JPS6054736A - Oxidation catalyst - Google Patents

Oxidation catalyst

Info

Publication number
JPS6054736A
JPS6054736A JP58163031A JP16303183A JPS6054736A JP S6054736 A JPS6054736 A JP S6054736A JP 58163031 A JP58163031 A JP 58163031A JP 16303183 A JP16303183 A JP 16303183A JP S6054736 A JPS6054736 A JP S6054736A
Authority
JP
Japan
Prior art keywords
catalyst
honeycomb
carrier
base material
catalysts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58163031A
Other languages
Japanese (ja)
Inventor
Korehiko Nishimoto
西本 是彦
Shigeo Yokoyama
横山 成男
Kikuji Tsuneyoshi
紀久士 常吉
Masato Suwa
諏訪 征人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58163031A priority Critical patent/JPS6054736A/en
Publication of JPS6054736A publication Critical patent/JPS6054736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To improve activity and heat resistance of catalyst by using catalyst supporting Pd on a carrier coated on a honeycomb base material in combination with catalyst supporting base metal oxide, etc. on the similar carrier and by changing the aperture of the base material. CONSTITUTION:In the oxidation catalyst of this invention, the catalyst A is arranged to the front stage of the honeycomb, and >= one kind of the catalyst group B are arranged to the rear stage of the honeycomb, and the aperture of the front stage honeycomb is made larger than the aperture of the rear stage honeycomb. The catalyst A comprises Pd supported on a carrier such as alumina or zirconia coated on the surface of honeycomb-shaped heat resistant base material such as cordierite, mullite, etc. The catalyst group B is prepd. by supporting noble metals such as Pt, Pt-Rh, oxide of base metal such as Ni or Co, or compound oxide such as LaCoO3, etc. on a carrier similar to the above-described carrier.

Description

【発明の詳細な説明】 本発明は一酸化炭素、水素、炭化水素等のガスを燃焼さ
せるための酸化触媒に関し、就中、各種可熱性ガスの中
で最も酸化されにくいメタンを低温、高いガス流量/触
媒容量比、低いメタン/空気比の条件下に高効率で酸化
し得る酸化触媒に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxidation catalyst for burning gases such as carbon monoxide, hydrogen, and hydrocarbons, and in particular, methane, which is the least oxidizable of various heat-generating gases, can be oxidized at low temperatures and at high temperatures. The present invention relates to an oxidation catalyst that can oxidize with high efficiency under conditions of a low flow rate/catalyst capacity ratio and a low methane/air ratio.

一酸化炭素、水素あるいは炭化水素等の可熱性ガスを酸
化触媒の存在下で燃焼させる接触燃焼法は、主として自
動車排ガスの浄化を目的に研究され、多くの酸化触媒が
開発されている。その主なものは、白金のような貴金属
、銅や鉄のような卑金属の酸化物を触媒成分とし、該触
媒成分を粒状やハニカム状等に成形したり、あるいはア
ルミナやチタニア等の担体に直接担持さぜたものである
BACKGROUND OF THE INVENTION Catalytic combustion methods, in which hot gases such as carbon monoxide, hydrogen, or hydrocarbons are combusted in the presence of an oxidation catalyst, have been studied primarily for the purpose of purifying automobile exhaust gas, and many oxidation catalysts have been developed. The main catalyst components are oxides of noble metals such as platinum or base metals such as copper and iron, and the catalyst components are formed into granules or honeycomb shapes, or directly onto a carrier such as alumina or titania. It is something that has been carried over.

一方、最近では低NOX燃焼法開発の一環として、プロ
パン、低熱量ガス、オイル等を燃焼させる酸化触媒が研
究されている。この触媒はハニカム型のコージュライト
やムライ1〜等のセラミックを基材とし、この基材にγ
−AI20g(ガンマアルミナ)、ジルコニア、マグネ
シア、α−A+20s (アルファアルミナ)等の担体
をつtッシュコートし、触媒成分としてPt、Pt+P
d、Pd、Pt+Rh等の貴金属、あるいはコパル[−
、ニッケル、マンガン等の酸化物を担持させたものであ
る。
On the other hand, recently, as part of the development of low NOx combustion methods, oxidation catalysts for burning propane, low calorific value gas, oil, etc. have been researched. This catalyst has a ceramic base material such as honeycomb-type cordierite or Murai 1~, and this base material has γ
- 20g of AI (gamma alumina), zirconia, magnesia, α-A+20s (alpha alumina), etc. is coated with a support such as Pt, Pt+P as a catalyst component.
Noble metals such as d, Pd, Pt+Rh, or copal [-
, nickel, manganese, and other oxides.

上記のような従来の酸化触媒は、−酸化炭素やプロパン
に対しては高活性を示すものの、より安定なメタンに対
しては何れも性能が悪く、現在のところメタンに対して
はその酸化性能において多くの問題点を残している。
Although the conventional oxidation catalysts mentioned above show high activity against carbon oxide and propane, they have poor performance against more stable methane, and their oxidation performance against methane is currently limited. Many problems remain.

上記の事情に鑑み、発明者等はメタンの接触酸化につい
て鋭意研究を行なった結果、メタンを触媒酸化してNO
xの発生を抑制しつつ酸化反応熱の利用を行なうにあた
り、コージュライ1−、ムライトの如きハニカム状耐熱
性基材の表面に被覆されたジルコニアあるいはアルミナ
の担体りにPdを担持した触媒と、同様の担体上に白金
や白金−ロジウム等の貴金属、ニッケルやコバルトなど
卑金属の酸化物またはLaCOO,+等の複合酸化物を
担持させた触媒とを組合わせ、更に両触媒において前記
ハニカム状基材の目開きを変化させることによって、メ
タンに対し高活性でかつ耐熱性に優れた触媒が得られる
ことを見出だし、これに基′づいて他に類例を見ない本
発明に至ったものである。
In view of the above circumstances, the inventors conducted intensive research on catalytic oxidation of methane and found that methane was catalytically oxidized to produce NO.
In order to utilize the heat of oxidation reaction while suppressing the generation of A catalyst in which a noble metal such as platinum or platinum-rhodium, an oxide of a base metal such as nickel or cobalt, or a composite oxide such as LaCOO,+ is supported on a carrier is combined, and in both catalysts, the honeycomb-shaped base material is It was discovered that a catalyst with high activity against methane and excellent heat resistance can be obtained by changing the opening size, and based on this discovery, the present invention, which is unique in its own right, was developed.

即ち、本発明は、コージュライ]・、ムライ]〜等のハ
ニカム状耐熱性基材表面に被覆されたアルミナやジルコ
ニア等の担体にパラジウムを担持さぜ7j触媒八が前段
に配され、また前記と同様の担体に白金や白金−ロジウ
ム等の貴金属、ニッケルやコバルトなど卑金属の酸化物
またはLacoos等の複合酸化物を担持させた触媒群
Bの中から選択された1種または2種以上が後段に配さ
れ、全体が少なくとも2分割されていると共に、後段の
触媒におけるハニカムの目開きが前段の触媒Aにおける
ハニカムの目開きよりも小さくなっていることを特徴と
する酸化触媒である。
That is, the present invention provides a catalyst in which palladium is supported on a carrier such as alumina or zirconia coated on the surface of a honeycomb-shaped heat-resistant base material such as Cordurai]. One or more catalysts selected from catalyst group B, in which noble metals such as platinum or platinum-rhodium, oxides of base metals such as nickel and cobalt, or composite oxides such as Lacoos, are supported on a similar carrier are used in the subsequent stage. This oxidation catalyst is characterized in that the whole is divided into at least two parts, and the opening of the honeycomb in the rear stage catalyst is smaller than the opening of the honeycomb in the front stage catalyst A.

本発明において使用し得るハニカム状の耐熱性基材とし
ては、ムライト、コージュライト、アルミナ、ジルコニ
ア、ジルコニアスピネル、ジルコン−ムライト、シリコ
ンカーバイド、シリコンナイトライド等のセラミックの
他、メタリックが挙げられる。
Examples of the honeycomb-shaped heat-resistant base material that can be used in the present invention include ceramics such as mullite, cordierite, alumina, zirconia, zirconia spinel, zircon-mullite, silicon carbide, and silicon nitride, as well as metallic materials.

また、担体としてはγ−A12o3、α−へ1□O8、
ジルコニア、マグネシア等を用いることができる。この
ような担体を前記耐熱性基材の表面に被覆する一方法と
しては、担体のスラリー溶液中に基材を含浸してウオツ
シュコ−1・する方法が一般的であるが、その他、例え
ば硝酸ジルコニウムの水溶液中に浸漬した後、焼成する
方法を用いてもよい。
In addition, as carriers, γ-A12o3, α-he1□O8,
Zirconia, magnesia, etc. can be used. One method of coating the surface of the heat-resistant base material with such a carrier is generally to impregnate the base material in a slurry solution of the carrier and wash it. A method may also be used in which the material is immersed in an aqueous solution and then fired.

上記のようにして得られた担体にPd5Pt。Pd5Pt on the carrier obtained as above.

卑金属酸化物あるいはL a COOsのような複合酸
化物等、活性物質を担持させて触媒を調製するに際して
は、従来から行われている方法を用いれば良い。例えば
PdやP’tなどの貴金属触媒については、これら貴金
属の塩化物水溶液に担体を浸漬した後、水素還元するこ
とにより調製するこことができる。卑金属触媒について
も、卑金属塩類の水溶液中に担体を浸漬した後に乾燥お
よび焼成することによって調製することができる。また
複合酸化物触媒については、例えばLaC0Osの場合
、ランタン([a)とコバルト(Co)の硝酸塩水溶液
にアンモニア水を加えて共沈させ、沈澱物を乾燥焼成し
て得たLaCOO,をスラリーにして前記担体に塗布す
ることにより調製することができる。
When preparing a catalyst by supporting an active substance such as a base metal oxide or a composite oxide such as L a COOs, a conventional method may be used. For example, noble metal catalysts such as Pd and P't can be prepared by immersing a carrier in an aqueous chloride solution of these noble metals and then reducing the catalyst with hydrogen. Base metal catalysts can also be prepared by immersing a support in an aqueous solution of base metal salts, followed by drying and calcining. Regarding composite oxide catalysts, for example, in the case of LaCOOs, aqueous ammonia is added to an aqueous solution of nitrates of lanthanum ([a) and cobalt (Co) for coprecipitation, and the precipitate is dried and calcined to form a slurry of LaCOO. It can be prepared by applying it to the carrier.

ところで、上述のようにして調製された触媒は何れも単
独ではメタンに対して高活性とは言い離い。即ち、Pd
触触媒上比較的低温でメタンの酸化を開始させ得るが、
酸化反応が緩慢で、ガス流量/触媒容量比(SV値)が
高いとメタンを効率良く酸化させることが出来ない。他
方、触媒群Bの場合も、例えばPt触媒は酸化反応性に
おいてPd触触媒上りも通かに良好であるが、酸化を開
始させる温度が400℃以上と高く、一般には500〜
550℃にも上昇するため低温から活性を発揮すること
ができない。また、卑金属酸化物やL a COOs等
の複合酸化物を担持させた触媒は、酸化を開始させる温
度がPt触媒よりも更に高く、反応性においてもPt触
媒に劣る。ただし、Crt Os 、Fe2O3、Fe
50. 、N io。
By the way, none of the catalysts prepared as described above can be said to have high activity against methane when used alone. That is, Pd
Methane oxidation can be initiated at relatively low temperatures on catalysts, but
If the oxidation reaction is slow and the gas flow rate/catalyst capacity ratio (SV value) is high, methane cannot be oxidized efficiently. On the other hand, in the case of catalyst group B, for example, the Pt catalyst has good oxidation reactivity as well as the Pd catalyst, but the temperature at which oxidation starts is as high as 400°C or higher, and generally 500°C or higher.
Since the temperature rises to as high as 550°C, it cannot exhibit activity even at low temperatures. In addition, catalysts supporting base metal oxides and composite oxides such as L a COOs have higher oxidation temperatures than Pt catalysts, and are inferior to Pt catalysts in reactivity. However, CrtOs, Fe2O3, Fe
50. , Nio.

coo、 Cu 20等の卑金属触媒やL a COO
s等の複合酸化物触媒は耐熱性が良いという特長を有し
ている。
Base metal catalysts such as coo, Cu 20, and L a COO
Composite oxide catalysts such as s have a feature of good heat resistance.

本発明は上記のように夫々単独では難点のある触媒を組
合わせ、更に触媒活性を高めるるための構造的要素を加
えることによって、メタンに対して高活性の酸化触媒を
可能にしたものである。即ち、本発明では触媒が分割さ
れ、しかも各段の触媒におけるハニカム状基材の目開き
を変化させることにより、その接続部分でガスに乱れを
生じ、触媒活性がより一層高められるのである。
The present invention has made it possible to create an oxidation catalyst with high activity for methane by combining catalysts that are difficult to use alone as described above and adding structural elements to increase the catalytic activity. . That is, in the present invention, the catalyst is divided, and by changing the opening of the honeycomb-shaped base material in each stage of the catalyst, turbulence is generated in the gas at the connecting portion, and the catalytic activity is further enhanced.

なお、本発明における複合酸化物としては、LaC0O
sの他、L aM jl Os 、 L ao、7p 
bo、5MnOs % Lao、5Sro、1Mn03
、Lao、oS ro、+M n O、、B a CO
O3等、一般ニヘフロスカイト型酸化物と呼ばれるもの
を用いることができる。
In addition, as the composite oxide in the present invention, LaC0O
In addition to s, LaMjlOs, Lao, 7p
bo, 5MnOs% Lao, 5Sro, 1Mn03
, Lao, oS ro, +M n O,, B a CO
What is generally called a nihefroskite type oxide, such as O3, can be used.

以下、実施例により本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1゜ 1平方インチ当り約200個の微細孔を有するハニカム
状ムライト基材(直径1インチ、長さ9 rrm )に
ジルコニアをウォッシュコートして得た担体にPdを1
.5重量%担持させた触媒Aと、1平方インチ当り40
0個の微細孔を有するハニカム状ムライ1〜基材(直径
−1インチ)にジルコニアをウォッシュコートした担体
にPdを1.5重口%担持させた触媒Bと、1平方イン
チ当り4゜0個の微細孔を有するハニカム状ムライト基
材(直径1インチ)にジルコニアをウェットコートした
担体にPtを2.1重量%担持させた触媒Cとを準備し
、これら触媒A、B、Cから次のような組合わせ触媒工
、■を得た。
Example 1 Pd was applied to a carrier obtained by wash-coating zirconia on a honeycomb-shaped mullite substrate (1 inch in diameter, 9 rrm in length) having approximately 200 micropores per square inch.
.. Catalyst A supported at 5% by weight and 40% by weight per square inch.
Honeycomb-shaped Murai 1 with 0 micropores - Catalyst B in which 1.5% by weight of Pd was supported on a carrier prepared by wash-coating zirconia on a base material (-1 inch in diameter) and 4°0 per square inch. A honeycomb-shaped mullite base material (1 inch in diameter) having 1 inch of micropores was prepared with catalyst C in which 2.1% by weight of Pt was supported on a carrier made by wet-coating zirconia, and from these catalysts A, B, and C, A combinatorial catalyst engineering, such as ■, was obtained.

触媒T:前段に触媒A(長さ23.5m)+後段に触媒
C(長さ23.5m) 触媒■:前段に触媒B(長さ23.5#)+後段に触!
l1C(長さ23.5m>上記の組合わせ触媒■、■に
就いて、表1の条件下にメタンの酸化燃焼を実施した。
Catalyst T: Catalyst A (length 23.5m) in the front stage + Catalyst C (length 23.5m) in the rear stage Catalyst ■: Catalyst B (length 23.5#) in the front stage + Touch in the rear stage!
11C (length 23.5 m>Methane oxidative combustion was carried out under the conditions shown in Table 1 for the above combination catalysts ① and ②.

その結果を表2に示す。The results are shown in Table 2.

L上 触媒体積:23.8me (11,9d+11.9d) ガス量 : 7.14m3N/hr SV値 :300000hr” 昇温速度=7℃/min (保持温度まで)入口ガス保
持温度:330℃ 燃料/空気比:0.021(g/lτびガス組成:メタ
ン3.5容量%、 残部は空気 i2 着火温度 メタン酸化率 触媒I: 225℃ 99.7% 触媒n: 270℃ 95.6% この結果に示されるように、本発明の構成に則った触媒
工は、ハニカム状基材の目開きを逆にした触媒■よりも
着火温度が低く、330℃に入口温度を保持した際のメ
タン酸化率が高い。従って、触媒■は明らかに触媒■よ
りも優れている。
L upper catalyst volume: 23.8me (11.9d+11.9d) Gas amount: 7.14m3N/hr SV value: 300000hr" Temperature increase rate = 7℃/min (up to holding temperature) Inlet gas holding temperature: 330℃ Fuel/ Air ratio: 0.021 (g/lτ) and gas composition: methane 3.5% by volume, the remainder being air i2 Ignition temperature Methane oxidation rate Catalyst I: 225°C 99.7% Catalyst N: 270°C 95.6% This result As shown in Figure 2, the catalyst according to the structure of the present invention has a lower ignition temperature than the catalyst (2) in which the mesh size of the honeycomb-shaped base material is reversed, and the methane oxidation rate when the inlet temperature is maintained at 330°C. Therefore, catalyst ■ is clearly superior to catalyst ■.

実施例2 1平方インチ当り約400個の微細孔を有するハニカム
状ムライト基材(直径1インチ)にジルコニアをウォッ
シュコートした担体に酸化コバルトを7.8重量%担持
させた触媒りを調製し、この触媒りと実施例1で調製し
た触媒A、B、Cとを組合わせて次のような組合わせ触
媒111.IVを得た。
Example 2 A catalyst was prepared in which 7.8% by weight of cobalt oxide was supported on a carrier obtained by wash-coating zirconia on a honeycomb-shaped mullite base material (1 inch in diameter) having about 400 micropores per square inch, and By combining this catalyst with catalysts A, B, and C prepared in Example 1, the following combination catalyst 111. I got an IV.

触媒■:前段に触媒A(長さ9 trvn )+中段に
触媒C(長さ5 m ) 牛後段に触媒D(長さ4 mm ) 触媒Iv:前段に触媒B(長さ9 mm )+中段に触
t1.C(長さ5#) 牛後段に触媒D(長さ4 mm ) この組合わせ触媒111.IVを用い、表3の条件でメ
タンの燃焼を行なったところ、表4に示す結果が得られ
た。
Catalyst ■: Catalyst A (length 9 trvn) in the front stage + Catalyst C (length 5 m) in the middle stage Catalyst D (length 4 mm) in the rear stage Catalyst Iv: Catalyst B (length 9 mm) in the front stage + Middle stage Touch t1. C (length 5#) Catalyst D (length 4 mm) in the rear stage of the cow This combined catalyst 111. When methane was burned using IV under the conditions shown in Table 3, the results shown in Table 4 were obtained.

L支 触媒体積:9.1me (4,6m+2.5 m+2.0 m)ガスI : 2
.73m” N/hr SV値 :300000hr−’ 昇温速度=7℃/min (保持)3度まで)入口ガス
保持温度:330℃ 燃料/空気比+ 0 、02 Kg/に9ガス組成:メ
タン3.5容量%、 残部は空気 A 着火温度 メタン酸化率 触媒m: 235℃ 99,2% 触媒IV:275℃ 87.3% 上記の結果から、本発明の構成に従う触媒■の性能は、
各段における触媒の目開きの点で本発明とは異なる触媒
IVよりも明らかに優れている。
L support catalyst volume: 9.1me (4.6m+2.5m+2.0m) Gas I: 2
.. 73m" N/hr SV value: 300000hr-' Temperature rising rate = 7℃/min (holding) up to 3 degrees) Inlet gas holding temperature: 330℃ Fuel/air ratio + 0, 0.2 Kg/9 Gas composition: Methane 3 .5% by volume, the remainder is air A Ignition temperature Methane oxidation rate Catalyst m: 235°C 99.2% Catalyst IV: 275°C 87.3% From the above results, the performance of catalyst ① according to the configuration of the present invention is as follows:
It is clearly superior to Catalyst IV, which is different from the present invention, in terms of the opening of the catalyst in each stage.

実施例3 1平方インチ当り約2oO個の微細孔を有するハニカム
状コージュライト基材(直径1インチ)にγ−アルミナ
をウォッシュコートして担体とし、該担体にPdを1.
6重量%担持させた触媒Eを調製した。また、1平方イ
ンチ当り約400個の微細孔を有するハニカム状コージ
ュライト基材(直径1インチ)にγ−アルミナをウォッ
シュコートして担体とし、該担体にPdを1.6重量%
担持させた触媒Fを調製した。次に、この触媒E。
Example 3 A honeycomb-shaped cordierite substrate (1 inch in diameter) having about 200 micropores per square inch was wash-coated with γ-alumina to form a carrier, and 1.0 mm of Pd was applied to the carrier.
Catalyst E with 6% by weight supported was prepared. In addition, a honeycomb-shaped cordierite base material (1 inch in diameter) having approximately 400 micropores per square inch was wash-coated with γ-alumina to form a carrier, and 1.6% by weight of Pd was added to the carrier.
A supported catalyst F was prepared. Next, this catalyst E.

Fと実施例2で調製した触媒C,Dとを組合わせて下記
の組合わせ触媒V、VIを得た。
F was combined with catalysts C and D prepared in Example 2 to obtain the following combination catalysts V and VI.

触媒V:前段に触媒E(長さ9 mm>+中段に触媒C
(長さ5順) +後段に触媒D(長さ4#) 触媒■二前段に触媒F(長さ9#) +中段に触媒C(長さ5#) +後段に触媒D(長さ4 m ) 上記の組合わせ触媒v、viを用い、前記の表3に示し
たと同じ条件でメタンを燃焼させたところ、表5に示す
結果が得られた。
Catalyst V: Catalyst E in the front stage (length 9 mm>+Catalyst C in the middle stage)
(In order of length 5) + Catalyst D in the rear stage (length 4 #) Catalyst ■2 Catalyst F in the front stage (length 9 #) + Catalyst C in the middle stage (length 5 #) + Catalyst D in the rear stage (length 4 m) When methane was combusted using the above combination catalysts v and vi under the same conditions as shown in Table 3 above, the results shown in Table 5 were obtained.

5 着火温度 メタン酸化率 触媒V: 228℃ 99.3% 触媒VI:250℃ 92.4% この場合にも、本発明の構成に従う触媒Vの性能は、本
発明に反する触媒Vlに比較して明らかに優れている。
5 Ignition temperature Methane oxidation rate Catalyst V: 228°C 99.3% Catalyst VI: 250°C 92.4% In this case as well, the performance of catalyst V according to the configuration of the present invention is lower than that of catalyst Vl contrary to the present invention. clearly superior.

以上詳述したように、本発明によればメタンを触媒酸化
してNOxの発生を抑制しつつ酸化反応熱の利用を行な
うにあたり、コージュライト、ムライ1〜の如きハニカ
ム状耐熱性基材の表面に被覆されたジルコニアあるいは
アルミナの担体上にPdを担持した触媒と、同様の担体
上に白金や白金−ロジウム等の貴金属、ニッケルやコバ
ルトなど卑金属の酸化物またはLaCoO3等の複合酸
化物を担持させた触媒とを組合わせ、更に両触媒におい
て前記ハニカム状基材の目開きを変化させることによっ
て、メタンに対し高活性でかつ耐熱性に優れた他に類例
の無い優れた酸化触媒を提供できるものである。
As detailed above, according to the present invention, when catalytically oxidizing methane and utilizing the heat of oxidation reaction while suppressing the generation of NOx, the surface of a honeycomb-shaped heat-resistant base material such as cordierite or Murai 1 is used. A catalyst in which Pd is supported on a zirconia or alumina support coated with Pd, and an oxide of a noble metal such as platinum or platinum-rhodium, a base metal oxide such as nickel or cobalt, or a composite oxide such as LaCoO3 is supported on the same support. By combining these catalysts and changing the opening of the honeycomb-shaped base material in both catalysts, it is possible to provide an excellent oxidation catalyst that is highly active for methane and has excellent heat resistance, and is unparalleled. It is.

出願人復代理人 弁理士 鈴江武彦 第1頁の続き @発明者 宮古 紀久± 1 0発明者諏訪 証人 広島市西区観音新町4丁目6番η号 三菱重工業株式会
社広島研究所内
Applicant Sub-Agent Patent Attorney Takehiko Suzue Continued from page 1 @ Inventor Norihisa Miyako ± 1 0 Inventor Suwa Witness No. η, 4-6 Kannon Shinmachi, Nishi-ku, Hiroshima Mitsubishi Heavy Industries, Ltd. Hiroshima Research Center

Claims (1)

【特許請求の範囲】[Claims] コージュライト、ムライト等のハニカム状耐熱性基材表
面に被覆されたアルミナやジルコニア等の担体にパラジ
ウムを担持させた触媒Aが前段に配され、また前記と同
様の担体に白金や白金−ロジウム等の貴金属、ニッケル
やコバルトなど卑金属の酸化物またはLaC0Os等の
複合酸化物を担持させた触媒群Bの中から選択された1
種または2種以上が後段に配され、全体が少なくとも2
分割されていると共に、後段の触媒におけるハニカムの
目開きが前段の触媒Aにおけるハニカムの目開きよりも
小さくなっていることを特徴とする酸化触媒。
Catalyst A, in which palladium is supported on a carrier such as alumina or zirconia coated on the surface of a honeycomb-shaped heat-resistant base material such as cordierite or mullite, is placed at the front stage, and platinum, platinum-rhodium, etc. are supported on the same carrier as above. 1 selected from catalyst group B supporting noble metals, oxides of base metals such as nickel and cobalt, or composite oxides such as LaC0Os.
The species or two or more species are arranged in the latter stage, and the whole is at least two species.
An oxidation catalyst characterized in that it is divided and the opening of the honeycomb in the rear catalyst is smaller than the opening of the honeycomb in the catalyst A of the front stage.
JP58163031A 1983-09-05 1983-09-05 Oxidation catalyst Pending JPS6054736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58163031A JPS6054736A (en) 1983-09-05 1983-09-05 Oxidation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58163031A JPS6054736A (en) 1983-09-05 1983-09-05 Oxidation catalyst

Publications (1)

Publication Number Publication Date
JPS6054736A true JPS6054736A (en) 1985-03-29

Family

ID=15765868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58163031A Pending JPS6054736A (en) 1983-09-05 1983-09-05 Oxidation catalyst

Country Status (1)

Country Link
JP (1) JPS6054736A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process
CN104437543A (en) * 2014-11-12 2015-03-25 金华氟特催化科技有限公司 Catalyst for combustion supporting of gas stove and preparation method of catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5405260A (en) * 1990-11-26 1995-04-11 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process
CN104437543A (en) * 2014-11-12 2015-03-25 金华氟特催化科技有限公司 Catalyst for combustion supporting of gas stove and preparation method of catalyst

Similar Documents

Publication Publication Date Title
JPH03161052A (en) Exhaust gas cleaning catalyst and its preparation
JP5661256B2 (en) Oxidation catalyst
JPS6051544A (en) Oxidizing catalyst
JPS6054736A (en) Oxidation catalyst
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JPS6051545A (en) Oxidizing catalyst
JPS6051543A (en) Oxidizing catalyst
JPS63267804A (en) Oxidizing catalyst for high temperature service
JP2004082000A (en) Exhaust gas cleaning catalyst
JPH04250852A (en) Catalyst to oxidize carbon-containing compound and its production
JPH04166228A (en) Oxidation catalyst
JPS63267805A (en) Oxidizing catalyst for high temperature service
JPH04349935A (en) Oxidation catalyst
JPH04135641A (en) Oxidation catalyst
JP3089042B2 (en) Oxidation catalyst for combustion
JP3219447B2 (en) Oxidation catalyst
JPH06205973A (en) Oxidation catalyst
JPH0592137A (en) Oxidizing catalyst
JPH05309272A (en) Production of oxidation catalyst
JPH05277367A (en) Oxidation catalyst
JPS6380850A (en) Catalyst for purifying exhaust gas
JPH04330940A (en) Oxidation catalyst
JPS63267803A (en) Oxidizing catalyst for high temperature service
JPH0966223A (en) Catalyst mechanism for purifying exhaust gas and purification of exhaust gas
JPH0596168A (en) Oxidizing catalyst