity were maintained at 99% or more even after 2 hours after the reaction.

実施例1l jU体をアルミナ(Ah(h)として実施例lと同様の
方法で5wL%の金を担持した。この2−L%へ117
AI20:l 触’媒について、実施例8と同様の方法
で活性とその持続性を調べた。初期活性および反応後2
時間を経゛ζもCOの酸化活性は99%以上が維持され
た。
Example 1l JU body was used as alumina (Ah(h)) and 5 wL% of gold was supported in the same manner as in Example 1. To this 2-L%, 117
The activity and sustainability of the AI20:l catalyst were examined in the same manner as in Example 8. Initial activity and post-reaction 2
Over 99% of the CO oxidation activity was maintained over time.

比較例1 1!!体を酸化鉄(Fezes)、、酸化亜鉛(ZnO
)として実施例1と同様の方法で2wt%金を担持した
Comparative example 1 1! ! Iron oxide (Fezes), zinc oxide (ZnO)
), 2 wt % gold was supported in the same manner as in Example 1.

反応方法も実施例lと同様とした。The reaction method was also the same as in Example 1.

結果を表1に示す。The results are shown in Table 1.

いずれも実施例1〜6に示した触媒のような高い活性は
得られなかった。
In all cases, high activity like the catalysts shown in Examples 1 to 6 was not obtained.

比較例2 2wt%Au/Tietについて、担体のTiOzを水
に1懸濁した後、塩化金酸水溶液を所定量加え、1時間
十分に撹拌した後、金の5倍当四の炭酸水素アンモニウ
ム溶液を滴下して金の水酸化物を担体に沈着させた。以
後の操作は実施例lと同様とした。
Comparative Example 2 Regarding 2 wt% Au/Tiet, after suspending TiOz as a support in water, a predetermined amount of chloroauric acid aqueous solution was added, and after stirring thoroughly for 1 hour, an ammonium hydrogen carbonate solution of 5 times the amount of gold and 4 times the amount of gold was added. was added dropwise to deposit gold hydroxide onto the carrier. The subsequent operations were the same as in Example 1.

この触媒について実施例1と同様の方法で反応を行った
A reaction was carried out using this catalyst in the same manner as in Example 1.

反応開始後30分でもCOの転化率は−78、室温10
0“Cについてそれぞれ10%、34%、8%であり、
実施例1の示した塩化金酸水溶液転化後直ちに沈澱剤を
加えて調製した触媒のような高い活性は得られなかった
. この触媒の透過型電子顕微鏡写真から求めた金の粒径は
平均60人であり、またこれより大きな粒径のものもい
くつか見られた。この結果から金は50人以下に微粒化
して1u体に均一分敗されているものが高い活性を示す
ことがわかった。
Even 30 minutes after the start of the reaction, the CO conversion rate was -78, and the room temperature was 10.
0″C are 10%, 34%, and 8%, respectively,
The catalyst shown in Example 1, which was prepared by adding a precipitant immediately after converting the aqueous chloroauric acid solution, did not have the same high activity as the catalyst. The average gold particle size determined from a transmission electron micrograph of this catalyst was 60 particles, and some particles with larger particle sizes were also observed. From this result, it was found that gold exhibits high activity when it is atomized to 50 particles or less and uniformly divided into 1 u particles.

比較例3 2wt%八u/TiOtについて、lj体Ti02に所
定量の塩化金酸水溶液を加え、1発乾固する通常の含浸
法で触媒を調製した。触媒の01処理方法および反応方
法は実施例lと同様とした。
Comparative Example 3 Regarding 2wt% 8u/TiOt, a catalyst was prepared by adding a predetermined amount of chloroauric acid aqueous solution to lj-form Ti02 and drying it in one shot using a normal impregnation method. The 01 treatment method and reaction method for the catalyst were the same as in Example 1.

反応温度−78゜C、室温100゜Cで全<coは転化
しなかった。この触媒につい゛ζX線回折決で金の粒径
を測定したところ平均160人と大きなものであった。
At a reaction temperature of -78°C and a room temperature of 100°C, no total co was converted. When the gold particle size of this catalyst was measured by ζ-X-ray diffraction, it was found to be 160 particles on average.

比較例4 COの酸化に高い活性を示すといわれる共沈法による2
wt%Au/FezO.触媒を作製した。まず所定滑の
塩化金酸と硝酸銖の混合水溶液を作製しこれに炭酸水素
アンモニウムを5倍当■加えて共沈させた。濾過、乾{
%(110゜C)後、実施例1と同様の方法で還元し、
反応に供した.反応方法も実施例lと同様とした. 反応温度−78゜Cで反応開始後30分でもCO転化率
はIO%であり、報告されたような高い活性は再現され
なかった. 表1 沈着法で作製した2wt%金 含有各種酸化物触媒の活性 表2 ?u/TiO■の含有溌依存性 ?発明の効果〕 本発明の触媒は金の含有■が少ないにもかかわらず触媒
活性が高《、しかも−78゜Cという低温下でも触媒活
性を発揮する。また、安定性も良好で長時間の反応に耐
え、水分に対する耐久性も高い。
Comparative Example 4 Co-precipitation method 2 which is said to have high activity in oxidizing CO
wt%Au/FezO. A catalyst was prepared. First, a mixed aqueous solution of chloroauric acid and nitric acid of a predetermined thickness was prepared, and 5 times as much ammonium hydrogen carbonate was added thereto for coprecipitation. Filtration, drying {
% (110°C), reduced in the same manner as in Example 1,
It was used for reaction. The reaction method was also the same as in Example 1. Even 30 minutes after the start of the reaction at a reaction temperature of -78°C, the CO conversion rate was IO%, and the reported high activity could not be reproduced. Table 1 Activity table of various oxide catalysts containing 2 wt% gold prepared by deposition method 2? Inclusion dependence of u/TiO■? Effects of the Invention The catalyst of the present invention has high catalytic activity despite its low gold content (1), and exhibits catalytic activity even at a low temperature of -78°C. It also has good stability, can withstand long-term reactions, and has high durability against moisture.

高価な金の使用量を減少させることができるため安価で
ある。本発明の触媒は酸化触媒でありCOの酸化にとど
まらず!1■の酸化等種々の酸化反応に利用することが
できる,
It is inexpensive because the amount of expensive gold used can be reduced. The catalyst of the present invention is an oxidation catalyst and is not limited to oxidizing CO! It can be used for various oxidation reactions such as the oxidation of 1.

Claims (1)

【特許請求の範囲】[Claims] 酸化チタン、酸化マグネシウム、酸化ジルコニウム、酸
化ケイ素、酸化アルミニウム、酸化スズ、酸化コバルト
又は酸化ランタンの粒子の表面に1〜5重量%の金微粒
子が担持されてなる接触燃焼用金含有触媒
A gold-containing catalyst for catalytic combustion in which 1 to 5% by weight of gold fine particles are supported on the surface of particles of titanium oxide, magnesium oxide, zirconium oxide, silicon oxide, aluminum oxide, tin oxide, cobalt oxide, or lanthanum oxide.
JP1112129A 1989-01-24 1989-05-02 Gold-containing catalyst for contact combustion Pending JPH02290251A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1487089 1989-01-24
JP1-14870 1989-01-24

Publications (1)

Publication Number Publication Date
JPH02290251A true JPH02290251A (en) 1990-11-30

Family

ID=11873055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1112129A Pending JPH02290251A (en) 1989-01-24 1989-05-02 Gold-containing catalyst for contact combustion

Country Status (1)

Country Link
JP (1) JPH02290251A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU698375B2 (en) * 1994-11-02 1998-10-29 Anthony Harold Gafin Catalyst with zirconia/ceria support
WO1998051401A1 (en) * 1997-05-15 1998-11-19 Laman Consultancy Limited Gold based catalyst for exhaust gas purification
JP2002102700A (en) * 2000-09-28 2002-04-09 Toyota Central Res & Dev Lab Inc Normal temperature catalyst
JP2002102701A (en) * 2000-09-28 2002-04-09 Toyota Central Res & Dev Lab Inc Ordinary temperature catalyst
EP1209121A1 (en) * 2000-11-22 2002-05-29 Haldor Topsoe A/S Process for the catalytic oxidation of carbon monoxide and/or methanol
CN104069857A (en) * 2014-06-26 2014-10-01 陕西师范大学 Preparation method for nano Au/MgO catalyst
JPWO2013172135A1 (en) * 2012-05-18 2016-01-12 日清紡ホールディングス株式会社 Method and apparatus for treating carbon monoxide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155937A (en) * 1985-08-30 1987-07-10 Agency Of Ind Science & Technol Production of catalytic body carrying gold and gold composite oxide
JPS63252908A (en) * 1987-04-08 1988-10-20 Agency Of Ind Science & Technol Immobilized oxide of metallic fine particle, production thereof, oxidation catalyst, reduction catalyst, combustible gas sensor element and catalyst for electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155937A (en) * 1985-08-30 1987-07-10 Agency Of Ind Science & Technol Production of catalytic body carrying gold and gold composite oxide
JPS63252908A (en) * 1987-04-08 1988-10-20 Agency Of Ind Science & Technol Immobilized oxide of metallic fine particle, production thereof, oxidation catalyst, reduction catalyst, combustible gas sensor element and catalyst for electrode

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU698375B2 (en) * 1994-11-02 1998-10-29 Anthony Harold Gafin Catalyst with zirconia/ceria support
WO1998051401A1 (en) * 1997-05-15 1998-11-19 Laman Consultancy Limited Gold based catalyst for exhaust gas purification
JP2002102700A (en) * 2000-09-28 2002-04-09 Toyota Central Res & Dev Lab Inc Normal temperature catalyst
JP2002102701A (en) * 2000-09-28 2002-04-09 Toyota Central Res & Dev Lab Inc Ordinary temperature catalyst
JP4656352B2 (en) * 2000-09-28 2011-03-23 株式会社豊田中央研究所 Room temperature catalyst
EP1209121A1 (en) * 2000-11-22 2002-05-29 Haldor Topsoe A/S Process for the catalytic oxidation of carbon monoxide and/or methanol
US6692713B2 (en) 2000-11-22 2004-02-17 Haldor Topsoe A/S Process for the catalytic oxidation of carbonaceous compounds
JPWO2013172135A1 (en) * 2012-05-18 2016-01-12 日清紡ホールディングス株式会社 Method and apparatus for treating carbon monoxide
CN104069857A (en) * 2014-06-26 2014-10-01 陕西师范大学 Preparation method for nano Au/MgO catalyst
CN104069857B (en) * 2014-06-26 2016-05-04 陕西师范大学 The preparation method of nanometer Au/MgO catalyst

Similar Documents

Publication Publication Date Title
US5502019A (en) Conversion of carbon monoxide using cobalt-based metal oxide catalysts
TWI417137B (en) Catalyst promoters in vanadium-free mobile catalyst
CA2663782C (en) Nanocomposite particle and process of preparing the same
US4524051A (en) Catalyst preparation and oxidation of carbon monoxide with said catalyst
Ivanova et al. Application of the direct exchange method in the preparation of gold catalysts supported on different oxide materials
CA2459496C (en) Ceric oxide, method for preparation thereof, and catalyst for purifying exhaust gas
JPH01297146A (en) Catalyst held to carrier for non selective oxidation of organic compound and, especially, non-selective oxidation of organic compound
US3928238A (en) Exhaust gas purifying catalyst and process of making and using same
JPS60147244A (en) Modified copper and zinc-containing catalyst and production of methanol using said catalyst
JP2003144932A (en) Catalyst for producing ethylene oxide, producing method therefor and method for manufacturing ethylene oxide by the catalyst
JPH02290251A (en) Gold-containing catalyst for contact combustion
US6204219B1 (en) Thermally stable support material and method for making the same
JP5119508B2 (en) PM combustion oxidation catalyst, diesel engine exhaust gas purification method, filter and purification apparatus using the same
JP2006272250A (en) Method for arraying fine particle, catalyst for cleaning exhaust gas, electrode catalyst and magnetic material
JPH0230740B2 (en)
CN109689205A (en) Purposes of the vanadate as oxidation catalyst
JP2018001080A (en) Co oxidation catalyst and method for producing the same, supported catalyst and exhaust gas treatment apparatus
JPS6331541A (en) Preparation of fluidized catalyst for synthesis of methanol
CN113134357A (en) Water-resistant carbon monoxide catalyst and preparation method thereof
JPS62261803A (en) Contact burning method
US2319948A (en) Catalytic process of treating hydrocarbons
CN110935460B (en) High-selectivity hydrodesulfurization catalyst and preparation method thereof
JPH01100029A (en) Stable k2fe22034 potassium ferrite phase and manufacture
JPH06320000A (en) Fluidized catalyst for synthesis of methanol
CN104148063B (en) A kind of reforming catalyst of active center stable dispersion and preparation method thereof