JPH01317541A - Oxidizing catalyst - Google Patents

Oxidizing catalyst

Info

Publication number
JPH01317541A
JPH01317541A JP63150629A JP15062988A JPH01317541A JP H01317541 A JPH01317541 A JP H01317541A JP 63150629 A JP63150629 A JP 63150629A JP 15062988 A JP15062988 A JP 15062988A JP H01317541 A JPH01317541 A JP H01317541A
Authority
JP
Japan
Prior art keywords
catalyst
complex oxide
perovskite type
type complex
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63150629A
Other languages
Japanese (ja)
Inventor
Kenji Tabata
研二 田畑
Ikuo Matsumoto
松本 郁夫
Yu Fukuda
祐 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63150629A priority Critical patent/JPH01317541A/en
Publication of JPH01317541A publication Critical patent/JPH01317541A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the oxidizing activity of a catalyst and thus permit its use in a repetitive oxidation-reduction atmosphere by preparing the catalyst by depositing a perovskite type complex oxide shown by a specific general formula on a support. CONSTITUTION:An oxidizing catalyst is prepared by depositing on a support a perovskite type complex oxide shown by AMn(1-y)CuyO3 [wherein A represents at least one element of alkaline earth metals and y is a value of 0.1-0.5]. More specifically, the perovskite type complex oxide SrMn0.5Cu0.2O3 formed by the alkali precipitation method using strontium nitrate, copper nitrate and manganese nitrate as starting material is deposited on a cordierite honeycomb support with lattice cross section of 300 cell per square inch as oxidizing catalyst together with alumina sol being an inorganic binder. It is, thereafter, baked at a temperature of 800 deg.C to form the article catalyst.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種燃焼器から排出される未燃焼の炭化水素、
−酸化炭素を完全燃焼し、炭酸ガスと水にする酸化触媒
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to unburned hydrocarbons discharged from various combustors,
- It relates to an oxidation catalyst that completely burns carbon oxide and converts it into carbon dioxide gas and water.

従来の技術 一般に未燃焼の炭化水素、−酸化炭素を空気の存在下で
炭酸ガスと水蒸気に完全酸化させる酸化触媒においては
、白金、パラジウム、ロジウムなどの白金族金属をアル
ミナ、シリカなどの無機耐熱材料に担持させた触媒体が
最も活性が高いとされ広く使用されている。
Conventional technology In general, in oxidation catalysts that completely oxidize unburned hydrocarbons and carbon oxides into carbon dioxide gas and water vapor in the presence of air, platinum group metals such as platinum, palladium, and rhodium are combined with heat-resistant inorganic materials such as alumina and silica. Catalysts supported on materials are said to have the highest activity and are widely used.

一方、コバルト、ニッケル、鉄などの金属については、
最近では単独の金属酸化物よりも各種複合酸化物が検討
されている。これらの検討の中で、化学式ABO,で表
わされるペロブスカイト型結晶構造を持つものが活性が
高いとされ、注目されている。このペロブスカイト型構
造を有する複合酸化物の中では、LaCaO,、LaM
n0.が活性が高イコと、さらにA位置の一部を2価の
アルカリ土類金属元素(たとえばストロンチウム)で置
換すると酸化活性が向上することについてすでに報告が
ある。
On the other hand, for metals such as cobalt, nickel, and iron,
Recently, various composite oxides have been studied rather than single metal oxides. Among these studies, those having a perovskite crystal structure represented by the chemical formula ABO are said to have high activity and are attracting attention. Among the complex oxides having this perovskite structure, LaCaO, LaM
n0. There have already been reports that the oxidation activity is improved by substituting a part of the A position with a divalent alkaline earth metal element (eg, strontium).

発明が解決しようとする課題 一般に酸化触媒の活性を上げるには触媒自身の表面積を
大きくすること、あるいは触媒の組成を最適な組成に構
成することが考えられる。前者の表面積の増大について
はアルコキシド法、超音波微粒子法などが検討され、現
在20〜30 d/f程度のものが工業用として入手可
能となっている。一方触媒の組成については、上記した
ようにA位置の一部を置換することが系統的に検討され
ている。
Problems to be Solved by the Invention Generally, in order to increase the activity of an oxidation catalyst, it is possible to increase the surface area of the catalyst itself or to configure the composition of the catalyst to an optimum composition. Regarding the former method of increasing the surface area, methods such as the alkoxide method and the ultrasonic particle method have been studied, and those with a surface area of about 20 to 30 d/f are currently available for industrial use. On the other hand, regarding the composition of the catalyst, as described above, substitution of part of the A position has been systematically studied.

これらの結果ペロブスカイト型複合酸化物からなる酸化
触媒の活性はかなり向上されてきた。しかしながら従来
の白金系触媒に比較すると酸化活性、特に低温活性は不
十分である。
As a result, the activity of oxidation catalysts made of perovskite-type composite oxides has been considerably improved. However, compared to conventional platinum-based catalysts, oxidation activity, especially low-temperature activity, is insufficient.

本発明は上記の課題を解決するもので、酸化触媒として
、より活性の向上したペロブスカイト型複合酸化物から
なる酸化触媒を提供することを目的とするものである。
The present invention solves the above problems, and aims to provide an oxidation catalyst made of a perovskite-type composite oxide with improved activity.

課題を解決するための手段 上記の課題を解決するために本発明の酸化触媒は、化学
式AMn (l−y ) CuyO8(ただしAはアル
カリ土類金属元素の少なくとも一種類の元素、y=0.
1〜0.5)で示されるペロブスカイト型複合酸化物か
らなるものである。
Means for Solving the Problems In order to solve the above problems, the oxidation catalyst of the present invention has the chemical formula AMn (ly) CuyO8 (where A is at least one kind of alkaline earth metal element, y=0.
1 to 0.5).

作用 上記構成の酸化触媒を各種燃焼排気ガス気流中に設置し
て完全酸化に必要な温度まで加熱すれば、加熱された触
媒上を通過する排気ガス中の未燃焼の炭化水素、−酸化
炭素は触媒上に酸素と共に接触し、完全酸化される。
Effect: If an oxidation catalyst with the above configuration is installed in the airflow of various types of combustion exhaust gas and heated to the temperature required for complete oxidation, unburned hydrocarbons and carbon oxides in the exhaust gas passing over the heated catalyst will be It comes into contact with oxygen on the catalyst and is completely oxidized.

実施例 実施例1 断面が格子状の300 ce 11/i nch2のコ
ージライト製ハニカム担体に、硝酸ストロンチウム、硝
酸銅。
Examples Example 1 Strontium nitrate and copper nitrate were placed on a cordierite honeycomb carrier of 300 ce 11/inch 2 having a grid-like cross section.

硝酸マンガンを出発物質としてアルカリ沈殿法で作製し
たペロブスカイト型複合酸化物であるSrMno−a 
Cue−* Osを酸化触媒として、無機バインダであ
るアルミナゾルと共に担持させた後、800°Cで焼成
して触媒体とした。前記ペロブスカイト型複合酸化物の
担持量は5%であった。この触媒体について、通常の固
定床流通式でメタン1%空気バランスの酸化活性を調べ
たところ、300°Cでの酸化活性は45%であり、還
元雰囲気下に曝露しても性能の劣化はなかった。
SrMno-a is a perovskite-type composite oxide prepared by an alkaline precipitation method using manganese nitrate as a starting material.
Cue-*Os was supported as an oxidation catalyst together with alumina sol as an inorganic binder, and then fired at 800°C to obtain a catalyst body. The amount of the perovskite type composite oxide supported was 5%. When we investigated the oxidation activity of this catalyst in a conventional fixed bed flow system with 1% methane in air balance, the oxidation activity at 300°C was 45%, and there was no deterioration in performance even when exposed to a reducing atmosphere. There wasn't.

実施例2 断面が格子状の300cell/i nch”のコージ
ライト製ハニカム担体を、硝酸ストロンチウム、硝酸銅
Example 2 A cordierite honeycomb carrier with a grid-like cross section and a capacity of 300 cells/inch was prepared using strontium nitrate and copper nitrate.

硝酸マンガンをSr : Cu :Mnの比が10:2
:8になるように調製した混合溶液に浸漬した後、乾燥
し、800°Cで5時間空気中で焼成した。これにより
ハニカム担体上にペロブスカイト型複合酸化物であるS
rMn0.、 cu@−!o3が生成し、その担持量は
8%であった。
Manganese nitrate with a Sr:Cu:Mn ratio of 10:2
: After immersing in a mixed solution prepared to have a concentration of 8, it was dried and calcined in air at 800°C for 5 hours. As a result, S, which is a perovskite-type composite oxide, is placed on the honeycomb carrier.
rMn0. , cu@-! o3 was produced, and its supported amount was 8%.

この触媒体について、通常の固定床流通式でメタン1%
空気バランスの酸化活性を調べたところ、300°Cで
の酸化活性は35%であり、また還元雰囲気下でも安定
であった。
Regarding this catalyst body, 1% methane was produced using a normal fixed bed flow system.
When the oxidation activity in air balance was examined, the oxidation activity at 300°C was 35%, and it was stable even in a reducing atmosphere.

発明の効果 以上のように本発明の酸化触媒は化学式AMn(t−y
)Cuy(J3で示されるペロブスカイト型複合酸化物
からなり、酸化活性が極めて良好で、しかも還元雰囲気
に対して強く、酸化、還元をくり返す雰囲気下での使用
が可能である。
Effects of the Invention As described above, the oxidation catalyst of the present invention has the chemical formula AMn(t-y
)Cuy (composed of a perovskite-type composite oxide represented by J3, has extremely good oxidation activity, is resistant to reducing atmospheres, and can be used in an atmosphere where oxidation and reduction are repeated.

代地人 轟本義弘Representative Yoshihiro Todoroki

Claims (1)

【特許請求の範囲】[Claims] 1、化学式AMn(1−y)CuyO_3(ただしAは
アルカリ土類金属元素の少なくとも一種類の元素、y=
0.1〜0.5)で示されるペロブスカイト型複合酸化
物からなる酸化触媒。
1. Chemical formula AMn(1-y)CuyO_3 (where A is at least one alkaline earth metal element, y=
0.1 to 0.5).
JP63150629A 1988-06-17 1988-06-17 Oxidizing catalyst Pending JPH01317541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63150629A JPH01317541A (en) 1988-06-17 1988-06-17 Oxidizing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63150629A JPH01317541A (en) 1988-06-17 1988-06-17 Oxidizing catalyst

Publications (1)

Publication Number Publication Date
JPH01317541A true JPH01317541A (en) 1989-12-22

Family

ID=15501034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63150629A Pending JPH01317541A (en) 1988-06-17 1988-06-17 Oxidizing catalyst

Country Status (1)

Country Link
JP (1) JPH01317541A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443807A (en) * 1990-07-26 1995-08-22 Peking University Conversion of carbon monoxide utilizing a perovskite-type rare earth complex oxide catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443807A (en) * 1990-07-26 1995-08-22 Peking University Conversion of carbon monoxide utilizing a perovskite-type rare earth complex oxide catalyst

Similar Documents

Publication Publication Date Title
US5185311A (en) Catalytic composite for purifying exhaust gases and a method for preparing the same
JPS61283348A (en) Oxidizing catalyst
JP2007014873A (en) Apparatus for removing particle substance
JPH08131830A (en) Catalyst for purification of exhaust gas
JPS6366258B2 (en)
JP4859100B2 (en) Exhaust gas purification catalyst
JPH09248462A (en) Exhaust gas-purifying catalyst
EP2493594B1 (en) Oxygen adsorbent based on lanthanoide oxysulfate, method for producing it, and exhaust gas purifying catalyst containing it
JPH01317541A (en) Oxidizing catalyst
JP5610319B2 (en) Layered complex oxide, oxidation catalyst and diesel particulate filter
JP2538010B2 (en) Exhaust gas purification catalyst
JPH01317540A (en) Oxidizing catalyst
JPS62262747A (en) Composite oxide catalytic body
JPH02115041A (en) Perovskite oxidation catalyst
JPH01304048A (en) Catalyst for purifying exhaust gas
JPH0275345A (en) Perovskite type oxidizing catalyst
JP4265445B2 (en) Exhaust gas purification catalyst
JPH04135641A (en) Oxidation catalyst
JPS6111146A (en) Oxidizing catalyst
JPH0377642A (en) Catalyst for purification of exhaust gas
JPH04104838A (en) Waste gas purifying catalytic body
JPH01270943A (en) Perovskite oxidation catalyst
JPH04122455A (en) Exhaust gas purification catalyst body
JPH01270944A (en) Perovskite oxidation catalyst
JPH04330940A (en) Oxidation catalyst