JP4494068B2 - Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method - Google Patents

Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method Download PDF

Info

Publication number
JP4494068B2
JP4494068B2 JP2004108151A JP2004108151A JP4494068B2 JP 4494068 B2 JP4494068 B2 JP 4494068B2 JP 2004108151 A JP2004108151 A JP 2004108151A JP 2004108151 A JP2004108151 A JP 2004108151A JP 4494068 B2 JP4494068 B2 JP 4494068B2
Authority
JP
Japan
Prior art keywords
methane
exhaust gas
catalyst
combustion exhaust
gas containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004108151A
Other languages
Japanese (ja)
Other versions
JP2005288349A (en
Inventor
正樹 本道
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2004108151A priority Critical patent/JP4494068B2/en
Publication of JP2005288349A publication Critical patent/JP2005288349A/en
Application granted granted Critical
Publication of JP4494068B2 publication Critical patent/JP4494068B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、硫黄酸化物を含む燃焼排ガス中のメタンを低温域において酸化して除去するための触媒、該低温酸化除去用触媒を用いて硫黄酸化物を含む燃焼排ガス中のメタンを低温域において酸化除去する方法及び該低温酸化除去用触媒の製造方法に関する。   The present invention relates to a catalyst for oxidizing and removing methane in combustion exhaust gas containing sulfur oxide in a low temperature region, and using the low temperature oxidation removal catalyst, methane in combustion exhaust gas containing sulfur oxide in a low temperature region. The present invention relates to a method for oxidation removal and a method for producing the catalyst for low temperature oxidation removal.

ボイラー、加熱炉、あるいはガスエンジンやディーゼルエンジンやガスタービンなどの燃料としては天然ガス、都市ガス、軽油、灯油などの炭化水素系燃料が使用される。それらの燃料を燃焼させた排ガスには窒素酸化物(NOX)、硫黄酸化物(SOX)、一酸化炭素、あるいは臭気物質、ばいじん等のほか、未燃焼の炭化水素が含有されている。これらの成分は環境汚染の原因となるので無害にして排出する必要がある。 Hydrocarbon fuels such as natural gas, city gas, light oil, and kerosene are used as fuel for boilers, furnaces, gas engines, diesel engines, and gas turbines. The exhaust gas from which these fuels are burned contains nitrogen oxides (NO x ), sulfur oxides (SO x ), carbon monoxide, odorous substances, soot and the like, as well as unburned hydrocarbons. These components cause environmental pollution and must be discharged harmlessly.

そして、この点は、コージェネレーションシステムやGHP(Gas Heat Pump)における希薄燃焼式エンジンからの燃焼排ガスについても同様である。希薄燃焼式エンジンのような希薄燃焼方式の場合には、その排ガス中に少量の炭化水素、特にメタン、窒素酸化物、一酸化炭素等とともに、多量の酸素及び水蒸気が共存することになる。従来、排ガス中の3成分すなわち炭化水素、窒素酸化物、一酸化炭素を同時に浄化する三元触媒による処理法が開発されている。   This also applies to combustion exhaust gas from a lean combustion engine in a cogeneration system or GHP (Gas Heat Pump). In the case of a lean combustion system such as a lean combustion engine, a large amount of oxygen and water vapor coexist in the exhaust gas together with a small amount of hydrocarbons, particularly methane, nitrogen oxide, carbon monoxide and the like. Conventionally, a treatment method using a three-way catalyst that simultaneously purifies three components in exhaust gas, that is, hydrocarbon, nitrogen oxide, and carbon monoxide, has been developed.

ところが、三元触媒による処理法は酸素が殆んど存在しない燃焼排ガスに対してしか有効に適用することはできず、三元触媒は酸素過剰で且つ燃焼排ガス中の炭化水素がとりわけメタンである場合には有効に作用しない。炭化水素の酸化触媒としてはパラジウム、白金、ロジウムなどの貴金属が用いられるが、それら貴金属触媒は担体に担持した形で使用される。その担体としてはアルミナ(Al23)やジルコニア(ZrO2)などが知られている。 However, the treatment method using a three-way catalyst can be effectively applied only to combustion exhaust gas in which almost no oxygen is present. The three-way catalyst is oxygen-excess and the hydrocarbon in the combustion exhaust gas is especially methane. In some cases it does not work effectively. Noble metals such as palladium, platinum and rhodium are used as the hydrocarbon oxidation catalyst, and these noble metal catalysts are used in a form supported on a carrier. As the carrier, alumina (Al 2 O 3 ), zirconia (ZrO 2 ) and the like are known.

ところで、炭化水素が特にメタンの場合には、従来、その酸化にはパラジウムが有効とされ、白金についてはそれ単独では有効でなく、補助的に使用されているだけである。例えば特開平11−319559号公報には、酸化ジルコニウム担体にパラジウムを担持してなる触媒が硫黄酸化物による触媒活性の阻害に対して高い抵抗性を示すことが示されている。同公報には、酸化スズ担体にパラジウムと白金を担持してなる触媒についても開示されているが、白金はパラジウムと一緒に補助的に使用されるに過ぎない。   By the way, in the case where the hydrocarbon is methane in particular, conventionally, palladium is effective for the oxidation, and platinum is not effective by itself, but only used as an auxiliary. For example, Japanese Patent Application Laid-Open No. 11-319559 shows that a catalyst in which palladium is supported on a zirconium oxide support exhibits high resistance to inhibition of catalytic activity by sulfur oxides. The publication also discloses a catalyst in which palladium and platinum are supported on a tin oxide carrier, but platinum is only used in an auxiliary manner together with palladium.

特開平11−319559号公報JP 11-319559 A

また、例えば希薄燃焼式エンジンからの燃焼排ガスの温度は500℃以下、通常500〜400℃程度と低いため、酸化触媒によるメタンの酸化は困難である。特に450℃以下という低温域においては、酸化触媒は、排ガス中に含まれる微量の硫黄酸化物の蓄積による被毒劣化が著しく、これによりメタンの酸化除去性能は経時的に劣化してしまい、実用に供し得る十分な耐久性能が得られないのが現状である。   Further, for example, the temperature of combustion exhaust gas from a lean combustion engine is as low as 500 ° C. or less, usually about 500 to 400 ° C., so that it is difficult to oxidize methane with an oxidation catalyst. Particularly in the low temperature range of 450 ° C. or less, the oxidation catalyst is significantly deteriorated in poisoning due to accumulation of a small amount of sulfur oxide contained in the exhaust gas. In the present situation, sufficient durability performance that can be used for the above is not obtained.

本発明者らは、白金、ルテニウム、パラジウムなどの貴金属と各種多孔質担体とを組み合せて実験、検討を繰り返して追求したところ、全く偶然にも、従来メタンの酸化活性貴金属と考えられていたパラジウムを一切含まず、また、従来、単独では有効でないと考えられていた白金をそれ単独で、すなわち白金のみを多孔質の酸化スズに担持した触媒が低温域、特に450℃以下という低温域におけるメタンの酸化除去用触媒として有効で、高い耐SOX性を有することを見い出し、この知見に基づく酸化触媒を先に開発し、出願している(特願2003−148279号)。 The present inventors have repeatedly pursued experiments and examinations by combining noble metals such as platinum, ruthenium and palladium with various porous carriers. In addition, platinum, which has been conventionally considered to be ineffective by itself, is a methane in a low temperature region, particularly a low temperature region of 450 ° C. or less, in which a catalyst in which only platinum is supported on porous tin oxide is used. It has been found that the catalyst is effective as an oxidation removal catalyst and has high SO X resistance, and an oxidation catalyst based on this finding has been developed and applied (Japanese Patent Application No. 2003-148279).

特願2003−148279号Japanese Patent Application No. 2003-148279

本発明者らは、上記白金、ルテニウム、パラジウムなどの貴金属と各種多孔質担体とを組み合せてさらに実験、検討を繰り返して追求したところ、上記白金と多孔質酸化スズの組み合わせの場合のほか、白金と多孔質の酸化ジルコニウムの組み合わせの場合にも、白金と多孔質酸化スズの組み合わせの場合に準じて、低温域、特に450℃以下という低温域におけるメタンの酸化除去用触媒として有効で、良好な耐SOX性を有することを見い出した。 The inventors of the present invention have repeatedly pursued experiments and examinations by combining the above-mentioned noble metals such as platinum, ruthenium and palladium with various porous carriers, and in addition to the combination of the above platinum and porous tin oxide, In the case of a combination of platinum and porous zirconium oxide, it is effective as a catalyst for oxidative removal of methane in a low temperature range, particularly at a low temperature range of 450 ° C. or lower, in accordance with the combination of platinum and porous tin oxide. It was found to have SO X resistance.

すなわち、本発明は、白金をそれ単独で、多孔質の酸化ジルコニウムに担持してなる硫黄酸化物を含む燃焼排ガス中のメタン酸化除去用触媒を提供することを目的とし、また、硫黄酸化物を含む燃焼排ガスを該メタン酸化除去用触媒に500℃以下の低温域、特に450〜350℃という低温域で通すことにより燃焼排ガス中のメタンを長期にわたり有効に酸化除去する方法を提供することを目的とし、さらに、メタンの低温酸化酸化除去用触媒の製造方法を提供することを目的とする。   That is, an object of the present invention is to provide a catalyst for removing methane oxidation in combustion exhaust gas containing sulfur oxide formed by supporting platinum alone on porous zirconium oxide. An object of the present invention is to provide a method for effectively oxidizing and removing methane in combustion exhaust gas over a long period of time by passing the combustion exhaust gas containing the exhaust gas through the catalyst for removing methane oxidation in a low temperature range of 500 ° C. or lower, particularly 450 to 350 ° C. Furthermore, it aims at providing the manufacturing method of the catalyst for low temperature oxidation oxidation removal of methane.

本発明は、(1)硫黄酸化物を含む燃焼排ガス中のメタンを低温域において酸化除去するための触媒であって、該酸化除去用触媒が多孔質の酸化ジルコニウムに白金を担持させてなる触媒であることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒を提供する。   The present invention is (1) a catalyst for oxidizing and removing methane in combustion exhaust gas containing sulfur oxides in a low temperature range, wherein the catalyst for oxidizing and removing platinum is supported on porous zirconium oxide. The present invention provides a catalyst for low-temperature oxidation removal of methane in combustion exhaust gas containing sulfur oxide.

また、本発明は、(2)硫黄酸化物を含む燃焼排ガス中のメタンを低温域で酸化除去する方法であって、該燃焼排ガスを多孔質の酸化ジルコニウムに白金を担持させてなる酸化除去用触媒に低温域で通すことによりメタンを酸化除去することを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法を提供する。   Further, the present invention is (2) a method for oxidizing and removing methane in combustion exhaust gas containing sulfur oxide at a low temperature range, and for oxidizing and removing the combustion exhaust gas by carrying platinum on porous zirconium oxide. Provided is a low-temperature oxidative removal method for methane in combustion exhaust gas containing sulfur oxide, characterized by oxidizing and removing methane by passing it through a catalyst in a low-temperature region.

さらに、本発明は、(3)多孔質の酸化ジルコニウムに白金を担持してなる硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒の製造方法であって、白金化合物を多孔質の酸化ジルコニウムに対して白金化合物の水溶液による含浸法または平衡吸着法により担持させた後、焼成することを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒の製造方法を提供する。   The present invention further relates to (3) a method for producing a catalyst for low-temperature oxidation removal of methane in combustion exhaust gas containing sulfur oxide in which platinum is supported on porous zirconium oxide, wherein the platinum compound is porous. Provided is a method for producing a catalyst for low-temperature oxidation removal of methane in combustion exhaust gas containing sulfur oxide, characterized in that zirconium oxide is supported by an impregnation method or an equilibrium adsorption method with an aqueous solution of a platinum compound and then calcined. To do.

本発明(1)は、硫黄酸化物を含む燃焼排ガス中のメタンを低温域において酸化除去するための触媒である。そして、該酸化除去用触媒が多孔質の酸化ジルコニウムに白金を担持させてなる触媒であることを特徴とする。また、本発明(2)は、硫黄酸化物を含む燃焼排ガス中のメタンを低温域で酸化除去する方法である。そして、該燃焼排ガスを多孔質の酸化ジルコニウムに白金を担持させてなる酸化除去用触媒に低温域で通すことによりメタンを酸化除去することを特徴とする。   The present invention (1) is a catalyst for oxidizing and removing methane in combustion exhaust gas containing sulfur oxide in a low temperature range. The oxidation removal catalyst is a catalyst in which platinum is supported on porous zirconium oxide. Further, the present invention (2) is a method for oxidizing and removing methane in combustion exhaust gas containing sulfur oxides in a low temperature range. The combustion exhaust gas is passed through an oxidation removal catalyst in which platinum is supported on porous zirconium oxide in a low temperature range to oxidize and remove methane.

本発明(1)〜(2)によれば、従来メタンの酸化活性貴金属と考えられていたパラジウムを一切含まず、また、従来単独では有効でないと考えられていた白金を、それ単独で、多孔質の酸化ジルコニウムに担持することにより、500℃以下の低温域、特に450〜350℃という低温域においてメタンを長期にわたり有効に酸化し除去することができる。このため、特に硫黄化合物を付臭剤として含む都市ガスを燃料とする希薄燃焼式エンジンからの燃焼排ガスに対しても有効に適用できる。また、本発明の酸化除去用触媒は、有効な耐久性を有することから、交換頻度を少なくでき、排ガス処理システムの低コスト化を図ることができる。   According to the present invention (1) to (2), any platinum that has not been considered to be effective by itself alone, including no palladium that has been conventionally considered as an oxidation active noble metal of methane, can be made porous by itself. By being supported on high quality zirconium oxide, methane can be effectively oxidized and removed over a long period of time in a low temperature range of 500 ° C. or lower, particularly in a low temperature range of 450 to 350 ° C. Therefore, the present invention can be effectively applied particularly to combustion exhaust gas from a lean combustion engine using city gas containing a sulfur compound as an odorant as fuel. Moreover, since the oxidation removal catalyst of the present invention has effective durability, the replacement frequency can be reduced, and the cost of the exhaust gas treatment system can be reduced.

また、本発明(3)は、多孔質の酸化ジルコニウムに白金を担持してなる硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒の製造方法である。そして、白金化合物を多孔質の酸化ジルコニウムに対して白金化合物の水溶液による含浸法または平衡吸着法により担持させた後、焼成することを特徴とする。   In addition, the present invention (3) is a method for producing a low-temperature oxidation removal catalyst for methane in combustion exhaust gas containing sulfur oxide obtained by supporting platinum on porous zirconium oxide. The platinum compound is supported on porous zirconium oxide by an impregnation method using an aqueous solution of a platinum compound or an equilibrium adsorption method, and then fired.

本メタンの低温酸化除去用触媒の製造法としては、多孔質の酸化ジルコニウムに対して白金を均一に担持させ得る手法であれば特に限定はないが、好ましくは含浸法や平衡吸着法が適用される。担体である酸化ジルコニウム(ZrO2)は多孔質であればよい。白金の原料としては白金化合物を用いる。その例としては白金の硝酸塩、塩化物、酢酸塩、錯塩(テトラアンミン白金塩、ジニトロジアンミン白金等)などが挙げられる。 There is no particular limitation on the method for producing the low-temperature oxidative removal catalyst for methane as long as it is a method capable of uniformly supporting platinum on porous zirconium oxide, but preferably an impregnation method or an equilibrium adsorption method is applied. The Zirconium oxide (ZrO 2 ) as a support may be porous. A platinum compound is used as a raw material for platinum. Examples thereof include platinum nitrate, chloride, acetate, complex salt (tetraammine platinum salt, dinitrodiammine platinum, etc.), and the like.

一例として含浸法の場合の態様例を述べると、白金化合物を水に溶解して水溶液とし、その水溶液に粉末状等の多孔質の酸化ジルコニウムを投入して撹拌し、該酸化ジルコニウムに白金化合物を含浸させて担持する。ここで、白金化合物水溶液のpHは、酸性域からアルカリ性域まで広い範囲で設定できるが、pH値をより大きくするのが好ましく、これによりメタンの酸化性能を向上させることができる。そのpH値は特に12以上であるのが好ましい。その後、常法により乾燥し、焼成する。   As an example, an embodiment example in the case of the impregnation method is described. A platinum compound is dissolved in water to form an aqueous solution, and porous zirconium oxide such as powder is added to the aqueous solution and stirred, and the platinum compound is added to the zirconium oxide. Impregnate and carry. Here, the pH of the platinum compound aqueous solution can be set in a wide range from an acidic range to an alkaline range, but it is preferable to increase the pH value, thereby improving the oxidation performance of methane. The pH value is particularly preferably 12 or more. Thereafter, it is dried and fired by a conventional method.

本酸化触媒における酸化ジルコニウム担体に対する白金の担持量は、酸化ジルコニウムに対して0.025〜15.0wt%の範囲であり、より好ましくは0.8〜9.0wt%の範囲である。白金の担持量が0.025wt%を下回る場合にもなお有効であるが、その分触媒効果は減少する。その担持量が15.0wt%程度を上回る場合にも同様に有効な触媒効果が得られるが、白金を15wt%程度まで担持させていれば所期の触媒効果が得られるのでコスト等の面からしても上限15.0wt%程度で十分である。もちろん、上記範囲0.025〜15.0wt%の前後としても差し支えない。本発明の酸化触媒をハニカム状の形態で使用する場合には、これらに準じた量を担持させる。   The amount of platinum supported on the zirconium oxide support in the present oxidation catalyst is in the range of 0.025 to 15.0 wt%, more preferably in the range of 0.8 to 9.0 wt% with respect to zirconium oxide. Although it is still effective when the supported amount of platinum is less than 0.025 wt%, the catalytic effect is reduced accordingly. An effective catalytic effect can be obtained when the loading amount exceeds about 15.0 wt%. However, if platinum is supported up to about 15 wt%, the desired catalytic effect can be obtained, so from the viewpoint of cost and the like. Even so, an upper limit of about 15.0 wt% is sufficient. Of course, the range may be around 0.025 to 15.0 wt%. When the oxidation catalyst of the present invention is used in the form of a honeycomb, an amount according to these is supported.

触媒の形態としては粉末状、粒状、顆粒状(含:球状)、ペレット(円筒型、環状型)状、タブレット(錠剤)状、或いはハニカム(モノリス体)状等適宜の形状として使用することができる。なお、本発明ではこれら形状の触媒に排ガスを通す必要があるため、粉末状の場合には、これを充填した触媒層から逸散しないように所定粒度範囲に整粒するか、または造粒し、あるいは加圧成形や押出し成形して用いるのが望ましい。このうち押出し成形の場合には適宜所定長さに切断してペレット化して使用される。   The catalyst may be used in an appropriate shape such as powder, granule, granule (including sphere), pellet (cylindrical or annular), tablet (tablet), or honeycomb (monolith). it can. In the present invention, since it is necessary to pass exhaust gas through the catalyst of these shapes, in the case of a powder, it is sized within a predetermined particle size range or granulated so as not to escape from the catalyst layer filled with the catalyst. Alternatively, it is desirable to use by pressure molding or extrusion molding. Of these, in the case of extrusion molding, it is cut into a predetermined length and pelletized.

本触媒の形態としてハニカム(モノリス体)状の形態は好ましい形状である。特に希薄燃焼式エンジンからの排ガスを処理する場合には、好ましくはハニカム状として用いられる。ハニカム状触媒の製造態様としては、例えば(1)ハニカム状構造の基材に酸化ジルコニウムをウォッシュコートして担持させた後、該酸化ジルコニウム担持のハニカム基材に白金化合物の水溶液を担持させる、(2)白金化合物の水溶液に酸化ジルコニウムを分散させてスラリーとし、これをハニカム状構造の基材にウォッシュコートして担持させる。次いで、常法により乾燥させ、焼成する。   As a form of the present catalyst, a honeycomb (monolith body) form is a preferred form. In particular, when treating exhaust gas from a lean combustion engine, it is preferably used as a honeycomb. For example, the honeycomb-shaped catalyst may be manufactured by (1) washing and supporting zirconium oxide on a honeycomb-structured base material, and then supporting an aqueous platinum compound solution on the zirconium oxide-supported honeycomb base material. 2) Zirconium oxide is dispersed in an aqueous solution of a platinum compound to form a slurry, which is washed and supported on a substrate having a honeycomb structure. Next, it is dried and fired by a conventional method.

ハニカム状の形態での基材としてはセラミックス製またはメタル製の基材を使用することができる。セラミックスの好ましい例としてはコージェライトが挙げられ、メタルの好ましい例としてはステンレス鋼や鉄ーアルミニウムークロム系合金などが挙げられる。   As the substrate in the honeycomb form, a ceramic or metal substrate can be used. Preferable examples of ceramics include cordierite, and preferable examples of metals include stainless steel and iron-aluminum-chromium alloys.

従来、貴金属触媒は、排ガス中のSO2により被毒し性能劣化を来すことが知られている。これに対して、本発明に係る酸化ジルコニウム(ZrO2)担体に白金を担持した酸化触媒は、長期間にわたり良好な耐SOX性を有する。 Conventionally, it is known that a noble metal catalyst is poisoned by SO 2 in exhaust gas and deteriorates its performance. In contrast, the oxidation catalyst in which platinum is supported on a zirconium oxide (ZrO 2 ) support according to the present invention has good SO X resistance over a long period of time.

本発明の酸化除去用触媒を使用する装置としては固定床流通型反応装置などを用いることができる。図1は本発明の酸化除去用触媒を使用する装置態様例を示す図である。図1中、Aは被処理燃焼排ガス導入管、Bは酸化除去用触媒層(反応管)、Cは処理済み排ガスの導出管であり、矢印(→)は燃焼排ガスの流れ方向を示している。本酸化除去用触媒は、図1のような装置態様とは限らず、燃焼排ガス流に対して配置し得る態様であれば各種装置態様で使用される。ハニカム状の本酸化除去用触媒を図1のような触媒層にセットするには、その断面開口が燃焼排ガスの流れ方向に向くように配置される。   As the apparatus using the oxidation removal catalyst of the present invention, a fixed bed flow type reaction apparatus or the like can be used. FIG. 1 is a view showing an example of an apparatus using the oxidation removal catalyst of the present invention. In FIG. 1, A is a treated exhaust gas introduction pipe, B is a catalyst layer for oxidation removal (reaction pipe), C is a treated exhaust gas outlet pipe, and an arrow (→) indicates the flow direction of the combustion exhaust gas. . The present catalyst for oxidation removal is not limited to the apparatus mode as shown in FIG. 1, and may be used in various apparatus modes as long as it can be arranged with respect to the combustion exhaust gas flow. In order to set the honeycomb-shaped main catalyst for oxidation removal in the catalyst layer as shown in FIG. 1, the cross-sectional opening is arranged to face the flow direction of the combustion exhaust gas.

以下、実施例に基づき本発明をさらに詳しく説明するが、本発明が実施例に限定されないことはもちろんである。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, it cannot be overemphasized that this invention is not limited to an Example.

《実施例1》
〈実施例ペレット触媒の調製〉
ペレット触媒を含浸法により調製した。担体粉末は、原料酸化ジルコニウム〔第一希元素化学工業社製、表面積=40m2/g〕を昇温速度1℃/min、600℃で3時間焼成して得た。該担体粉末とジニトロジアンミン白金〔Pt(NO22(NH32〕の硝酸酸性水溶液(pH=1)の所定量をフラスコに入れ、ロータリーエバポレータにより、50℃で減圧乾燥させた後、残った粉末を175℃で6時間、次いで275℃で12時間乾燥し、その後順次、昇温速度10℃/min、200℃で3時間、昇温速度1℃/min、270℃で6時間、昇温速度1℃/min、550℃で3時間焼成して触媒粉末を得た。得られた触媒粉末を打錠成形器により500kg/cm2で成形した後、355〜710μm(=35〜31メッシュ)に分級した。こうしてペレット触媒を得た。
Example 1
<Preparation of Example Pellet Catalyst>
A pellet catalyst was prepared by an impregnation method. The carrier powder was obtained by calcining raw material zirconium oxide (manufactured by Daiichi Kagaku Kagaku Kogyo Co., Ltd., surface area = 40 m 2 / g) at a heating rate of 1 ° C./min and 600 ° C. for 3 hours. A predetermined amount of nitric acid aqueous solution (pH = 1) of the carrier powder and dinitrodiammine platinum [Pt (NO 2 ) 2 (NH 3 ) 2 ] is placed in a flask and dried under reduced pressure at 50 ° C. by a rotary evaporator. The remaining powder was dried at 175 ° C. for 6 hours, then at 275 ° C. for 12 hours, and then sequentially heated at a rate of 10 ° C./min, 200 ° C. for 3 hours, heated at a rate of 1 ° C./min, 270 ° C. for 6 hours, The catalyst powder was obtained by calcining at a heating rate of 1 ° C./min at 550 ° C. for 3 hours. The obtained catalyst powder was molded at 500 kg / cm 2 by a tableting machine and then classified into 355 to 710 μm (= 35 to 31 mesh). In this way, a pellet catalyst was obtained.

〈比較例ペレット触媒の調製〉
上記と同様にして、酸化ジルコニウム担体にPtとPdを担持したペレット触媒(Pt-Pd/ZrO2ペレット触媒)、酸化ジルコニウム担体にPdを担持したペレット触媒(Pd/ZrO2ペレット触媒)を調製した。Pt源としてジニトロジアンミン白金を用い、Pd源としては硝酸パラジウム〔Pd(NO32〕を用い、酸化ジルコニウム担体は、前記と同じ原料酸化ジルコニウムを用いて前記と同じ処理をして得た担体粉末である。
<Preparation of Comparative Example Pellet Catalyst>
In the same manner as above, a pellet catalyst (Pt—Pd / ZrO 2 pellet catalyst) supporting Pt and Pd on a zirconium oxide support and a pellet catalyst (Pd / ZrO 2 pellet catalyst) supporting Pd on a zirconium oxide support were prepared. . Dinitrodiammine platinum was used as the Pt source, palladium nitrate [Pd (NO 3 ) 2 ] was used as the Pd source, and the zirconium oxide support was obtained by the same treatment as described above using the same raw material zirconium oxide. It is a powder.

〈性能試験〉
上記ペレット触媒の調製で得た各ペレット触媒を用いて、図1に示すような通常の固定床流通型反応装置を用いて触媒性能試験及び耐久試験を実施した。使用ペレット触媒は、Pt/ZrO2(Pt=6wt%:ZrO2に対する担持量、以下同じ)、Pt-Pd/ZrO2(Pt=3wt%、Pd=3wt%)、Pd/ZrO2(Pd=6wt%)である。
<performance test>
Using each pellet catalyst obtained in the preparation of the pellet catalyst, a catalyst performance test and a durability test were performed using a normal fixed bed flow type reactor as shown in FIG. The pellet catalyst used is Pt / ZrO 2 (Pt = 6 wt%: supported amount for ZrO 2 , the same applies hereinafter), Pt—Pd / ZrO 2 (Pt = 3 wt%, Pd = 3 wt%), Pd / ZrO 2 (Pd = 6 wt%).

試験条件は下記のとおりとした。排ガス温度(=反応温度):400℃、空間速度(SV):160,000h-1(全流量3.35L/min、触媒体積:1.26cm3)、排ガスすなわち試験ガス:CH4=2000ppm(volppm、以下同じ)、CO=820ppm、NO=80ppm、CO2=4.9%(vol%、以下同じ)、O2=10.5%、H2O=10%、SO2=1ppm、N2=バランス。 The test conditions were as follows. Exhaust gas temperature (= reaction temperature): 400 ° C., space velocity (SV): 160,000 h −1 (total flow rate 3.35 L / min, catalyst volume: 1.26 cm 3 ), exhaust gas, that is, test gas: CH 4 = 2000 ppm ( vol ppm, the same applies hereinafter), CO = 820 ppm, NO = 80 ppm, CO 2 = 4.9% (vol%, the same applies hereinafter), O 2 = 10.5%, H 2 O = 10%, SO 2 = 1 ppm, N 2 = Balance.

試験ガスの分析は、FID式全炭化水素計、赤外線式CO/CO2計、化学発光式NOX計及び磁気式酸素計からなる排ガス分析計(堀場製作所社製)を用いて行った。CH4の酸化除去活性は、反応管前後のCH4の濃度差から評価した。酸化除去活性〔=メタン除去率(%)〕は以下の式により求めた。これらの点は、実施例2の性能試験についても同じである。図2は本性能試験の結果を示す図である。 The analysis of the test gas was performed using an exhaust gas analyzer (manufactured by Horiba, Ltd.) consisting of a FID-type total hydrocarbon meter, an infrared CO / CO 2 meter, a chemiluminescent NO x meter, and a magnetic oxygen meter. Oxide removal activity of CH 4 was evaluated from the concentration difference of the reaction tube before and after the CH 4. The oxidation removal activity [= methane removal rate (%)] was determined by the following equation. These points are the same for the performance test of Example 2. FIG. 2 shows the results of this performance test.

Figure 0004494068
Figure 0004494068

図2のとおり、まず、比較例であるPt(3wt%)-Pd(3wt%)/ZrO2触媒の場合、メタン除去率は初期段階で43%であり、以降徐々に低下し、50時間経過時で22%、100時間経過時で14%と低下し、145時間経過時においては12%にまで低下している。次に、同じく比較例であるPd(6wt%)/ZrO2触媒の場合、メタン除去率は初期段階では71%と高いが、以降急激に低下し、50時間経過時で20%、145時間経過時においては9%に低下している。 As shown in FIG. 2, first, in the case of a Pt (3 wt%)-Pd (3 wt%) / ZrO 2 catalyst as a comparative example, the methane removal rate is 43% at the initial stage, and then gradually decreases and 50 hours elapse. 22% at the time, 14% at the time of 100 hours, and 12% at the time of 145 hours. Next, in the case of the Pd (6 wt%) / ZrO 2 catalyst, which is also a comparative example, the methane removal rate is as high as 71% at the initial stage, but then rapidly decreases, and after 20 hours, 20% and 145 hours have elapsed. At times, it has dropped to 9%.

これに対して、実施例であるPt(6wt%)/ZrO2触媒の場合、メタン除去率は初期段階で52%程度であり、24時間経過時で40%、以降徐々に低下はするが、20%以上の除去率を保持し、145時間経過時においても22%のメタン除去率を維持している。このように、3種のメタン酸化触媒のうち、Pt/ZrO2触媒だけが、SO2を1ppm含む試験ガスについて長期間にわたり性能劣化が少なく、良好なメタン除去率を維持している。図2は温度400℃の場合であるが、それより高い反応温度、例えば500℃の場合や450℃の場合のメタン除去率は相対的に高く、またそれより低い反応温度、例えば375℃の場合や350℃の場合にも、400℃の場合と同じく良好なメタン除去率、耐久性を示した。 On the other hand, in the case of the Pt (6 wt%) / ZrO 2 catalyst as an example, the methane removal rate is about 52% at the initial stage, 40% after 24 hours, and gradually decreases thereafter. The removal rate of 20% or more is maintained, and the methane removal rate of 22% is maintained even after 145 hours. Thus, among the three kinds of methane oxidation catalysts, only the Pt / ZrO 2 catalyst has little performance deterioration over a long period of time for the test gas containing 1 ppm of SO 2 and maintains a good methane removal rate. FIG. 2 shows the case where the temperature is 400 ° C., but the methane removal rate is relatively high when the reaction temperature is higher, for example, 500 ° C. or 450 ° C., and the reaction temperature is lower than that, for example, 375 ° C. Also at 350 ° C., the same methane removal rate and durability were exhibited as in the case of 400 ° C.

《実施例2》
〈実施例ペレット触媒の調製〉
Ptの担持時におけるPt化合物水溶液について、アンモニア水により、そのpH値を12に変えた点以外は、実施例1の〈実施例ペレット触媒の調製〉と同様にしてPt/ZrO2ペレット触媒を調製した。
Example 2
<Preparation of Example Pellet Catalyst>
A Pt / ZrO 2 pellet catalyst was prepared in the same manner as in <Preparation of Example Pellet Catalyst> in Example 1 except that the pH value of the Pt compound aqueous solution when Pt was supported was changed to 12 with ammonia water. did.

〈比較例ペレット触媒の調製〉
また、PtとPdの担持時、Pdの担持時における水溶液について、アンモニア水により、そのpH値を12に変えた点以外は、実施例1の〈比較例ペレット触媒の調製〉と同様にして、酸化ジルコニウム担体にPtとPdを担持したペレット触媒(Pt-Pd/ZrO2ペレット触媒)、酸化ジルコニウム担体にPdを担持したペレット触媒(Pd/ZrO2ペレット触媒)を調製した。
<Preparation of Comparative Example Pellet Catalyst>
Moreover, except that the pH value of the aqueous solution at the time of supporting Pt and Pd was changed to 12 with ammonia water, the same as in <Preparation of Comparative Example Pellet Catalyst> in Example 1, A pellet catalyst (Pt—Pd / ZrO 2 pellet catalyst) supporting Pt and Pd on a zirconium oxide support and a pellet catalyst (Pd / ZrO 2 pellet catalyst) supporting Pd on a zirconium oxide support were prepared.

〈性能試験〉
実施例ペレット触媒及び比較例ペレット触媒について性能試験を実施した。試験条件は実施例1の試験条件と同じである。図3は本性能試験の結果である。図3のとおり、メタン除去率は、pH値を12に上げることにより向上させ得ることを示してる。
<performance test>
A performance test was conducted on the example pellet catalyst and the comparative example pellet catalyst. The test conditions are the same as the test conditions of Example 1. FIG. 3 shows the results of this performance test. As shown in FIG. 3, it is shown that the methane removal rate can be improved by raising the pH value to 12.

まず、比較例であるPt(3wt%)-Pd(3wt%)/ZrO2触媒の場合、メタン除去率は初期段階で49%であり、以降徐々に低下し、50時間経過時で25%、100時間経過時で17%と低下し、145時間経過時においては16%にまで低下している。次に、同じく比較例であるPd(6wt%)/ZrO2触媒の場合、メタン除去率は初期段階では71%と高いが、以降急激に低下し、50時間経過時で20%、145時間経過時においては9%に低下している。 First, in the case of the Pt (3 wt%)-Pd (3 wt%) / ZrO 2 catalyst which is a comparative example, the methane removal rate is 49% in the initial stage, and then gradually decreases, and after the lapse of 50 hours, 25%, It decreases to 17% when 100 hours elapse and decreases to 16% when 145 hours elapses. Next, in the case of the Pd (6 wt%) / ZrO 2 catalyst which is also a comparative example, the methane removal rate is as high as 71% in the initial stage, but then rapidly decreases, and after 20 hours, 20% and 145 hours have passed. At times, it has dropped to 9%.

これに対して、実施例であるPt(6wt%)/ZrO2触媒の場合、メタン除去率は初期段階で66%程度であり、20時間経過時で60%、以降徐々に低下はするが、50時間経過時で50%、100時間経過時で40%の除去率保持し、145時間経過時においても37%のメタン除去率を維持している。このように、3種のメタン酸化触媒のうち、Pt/ZrO2触媒だけが、SO2を1ppm含む試験ガスについて長期間にわたり性能劣化が少なく、良好なメタン除去率を維持している。図3は温度400℃の場合であるが、それより高い反応温度、例えば500℃の場合や450℃の場合のメタン除去率は相対的に高く、またそれより低い反応温度、例えば375℃の場合や350℃の場合にも、400℃の場合と同じく良好なメタン除去率、耐久性を示した。 In contrast, in the case of the Pt (6 wt%) / ZrO 2 catalyst as an example, the methane removal rate is about 66% at the initial stage, 60% after 20 hours, and gradually decreases thereafter. The removal rate of 50% is maintained after 50 hours and 40% after 100 hours, and the methane removal rate of 37% is maintained even after 145 hours. Thus, among the three kinds of methane oxidation catalysts, only the Pt / ZrO 2 catalyst has little performance deterioration over a long period of time for the test gas containing 1 ppm of SO 2 and maintains a good methane removal rate. FIG. 3 shows the case where the temperature is 400 ° C., but the methane removal rate is relatively high when the reaction temperature is higher, for example, 500 ° C. or 450 ° C., and the reaction temperature is lower than that, for example, 375 ° C. Also at 350 ° C., the same methane removal rate and durability were exhibited as in the case of 400 ° C.

本発明の酸化触媒を使用する装置態様例を示す図The figure which shows the example of an apparatus aspect which uses the oxidation catalyst of this invention 実施例1の結果を示す図The figure which shows the result of Example 1 実施例2の結果を示す図The figure which shows the result of Example 2

符号の説明Explanation of symbols

A 被処理燃焼排ガス導入管
B 酸化除去用触媒層(反応管)
C 処理済み排ガスの導出管
A Treated flue gas introduction pipe B Oxidation removal catalyst layer (reaction pipe)
C Outlet pipe for treated exhaust gas

Claims (13)

硫黄酸化物を含む燃焼排ガス中のメタンを低温域において酸化除去するための触媒であって、該酸化除去用触媒が白金化合物を多孔質の酸化ジルコニウムに対してpH=12以上の白金化合物の水溶液による含浸法または平衡吸着法により担持させた後、焼成することで得られた多孔質の酸化ジルコニウムに白金を担持させてなる触媒であることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒。 A catalyst for oxidizing and removing methane in combustion exhaust gas containing sulfur oxides in a low temperature range, wherein the catalyst for oxidizing and removing the platinum compound has a pH of 12 or more with respect to porous zirconium oxide. Methane in combustion exhaust gas containing sulfur oxide, characterized in that it is a catalyst in which platinum is supported on porous zirconium oxide obtained by supporting by impregnation method or equilibrium adsorption method and then calcining Catalyst for removing low temperature oxidation. 請求項1に記載の硫黄酸化物を含む燃焼排ガス中のメタンの酸化除去用触媒において、前記低温域が350〜450℃の範囲の低温域であることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒。   The catalyst for oxidizing and removing methane in combustion exhaust gas containing sulfur oxide according to claim 1, wherein the low temperature range is a low temperature range of 350 to 450 ° C. A catalyst for low temperature oxidation removal of methane. 請求項1または2に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒において、前記酸化除去用触媒の形態が粒状、顆粒状、ペレット状またはタブレット状であることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒。   The catalyst for low-temperature oxidation removal of methane in combustion exhaust gas containing sulfur oxide according to claim 1 or 2, wherein the oxidation removal catalyst is in the form of particles, granules, pellets or tablets. For low-temperature oxidation removal of methane in combustion exhaust gas containing sulfur oxides. 請求項1〜3のいずれか1項に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒において、前記酸化除去用触媒の形態がハニカム状であることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒。   The low-temperature oxidation removal catalyst for methane in combustion exhaust gas containing the sulfur oxide according to any one of claims 1 to 3, wherein the oxidation removal catalyst has a honeycomb shape. Catalyst for low temperature oxidation removal of methane in combustion exhaust gas containing waste. 請求項4に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒において、前記ハニカム状の基材がセラミックス製またはメタル製であることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒。   5. The catalyst for low-temperature oxidation removal of methane in combustion exhaust gas containing sulfur oxide according to claim 4, wherein the honeycomb-shaped substrate is made of ceramics or metal. A catalyst for low temperature oxidation removal of methane. 請求項1〜5のいずれか1項に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒において、前記燃焼排ガスが希薄燃焼式エンジンからの燃焼排ガスであることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒。   The catalyst for low-temperature oxidation removal of methane in combustion exhaust gas containing sulfur oxide according to any one of claims 1 to 5, wherein the combustion exhaust gas is combustion exhaust gas from a lean combustion engine. Catalyst for low temperature oxidation removal of methane in flue gas containing sulfur oxides. 硫黄酸化物を含む燃焼排ガス中のメタンを低温域で酸化除去する方法であって、該燃焼排ガスを、白金化合物を多孔質の酸化ジルコニウムに対してpH=12以上の白金化合物の水溶液による含浸法または平衡吸着法により担持させた後、焼成することで得られた多孔質の酸化ジルコニウムに白金を担持させてなる酸化除去用触媒に低温域で通すことによりメタンを酸化除去することを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法。 A method for oxidizing and removing methane in a combustion exhaust gas containing sulfur oxide at a low temperature, wherein the combustion exhaust gas is impregnated with an aqueous solution of a platinum compound having a pH of 12 or more with respect to porous zirconium oxide. Alternatively, it is characterized in that methane is oxidized and removed by passing it through an oxidation removal catalyst in which platinum is supported on porous zirconium oxide obtained by calcination after being supported by an equilibrium adsorption method. A low-temperature oxidation removal method for methane in combustion exhaust gas containing sulfur oxides. 請求項7に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法において、前記低温域が350〜450℃の範囲の低温域であることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法。   8. The method for low-temperature oxidation removal of methane in flue gas containing sulfur oxide according to claim 7, wherein the low-temperature region is a low-temperature region in the range of 350 to 450 [deg.] C. Of low-temperature oxidation removal of methane. 請求項7または8に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法において、前記多孔質の酸化ジルコニウムに白金を担持させてなる酸化除去用触媒の形態が粒状、顆粒状、ペレット状またはタブレット状であることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法。   The method for oxidizing and removing methane in combustion exhaust gas containing sulfur oxides according to claim 7 or 8 in a low temperature oxidation removal method, wherein the oxidation removal catalyst formed by supporting platinum on porous zirconium oxide is granular, granular, A low-temperature oxidative removal method for methane in combustion exhaust gas containing sulfur oxide, which is in the form of pellets or tablets. 請求項7または8に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法において、前記酸化除去用触媒の形態がハニカム状であることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法。   9. The method for low temperature oxidation removal of methane in combustion exhaust gas containing sulfur oxide according to claim 7 or 8, wherein the oxidation removal catalyst is in the form of a honeycomb, in the combustion exhaust gas containing sulfur oxide, Of low temperature oxidation removal of methane. 請求項10に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法において、前記ハニカム状の基材がセラミックス製またはメタル製であることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法。   The method for low-temperature oxidation removal of methane in combustion exhaust gas containing sulfur oxide according to claim 10, wherein the honeycomb-shaped base material is made of ceramic or metal. Of low temperature oxidation removal of methane. 請求項7〜11のいずれか1項に記載の硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法において、前記燃焼排ガスが希薄燃焼式エンジンからの燃焼排ガスであることを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去方法。   12. The method for removing methane from combustion exhaust gas containing sulfur oxide according to claim 7, wherein the combustion exhaust gas is a combustion exhaust gas from a lean combustion engine. Low temperature oxidation removal method of methane in combustion exhaust gas containing oxides. 多孔質の酸化ジルコニウムに白金を担持してなる硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒の製造方法であって、白金化合物を多孔質の酸化ジルコニウムに対してpH=12以上の白金化合物の水溶液による含浸法または平衡吸着法により担持させた後、焼成することを特徴とする硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒の製造方法。 A method for producing a catalyst for low-temperature oxidation removal of methane in combustion exhaust gas containing sulfur oxide in which platinum is supported on porous zirconium oxide, wherein the platinum compound has a pH of 12 or more with respect to porous zirconium oxide. A method for producing a catalyst for low-temperature oxidation removal of methane in combustion exhaust gas containing sulfur oxide, characterized in that it is supported by an impregnation method using an aqueous solution of a platinum compound or an equilibrium adsorption method and then calcined.
JP2004108151A 2004-03-31 2004-03-31 Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method Expired - Lifetime JP4494068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004108151A JP4494068B2 (en) 2004-03-31 2004-03-31 Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004108151A JP4494068B2 (en) 2004-03-31 2004-03-31 Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JP2005288349A JP2005288349A (en) 2005-10-20
JP4494068B2 true JP4494068B2 (en) 2010-06-30

Family

ID=35321904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004108151A Expired - Lifetime JP4494068B2 (en) 2004-03-31 2004-03-31 Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP4494068B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITFI20120269A1 (en) * 2012-12-05 2014-06-06 Enel Ingegneria E Ricerca S P A PROCESS FOR METAL CATALYTIC OXIDATION IN THE PRESENCE OF SULFURED COMPOUNDS, AND RELATED CATALYST

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941706A (en) * 1982-08-31 1984-03-08 Nippon Shokubai Kagaku Kogyo Co Ltd Combustion catalyst system for methane fuel
JPS6051543A (en) * 1983-08-31 1985-03-23 Mitsubishi Heavy Ind Ltd Oxidizing catalyst
JPH05220395A (en) * 1992-02-14 1993-08-31 Daihatsu Motor Co Ltd Production of ternary catalyst excellent in low-temperature activity
JPH0724260A (en) * 1993-07-15 1995-01-27 I C T:Kk Catalyst for purification of exhaust gas from diesel engine
JPH11319559A (en) * 1998-03-09 1999-11-24 Osaka Gas Co Ltd Catalyst and method for purifying exhaust gas containing methane
JP2002331226A (en) * 2001-05-09 2002-11-19 Toyota Central Res & Dev Lab Inc Method and apparatus for cleaning exhaust gas
JP2003311153A (en) * 2002-04-19 2003-11-05 Osaka Gas Co Ltd Catalyst for oxidation of hydrocarbon in exhaust gas and method for oxidizing and removing hydrocarbon in exhaust gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941706A (en) * 1982-08-31 1984-03-08 Nippon Shokubai Kagaku Kogyo Co Ltd Combustion catalyst system for methane fuel
JPS6051543A (en) * 1983-08-31 1985-03-23 Mitsubishi Heavy Ind Ltd Oxidizing catalyst
JPH05220395A (en) * 1992-02-14 1993-08-31 Daihatsu Motor Co Ltd Production of ternary catalyst excellent in low-temperature activity
JPH0724260A (en) * 1993-07-15 1995-01-27 I C T:Kk Catalyst for purification of exhaust gas from diesel engine
JPH11319559A (en) * 1998-03-09 1999-11-24 Osaka Gas Co Ltd Catalyst and method for purifying exhaust gas containing methane
JP2002331226A (en) * 2001-05-09 2002-11-19 Toyota Central Res & Dev Lab Inc Method and apparatus for cleaning exhaust gas
JP2003311153A (en) * 2002-04-19 2003-11-05 Osaka Gas Co Ltd Catalyst for oxidation of hydrocarbon in exhaust gas and method for oxidizing and removing hydrocarbon in exhaust gas

Also Published As

Publication number Publication date
JP2005288349A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP4429950B2 (en) Catalyst for removing oxidation of methane from combustion exhaust gas and exhaust gas purification method
JP2003245547A (en) Catalyst for exhaust gas treatment and method for exhaust gas treatment
JP2005066559A (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2007503977A (en) Diesel particulate filter carrying a catalyst with improved thermal stability
JP2009165904A (en) Exhaust gas purifier
JP4917003B2 (en) Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method
JP2006346605A (en) Exhaust gas cleaning filter and exhaust gas cleaning device for internal engine
JP4283037B2 (en) Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method
JP2009208039A (en) Catalyst for removing particulate matter and method for removing particulate matter by using the same
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4494068B2 (en) Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP4522512B2 (en) Low concentration hydrocarbon oxidation catalyst in exhaust gas and method for producing the same
JPH10309462A (en) Nmhc oxidation catalyst in combustion waste gas and removing method thereof
JP2006043637A (en) Catalyst for cleaning exhaust gas
JPH10174886A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method
JPH11128688A (en) Purification of waste gas
JP2000107602A (en) Oxidation catalyst for unburned hydrocarbon in waste gas and its preparation
JP4192791B2 (en) Exhaust gas purification catalyst
JPH05138026A (en) Catalyst for purifying exhaust gas of diesel engine
JP2000254500A (en) Catalyst for oxidation of unburned hydrocarbon in waste gas
JP2003275596A (en) Catalyst for treating waste gas and waste gas treatment method
JP2001340758A (en) Catalyst for oxidizing unburned hydrocarbon contained in exhaust gas and method of producing the same
JPH11101527A (en) Ghp system with denitrating and deodorizing catalyst
JPH09299805A (en) Catalyst for nox-containing waste gas purification, manufacture thereof, and purification method of nox-containing waste gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

R150 Certificate of patent or registration of utility model

Ref document number: 4494068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250