JPS62261803A - Contact burning method - Google Patents

Contact burning method

Info

Publication number
JPS62261803A
JPS62261803A JP61104770A JP10477086A JPS62261803A JP S62261803 A JPS62261803 A JP S62261803A JP 61104770 A JP61104770 A JP 61104770A JP 10477086 A JP10477086 A JP 10477086A JP S62261803 A JPS62261803 A JP S62261803A
Authority
JP
Japan
Prior art keywords
catalyst
zircon
zirconia
hydrogen
catalytic combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61104770A
Other languages
Japanese (ja)
Inventor
Atsushi Kitagawa
淳 北川
Takashi Jinbo
神保 隆志
Shoei Kudo
工藤 昭英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo CCI KK
Original Assignee
Toyo CCI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo CCI KK filed Critical Toyo CCI KK
Priority to JP61104770A priority Critical patent/JPS62261803A/en
Publication of JPS62261803A publication Critical patent/JPS62261803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To provide a stable and economical contact method by using a catalyst mainly composed of zirconia and/or zircon in a contact burning of a gas containing hydrogen. CONSTITUTION:As a raw material for zirconia which is a principal component of a catalyst used in the contact burning method, any of zirconium oxide, baddeleyite, zirconium oxychloride, zirconyl sulfate, and zirconyl nitrate can be used. As a raw material for zircon, any of natural zircon, zirconium silicate, sodium silicozirconate and potassium silicozirconate can be used. The contact burning method can be employed for gases in such a wide range where the hydrogen concentration in the gas is approximately 10ppm or more and up to 100%. It is desirable that the temperature of starting a combustion reaction is 100 deg.C or more in a case where no precious metal is added, and 200 deg.C or more particularly in a case where a catalyst consisting only of zirconia and/or zircon is used. In a case where it is necessary to set the combustion reaction temperature at 100 deg.C or less, a catalyst added with an extremely minute amount of a precious metal, particularly palladium.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水素を含むガスの接触燃焼方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for catalytic combustion of gas containing hydrogen.

〔従来の技術〕[Conventional technology]

炭化水素類にかわる次世代の燃料として、クリーンなエ
ネルギーである水素が注目されるようになって久しいが
、将来水素が大量に燃料として使用されるようになれば
、水素単独或はメタンその他の炭化水素と共に比較的多
量に水素を含むガス等の接触燃焼方法は益々重要となっ
てくるであろう。
Hydrogen, which is a clean energy source, has long been attracting attention as a next-generation fuel to replace hydrocarbons, but if hydrogen is used in large quantities as a fuel in the future, hydrogen alone or methane and other Catalytic combustion methods for gases containing relatively large amounts of hydrogen as well as hydrocarbons will become increasingly important.

従来より低温度での燃焼、そして炎のない燃焼を行う触
媒を用いた燃焼は行われており、アクリルニトリル排ガ
ス処理、自動車アフターバーナーなどへの採用など、す
でに実用化されている例も数多くあるが、これらは何れ
もアルミナ、シリカ、シリカ−アルミナ、マグネシア、
ジルコニアナトの耐熱性触媒担体に、白金、パラジウム
、ルテニラム、ロジウムなどの貴金属、あるいは酸化ニ
ッケル、酸化コバルト、酸化鉄、酸化銅、酸化マンガン
等の金属酸化物を酸化活性触媒成分として担持したもの
を酸化触媒として使用するのが通常であった。
Combustion using catalysts has traditionally been carried out at low temperatures and without flames, and there are many examples that have already been put into practical use, such as in acrylonitrile exhaust gas treatment and automobile afterburners. , these are all alumina, silica, silica-alumina, magnesia,
A heat-resistant zirconia anato catalyst carrier supported with noble metals such as platinum, palladium, ruthenylum, and rhodium, or metal oxides such as nickel oxide, cobalt oxide, iron oxide, copper oxide, and manganese oxide as an oxidation-active catalyst component. It was commonly used as an oxidation catalyst.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、これらの酸化触媒による接触燃焼には種
々の問題があった。即ち燃焼あるいは酸化反応による発
熱の為1000℃を越えるような高温、特に1300℃
〜1600℃といった高温状態に触媒が置かれると、 ■担体の焼結による表面積の急激な低下■白金、ルテニ
ウムなどの貴金属の焼結及び/又は揮散 ■酸化ニッケル、酸化コバルトなどの金属酸化物の担体
との反応による不活性化 などに基く、触媒の著しい活性低下が起るといった問題
があった。そのような問題点に加えて、触媒成分である
金属、特に貴金属が高価であるといった欠点も又無視し
得ない問題点である。
However, catalytic combustion using these oxidation catalysts has had various problems. In other words, high temperatures exceeding 1000℃, especially 1300℃ due to heat generated by combustion or oxidation reactions.
When a catalyst is placed in a high temperature condition of ~1600℃, ■ a rapid decrease in surface area due to sintering of the carrier; ■ sintering and/or volatilization of noble metals such as platinum and ruthenium; and ■ metal oxides such as nickel oxide and cobalt oxide. There has been a problem in that the activity of the catalyst is significantly reduced due to inactivation due to reaction with the carrier. In addition to such problems, another problem that cannot be ignored is that metals, particularly noble metals, which are catalyst components are expensive.

本発明は以上の諸問題点を解決し得る、安定した、しか
も経済的な接触燃焼方法を提供するものである。
The present invention provides a stable and economical catalytic combustion method that can solve the above problems.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明は水素を含むガスの接触燃焼方法に於て、ジルコ
ニア及び/又はジルコンを主成分とする触媒を使用する
ことを特徴とする接触燃焼方法に関するものである。
The present invention relates to a method for catalytic combustion of gas containing hydrogen, which is characterized by using a catalyst containing zirconia and/or zircon as a main component.

本発明者等は水素を含むガスの接触燃焼に於て比較的低
温に於ても燃焼活性を有し、しかも1000〜1300
℃を越える高温、例えば1500〜1600℃に於ても
その活性を保持する安定した触媒を開発することにより
優れた接触燃焼方法を確立すべく、各種の金属酸化物を
ペースとする酸化触媒について鋭意検討を重ねたが、そ
の結果意外にもジルコニア及びl又はジルコンが耐熱性
に優れているばかりでなく、優れた燃焼活性を有するこ
とを見出し、又ジルコニア及び/又はジルコンに酸化セ
リウム、酸化カルシウム、酸化イツトリウム及び酸化ア
ルミニウムよりなる群から選ばれた1種又は2種以上の
金属酸化物を加えた触媒は約100℃或はそれ以下の温
度に於てすら活性を示すより優れた触媒であることを見
出し、本発明の接触燃焼方法に到達した。本発明者等は
更に本発明のこれらの触媒に貴金属を加えた場合の検討
を行い、ご(微量の責合、寓、例えば0.02重量%程
度のパラジウムの添加によっても本発明の触媒の低温活
性が著しく改善され、室温に於てすら水素の燃焼反応が
起ること、貴金属添加量が微量である稚貝金属の焼結に
よる触媒活性の低下の防止に効果的であることを見出し
、本発明の接触燃焼方法の適用範囲を更に広げることに
成功した。
The present inventors have discovered that in catalytic combustion of hydrogen-containing gas, the combustion activity is high even at relatively low temperatures, and
In order to establish an excellent catalytic combustion method by developing a stable catalyst that retains its activity even at high temperatures exceeding 1500 to 1600 °C, we are working hard on oxidation catalysts based on various metal oxides. As a result of repeated studies, it was surprisingly discovered that zirconia and/or zircon not only have excellent heat resistance, but also have excellent combustion activity. Catalysts containing one or more metal oxides selected from the group consisting of yttrium oxide and aluminum oxide are superior catalysts that exhibit activity even at temperatures of about 100°C or lower. They discovered this and arrived at the catalytic combustion method of the present invention. The present inventors further investigated the case where noble metals were added to these catalysts of the present invention, and found that the catalysts of the present invention could be improved by adding a small amount of palladium, for example, about 0.02% by weight. We discovered that the low-temperature activity was significantly improved, hydrogen combustion reaction occurred even at room temperature, and that it was effective in preventing the decrease in catalytic activity due to sintering of young shell metals with trace amounts of precious metals added. We succeeded in further expanding the scope of application of the catalytic combustion method of the present invention.

本発明の水素の接触燃焼方法によれば、例えば100℃
以下の比較的低温域から1300℃を越え時には160
0℃の高温にも及ぶ広い温度範囲に亘っそ安定した接触
燃焼が可能である。しかもその接触は貴金属の使用が皆
無或はごく微量であるから極めて安価なものであり、従
ってこのことが、本発明の接触燃焼方法を著しく経済的
なものとしている。
According to the hydrogen catalytic combustion method of the present invention, for example, 100°C
From the relatively low temperature range below to 160℃ when exceeding 1300℃
Very stable catalytic combustion is possible over a wide temperature range, even as high as 0°C. Furthermore, the catalytic combustion method of the present invention is extremely economical since no or very small amounts of precious metals are used.

本発明は解決しようとする前述の問題点解決の慶れた方
法である。
The present invention is a successful solution to the above-mentioned problems that it seeks to solve.

本発明の接触燃焼方法に使用される触媒の主成分テする
ジルコニアの原料としては、酸化ジルコニウム、天然の
バデライト、オキシ塩化ジルコニウム、硫酸ジルコニル
、硝酸ジルコニル、炭酸ジルコニル、水酸化ジルコニル
、酢酸ジルコニル、ステアリン酸ジルコニル、オクチル
酸ジルコニル等いずれも使用可能である。ジルコンの原
料としては天然のジルコン、珪酸ジルコニウム、珪ジル
コン酸ナトリウム、珪ジルコン酸カリウムが使用可能で
あり、又前述の各ジルコニウム原料とコロイダルシリカ
、水ガラス類、シリカゲル、珪素、四塩化珪素、珪酸エ
チル等の各種シリカ原料を5102としてZrO2に対
して等モルト以下の量で組合せて使用することも可能で
ある。
The raw materials for zirconia, which is the main component of the catalyst used in the catalytic combustion method of the present invention, include zirconium oxide, natural baddeleyte, zirconium oxychloride, zirconyl sulfate, zirconyl nitrate, zirconyl carbonate, zirconyl hydroxide, zirconyl acetate, and stearin. Any of zirconyl acid, zirconyl octylate, etc. can be used. Natural zircon, zirconium silicate, sodium zirconate, and potassium zirconate can be used as raw materials for zircon, and each of the above-mentioned zirconium raw materials, colloidal silica, water glasses, silica gel, silicon, silicon tetrachloride, and silicic acid can be used as raw materials for zircon. It is also possible to use various silica raw materials such as ethyl as 5102 in combination in an amount equal to or less than the molt relative to ZrO2.

副成分である酸化セリウム、酸化カルシウム、酸化イツ
トリウム及び酸化アルミニウムの原料としては、それら
の酸化物、水酸化物、各種鉱酸塩、各種有機酸塩などい
ずれも使用できる。これら副成分の酸化物の触媒中の含
有量は0.5〜50重量%の範囲が好ましく、1〜40
重量%の範囲がより好ましい。パラジウム等の貴金属を
微量添加する場合、その添加割合は0.02〜0.2重
量%の範囲が好ましい。貴金属添加の効果はこの範囲以
下では顕著でなく、この範囲を越えると貴金属が焼結を
起し、活性低下など触媒を不安定にするので、むしろ望
ましくはない。貴金属添加のための原料としてはハロゲ
ン化物、硝酸、硫酸などの各種鉱酸塩などが使用出来る
As raw materials for the subcomponents cerium oxide, calcium oxide, yttrium oxide, and aluminum oxide, any of their oxides, hydroxides, various mineral acid salts, and various organic acid salts can be used. The content of these subcomponent oxides in the catalyst is preferably in the range of 0.5 to 50% by weight, and 1 to 40% by weight.
A weight percent range is more preferred. When adding a small amount of noble metal such as palladium, the addition ratio is preferably in the range of 0.02 to 0.2% by weight. The effect of adding a noble metal is not significant below this range, and above this range, the noble metal causes sintering, resulting in a decrease in activity and destabilizing the catalyst, which is rather undesirable. As raw materials for adding noble metals, halides, various mineral acid salts such as nitric acid, sulfuric acid, etc. can be used.

本発明の方法に使用される触媒の製造法としては、通常
触媒製造に使用される沈殿法、混練法、含浸法等の方法
及びこれらの組合せ法のいずれも使用可能である。又触
媒の成型の方法としては押出成型、転動造粒、打錠など
のいずれの方法でも差支えない。更にはコーラライトノ
1ニカム、セラミックフオーム、メタルフオーム等の支
持体を触媒成分でウオツシコートなどにより覆う方法も
可能である。
As a method for producing the catalyst used in the method of the present invention, any of the methods normally used for producing catalysts, such as precipitation, kneading, and impregnation, and combinations thereof, can be used. The catalyst may be molded by any method such as extrusion molding, rolling granulation, or tableting. Furthermore, it is also possible to cover a support such as corallite resin, ceramic foam, metal foam, etc. with the catalyst component using a wash coat or the like.

このようにして製造した成型物は通常120〜200℃
で乾燥後約400℃以上1600℃以下の温度で焼成し
て仕上り触媒とする。この場合触媒の比表面積は10 
m2/g 〜0.01 marの如(、時ニハ極端ニ小
さな値となるが、本発明の方法のための触媒としては活
性的に全く問題ない。触媒の比表面積を高めることは活
性を高めることとなるが、熱安定性の点では不利となる
ので、本発明のための触媒に於ては、比表面積を207
rL7を以下とするよう焼成することが望ましい。
The molded product produced in this way is usually heated to a temperature of 120 to 200°C.
After drying, the catalyst is fired at a temperature of about 400°C or higher and 1,600°C or lower to obtain a finished catalyst. In this case, the specific surface area of the catalyst is 10
Although the value is extremely small, such as m2/g to 0.01 mar, there is no problem with its activity as a catalyst for the method of the present invention.Increasing the specific surface area of the catalyst increases the activity. However, since this is disadvantageous in terms of thermal stability, the specific surface area of the catalyst for the present invention is 207
It is desirable to perform firing so that rL7 is as follows.

本発明の接触燃焼方法は、ガス中の水素濃度約10−以
上、100%迄の広い範囲のガスに適用できる。この場
合の燃焼反応開始の温度は貴金属を添加しない場合には
100℃以上、特にジルコニア及びl又はジルコンのみ
から成る触媒を使用する場合は200℃以上とすること
が望ましい。燃焼反応温度を100℃以下にする必要が
あるような場合には、貴金属特にパラジウムをごく微量
添加した触媒を使用しなければならない。本発明の方法
を用いる触媒は耐熱性に特に優れたものではあるが、長
期に亘ってその性能を保持するには触媒層中の最高温度
は出来るだけ低くすることが望ましく、短時間であって
も1600℃を越えることは避けるべきであり、最高温
度は常時約1300〜1400℃以下に保つことが特に
望まれる。そのためには中途で冷却を行う多段燃焼など
の設計も考慮されるであろう。
The catalytic combustion method of the present invention can be applied to a wide range of gases having a hydrogen concentration of about 10% or more up to 100%. In this case, the temperature at which the combustion reaction starts is desirably 100° C. or higher when no noble metal is added, and particularly preferably 200° C. or higher when using a catalyst consisting only of zirconia and l or zircon. If the combustion reaction temperature needs to be lower than 100° C., a catalyst to which a very small amount of a noble metal, particularly palladium, is added must be used. Although the catalyst using the method of the present invention has particularly excellent heat resistance, in order to maintain its performance over a long period of time, it is desirable to keep the maximum temperature in the catalyst layer as low as possible. It should be avoided that the temperature exceeds 1600°C, and it is especially desirable to keep the maximum temperature always below about 1300-1400°C. To this end, designs such as multi-stage combustion with cooling midway may be considered.

水素が比較的少く、他に炭化水素などの可燃性ガスを含
むガスの接触燃焼にあっては、それらの水素以外の可燃
性ガスの燃焼率を高めるために例えば600℃の如き比
較的高温域で燃焼反応を進める・必要がある。
In the case of catalytic combustion of a gas containing relatively little hydrogen and other combustible gases such as hydrocarbons, a relatively high temperature range such as 600°C is used to increase the combustion rate of the combustible gases other than hydrogen. It is necessary to proceed with the combustion reaction.

〔作  用〕[For production]

本発明の接触燃焼方法では特に耐熱性に優れた触媒を用
いており最高温度が700〜1600℃に達する接触燃
焼方法に好適である。触媒は又安価でしかも活性に優れ
ている。従って、本発明は従来触媒の耐熱性の不足、高
価格の点より制約のあった接触燃焼領域への適用を可能
とする。
The catalytic combustion method of the present invention uses a catalyst particularly excellent in heat resistance, and is suitable for a catalytic combustion method in which the maximum temperature reaches 700 to 1600°C. The catalyst is also inexpensive and has excellent activity. Therefore, the present invention can be applied to the catalytic combustion area, which has been restricted due to lack of heat resistance and high cost of conventional catalysts.

〔実 施 例〕〔Example〕

本発明を次の実施例により更に詳細に説明する。 The invention will be explained in more detail by the following examples.

実施例 1゜ 市販酸化ジルコニウムを3.2 mx p X 3.2
 ms、に打錠成型し、引続いて空気雰囲気中で130
0℃、10時間焼成して触媒Aを製造した。この触媒を
12〜24メツシユに破砕し、内径6Hの石英製反応器
に5CC充填し、N26.0%、0.3.5%、N2残
部よりなる混合ガスを用いて5V20,000、反応温
度0〜1200℃で水素燃焼試験を行なった。結果を表
1に示す。
Example 1゜Commercially available zirconium oxide 3.2 m x p x 3.2
ms, and then in an air atmosphere for 130 ms.
Catalyst A was produced by firing at 0°C for 10 hours. This catalyst was crushed into 12 to 24 meshes, packed into a quartz reactor with an inner diameter of 6H at 5CC, and heated to 5V20,000 using a mixed gas consisting of 6.0% N2, 0.3.5% N2, and the remainder at a reaction temperature. A hydrogen combustion test was conducted at 0-1200°C. The results are shown in Table 1.

この触媒の比表面積は0.2m”/lであった。The specific surface area of this catalyst was 0.2 m''/l.

実施例 2゜ 硝酸ジルコニウムを400℃で熱分解した後32朋p 
X 3.2 mmに打錠成型し、引続いて空気雰囲気中
で1300℃、10時間焼成して触媒Bを製造した。こ
れを実施例1と同じ条件で水素燃焼試験を行なった。結
果を表1に示す。
Example 2゜32 hours after thermally decomposing zirconium nitrate at 400℃
Catalyst B was produced by compressing into tablets of 3.2 mm x 3.2 mm and then calcining in an air atmosphere at 1300° C. for 10 hours. This was subjected to a hydrogen combustion test under the same conditions as in Example 1. The results are shown in Table 1.

実施例 3゜ 炭酸ジルコニウムを硝酸で溶解し、硝酸カルシウムと共
にアンモニアで共沈させた。これを1300℃で5時間
焼成し、酸化物としてCaO/Zr02=11/89 
(重量比)の触媒Cを製造した。実施例1と同じ条件で
行なった水素燃焼試験の結果を表1に示す。
Example 3 Zirconium carbonate was dissolved in nitric acid and co-precipitated with calcium nitrate and ammonia. This was calcined at 1300°C for 5 hours to form an oxide of CaO/Zr02=11/89.
(weight ratio) Catalyst C was manufactured. Table 1 shows the results of a hydrogen combustion test conducted under the same conditions as in Example 1.

実施例 4〜6゜ 硝酸カルシウムのかわりに硝酸セリウム、硝耐イツトリ
ウム、および硝酸アルミニウムを用いてそれぞれ触媒り
、E、Fを製造した。セリウム、イツトリウム、アルミ
ニウムの含量はそれぞれ酸化物として11 wt%であ
った。実施例と同じ条件て行なった水素燃焼試験の結果
を表1に示す。
Examples 4 to 6 Examples E and F were produced using cerium nitrate, yttrium nitrate, and aluminum nitrate as catalysts in place of calcium nitrate. The contents of cerium, yttrium, and aluminum were each 11 wt% as oxides. Table 1 shows the results of a hydrogen combustion test conducted under the same conditions as in the examples.

11月−二二旦・ 市販ジルコン担体を触媒Gとする。これに力hシウム、
セリウム、イツトリウム、アルミニウムの硝酸塩を含浸
担持し、次いで1300℃で焼成して前記元素を酸化物
として19 wt%担持した触媒をそれぞれH,I、J
、にとする。実施例1と同じ掃作で行なった水素燃焼試
験の結果を表1に示す。
November - February 2nd - A commercially available zircon carrier was used as catalyst G. To this, power hsium,
The catalysts were impregnated and supported with nitrates of cerium, yttrium, and aluminum, and then calcined at 1300°C to support 19 wt% of the above elements as oxides, respectively.
, to. Table 1 shows the results of a hydrogen combustion test conducted using the same sweeping method as in Example 1.

実施例 12.13゜ 触媒Gに塩化パラジウムを含浸担持し、次いで1000
℃で焼成してPdを0.02 wt%および0.2 w
t%扛持した触媒をそれぞれり、Mとする。
Example 12.13° Catalyst G was impregnated and supported with palladium chloride, and then 1000
0.02 wt% and 0.2 w of Pd by firing at °C.
Each of the catalysts retained at t% is designated as M.

表     1 触媒A−Mをマツフル炉中で1200℃、500時間熱
処理した後、実施例1〜13と同じ条件で水素燃焼試験
を行なった。各温度での水素燃焼率は実施例1〜13と
ほとんど変らなかった。
Table 1 After heat treating catalysts A-M at 1200° C. for 500 hours in a Matsufuru furnace, a hydrogen combustion test was conducted under the same conditions as Examples 1 to 13. The hydrogen combustion rate at each temperature was almost the same as in Examples 1-13.

〔発明の効果〕〔Effect of the invention〕

本発明の接触燃焼方法は安価で、優れた耐久性(耐熱性
)と水素酸化活性を持つ接触燃焼触媒を使用することを
特徴としており、従って比較的高温度で運転可能な安価
な機器設備であると同時に維持費の少い機器設備を用い
た接触燃焼方法の提供を特徴とする 特許出願人  東洋シーシーアイ株式会社累・・ ユヅ;。
The catalytic combustion method of the present invention is characterized by the use of a catalytic combustion catalyst that is inexpensive, has excellent durability (heat resistance), and hydrogen oxidation activity, and therefore requires inexpensive equipment and equipment that can operate at relatively high temperatures. Patent applicant: Toyo CCI Co., Ltd., which is characterized by providing a catalytic combustion method using equipment with low maintenance costs.

手続補正書(自発) 昭和81年5月21日Procedural amendment (voluntary) May 21, 1981

Claims (6)

【特許請求の範囲】[Claims] (1)水素を含むガスの接触燃焼方法に於て、ジルコニ
ア及び/又はジルコンを主成分とする触媒を使用するこ
とを特徴とする接触燃焼方法。
(1) A catalytic combustion method for a gas containing hydrogen, characterized in that a catalyst containing zirconia and/or zircon as a main component is used.
(2)触媒が副成分として酸化セリウム、酸化カルシウ
ム、酸化イットリウム及び酸化アルミニウムよりなる群
から選ばれた1種又は2種以上の酸化物を含む特許請求
の範囲第1項に記載の方法。
(2) The method according to claim 1, wherein the catalyst contains one or more oxides selected from the group consisting of cerium oxide, calcium oxide, yttrium oxide, and aluminum oxide as a subcomponent.
(3)触媒の比表面積が0.01〜20m^2/gの範
囲である特許請求の範囲第1項又は第2項に記載の方法
(3) The method according to claim 1 or 2, wherein the specific surface area of the catalyst is in the range of 0.01 to 20 m^2/g.
(4)触媒が微量の貴金属を含む特許請求の範囲第1項
ないし第3項のいずれか1項に記載の方法。
(4) The method according to any one of claims 1 to 3, wherein the catalyst contains a trace amount of noble metal.
(5)貴金属がパラジウムである特許請求の範囲第4項
に記載の方法。
(5) The method according to claim 4, wherein the noble metal is palladium.
(6)触媒層最高温度が1600℃以下である特許請求
の範囲第1項ないし第5項のいずれか1項に記載の接触
燃焼方法。
(6) The catalytic combustion method according to any one of claims 1 to 5, wherein the maximum temperature of the catalyst layer is 1600°C or less.
JP61104770A 1986-05-09 1986-05-09 Contact burning method Pending JPS62261803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61104770A JPS62261803A (en) 1986-05-09 1986-05-09 Contact burning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61104770A JPS62261803A (en) 1986-05-09 1986-05-09 Contact burning method

Publications (1)

Publication Number Publication Date
JPS62261803A true JPS62261803A (en) 1987-11-14

Family

ID=14389710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61104770A Pending JPS62261803A (en) 1986-05-09 1986-05-09 Contact burning method

Country Status (1)

Country Link
JP (1) JPS62261803A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075277A (en) * 1989-08-25 1991-12-24 Tonen Corporation Steam reforming catalyst for hydrocarbon and method for manufacturing the same
JPH04135641A (en) * 1990-09-28 1992-05-11 Mitsubishi Heavy Ind Ltd Oxidation catalyst
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
FR2701471A1 (en) * 1993-02-10 1994-08-19 Rhone Poulenc Chimie Process for the synthesis of compositions based on mixed oxides of zirconium and cerium, compositions thus obtained and uses thereof.
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051544A (en) * 1983-08-31 1985-03-23 Mitsubishi Heavy Ind Ltd Oxidizing catalyst
JPS6051545A (en) * 1983-08-31 1985-03-23 Mitsubishi Heavy Ind Ltd Oxidizing catalyst
JPS6133233A (en) * 1984-07-25 1986-02-17 Nippon Shokubai Kagaku Kogyo Co Ltd Combustion catalyst for methane fuel and combustion system using said catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051544A (en) * 1983-08-31 1985-03-23 Mitsubishi Heavy Ind Ltd Oxidizing catalyst
JPS6051545A (en) * 1983-08-31 1985-03-23 Mitsubishi Heavy Ind Ltd Oxidizing catalyst
JPS6133233A (en) * 1984-07-25 1986-02-17 Nippon Shokubai Kagaku Kogyo Co Ltd Combustion catalyst for methane fuel and combustion system using said catalyst

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075277A (en) * 1989-08-25 1991-12-24 Tonen Corporation Steam reforming catalyst for hydrocarbon and method for manufacturing the same
JPH04135641A (en) * 1990-09-28 1992-05-11 Mitsubishi Heavy Ind Ltd Oxidation catalyst
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5405260A (en) * 1990-11-26 1995-04-11 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
EP0614854A1 (en) * 1993-02-10 1994-09-14 Rhone-Poulenc Chimie Process for the synthesis of mixed zirconium und cerium oxides based compositions, the obtained compositions and use thereof
FR2701471A1 (en) * 1993-02-10 1994-08-19 Rhone Poulenc Chimie Process for the synthesis of compositions based on mixed oxides of zirconium and cerium, compositions thus obtained and uses thereof.
US5607892A (en) * 1993-02-10 1997-03-04 Rhone-Poulenc Chimie Zirconium/cerium mixed oxide catalyst/catalyst support compositions having high/stable specific surfaces
US5626826A (en) * 1993-02-10 1997-05-06 Rhone-Poulenc Chimie Zirconium/cerium mixed oxide catalyst/catalyst support compositions having high/stable specific surfaces
EP0930271A3 (en) * 1993-02-10 1999-07-28 Rhodia Chimie Compositions based on mixed oxides of zirconium and cerium and use of these compositions

Similar Documents

Publication Publication Date Title
CA1129395A (en) Catalyst for purifying gas and method of manufacturing the same
JPS61283348A (en) Oxidizing catalyst
JP3326836B2 (en) Catalyst body and method for producing catalyst body
JPS5810137B2 (en) Oxidation catalyst composition
JPS62261803A (en) Contact burning method
JP5003954B2 (en) Exhaust gas purification oxidation catalyst, production method thereof, and exhaust gas purification method using exhaust gas purification oxidation catalyst
JP6684669B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
JPH0352642A (en) Production of catalyst for combustion
JPS63116742A (en) Catalyst for purifying exhaust gas
JPH0729055B2 (en) Catalyst for oxidizing carbon-containing compound and method for producing the same
JPS6256784B2 (en)
JPH04166228A (en) Oxidation catalyst
JP6751606B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
JPS6050489B2 (en) Catalyst for purifying exhaust gas containing sulfur compounds
JP3577509B2 (en) Method for producing highly durable alumina-gallium nitrogen oxide reduction catalyst
JPH04135641A (en) Oxidation catalyst
JPS5944897B2 (en) Catalyst for exhaust gas purification
JPH04166227A (en) Oxidation catalyst
KR830000348B1 (en) Treatment method of exhaust gas containing nitrogen oxides
JPH04330940A (en) Oxidation catalyst
JPH04118049A (en) Manufacture of honeycomb catalyst
JPH01317541A (en) Oxidizing catalyst
JPS60232251A (en) Catalyst body for purifying exhaust gas
JPH02115041A (en) Perovskite oxidation catalyst
JPH0592137A (en) Oxidizing catalyst