JPS63267804A - Oxidizing catalyst for high temperature service - Google Patents

Oxidizing catalyst for high temperature service

Info

Publication number
JPS63267804A
JPS63267804A JP62098633A JP9863387A JPS63267804A JP S63267804 A JPS63267804 A JP S63267804A JP 62098633 A JP62098633 A JP 62098633A JP 9863387 A JP9863387 A JP 9863387A JP S63267804 A JPS63267804 A JP S63267804A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
catalysts
stage
al2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62098633A
Other languages
Japanese (ja)
Inventor
Kikuji Tsuneyoshi
紀久士 常吉
Koichi Numata
幸一 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62098633A priority Critical patent/JPS63267804A/en
Publication of JPS63267804A publication Critical patent/JPS63267804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas Burners (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To burn methane efficiently and also obtain the excellent heat resistance of catalysts by a method wherein catalysts of which carriers use gamma-Al2O3 and also bear palladium are placed at the early stage and catalysts of which carriers are the same as the said one and also bear noble metal are placed at the middle stage and catalysts of which carriers use specified compound oxide and also bear a kind of material at least selected from the oxide of base metal and a specified compound oxide are placed at the later stage. CONSTITUTION:As a carrier covering the surface of a honeycomb-shaped heat resisting substrate, gamma-Al2O3 is used and catalysts composed of the said carriers bearing also palladium are placed at the early stage and catalysts composed of the said carriers bearing also noble metal such as platinum, platinum-rhodium, etc., are placed at the middle stage. As a carrier, a kind of compound oxide at least selected from BaO-Al2O3, SrO-Al2O3 and CaO-Al2O3 is used and catalysts composed of the said carriers bearing also a kind of material at least selected from the oxide of base metal such as Mn, Co, Cr, Fe, etc., and a compound oxide such as LaCoO3, LaMnO3, etc., are placed at the later stage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一酸化炭素、水素、炭化水素等のガスを燃焼さ
せるための高温酸化触媒に関し、特に各種可燃性ガスの
中で最も酸化されにくいメタンを低温、高いガス流量/
触媒容量比、低いメタン/空気比の条件下に高効率で酸
化することができ、しかも2O3、SrO−Al2O0
0℃以上の高温においても優れた耐熱性を有する酸化触
媒に係る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a high-temperature oxidation catalyst for burning gases such as carbon monoxide, hydrogen, and hydrocarbons, and in particular, the present invention relates to a high-temperature oxidation catalyst for burning gases such as carbon monoxide, hydrogen, and hydrocarbons. Methane at low temperature and high gas flow rate/
It can be oxidized with high efficiency under the conditions of low catalyst capacity ratio and low methane/air ratio, and also
The present invention relates to an oxidation catalyst that has excellent heat resistance even at high temperatures of 0°C or higher.

〔従来の技術〕[Conventional technology]

一酸化炭素、水素、あるいは炭化水素等の可燃性ガスを
酸化触媒の存在下で燃焼させる接触燃焼法は、主として
自動車排ガスの浄化を目的に研究され、多くの酸化触媒
が開発されている。その主なものは、白金のような貴金
属、銅や鉄のような卑金属の酸化物を活性成分とし、各
活性成分を粒状やハニカム状等に成形したり、あるいは
アルミナやチタニア等の担体に直接担持させたものであ
る。
The catalytic combustion method, in which combustible gases such as carbon monoxide, hydrogen, or hydrocarbons are burned in the presence of an oxidation catalyst, has been studied primarily for the purpose of purifying automobile exhaust gas, and many oxidation catalysts have been developed. The main active ingredients are oxides of noble metals such as platinum or base metals such as copper and iron, and each active ingredient is formed into granules or honeycombs, or directly onto a carrier such as alumina or titania. It is something that was carried on.

一方、最近では低NOx燃焼法開発の一環として、プロ
パン、低熱量ガス、オイル等を燃焼させル酸化触媒が研
究されている。この触媒はハニカム型のコージエライト
やムライト等のセラミックスを基材とし、この基材にγ
−1j’203(ガンマアルミナ)、ジルコニア、マグ
ネシア、α−A1203 (アルファアルミナ)等の担
体をウォッシュコートし、活性成分としてpt、pt+
Pd5PdSPt+Rh等の貴金属、あるいはコバルト
、ニッケル、マンガン等の卑金属の酸化物を担持させた
ものである。
On the other hand, recently, as part of the development of low NOx combustion methods, research has been carried out on oxidation catalysts that burn propane, low calorific value gas, oil, etc. This catalyst uses honeycomb-shaped ceramics such as cordierite and mullite as a base material, and this base material has γ
-1j'203 (gamma alumina), zirconia, magnesia, α-A1203 (alpha alumina), etc. are wash coated, and pt, pt+ are added as active ingredients.
It supports oxides of noble metals such as Pd5PdSPt+Rh, or base metals such as cobalt, nickel, and manganese.

上記のような従来の酸化触媒は、−酸化炭素やプロパン
に対しては高活性を示すものの、より安定なメタンに対
してはいずれも性能が悪く、現在のところメタンに対し
てはその酸化性能において多くの問題点を残している。
Although the conventional oxidation catalysts mentioned above show high activity against carbon oxide and propane, they have poor performance against methane, which is more stable, and their oxidation performance against methane is currently limited. Many problems remain.

上記の事情に鑑み、発明者等は鋭意研究を行なった結果
、メタンを触媒酸化してNOxの発生を抑制しつつ酸化
反応熱の利用を行なうにあたり、コージエライト、ムラ
イト等からなるハニカム状耐熱基材の表面にジルコニア
あるいはアルミナからなる担体を被覆し、この担体にP
dを担持させた触媒と、同様の担体に白金や白金−ロジ
ウム等の貴金属、ニッケルやコバルト等の卑金属の酸化
物またはL a Co 03等の複合酸化物を担持させ
た触媒とを組合せることにより、メタンに対して高活性
の触媒が得られることを見出している(特願昭58−1
59972、特願昭58−159973、特願昭58−
159974、特願昭58−183031)。
In view of the above circumstances, the inventors conducted intensive research and found that a honeycomb-shaped heat-resistant base material made of cordierite, mullite, etc., can be used to catalytically oxidize methane and utilize the heat of oxidation reaction while suppressing the generation of NOx. A carrier made of zirconia or alumina is coated on the surface of the
Combining a catalyst on which d is supported and a catalyst on which a similar carrier supports an oxide of a noble metal such as platinum or platinum-rhodium, an oxide of a base metal such as nickel or cobalt, or a composite oxide such as La Co 03. It has been discovered that a highly active catalyst for methane can be obtained by
59972, Patent Application 1987-159973, Patent Application 1987-
159974, patent application No. 58-183031).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述したようなメタンに対して高活性な
触媒も、耐熱性については2O3、SrO−Al2O0
0℃どまりであり、2O3、SrO−Al2O00℃を
超える温度でも優れた耐熱性を示す触媒は見出されてい
ない。これは、従来の触媒では担体として高比表面積(
2O3、SrO−Al2O0〜2003m2/g)を有
するγ−Ai203が多・用されているが、2O3、S
rO−Al2O00℃を超えると比表面積が減少し始め
、1200℃でα−Al2O3に転移すると比表面積は
1m2/g以下に著しく減少し、担体上に分散された活
性成分の微粒子が凝集することによって活性点も著しく
減少し失活するためである。
However, the catalysts that are highly active against methane as mentioned above have poor heat resistance such as 2O3, SrO-Al2O0.
No catalyst has been found that exhibits excellent heat resistance even at temperatures exceeding 0°C and 2O3, SrO-Al2O00°C. This is due to the high specific surface area (
2O3, SrO-Al2O0~2003m2/g) is often used;
When rO-Al2O exceeds 00℃, the specific surface area begins to decrease, and when it transforms to α-Al2O3 at 1200℃, the specific surface area decreases significantly to 1 m2/g or less, and due to the aggregation of the active ingredient particles dispersed on the carrier. This is because the active sites are also significantly reduced and deactivated.

本発明は上記問題点を解決するためになされたものであ
り、低温からメタンを酸化する活性を有し、しかも2O
3、SrO−Al2O00℃以上の高温で優れた耐熱性
を有する高温用酸化触媒を提供することを目的とする。
The present invention was made to solve the above-mentioned problems, and has the activity of oxidizing methane from low temperatures, and moreover,
3. It is an object of the present invention to provide a high temperature oxidation catalyst having excellent heat resistance at high temperatures of 00° C. or higher.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の高温用酸化触媒は、ハニカム状耐熱基材表面に
担体を被覆し、該担体に活性成分を担持させた触媒を複
数段組合わせた酸化触媒において、担体としてγ−AJ
!203を用い同担体にパラジウムを担持させた触媒を
前段に、担体としてγ−AJ203を用い同担体に白金
、白金−ロジウム等の貴金属を担持させた触媒を中段に
、担体としてBaO−AA203 、S r O−A、
l’ 203およびCaO−Aノコ03のうちから選択
される少くとも1種の複合酸化物を用い同担体にマンガ
ン、コバルト、クロム、鉄等の卑金属の酸化物およびL
a、CoO3、LaMnO3等の複合酸化物のうちから
選択される少くとも1種を担持させた触媒を後段に配置
したことを特徴とするものである。
The high-temperature oxidation catalyst of the present invention is an oxidation catalyst in which the surface of a honeycomb-shaped heat-resistant base material is coated with a carrier, and a plurality of stages of catalysts are combined in which an active ingredient is supported on the carrier.
! A catalyst in which palladium was supported on a carrier using γ-AJ203 was placed in the first stage, a catalyst in which noble metals such as platinum, platinum-rhodium, etc. r O-A,
At least one type of composite oxide selected from L' 203 and CaO-A Noko 03 is used, and oxides of base metals such as manganese, cobalt, chromium, and iron and L
The present invention is characterized in that a catalyst supporting at least one kind selected from complex oxides such as a, CoO3, LaMnO3, etc. is disposed at a subsequent stage.

本発明において用いられるハニカム状の耐熱基材として
は、ムライト、コージエライト、アルミナ、アルミニウ
ムチタネート、ジルコニア、ジルコニアスピネル、ジル
コン−ムライト、シリコンカーバイド、シリコンナイト
ライド等のセラミック基材の他、メタリック基材が挙げ
られる。
The honeycomb-shaped heat-resistant base material used in the present invention includes ceramic base materials such as mullite, cordierite, alumina, aluminum titanate, zirconia, zirconia spinel, zircon-mullite, silicon carbide, and silicon nitride, as well as metallic base materials. Can be mentioned.

本発明において上記のようなハニカム状耐熱基材の表面
に被覆される担体としては、前段(ガス入口側)および
中段ではγ−A、7?203が用いられる。また、後段
(ガス出口側)では、(B a O)o、 14(A)
203)0.86(B a 06 A 、i’ 203
)、(SrO)o、14(A I 203)0.86(
S r 0・6 A i 203)、(Ca O)o、
 14(A)203)0.86(Ca 0・6 A)、
03)が用いられる。これらの複合酸化物は、La−β
−Al2O3  (L a、2o3 @ lIA、il
’203 、耐熱温度1200℃)とともに2O3、S
rO−Al2O00℃以上でもシンタリングを起こさな
いことが報告されており、上記の複合酸化物の耐熱温度
はいずれも1500〜1600℃である(表面、 Vo
l、 24. NQII、 I)I)、 658. (
198B) )。
In the present invention, as the carrier coated on the surface of the honeycomb-shaped heat-resistant base material as described above, γ-A, 7-203 is used in the front stage (gas inlet side) and the middle stage. In addition, in the latter stage (gas outlet side), (B a O) o, 14 (A)
203) 0.86 (B a 06 A , i' 203
), (SrO)o, 14 (A I 203) 0.86 (
S r 0.6 A i 203), (Ca O) o,
14 (A) 203) 0.86 (Ca 0.6 A),
03) is used. These composite oxides are La-β
-Al2O3 (La, 2o3 @ lIA, il
'203, heat resistant temperature 1200℃) and 2O3, S
It has been reported that rO-Al2O does not cause sintering even above 00°C, and the heat resistance temperature of the above composite oxides is 1500 to 1600°C (surface, Vo
l, 24. NQII, I)I), 658. (
198B) ).

ただし、これらの複合酸化物は、約1200℃以上の焼
成によってマグネトプラムバイト構造を生じ、この温度
以上での比表面積は、担体として多用されているγ−A
ノ、03に比べると小さい。
However, these composite oxides produce a magnetoplumbite structure when fired at about 1200°C or higher, and the specific surface area at temperatures above this temperature is lower than that of γ-A, which is often used as a carrier.
No, it's smaller than 03.

本発明において、ハニカム状耐熱基材表面に被覆された
上記の各担体に担持される活性成分としては、前段では
Pdが、中段では白金や白金−ロジウム等の貴金属、後
段ではマンガンやコバルト等の卑金属の酸化物およびL
aCoO3等の複合酸化物のうちから選択される少なく
とも1種が用いられる。後段の活性成分として用いられ
る複合酸化物としては、LaCoO3の他、 LaMnO3、Lao、b S ro、a MnO3、
Lao、6S ro、4 CoO3、BaCoO3など
一般にペロブスカイト型酸化物と呼ばれるものを用いる
ことができる。
In the present invention, the active ingredients supported on each of the above-mentioned carriers coated on the surface of the honeycomb-shaped heat-resistant base material include Pd in the first stage, noble metals such as platinum or platinum-rhodium in the middle stage, and manganese and cobalt in the latter stage. Oxides of base metals and L
At least one selected from complex oxides such as aCoO3 is used. In addition to LaCoO3, the complex oxides used as active ingredients in the latter stage include LaMnO3, Lao, b S ro, a MnO3,
What is generally called a perovskite type oxide, such as Lao, 6S ro, 4CoO3, and BaCoO3, can be used.

なお、本発明の高温用酸化触媒は、ガスの流れを乱して
触媒活性を高めるように、例えば2つ以上の部分に分割
してもよいし、前段側のハニカムの目開きを後段側のハ
ニカムの目開きよりも大きくするという構成にしてもよ
い。
The high-temperature oxidation catalyst of the present invention may be divided into two or more parts, for example, so as to disturb the gas flow and increase the catalytic activity. The opening may be made larger than the opening of the honeycomb.

本発明の高温用酸化触媒は、例えば以下のような方法に
より製造することができる。まず、担体を耐熱基材の表
面に被覆する方法としては、担体のスラリー溶液中に基
材を浸漬してウォッシュコートシて焼付ける方法が一般
的である。このようにして基材に被覆された担体にPd
、Pt、卑金属酸化物あるいはL a M n O3の
ような複合酸化物等の活性物質を担持させるに際しては
、従来から行われている方法を用いればよい。例えばP
dやpt等の貴金属については、これら貴金属の塩化物
水溶液に担体が被覆された基材を浸漬した後、水素還元
することにより担持させることができる。
The high temperature oxidation catalyst of the present invention can be produced, for example, by the following method. First, as a method for coating the surface of a heat-resistant base material with a carrier, a general method is to immerse the base material in a slurry solution of the carrier, wash coat it, and then bake it. In this way, Pd is added to the carrier coated on the base material.
, Pt, base metal oxides, or composite oxides such as L a M n O 3 may be supported by conventional methods. For example, P
Noble metals such as d and pt can be supported by immersing a base material coated with a carrier in an aqueous solution of chloride of these noble metals and then reducing the base material with hydrogen.

卑金属酸化物についても、卑金属塩類の水溶液に担体が
被覆された基材を浸漬した後、乾燥および焼成すること
によって担持させることができる。
Base metal oxides can also be supported by immersing a substrate coated with a carrier in an aqueous solution of base metal salts, followed by drying and firing.

また複合酸化物については、例えばL a M n O
3の場合、ランタン(La)とマンガン(M n )の
硝酸塩水溶液にアンモニア水を加えて共沈させ、沈澱物
を乾燥焼成して得たLaMnO3をスラリーにして担体
表面に塗布することにより担持させることができる。
Regarding complex oxides, for example, L a M n O
In the case of 3, aqueous ammonia is added to an aqueous solution of nitrates of lanthanum (La) and manganese (M n ) to cause coprecipitation, and the precipitate is dried and fired to form a slurry of LaMnO3, which is then applied to the surface of the carrier to support the slurry. be able to.

〔作用〕[Effect]

酸化触媒は、使用時にはその入口から出口に向かって次
第に温度が上昇するような温度分布となる。本発明の高
温用酸化触媒においては、触媒の温度が2O3、SrO
−Al2O00℃を超えない前段および中段では担体と
して比表面積の大きいγ−Al2O3を使用し、2O3
、SrO−Al2O00℃を超えるかまたは超える可能
性のある後段では担体として上述したような複合酸化物
を使用しているので、触媒活性および高温耐熱性の両方
に有利である。ただし、前段、中段または後段を構成す
る個々の触媒はいずれも単独ではメタンに対して高活性
とは言いがたい。すなわち、前段のPd触媒は比較的低
温でメタンの酸化を開始させ得るが、酸化反応が緩慢で
、ガス流量/触媒容量比(SV値)が高いとメタンを効
率良く酸化させることが出来ない。中段のpt触媒の場
合は、酸化反応性においてPd触媒よりも遥かに良好で
あるが、酸化を開始させる温度が400℃以上と高く、
一般には500〜550℃にも上昇するため低温から活
性を発揮することができない。また、後段の卑金属酸化
物やL a Fvl n 03等の複合酸化物を担持さ
せた触媒は、酸化を開始させる温度がpt触媒よりも更
に高く、反応性においてもpt触媒に劣る。他方、Cr
203 、F e203 、Mn 0sCoO1Cu2
0等の卑金属触媒やL a M n O3等の複合酸化
物触媒は耐熱性が良いという特長を有している。
During use, the oxidation catalyst has a temperature distribution such that the temperature gradually increases from the inlet to the outlet. In the high temperature oxidation catalyst of the present invention, the catalyst temperature is 2O3, SrO
-Al2O In the first and middle stages where the temperature does not exceed 00℃, γ-Al2O3 with a large specific surface area is used as a carrier, and 2O3
, SrO-Al2O Since the above-mentioned composite oxide is used as a carrier in the latter stage where the temperature exceeds or may exceed 00°C, it is advantageous for both catalytic activity and high-temperature heat resistance. However, it is difficult to say that any of the individual catalysts constituting the front stage, middle stage, or rear stage are highly active against methane when used alone. That is, the Pd catalyst at the front stage can start oxidizing methane at a relatively low temperature, but if the oxidation reaction is slow and the gas flow rate/catalyst capacity ratio (SV value) is high, methane cannot be oxidized efficiently. In the case of the middle stage PT catalyst, the oxidation reactivity is much better than the Pd catalyst, but the temperature at which oxidation starts is as high as 400°C or higher.
Generally, the temperature rises to as high as 500 to 550°C, so activity cannot be exhibited at low temperatures. In addition, a catalyst supporting a base metal oxide or a composite oxide such as L a Fvl n 03 in the latter stage has a higher temperature for starting oxidation than a PT catalyst, and is inferior to a PT catalyst in terms of reactivity. On the other hand, Cr
203, Fe203, Mn0sCoO1Cu2
Base metal catalysts such as 0 and composite oxide catalysts such as L a M n O 3 are characterized by good heat resistance.

本発明の高温用酸化触媒によれば、触媒の温度に応じて
担体として適当な酸化物を用い、かつそれぞれ単独では
難点のある触媒を組合わせているので、低温からメタン
に対して高活性を示し、しかも2O3、SrO−Al2
O00℃以上の高温でも優れた耐熱性を示す。
According to the high-temperature oxidation catalyst of the present invention, an appropriate oxide is used as a carrier depending on the temperature of the catalyst, and catalysts that are difficult to use alone are combined, so that high activity against methane is achieved from low temperatures. and 2O3, SrO-Al2
Shows excellent heat resistance even at high temperatures of 000°C or higher.

また、ガスの流れを乱すような構造的な改良を加えれば
、より一層触媒活性を高めることができる。
Additionally, if structural improvements are made to disrupt the flow of gas, the catalytic activity can be further increased.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 直径1インチで、1平方インチ当り 200個の開口部
(200セル)を有するハニカム状のアルミニウムチタ
ネート基材に、γ−Ai203をウォッシュコートし、
2O3、SrO−Al2O00℃で焼付けて担体を被覆
した。
Example 1 A honeycomb-shaped aluminum titanate substrate with a diameter of 1 inch and 200 openings (200 cells) per square inch was wash coated with γ-Ai203,
2O3, SrO-Al2O was baked at 00°C to coat the carrier.

この担体にパラジウムを185重量%担持させて触媒A
を得た。
Catalyst A was prepared by supporting 185% by weight of palladium on this carrier.
I got it.

直径1インチで、1平方インチ当り 400個の開口部
(400セル)を有するハニカム状のアルミニウムチタ
ネート基材に、γ−A、i’2 o3をウォッシュコー
トし、2O3、SrO−Al2O00℃で焼付けて担体
を被覆した。
A honeycomb-shaped aluminum titanate substrate with a diameter of 1 inch and 400 openings (400 cells) per square inch was wash coated with γ-A, i'2 O3 and baked at 00°C with 2O3, SrO-Al2O. and coated the carrier.

この担体に白金を1.5重量%担持させて触媒Bを得た
Catalyst B was obtained by supporting this carrier with 1.5% by weight of platinum.

直径1インチで、1平方インチ当り 400個の開口部
(400セル)を有するハニカム状のアルミニウムチタ
ネート基材に、バリウムアルミネート(BaO・6A)
203)をウォッシュコートし、1450℃で焼付けて
担体を被覆した。この担体に酸化コバルトを5.1重量
%担持させて触媒Cを得た。
Barium aluminate (BaO 6A) is applied to a honeycomb-shaped aluminum titanate substrate with a diameter of 1 inch and 400 openings (400 cells) per square inch.
203) was wash coated and baked at 1450°C to coat the carrier. Catalyst C was obtained by supporting this carrier with 5.1% by weight of cobalt oxide.

得られた触媒A(長さ2O3、SrO−Al2O朋)を
前段に、触媒B(長さ1OB)を中段に、触媒C(長さ
26B)を後段にそれぞれ配置して、表1の条件下にメ
タンの酸化(燃焼)を実施した。
The obtained catalyst A (length 2O3, SrO-Al2O) was placed in the front stage, catalyst B (length 1OB) in the middle stage, and catalyst C (length 26B) in the rear stage under the conditions shown in Table 1. Oxidation (combustion) of methane was carried out.

表1 触媒体積: 23.8ml! (Δ5.07 III!、B5.07m1、C13,1
71tIり燃料/空気比: 0.02kg/ kgガス
ffi : 6.99m 3N / hrガス組成:メ
タン3,5容量%(残部は空気)S V : 3000
00 (1/hr)昇温速度ニア℃/m1n(保持温度
まで)入口ガス保持温度=330℃ その結果、メタンは220℃で着火し、触媒C出口にお
けるメタンの燃焼効率は平均9B、7%、出口ガス温度
は平均1140℃であり、燃焼を5時間継続しl+u−
2比はなかった。
Table 1 Catalyst volume: 23.8ml! (Δ5.07 III!, B5.07m1, C13,1
71tI fuel/air ratio: 0.02kg/kg Gas ffi: 6.99m 3N/hr Gas composition: methane 3.5% by volume (the remainder is air) SV: 3000
00 (1/hr) Temperature increase rate near °C/m1n (up to holding temperature) Inlet gas holding temperature = 330 °C As a result, methane is ignited at 220 °C, and the combustion efficiency of methane at the catalyst C outlet is 9B on average, 7% , the outlet gas temperature was 1140°C on average, and the combustion was continued for 5 hours, l+u-
There was no 2 ratio.

次に、比較例として、上記実施例1の触媒から触媒Cを
取り外して表1と同一の条件でメタンの燃焼を実施した
Next, as a comparative example, catalyst C was removed from the catalyst of Example 1 and methane combustion was carried out under the same conditions as in Table 1.

その結果、触媒B出口における燃焼効率は平均85%、
出口ガス温度は平均920”Cに低下した。なお、燃焼
を5時間継続しても燃焼効率、出口ガス温度ともに変化
はみられなかった。
As a result, the combustion efficiency at the catalyst B outlet was 85% on average.
The outlet gas temperature decreased to an average of 920''C. Even after continuing combustion for 5 hours, no change was observed in either the combustion efficiency or the outlet gas temperature.

実施例2 直径1インチで、1平方インチ当り 400個の開口部
(400セル)を有するハニカム状のコージュライト基
材に、ストロンチウムアルミネート(Sr0・6A)2
03)をウォッシュコートし、1450℃で焼付けて担
体を被覆した。この担体に酸化マンガンを6.8重量%
担持させて触媒りを得た。
Example 2 Strontium aluminate (Sr0.6A) 2 was applied to a honeycomb-shaped cordierite substrate with a diameter of 1 inch and 400 openings (400 cells) per square inch.
03) was wash coated and baked at 1450°C to coat the carrier. 6.8% by weight of manganese oxide in this carrier
A catalyst was obtained by supporting the catalyst.

上記触媒A(2O3、SrO−Al2OIIII)を前
段に、触媒B(2O3、SrO−Al2Om)を中段に
、触媒D(28M+11)を後段にそれぞれ配置し、表
1の条件下にメタンの燃焼を実施した。
The above catalyst A (2O3, SrO-Al2OIII) was placed in the front stage, catalyst B (2O3, SrO-Al2Om) in the middle stage, and catalyst D (28M+11) in the rear stage, and methane combustion was carried out under the conditions shown in Table 1. did.

その結果、触媒り出口における燃焼効率は平均95.8
%、出口ガス温度は平均1130℃であり、燃焼を8時
間継続しても変化はなかった。
As a result, the combustion efficiency at the catalyst outlet was 95.8 on average.
%, the average exit gas temperature was 1130°C, and there was no change even after 8 hours of continuous combustion.

実施例3 直径1インチで、1平方インチ当り約400個の開口部
(400セル)を有するハニカム状ムライト基材(長さ
38B)を用意し、その一端から28Mの長さの部分に
はバリウムアルミネートをウォッシュコートし、145
0℃で焼付け、残りの部分にはγ−Al2O3をウォッ
シュコートし、2O3、SrO−Al2O00℃で焼付
けて担体を 被覆した。担体のうちγ−AI203部分には白金を1
.7重量%担持させ、バリウム アルミネート部分にはLao、6 Ca O,4M n
 03  (1300℃焼成)を5.3重量%担持させ
て触媒Eを得た。上記触媒A(2O3、SrO−Al2
OjIjりを前段に、Pt触媒が触媒A側となるように
触媒E(36m)を後段にそれぞれ配置し、表1の条件
下にメタンの燃焼を実施した。
Example 3 A honeycomb-shaped mullite substrate (length 38B) with a diameter of 1 inch and approximately 400 openings (400 cells) per square inch was prepared, and a portion 28M long from one end thereof was coated with barium. Wash coat aluminate, 145
After baking at 0°C, the remaining part was wash-coated with γ-Al2O3, and baked at 00°C with 2O3, SrO-Al2O to coat the carrier. 1 platinum was added to the γ-AI203 part of the carrier.
.. Lao, 6 Ca O, 4M n was supported on the barium aluminate part at 7% by weight.
Catalyst E was obtained by supporting 5.3% by weight of 03 (calcined at 1300°C). The above catalyst A (2O3, SrO-Al2
Methane combustion was performed under the conditions shown in Table 1, with OjIj placed in the front stage and catalyst E (36 m) placed in the rear stage so that the Pt catalyst was on the catalyst A side.

その結果、触媒Eの出口における燃焼効率は平均94.
3%、出口ガス温度は平均1120℃であり、燃焼を5
時間継続しても変化はなかった。
As a result, the combustion efficiency at the outlet of catalyst E was 94.
3%, the outlet gas temperature is 1120℃ on average, and the combustion is 5%.
There was no change even after a period of time.

次に、上記触媒Eを切断して、長さ2O3、SrO−A
l2OMのpt触媒E□と長さ28MのL a g、6
Ca o、a M n 03触媒E2を得た。実施例1
と同様に触媒Aを前段に、触媒E1を中段に、触媒E2
を後段にそれぞれ配置し、表1の条件下にメタンの燃焼
を実施した。
Next, the catalyst E was cut to a length of 2O3, SrO-A
pt catalyst E□ of l2OM and L a g of length 28M, 6
Ca o, a M n 03 catalyst E2 was obtained. Example 1
Similarly, catalyst A is placed in the front stage, catalyst E1 is placed in the middle stage, and catalyst E2 is placed in the middle stage.
were placed in the latter stages, and methane combustion was carried out under the conditions shown in Table 1.

その結果、触媒E2の出口における燃焼効率は平均97
,8%に、出口ガス温度は平均1150’cにそれぞれ
上昇し、触媒を分割した効果が認められた。
As a result, the combustion efficiency at the outlet of catalyst E2 was 97% on average.
, 8%, and the outlet gas temperature rose to an average of 1150'c, respectively, indicating the effect of dividing the catalyst.

実施例4 直径1インチで、1平方インチ当り 400個の開口部
(400セル)を有するハニカム状のアルミニウムチタ
ネート基材に、カルシウムアルミネート(CaO・6A
)、03)をウォッシュコートし、1450℃で焼付け
て担体を被覆した。この担体に酸化コバルトを5.3重
量%担持させて触媒Fを得た。
Example 4 Calcium aluminate (CaO 6A
), 03) was wash coated and baked at 1450°C to coat the carrier. Catalyst F was obtained by supporting this carrier with 5.3% by weight of cobalt oxide.

上記触媒A(IOM)を前段に、触媒B(2O3、Sr
O−Al2O朋)を中段に、触媒F (28mm)を後
段にそれぞれ配置し、表1の条件下にメタンを燃焼させ
た。
The above catalyst A (IOM) is placed in the front stage, catalyst B (2O3, Sr
O-Al2O) was placed in the middle stage, and catalyst F (28 mm) was placed in the rear stage, and methane was combusted under the conditions shown in Table 1.

その結果、触媒F出口における燃焼効率は平均95.5
%、出口ガス温度は1120〜1130℃であり、燃焼
を5時間継続しても変化はなかった。
As a result, the combustion efficiency at the catalyst F outlet was 95.5 on average.
%, the outlet gas temperature was 1120 to 1130°C, and there was no change even after 5 hours of continuous combustion.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、低温からメタンの
酸化(燃焼)を開始させて効率よくメタンを燃焼させる
ことができ、しかも2O3、SrO−Al2O00℃以
上で優れた耐熱性を示す高温用酸化触媒を提供できるも
のである。
As described in detail above, according to the present invention, methane oxidation (combustion) can be started from a low temperature to efficiently burn methane, and moreover, 2O3, SrO-Al2O exhibits excellent heat resistance at temperatures above 00°C. It can provide an oxidation catalyst for use.

Claims (1)

【特許請求の範囲】 ハニカム状耐熱基材表面に担体を被覆し、該担体に活性
成分を担持させた触媒を複数段組合わせた酸化触媒にお
いて、担体としてγ− Al_2O_3を用い同担体にパラジウムを担持させた
触媒を前段に、担体としてγ−Al_2O_3を用い同
担体に白金、白金−ロジウム等の貴金属を担持させた触
媒を中段に、担体としてBaO−Al_2O_3、Sr
O−Al_2O_3およびCaO−Al_2O_3のう
ちから選択される少くとも1種の複合酸化物を用い同担
体にマンガン、コバルト、クロム、鉄等の卑金属の酸化
物および LaCoO_3、LaMnO_3等の複合酸化物のうち
から選択される少くとも1種を担持させた触媒を後段に
配置したことを特徴とする高温用酸化触媒。
[Claims] An oxidation catalyst in which the surface of a honeycomb-shaped heat-resistant base material is coated with a carrier and an active ingredient is supported on the carrier is combined in multiple stages, using γ-Al_2O_3 as the carrier and palladium on the carrier. A supported catalyst is in the first stage, a catalyst in which γ-Al_2O_3 is used as a carrier, a noble metal such as platinum or platinum-rhodium is supported on the same carrier is in the middle stage, and BaO-Al_2O_3, Sr as a carrier.
At least one type of composite oxide selected from O-Al_2O_3 and CaO-Al_2O_3 is used as a support, and oxides of base metals such as manganese, cobalt, chromium, iron, etc. and composite oxides such as LaCoO_3 and LaMnO_3 are used as the carrier. A high-temperature oxidation catalyst characterized in that a catalyst supporting at least one selected from the following is disposed at a subsequent stage.
JP62098633A 1987-04-23 1987-04-23 Oxidizing catalyst for high temperature service Pending JPS63267804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62098633A JPS63267804A (en) 1987-04-23 1987-04-23 Oxidizing catalyst for high temperature service

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62098633A JPS63267804A (en) 1987-04-23 1987-04-23 Oxidizing catalyst for high temperature service

Publications (1)

Publication Number Publication Date
JPS63267804A true JPS63267804A (en) 1988-11-04

Family

ID=14224909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62098633A Pending JPS63267804A (en) 1987-04-23 1987-04-23 Oxidizing catalyst for high temperature service

Country Status (1)

Country Link
JP (1) JPS63267804A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
JP2022115969A (en) * 2016-11-14 2022-08-09 リサーチ トライアングル インスティテュート Perovskite catalyst and its use

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5405260A (en) * 1990-11-26 1995-04-11 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process
JP2022115969A (en) * 2016-11-14 2022-08-09 リサーチ トライアングル インスティテュート Perovskite catalyst and its use

Similar Documents

Publication Publication Date Title
JPH01242149A (en) Catalyst for purification of exhaust gas
JPH03161052A (en) Exhaust gas cleaning catalyst and its preparation
JPH08131830A (en) Catalyst for purification of exhaust gas
JPS63267804A (en) Oxidizing catalyst for high temperature service
JPS6051544A (en) Oxidizing catalyst
JPS6051545A (en) Oxidizing catalyst
JPS6051543A (en) Oxidizing catalyst
JPWO2012005235A1 (en) Exhaust gas purification catalyst and method for producing the same
JPH0820054B2 (en) Catalytic combustion method of combustible gas
JPS6054736A (en) Oxidation catalyst
JPH0352642A (en) Production of catalyst for combustion
JPS63267805A (en) Oxidizing catalyst for high temperature service
JP2001046870A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning system
JPS63267803A (en) Oxidizing catalyst for high temperature service
JPH04166228A (en) Oxidation catalyst
JP2772129B2 (en) Oxidation catalyst
JP3576312B2 (en) Combustible gas combustion method
JP3219447B2 (en) Oxidation catalyst
JPH04135641A (en) Oxidation catalyst
JP2544414B2 (en) Oxidation catalyst
JP3244935B2 (en) Combustible gas combustion method
JPH05309272A (en) Production of oxidation catalyst
JP3244938B2 (en) Combustible gas combustion method
JP3089042B2 (en) Oxidation catalyst for combustion
JPH05277367A (en) Oxidation catalyst