JPS6051543A - Oxidizing catalyst - Google Patents

Oxidizing catalyst

Info

Publication number
JPS6051543A
JPS6051543A JP58159972A JP15997283A JPS6051543A JP S6051543 A JPS6051543 A JP S6051543A JP 58159972 A JP58159972 A JP 58159972A JP 15997283 A JP15997283 A JP 15997283A JP S6051543 A JPS6051543 A JP S6051543A
Authority
JP
Japan
Prior art keywords
catalyst
methane
oxidation
carrier
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58159972A
Other languages
Japanese (ja)
Inventor
Shigeo Yokoyama
横山 成男
Kikuji Tsuneyoshi
紀久士 常吉
Hiroshi Ogawa
弘 小川
Masato Suwa
諏訪 征人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58159972A priority Critical patent/JPS6051543A/en
Publication of JPS6051543A publication Critical patent/JPS6051543A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive to enhance activity to methane and heat resistance, by combining a catalyst prepared by supporting Pd by a carrier such alumina applied to the surface of a heat resistant base material and a catalyst supporting Pt. CONSTITUTION:An oxidizing catalyst consists of a catalyst prepared by supporting Pd by a carrier (alumina or zirconia) applied to the surface of a heat resistant base material (cordierite or mullite) and a catalyst prepared by supporting Pt by the similar carrier as mentioned above. This catalyst has such a structure that the Pd-supported catalyst is arranged to a front stage and the Pt-supported catalyst to a rear stage and the whole thereof is divided into plural parts. Methane is efficiently oxidized at a low temp. by the catalyst wherein the low temp. iginition property of the Pd-catalyst and the good reactivity of Pt are combined.

Description

【発明の詳細な説明】 本発明は一酸化炭素、水素、炭化水素等のガスを燃焼さ
せるための酸化触媒に関し、就中、各種可熱性ガスの中
で最も酸化されにくいメタンを低温、高いガス流量/触
媒容量比、低いメタン/空気比の条件下に高効率で酸化
し得る酸化触媒に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxidation catalyst for burning gases such as carbon monoxide, hydrogen, and hydrocarbons, and in particular, methane, which is the least oxidizable of various heat-generating gases, can be oxidized at low temperatures and at high temperatures. The present invention relates to an oxidation catalyst that can oxidize with high efficiency under conditions of a low flow rate/catalyst capacity ratio and a low methane/air ratio.

−a化炭素、水素あるいは炭化水素等の可熱性ガスを酸
化触媒の存在下で゛燃゛焼させる接触燃焼法は、主とし
て自動車排ガスの浄化を目的に研究され、多くの酸化触
媒が開発されている。その主なものは、白金のような貴
金属、銅や鉄のような卑金属の酸化物を触媒成分とし、
該触媒成分を粒状やハニカム状等に成形したり、あるい
はアルミナやチタニア等の担体に直接担持させたもので
、ある。
-The catalytic combustion method, in which hot gases such as a-carbon, hydrogen, or hydrocarbons are burned in the presence of an oxidation catalyst, has been researched primarily for the purpose of purifying automobile exhaust gas, and many oxidation catalysts have been developed. There is. The main ones are oxides of noble metals such as platinum and base metals such as copper and iron as catalyst components.
The catalyst component is formed into particles or honeycomb shapes, or directly supported on a carrier such as alumina or titania.

一方、最近では低NO−燃焼法開発の一環として、プロ
パン、低熱量ガス、オイル等を燃焼させる酸化触媒が研
究されている。この触媒はハニカム型のコージュライト
やムライト等のセラミックを基材とし、この基材にγ−
AA203 (ガンマアルミナ)、ジルコニア、マグネ
シア、α−A7’203(アルファアルミナ)等の担体
をウォッシュコートし、触媒成分としてpt、pt十P
d1Pcj、、Pt+Rh等の貴金属、あるいはコバル
ト、ニッケル、マンガン等の酸化物を担持させたもので
ある。
On the other hand, recently, as part of the development of low NO-combustion methods, oxidation catalysts for burning propane, low calorific value gas, oil, etc. have been studied. This catalyst has a honeycomb-shaped ceramic base material such as cordierite or mullite, and this base material has γ-
Wash-coat a carrier such as AA203 (gamma alumina), zirconia, magnesia, α-A7'203 (alpha alumina), and add PT, PT10P as a catalyst component.
d1Pcj, on which noble metals such as Pt+Rh or oxides such as cobalt, nickel, and manganese are supported.

上記のような従来の酸化触媒は、−1ll化炭素やプロ
パンに対しては高活性を示すものの、より安定なメタン
に対しては何れも性能が悪く、現在のところメタンに対
してはその酸化性能において多くの問題点を残している
Although the conventional oxidation catalysts mentioned above show high activity against -1ll-carbon and propane, they have poor performance against more stable methane, and at present, the oxidation catalysts for methane are Many problems remain in terms of performance.

上記の事情に鑑み、発明者等はメタンの接触酸化につい
て鋭意研究を行なった結果、メタンを触媒酸化してNo
Scの発生を抑制しつつ酸化反応熱の利用を行なうにあ
たり、コージュライト、ムライトの如き耐熱性基材の表
面にジルコニアあるいはアルミナを被覆した担体上にp
dを担持した触媒と、同様の担体上にPtを担持した触
媒とを組合わせることによって、メタンに対し高活性で
かつ耐熱性に優れた触媒が得られることを見出だし、こ
れに基づいて他に類例を見ない本発明に至ったものであ
る。
In view of the above circumstances, the inventors conducted intensive research on the catalytic oxidation of methane, and as a result, the inventors conducted catalytic oxidation of methane to achieve No.
In order to utilize the heat of the oxidation reaction while suppressing the generation of Sc, phosphorus is applied onto a carrier whose surface is a heat-resistant base material such as cordierite or mullite coated with zirconia or alumina.
It was discovered that a catalyst with high methane activity and excellent heat resistance could be obtained by combining a catalyst supporting Pt with a catalyst supporting Pt on a similar support. This led to the present invention, which is unprecedented.

即ち、本発明は、コージュライト、ムライト等の耐熱性
基材表面に被覆されたアルミナやジルコニア等の担体に
パラジウムを担持させた触媒と、前記と同様の担体に白
金を担持させた触媒とから構成され、前段にパラジウム
を担持させた触媒が、後段に白金を担持させた触媒が配
されると共に、全体が少なくとも2分割されていること
を特徴とする酸化触媒である。
That is, the present invention comprises a catalyst in which palladium is supported on a support such as alumina or zirconia coated on the surface of a heat-resistant base material such as cordierite or mullite, and a catalyst in which platinum is supported on a support similar to the above. This oxidation catalyst is characterized in that the catalyst having palladium supported in the first stage is arranged and the catalyst supporting platinum is arranged in the second stage, and the whole is divided into at least two parts.

本発明において使用し得る耐熱性基材としては、ムライ
ト、コージュライト、アルミナ、ジルコニア、ジルコニ
アスピネル、ジルコン−ムライト、シリコンカーバイド
、シリコンナイl〜ライト等のセラミックの他、メタリ
ックが挙げられる。。
Heat-resistant base materials that can be used in the present invention include ceramics such as mullite, cordierite, alumina, zirconia, zirconia spinel, zircon-mullite, silicon carbide, and silicon nylon, as well as metallic materials. .

また、担体としてはγ−Ai203 、α−AA203
、ジルコニア、マグネシア等を用いることができる。こ
のような担体を前記耐熱性基材の表面に被覆する方法と
しては、担体のスラリー溶液中に基材を含浸してウォッ
シュコートする方法が一般的であるが、その他、例えば
硝酸ジルコニウムの水溶液中に浸漬した後、焼成する方
法を用いてもよい。
In addition, as carriers, γ-Ai203, α-AA203
, zirconia, magnesia, etc. can be used. A common method for coating the surface of the heat-resistant base material with such a carrier is to impregnate the base material in a slurry solution of the carrier and wash coat it. A method may also be used in which the material is immersed in water and then baked.

上記のようにして得られた担体にPdやptを担持させ
て触媒をm製するに際しては、従来から行われている方
法を用いれば良く、例えばpdやPtの塩化物水溶液に
担体を浸漬した後、水素還元することによって調製する
ことができる。
When preparing a catalyst by supporting Pd or pt on the carrier obtained as described above, a conventional method may be used, such as immersing the carrier in an aqueous chloride solution of pd or pt. After that, it can be prepared by hydrogen reduction.

ところで、上述のようにして調製された触媒は何れも単
独ではメタンに対して高活性とは言い難い。即ち、Pd
触媒は比較的低湿でメタンの酸化を開始させ得るが、酸
化反応が緩慢で、ガス流量/触媒容量比(SV値)が高
いとメタンを効率良く酸化させることが出来ない。他方
、Pt触媒は酸化反応性におい、てPdよりも遥かに良
好であるが、酸化をU0始させる温度が400’C以上
と高く、一般には500〜550℃にも上昇するため低
湿から活性を発揮することができない。
By the way, it is difficult to say that any of the catalysts prepared as described above have high activity toward methane when used alone. That is, Pd
A catalyst can initiate methane oxidation at relatively low humidity, but if the oxidation reaction is slow and the gas flow rate/catalyst volume ratio (SV value) is high, methane cannot be oxidized efficiently. On the other hand, Pt catalysts have much better oxidation reactivity than Pd, but the temperature at which oxidation starts is as high as 400'C or higher, and generally rises to 500-550°C, making it difficult to activate them at low humidity. unable to perform.

本発明は上記両触媒の特徴、即ち、Pd触媒の低温着火
性とPt触媒の良好な反応性とを組合わせることによっ
て初めて、低温からメタンの酸化に対して高活性を発揮
出来る触媒を可能としたものである。更に、本発明では
前記の両触媒が分割されることにより、その接続部分で
ガスに乱れを生じ、触媒活性がより一層高められるので
ある。
The present invention enables a catalyst that can exhibit high activity for methane oxidation even at low temperatures by combining the features of both catalysts described above, namely, the low-temperature ignition properties of the Pd catalyst and the good reactivity of the Pt catalyst. This is what I did. Furthermore, in the present invention, by separating the two catalysts, turbulence occurs in the gas at the connecting portion, thereby further increasing the catalytic activity.

以下、実施例により本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1゜ 1平方インチ当り約200個の微細孔を有するハニカム
状ムライト基材(直径1インチ)にジルコニアをウォッ
シュコートして19た担体をパラジウム塩化物の水溶液
に浸漬し、120°Cで3時間乾燥した後、更に窒素気
流中で350℃まで昇温し、該温度を維持しながら窒素
中に4容量%の水素を加えて流しつつ2時間の焼成を行
なってPd触媒を得た。得られたPd触媒のPd担持量
は1.5重量%であった。これとは別に、1平方インチ
当り400個の微細孔を有するハニカム状ムライト基材
(直径1インチ〉にジルコニアをウォッシュコートした
担体を白金塩化物の水溶液中に浸漬し、120℃で3時
間乾燥した後、窒素気流中で400℃まで昇温し、該温
度を維持しながら窒素中に4容量%の水素を加えて流し
つつ2時間の焼成を行なってPt触媒を得た。ptの担
持量は2.1重量%であった。
Example 1 A honeycomb-shaped mullite substrate (1 inch in diameter) having approximately 200 micropores per square inch was wash-coated with zirconia, and the carrier was immersed in an aqueous solution of palladium chloride and heated at 120°C. After drying for 3 hours, the temperature was further raised to 350° C. in a nitrogen stream, and while maintaining this temperature, 4% by volume of hydrogen was added to the nitrogen and fired for 2 hours while flowing, to obtain a Pd catalyst. The amount of Pd supported on the obtained Pd catalyst was 1.5% by weight. Separately, a honeycomb-shaped mullite substrate (1 inch in diameter) with 400 micropores per square inch was wash-coated with zirconia and immersed in an aqueous solution of platinum chloride, and dried at 120°C for 3 hours. After that, the temperature was raised to 400°C in a nitrogen stream, and while maintaining this temperature, 4% by volume of hydrogen was added to the nitrogen and fired for 2 hours while flowing, to obtain a Pt catalyst.Amount of Pt supported was 2.1% by weight.

こうしてWA製されたPdF11!媒、ptyZl!媒
の各々を23.5の長さに切り出し、Pd触媒の後にP
t触媒を配して用いることにより、表1の条件下にメタ
ンを燃焼させた。その結果を表2に示す。
In this way, PdF11 made by WA! Medium, ptyZl! Each medium was cut to a length of 23.5 mm, and Pd was added after the Pd catalyst.
By disposing and using a catalyst, methane was combusted under the conditions shown in Table 1. The results are shown in Table 2.

L工 触媒体積:23.8d SV値 :300000 br( (各触媒につき600000br() 昇温速度ニア°C/min (保持温度まで)入口ガス
保持温度:330℃ 燃料/空気比:0.02Kg//徨 ガス組成:メタン3.5容量%、 残部は空気 表2 着火温度(酸化開始温度):225℃ メタン酸化率(at 330℃):99.7%出ロガス
温度:1090℃ これに対してPt触媒を取り外し、Pd触媒のみを用い
ることにより、ガス量をそのままにして(SV=600
000hr’ )の条件でメタンを燃焼させたところ、
表3の結果が得られた。
L catalyst volume: 23.8d SV value: 300000br ((600000br for each catalyst) Temperature increase rate near °C/min (up to holding temperature) Inlet gas holding temperature: 330°C Fuel/air ratio: 0.02Kg/ /Left gas composition: methane 3.5% by volume, remainder air Table 2 Ignition temperature (oxidation start temperature): 225°C Methane oxidation rate (at 330°C): 99.7% Output gas temperature: 1090°C By removing the Pt catalyst and using only the Pd catalyst, the gas amount remained the same (SV = 600
When methane was burned under conditions of 000hr'),
The results shown in Table 3 were obtained.

1 着火温度:223℃ メタン酸化率(at 330℃)+38.8%出ロガス
温度:535℃ 同様にpt触媒のみを用い、ガス量をそのままにして(
SV=6000001+r’ ) 、7℃/minで昇
温したところ、512’Cで酸化を開始し、入口温度を
545℃に保持すると99.6%のメタン酸化率となっ
た。即ち、Pd触媒のみでは低湿で酸化を開始するもの
の酸化率が十分でなく、Pt触媒のみでは入口温度を上
昇させな【ノれ(λ高い酸化率を得ることができない。
1 Ignition temperature: 223°C Methane oxidation rate (at 330°C) + 38.8% Output gas temperature: 535°C Similarly, only the PT catalyst was used, and the gas amount remained unchanged (
SV=6000001+r'), the temperature was raised at 7°C/min, oxidation started at 512'C, and when the inlet temperature was maintained at 545°C, the methane oxidation rate was 99.6%. That is, although the Pd catalyst alone starts oxidation at low humidity, the oxidation rate is insufficient, and the Pt catalyst alone cannot increase the inlet temperature and cannot obtain a high oxidation rate.

上記の結果に示されるように、Pd触媒を前段に配しP
t触媒を後段に配する本発明によって、初めてメタンに
対する高活性の酸化触媒が得られるのである。
As shown in the above results, Pd catalyst is placed in the front stage and P
The present invention, in which a t-catalyst is placed in the latter stage, makes it possible for the first time to obtain a highly active oxidation catalyst for methane.

実施例2 1平方インチ当り約200個の微細孔を有するハニカム
状コージュライト基材(直径1インチ)にγ−アルミナ
をウォッシュコートした担体を、バラ2ウム塩化物の水
溶液に浸漬して120℃で3時間乾燥した後、更に窒素
気流中で350℃まで昇温し、該温度を維持しながら窒
素中に4容量%の水素を加えて流しつつ2時間の焼成を
行なってP(j触媒を得た。Pdの担持量は1.6重量
%であった。
Example 2 A carrier prepared by wash-coating γ-alumina on a honeycomb-shaped cordierite substrate (1 inch in diameter) having approximately 200 micropores per square inch was immersed in an aqueous solution of barium chloride at 120°C. After drying for 3 hours, the temperature was further raised to 350°C in a nitrogen stream, and while maintaining this temperature, 4% by volume of hydrogen was added to the nitrogen solution and fired for 2 hours while flowing the P(j catalyst. The amount of Pd supported was 1.6% by weight.

上記調製したPd触媒(長さ23.5mm)の後に実施
例1で調製したPt触媒(長さ23.5#に切り出した
もの)を配し、表1の条件でメタンを酸化燃焼させた。
The Pt catalyst prepared in Example 1 (cut into a length of 23.5 mm) was placed behind the Pd catalyst (length 23.5 mm) prepared above, and methane was oxidized and burned under the conditions shown in Table 1.

その結果を表4に示す。 イLL F 着火温度=230℃ 月 メタン酸化率(at 330℃):99.95% ″出
ロガス温度: 1090℃ なおPt触媒を取外し、Pd触媒のみを用いる オ。
The results are shown in Table 4. ILL F Ignition temperature = 230°C Monthly methane oxidation rate (at 330°C): 99.95% Output gas temperature: 1090°C Note that the Pt catalyst is removed and only the Pd catalyst is used.

ことにより、ガス旧をそのままにして(SV−)600
00011r−” )表1の条件でメタンを燃焼させた
ところ、表5に示す結果が得られた。 用L5L 弧 着火温度=228℃ Q メタン酸化率(at 330℃):37.2%出ロガス
温度:520℃ 上記の結果は、実施例1で述べたと同様、Pd触媒のみ
ではメタンの酸化に対して高活性が19られないことを
示している。
By leaving the old gas as it is (SV-) 600
00011r-") Methane was burned under the conditions in Table 1, and the results shown in Table 5 were obtained. L5L Arc ignition temperature = 228°C Q Methane oxidation rate (at 330°C): 37.2% output log gas Temperature: 520° C. The above results show that, as described in Example 1, the Pd catalyst alone does not have high activity for methane oxidation.

実施例3 1平方インチ当り約200個の微細孔を有するハニカム
状ムライト基材(直径1インチ、長さ47リミ)にジル
コニアをウォッシュツー1−シて担本とし、該担体の長
さの1/2を白金塩化物の水a液中に浸漬した後、実施
例1と同様の乾燥、焼父を行なって白金触媒化した。白
金の担持量は1.3重口%であった。次に、担体の残部
をバラ2ウム塩化物の水溶液中に浸漬し、実施例1と同
粧の乾燥、焼成を行なってパラジウム触媒化した。
Example 3 A honeycomb-shaped mullite base material (1 inch in diameter, 47 mm in length) having about 200 micropores per square inch was washed with zirconia as a carrier, and 1 inch of the length of the carrier was washed with zirconia. /2 was immersed in an aqueous aqueous solution of platinum chloride, and then dried and baked in the same manner as in Example 1 to convert it into a platinum catalyst. The amount of platinum supported was 1.3% by weight. Next, the remaining part of the carrier was immersed in an aqueous solution of barium chloride, and dried and fired in the same manner as in Example 1 to convert it into a palladium catalyst.

くラジウムの担持量は1.1重量%であった。The amount of radium supported was 1.1% by weight.

こうして得られた長さの半分がPd触媒、残り1分がP
t触媒である一体化触媒の性能を表1の陶件で測定し、
表6に示す結果を得た。なお、そ)際にガスはPd触媒
側から送入した。
Half of the length thus obtained is the Pd catalyst, and the remaining 1 minute is the Pd catalyst.
The performance of the integrated catalyst, which is a catalyst, was measured using the materials shown in Table 1.
The results shown in Table 6 were obtained. In addition, at that time, gas was introduced from the Pd catalyst side.

L 着火温度:207℃ メタン酸化率(at 330℃):69%出口ガス濃度
:870℃ 次に、上記の一体化触媒を中央から切断して夫々長さが
23.59のPd触媒とpt触媒とを得、Pd触媒を前
段に、Pt触媒を後段に配して表1の条件で触媒性能を
測定した。その結果、着火温度は207℃であったが、
入口ガス温度を330℃に保持したときのメタン酸化率
は75%となり出口ガス温度も910℃に上昇した。
L Ignition temperature: 207°C Methane oxidation rate (at 330°C): 69% Outlet gas concentration: 870°C Next, the above integrated catalyst was cut from the center to form a Pd catalyst and a PT catalyst each having a length of 23.59 mm. The catalyst performance was measured under the conditions shown in Table 1, with the Pd catalyst placed in the front stage and the Pt catalyst placed in the rear stage. As a result, the ignition temperature was 207℃,
When the inlet gas temperature was maintained at 330°C, the methane oxidation rate was 75%, and the outlet gas temperature also rose to 910°C.

上記の結果から、本発明における2分割の効果を認める
ことが出来る。
From the above results, it is possible to recognize the effect of the two-part division in the present invention.

以上詳述したように、本発明によればメタンを触媒酸化
してNOxの発生を抑制しつつ酸化反応熱の利用を行な
うにあたり、コージュライト、ムライトの如き耐熱性基
材の表面にジルコニアあるいはアルミナを被覆した担体
上にPdを担持した触媒と該担体上にPtを担持した触
媒とを組合わせることによって、メタンに対し高活性で
かつ耐熱性に優れた他に類例の無い優れた酸化触媒を提
供できるものである。
As detailed above, according to the present invention, when catalytically oxidizing methane and utilizing the heat of oxidation reaction while suppressing the generation of NOx, zirconia or alumina is added to the surface of a heat-resistant base material such as cordierite or mullite. By combining a catalyst in which Pd is supported on a support coated with Pd and a catalyst in which Pt is supported on the support, an excellent oxidation catalyst with high activity against methane and excellent heat resistance is created. This is something that can be provided.

Claims (1)

【特許請求の範囲】[Claims] コージュライト、ムライト等の耐熱性基材表面に被覆さ
れたアルミナやジルコニア等の担体にパラジウムを担持
させた触媒と、前記と同様の担体に白金を担持させた触
媒とから構成され、前段にパラジウムを担持させた触媒
が、後段に白金を担持させた触媒が配されると共に、全
体が少なくとも2分割されていることを特徴とする酸化
触媒。
The catalyst consists of a catalyst in which palladium is supported on a carrier such as alumina or zirconia coated on the surface of a heat-resistant base material such as cordierite or mullite, and a catalyst in which platinum is supported on the same carrier as above. An oxidation catalyst characterized in that the catalyst supported on platinum is disposed in the latter stage, and the entire catalyst is divided into at least two parts.
JP58159972A 1983-08-31 1983-08-31 Oxidizing catalyst Pending JPS6051543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58159972A JPS6051543A (en) 1983-08-31 1983-08-31 Oxidizing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58159972A JPS6051543A (en) 1983-08-31 1983-08-31 Oxidizing catalyst

Publications (1)

Publication Number Publication Date
JPS6051543A true JPS6051543A (en) 1985-03-23

Family

ID=15705191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58159972A Pending JPS6051543A (en) 1983-08-31 1983-08-31 Oxidizing catalyst

Country Status (1)

Country Link
JP (1) JPS6051543A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process
WO1999046040A1 (en) * 1998-03-09 1999-09-16 Osaka Gas Company Limited Catalyst for removing hydrocarbons in exhaust gas and method for clarification of exhaust gas
JPH11319559A (en) * 1998-03-09 1999-11-24 Osaka Gas Co Ltd Catalyst and method for purifying exhaust gas containing methane
JP2000254501A (en) * 1999-03-10 2000-09-19 Osaka Gas Co Ltd Production of catalyst for removing hydrocarbon in exhaust gas containing methane
JP2005288349A (en) * 2004-03-31 2005-10-20 Tokyo Gas Co Ltd Catalyst for oxidizing and removing methane in exhaust gas and waste gas cleaning method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5405260A (en) * 1990-11-26 1995-04-11 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process
JPH11319559A (en) * 1998-03-09 1999-11-24 Osaka Gas Co Ltd Catalyst and method for purifying exhaust gas containing methane
WO1999046040A1 (en) * 1998-03-09 1999-09-16 Osaka Gas Company Limited Catalyst for removing hydrocarbons in exhaust gas and method for clarification of exhaust gas
US6602481B1 (en) 1998-03-09 2003-08-05 Osaka Gas Company Limited Catalyst for removing hydrocarbons from exhaust gas and method for clarification of exhaust gas
US6887446B2 (en) 1998-03-09 2005-05-03 Osaka Gas Company Limited Catalyst for removing hydrocarbons from exhaust gas and method for purification of exhaust gas
EP1611950A1 (en) * 1998-03-09 2006-01-04 Osaka Gas Company Limited Method for the catalytic removal of methane from exhaust gas
US7371706B2 (en) 1998-03-09 2008-05-13 Osaka Gas Company Limited Catalyst for removing hydrocarbons from exhaust gas and method for purification of exhaust gas
JP2000254501A (en) * 1999-03-10 2000-09-19 Osaka Gas Co Ltd Production of catalyst for removing hydrocarbon in exhaust gas containing methane
JP2005288349A (en) * 2004-03-31 2005-10-20 Tokyo Gas Co Ltd Catalyst for oxidizing and removing methane in exhaust gas and waste gas cleaning method
JP4494068B2 (en) * 2004-03-31 2010-06-30 東京瓦斯株式会社 Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method

Similar Documents

Publication Publication Date Title
US5100632A (en) Catalyzed diesel exhaust particulate filter
JP4935219B2 (en) Exhaust gas purification catalyst
JPH03161052A (en) Exhaust gas cleaning catalyst and its preparation
JP2006175386A (en) Filter catalyst for exhaust gas cleaning of diesel engine and its production method
JPS6051543A (en) Oxidizing catalyst
JPH03207445A (en) Multi-functional catalyst for conversion of contaminant containing ce and u as well as metal exhausted from internal combustion engine, and preparation of said catalyst
JPS6051544A (en) Oxidizing catalyst
JPS59127649A (en) Catalyst for purifying exhaust gas
JPS6051545A (en) Oxidizing catalyst
JPS5952530A (en) Catalyst
JPS6054736A (en) Oxidation catalyst
JP2004082000A (en) Exhaust gas cleaning catalyst
JPH03106446A (en) Catalyst for purifying exhaust gas and preparation thereof
JP4459346B2 (en) Exhaust gas purification catalyst
JPS63267804A (en) Oxidizing catalyst for high temperature service
JPH0512021B2 (en)
JP6167834B2 (en) Exhaust gas purification catalyst
JPS6031828A (en) Catalyst for purifying exhaust gas and its preparation
JPS6271542A (en) Catalyst for cleaning up exhaust gas of engine
JPH0522261Y2 (en)
JP2000246103A (en) Production of catalyst for cleaning exhaust gas
JPS63209751A (en) Production of oxidation catalyst
JPS63267805A (en) Oxidizing catalyst for high temperature service
JPS63267803A (en) Oxidizing catalyst for high temperature service
JP3284312B2 (en) Three-way catalyst for combustion exhaust gas of methane main gas