JPS6111146A - Oxidizing catalyst - Google Patents

Oxidizing catalyst

Info

Publication number
JPS6111146A
JPS6111146A JP59134246A JP13424684A JPS6111146A JP S6111146 A JPS6111146 A JP S6111146A JP 59134246 A JP59134246 A JP 59134246A JP 13424684 A JP13424684 A JP 13424684A JP S6111146 A JPS6111146 A JP S6111146A
Authority
JP
Japan
Prior art keywords
tungsten
catalyst
alumina
silica
resistant material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59134246A
Other languages
Japanese (ja)
Other versions
JPH0543416B2 (en
Inventor
Kenji Tabata
研二 田畑
Ikuo Matsumoto
松本 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59134246A priority Critical patent/JPS6111146A/en
Publication of JPS6111146A publication Critical patent/JPS6111146A/en
Publication of JPH0543416B2 publication Critical patent/JPH0543416B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To increase the activity and heat resistance of the titled catalyst by depositing tungsten obtained out of various kinds of salts contg. tungsten on porous inorganic heat-resistant material such as silica and alumina and thereafter depositing composite metallic oxide having specified constitutional formula thereon. CONSTITUTION:After depositing 5-40% tungsten obtained out of various kinds of salts contg. tungsten such as ammonium tungsten by means of an impregnating method on porous inorganic heat-resistant material such as silica and alumina, the heat-resistant material is calcined for 1-3hr at 800-900 deg.C. Then, after a metallic salt which is regulated to the content ratio having perovskite structure shown by the crystalline constitutional formula (A is rare earth elements such as La plus Nd and A' is Ag, Sr plus Ce and B, B' are transition metallic elements plus noble metallic elements and x and y show 0-0.9) is impregnated thereon, it is calcined for 1-10hr at 800-900 deg.C to form an oxidizing catalyst.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は天然ガス、プロパンガス等の比較的軽質な炭化
水素ガスあるいは一酸化炭素ガスを接触酸化し、炭酸ガ
ス、水に完全酸化する触媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a catalyst that catalytically oxidizes relatively light hydrocarbon gas such as natural gas, propane gas, or carbon monoxide gas to completely oxidize it into carbon dioxide gas and water. It is something.

従来例の構成とその問題点 一般に炭化水素を空気の存在下、炭酸ガスと水蒸気に完
全酸化させる酸化触媒の活性については白金、パラジウ
ム等の白金族をアルミナ、シリカ等の無機態熱材料に担
持したものが、最も活性が高いとされてきた。しかしな
がら白金族はいづれもコストが高く、資源的にも安定供
給の面で問題が残る。さらに耐熱性、1Ii1硫黄性に
ついても問題がある。特に耐熱性については、500℃
以上の温度で使用した場合、担持白金族の金属粒子径が
増大して活性が劣化するという問題がある。この為助触
媒の添加、担体の改良等の工夫がなされているが十分な
効果を挙げていない。最近、ペロブスカイト構造を有す
る複合酸化物、特にコバルトを構成元素とするものは活
性が高く白金族の酸化活性に匹敵することが報告されて
いる。さらに耐熱性についても1000’C以上の焼成
でも殆ど活性が落ちず非常に優れた触媒である。しかし
ながらペロブスカイト構造を有する複合酸化物の粉末の
表面積はせいぜい5rn2/g以下であり、この表面積
を太きくし、活性を上げる為に担持型の触媒の開発が望
まれている。 しかし、ペロブスカイト構造を構成する
遷移金属の内、活性が高いとされる、コバルト、ニッケ
ル、鉄等はいツレモ、アルミナ、シリカ等の多孔質の無
機耐熱材料と固溶体を形成し、これらの触媒担体上で望
むペロブスカイト構造を形成することが出来ないという
問題がある。
Structure of conventional examples and their problems In general, the activity of oxidation catalysts that completely oxidize hydrocarbons into carbon dioxide gas and water vapor in the presence of air is achieved by supporting platinum group metals such as platinum and palladium on inorganic thermal materials such as alumina and silica. It has been said that those with the highest activity are the most active. However, all platinum group metals are expensive, and problems remain in terms of stable supply of resources. Furthermore, there are also problems with heat resistance and 1Ii1 sulfur properties. Especially for heat resistance, 500℃
When used at temperatures above, there is a problem that the particle diameter of the supported platinum group metal increases and the activity deteriorates. For this reason, efforts have been made to add co-catalysts and improve carriers, but these efforts have not produced sufficient results. Recently, it has been reported that complex oxides having a perovskite structure, particularly those containing cobalt as a constituent element, have high oxidation activity comparable to that of platinum group metals. Furthermore, in terms of heat resistance, it is an extremely excellent catalyst with almost no loss of activity even when fired at temperatures of 1000'C or higher. However, the surface area of a composite oxide powder having a perovskite structure is at most 5rn2/g or less, and in order to increase this surface area and increase activity, it is desired to develop a supported catalyst. However, among the transition metals that make up the perovskite structure, cobalt, nickel, and iron, which are said to have high activity, form a solid solution with porous inorganic heat-resistant materials such as aluminum, alumina, and silica, and these metals form solid solutions on these catalyst supports. There is a problem that it is not possible to form the desired perovskite structure.

発明の目的 本発明の目的は比較的コストの安い遷移金属を中心とす
るペロブスカイト構造を有する高活性で血寸熱性の高い
担持型の酸化触媒を提供することにある。
OBJECTS OF THE INVENTION An object of the present invention is to provide a supported oxidation catalyst which is relatively inexpensive and has a perovskite structure mainly containing transition metals, has high activity and high blood temperature.

発明の構成 この目的を達成するために本発明はシリカ、アルミナ等
の多孔質無機耐熱材料にタングステンアンモニウム等の
タングステンを含む各種塩から5〜40%含浸法により
タングステンを担持し、800〜900℃の温度で1〜
3時間焼成したものの上に再度結晶構造式がA1 xA
’xB、yB’y03であらわされるペロブスカイト構
造を有するような量論比に調整された各種金属塩を含浸
した後800〜900℃で1〜10時間焼成するという
構成を取った。但し人はランタン、ネオジウム等の希土
類元素からA′は銀、ストロンチウム、セリウムから選
択し、 B 、 B’はそれぞれコバルト、ニッケル、
鉄等の遷移金属元素あるいは白金、パラジウム等の貴金
属元素から選択した。株数x、yは0〜0.9の範囲と
なるよう構成した。この結果、シリカ、アルミナ等多孔
質無機耐熱材料との間にスピネル等の固溶体を形成する
こともなく所定のベロゲスカイト構造を有する複合酸化
物を形成することが出来た。さらにシリカ、アルミナ等
の多孔質上にペロブスカイト構造を形成する結果、従来
の粉末触媒に比較し、粒子径が非常に小さくなり(50
〜500A)、その結果、酸化活性が向上した。
Structure of the Invention To achieve this object, the present invention supports tungsten on a porous inorganic heat-resistant material such as silica or alumina by impregnating 5 to 40% of various salts containing tungsten such as tungsten ammonium, and then impregnating the porous inorganic heat-resistant material such as silica or alumina at 800 to 900°C. 1~ at the temperature of
The crystal structure formula is A1 x A again on top of the one fired for 3 hours.
The structure was such that the material was impregnated with various metal salts adjusted to a stoichiometric ratio to have a perovskite structure represented by 'xB, yB'y03, and then fired at 800 to 900°C for 1 to 10 hours. However, from rare earth elements such as lanthanum and neodymium, A' should be selected from silver, strontium, and cerium, and B and B' should be selected from cobalt, nickel, and nickel, respectively.
It was selected from transition metal elements such as iron or noble metal elements such as platinum and palladium. The number of strains x and y was configured to be in the range of 0 to 0.9. As a result, a composite oxide having a predetermined vergeskite structure could be formed without forming a solid solution such as spinel with a porous inorganic heat-resistant material such as silica or alumina. Furthermore, as a result of forming a perovskite structure on porous materials such as silica and alumina, the particle size becomes extremely small (50
~500A), resulting in improved oxidation activity.

実施例の説明 以下本発明の一実施例について説明する。触媒Aは本発
明によるものでγ−アルミナ担体(表面積180m2/
g)にタングステンアンモニウム塩を用いて酸化タング
ステン(WOs )重量にして20%含浸担持後850
℃12時間焼成したものに、酢酸ランタン、酢酸セリウ
ム、酢酸コバルトを用いて焼成後の量論比がLao、 
CeolGo O3となるように量論比を調整した混合
溶液に含浸20%担持後850℃で5時間焼成したもの
である。触媒Bは従来の粉末調整法によるもので、La
o、CeolCoo。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below. Catalyst A is according to the present invention and has a γ-alumina carrier (surface area 180 m2/
g) After impregnating and supporting tungsten oxide (WOs) at 20% by weight using tungsten ammonium salt, 850
℃ for 12 hours, the stoichiometric ratio after firing using lanthanum acetate, cerium acetate, and cobalt acetate was
It was impregnated with a mixed solution whose stoichiometric ratio was adjusted to give CeolGo O3 and loaded at 20%, and then calcined at 850° C. for 5 hours. Catalyst B was produced by conventional powder preparation method, and La
o, CeolCoo.

となるよう調整された各酢酸塩の混合溶液をロータリー
エバポレーターにより乾燥後、850℃で5時間焼成し
たものである。触媒A、Bを用いてメタン完全酸化反応
を行った結果をTable 1に捷とめた。空間速度(
S、V、)は18000h−1である。
A mixed solution of each acetate salt adjusted to have the following properties was dried using a rotary evaporator, and then baked at 850° C. for 5 hours. The results of a complete methane oxidation reaction using catalysts A and B are summarized in Table 1. Space velocity (
S, V,) is 18000h-1.

Table  1 発明の効果 実施例に示したごとく本発明による所の多孔質カイト構
造を有する触媒に比較すると酸化活性をる触媒では10
0〜200m2/yの多孔質担体のポアーを利用するこ
とが出来、粒子径が大巾に小さくなI)(5o〜500
人)活性が向上した。さらに触媒の耐熱性についても担
持型にすることによシ、劣化を小さくすることが出来た
。さらに実施例と同じ条件で反応を行ったロジウムを0
.5%アルミナに担持した触媒のメタンの完全酸化温度
が520’Cであることより、本発明による触媒の活性
は白金族担持触媒の活性を上回るものである。
Table 1 Effects of the Invention As shown in the examples, compared to the catalyst having a porous kite structure according to the present invention, the catalyst with oxidation activity has an oxidation activity of 10%.
It is possible to utilize the pores of a porous carrier of 0 to 200 m2/y, and the particle size is extremely small.
Human) activity improved. Furthermore, with respect to the heat resistance of the catalyst, deterioration could be reduced by using a supported type catalyst. Furthermore, rhodium was reacted under the same conditions as in the example.
.. Since the complete methane oxidation temperature of the catalyst supported on 5% alumina is 520'C, the activity of the catalyst according to the present invention exceeds that of the platinum group supported catalyst.

一方コストについてみてみると、白金族を担持した触媒
の見〜殉のコストである。以上本発明によシ白金族以外
の金属を用いて、側熱性が高く酸化活性の高い触媒を得
ることができる。
On the other hand, when looking at the cost, it is the cost of a catalyst supporting a platinum group metal. As described above, according to the present invention, a catalyst with high side heat property and high oxidation activity can be obtained using a metal other than the platinum group.

Claims (1)

【特許請求の範囲】[Claims] シリカ、アルミナ等の多孔質無機耐熱材料にタングステ
ンアンモニウム等のタングステンを含む各種塩から5〜
40%含浸法によりタングステンを担持し、800〜9
00℃の温度で焼成した後、結晶構造式A_1_−_x
A′_xB_1_−_yB′_yO_3であらわされる
ペロブスカイト構造を有する複合金属酸化物で、ムはラ
ンタン、ネオジウム等の希土類元素からA′は銀、スト
ロンチウム、セリウムから選択し、B、B′はそれぞれ
コバルト、ニッケル、鉄等の遷移金属元素あるいは白金
、パラジウム等の貴金属元素から選択した元素を株数x
、yが0〜0.9の範囲となるよう構成したものを5〜
40%担持した酸化触媒。
From various salts containing tungsten such as tungsten ammonium to porous inorganic heat-resistant materials such as silica and alumina.
Tungsten is supported by the 40% impregnation method, and the
After firing at a temperature of 00℃, the crystal structure formula A_1_-_x
A composite metal oxide having a perovskite structure represented by A'_xB_1_-_yB'_yO_3, where Mu is selected from rare earth elements such as lanthanum and neodymium, A' is selected from silver, strontium, and cerium, and B and B' are cobalt, respectively. x number of stocks of elements selected from transition metal elements such as nickel and iron, or precious metal elements such as platinum and palladium
, 5 to 5 configured so that y is in the range of 0 to 0.9.
40% supported oxidation catalyst.
JP59134246A 1984-06-28 1984-06-28 Oxidizing catalyst Granted JPS6111146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59134246A JPS6111146A (en) 1984-06-28 1984-06-28 Oxidizing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59134246A JPS6111146A (en) 1984-06-28 1984-06-28 Oxidizing catalyst

Publications (2)

Publication Number Publication Date
JPS6111146A true JPS6111146A (en) 1986-01-18
JPH0543416B2 JPH0543416B2 (en) 1993-07-01

Family

ID=15123808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59134246A Granted JPS6111146A (en) 1984-06-28 1984-06-28 Oxidizing catalyst

Country Status (1)

Country Link
JP (1) JPS6111146A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284649A (en) * 1989-04-25 1990-11-22 Yoshida Kogyo Kk <Ykk> Production of perovskite-type oxide catalyst
WO2008004687A1 (en) 2006-07-03 2008-01-10 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst
JP2012196660A (en) * 2011-03-08 2012-10-18 Denso Corp Hydrocarbon selective oxidation catalyst and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284649A (en) * 1989-04-25 1990-11-22 Yoshida Kogyo Kk <Ykk> Production of perovskite-type oxide catalyst
WO2008004687A1 (en) 2006-07-03 2008-01-10 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst
EP2050497A1 (en) * 2006-07-03 2009-04-22 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst
EP2050497A4 (en) * 2006-07-03 2011-03-16 Toyota Motor Co Ltd Exhaust gas purifying catalyst
US8999878B2 (en) 2006-07-03 2015-04-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst
JP2012196660A (en) * 2011-03-08 2012-10-18 Denso Corp Hydrocarbon selective oxidation catalyst and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0543416B2 (en) 1993-07-01

Similar Documents

Publication Publication Date Title
US5837642A (en) Heat-resistant oxide
EP0513413B1 (en) A catalytic composite for purifying exhaust gases and a method for preparing the same
KR20080025142A (en) Exhaust gas purifying catalyst and process for producing it
JPS63162043A (en) Catalyst for cleaning exhaust gas
JPH01281144A (en) Catalyst for purifying exhaust gas
EP1742733B1 (en) Production process for an exhaust gas purifying catalyst
JPS63116741A (en) Catalyst for purifying exhaust gas
JPS61283348A (en) Oxidizing catalyst
JP2002011350A (en) Exhaust gas cleaning catalyst
US5883041A (en) Composite catalyst for purifying exhaust gases from carbon monoxide and organic compounds
US7632776B2 (en) Exhaust gas purifying catalyst and production process thereof
JP3827838B2 (en) Exhaust gas purification catalyst
US20100047143A1 (en) Oxidation catalyst
JPH08131830A (en) Catalyst for purification of exhaust gas
JPH09313938A (en) Catalyst for cleaning exhaust gas
JP4859100B2 (en) Exhaust gas purification catalyst
JPH09248462A (en) Exhaust gas-purifying catalyst
JPS6111146A (en) Oxidizing catalyst
JPH0820054B2 (en) Catalytic combustion method of combustible gas
JPS63267804A (en) Oxidizing catalyst for high temperature service
JPS6054736A (en) Oxidation catalyst
JPS63116742A (en) Catalyst for purifying exhaust gas
JP5168833B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2000072447A (en) Oxygen storage cerium system multiple oxide
JPS63104651A (en) Catalyst for purifying exhaust gas