JP6167834B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP6167834B2
JP6167834B2 JP2013213068A JP2013213068A JP6167834B2 JP 6167834 B2 JP6167834 B2 JP 6167834B2 JP 2013213068 A JP2013213068 A JP 2013213068A JP 2013213068 A JP2013213068 A JP 2013213068A JP 6167834 B2 JP6167834 B2 JP 6167834B2
Authority
JP
Japan
Prior art keywords
supported
composite oxide
exhaust gas
zrla
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013213068A
Other languages
Japanese (ja)
Other versions
JP2015073961A (en
Inventor
久也 川端
久也 川端
由紀 國府田
由紀 國府田
弘祐 住田
弘祐 住田
益寛 松村
益寛 松村
重津 雅彦
雅彦 重津
赤峰 真明
真明 赤峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2013213068A priority Critical patent/JP6167834B2/en
Publication of JP2015073961A publication Critical patent/JP2015073961A/en
Application granted granted Critical
Publication of JP6167834B2 publication Critical patent/JP6167834B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、エンジンから排出される排気ガスを浄化するための排気ガス浄化用触媒材を含有する触媒層を触媒担体基材上に形成した排気ガス浄化用触媒に関する。   The present invention relates to an exhaust gas purification catalyst in which a catalyst layer containing an exhaust gas purification catalyst material for purifying exhaust gas discharged from an engine is formed on a catalyst carrier substrate.

自動車等の車両においては、HC(炭化水素)、CO(一酸化炭素)、NOx(窒素酸化物)等の大気汚染物質を含んだ排気ガスを浄化するために、エンジンの排気系に排気ガス浄化用触媒が備えられている。そして、かかる排気ガス浄化用触媒を用いて、HC及びCOが酸化されて浄化され、NOxが還元されて浄化される。   In vehicles such as automobiles, exhaust gas purification is performed in the exhaust system of engines in order to purify exhaust gas containing air pollutants such as HC (hydrocarbon), CO (carbon monoxide), and NOx (nitrogen oxide). A catalyst is provided. Then, using the exhaust gas purification catalyst, HC and CO are oxidized and purified, and NOx is reduced and purified.

従来、このような排気ガス浄化用触媒として、例えば高比表面積を有するアルミナや酸素吸蔵放出能を有するCeZr系複合酸化物などの触媒担体表面に、例えばPdやRhなどの触媒金属を高分散状態で担持させた排気ガス浄化用触媒材が用いられ、排気ガスの浄化が行われている。   Conventionally, as such an exhaust gas purification catalyst, for example, a catalyst metal such as Pd or Rh is highly dispersed on the surface of a catalyst carrier such as alumina having a high specific surface area or a CeZr-based composite oxide having oxygen storage / release capability. The exhaust gas purifying catalyst material carried in the above is used to purify the exhaust gas.

例えば特許文献1には、触媒担体基材上にRhを含有する上側触媒層とPdを含有する下側触媒層とを備えた排気ガス浄化用触媒であって、上側触媒層は、CeとZrとNdとアルカリ土類金属Mとを含有するCeZrNdM複合酸化物粒子と、ZrとLaとを含有するZrLa複合酸化物がアルミナ粒子の表面に担持されてなるZrLa−アルミナ粒子とを備え、CeZrNdM複合酸化物粒子とZrLa−アルミナ粒子とにRhを分散して担持した排気ガス浄化用触媒が開示されている。   For example, Patent Document 1 discloses an exhaust gas purification catalyst including an upper catalyst layer containing Rh and a lower catalyst layer containing Pd on a catalyst carrier base material, and the upper catalyst layer includes Ce and Zr. CeZrNdM composite oxide particles containing Nd, alkaline earth metal M, and ZrLa-alumina particles in which ZrLa composite oxide containing Zr and La is supported on the surface of alumina particles. An exhaust gas purifying catalyst in which Rh is dispersed and supported on oxide particles and ZrLa-alumina particles is disclosed.

特開2011−161421号公報JP 2011-161421 A

しかしながら、特許文献1に記載の排気ガス浄化用触媒は、ZrLa複合酸化物を担持したアルミナにRhを担持させるときに、RhがZrLa複合酸化物に担持されると共にアルミナにも担持されることとなる。そして、Rhを担持したアルミナを含む排気ガス浄化用触媒がエンジンの排気系に備えられ、高温の排気ガスに長時間曝されると、Rhの一部がアルミナと固溶してRhが失活することにより排気ガスの浄化性能の低下を引き起こし得る。   However, in the exhaust gas purifying catalyst described in Patent Document 1, when Rh is supported on alumina supporting a ZrLa composite oxide, Rh is supported on the ZrLa composite oxide and also on the alumina. Become. An exhaust gas purifying catalyst containing alumina carrying Rh is provided in the engine exhaust system. When exposed to high temperature exhaust gas for a long time, a part of Rh is dissolved in alumina and Rh is deactivated. By doing so, the exhaust gas purification performance may be deteriorated.

そこで、本発明は、Rhの一部がアルミナと固溶してRhが失活することを抑制し、排気ガス浄化性能を向上させることができる排気ガス浄化用触媒材を含有する排気ガス浄化用触媒を提供することを目的とする。   Therefore, the present invention is for exhaust gas purification containing an exhaust gas purification catalyst material capable of suppressing the inactivation of Rh due to a part of Rh being dissolved in alumina and improving the exhaust gas purification performance. An object is to provide a catalyst.

前記課題を解決するため、本発明は次のように構成したことを特徴とする。   In order to solve the above problems, the present invention is configured as follows.

まず、本願の請求項1に係る発明は、エンジンから排出される排気ガスを浄化するための排気ガス浄化用触媒材を含有する触媒層が触媒担体基材上に形成された排気ガス浄化用触媒であって、前記排気ガス浄化用触媒材は、主成分としてのZrOと、2質量%以上10質量%以下のLaと、2質量%以上20質量%以下のYとを含有するZrLaY複合酸化物にRhが担持されてなるRh担持ZrLaY複合酸化物と、ZrとLaとを含有するZrLa複合酸化物が担持された活性アルミナにRhが担持されてなるRh担持ZrLa−活性アルミナとを含み、前記Rh担持ZrLa−活性アルミナにおけるRh担持量が、前記Rh担持ZrLaY複合酸化物におけるRh担持量よりも大きく設定され、前記触媒担体基材上にRhを含有する前記触媒層の他にPdを含有する触媒層が形成され、前記Rhを含有する触媒層は、前記Pdを含有する触媒層よりも排気ガス通路側に形成され、前記Rhを含有する触媒層にさらに、ZrとCeとNdとを含有するZrCeNd複合酸化物にRhが担持されてなるRh担持ZrCeNd複合酸化物と、Laアルミナとが含まれていることを特徴とする。ここで、当該ZrLa複合酸化物はYを含まないものであり、前記ZrLaY複合酸化物とは異なるものである。 First, the invention according to claim 1 of the present application provides an exhaust gas purification catalyst in which a catalyst layer containing an exhaust gas purification catalyst material for purifying exhaust gas exhausted from an engine is formed on a catalyst carrier substrate. The exhaust gas purifying catalyst material includes ZrO 2 as a main component, 2% by mass to 10% by mass La 2 O 3 , and 2% by mass to 20% by mass Y 2 O 3 . Rh-supported ZrLaY composite oxide in which Rh is supported on ZrLaY composite oxide containing ZrLaY, and Rh supported ZrLa- in which Rh is supported on activated alumina in which ZrLa composite oxide containing Zr and La is supported and a activated alumina, Rh support amount in the supported Rh ZrLa- activated alumina, the Rh supported ZrLaY is set larger than the amount of supported Rh in the complex oxide, the catalyst support substrate on In addition to the catalyst layer containing Rh, a catalyst layer containing Pd is formed, and the catalyst layer containing Rh is formed closer to the exhaust gas passage than the catalyst layer containing Pd. The catalyst layer further contains Rh-supported ZrCeNd composite oxide in which Rh is supported on a ZrCeNd composite oxide containing Zr, Ce, and Nd, and La alumina . Here, the ZrLa composite oxide does not contain Y, and is different from the ZrLaY composite oxide.

また、本願の請求項2に係る発明は、請求項1に係る発明において、前記Pdを含有する触媒層に、ZrとCeとNdとを含有するZrCeNd複合酸化物にPdが担持されてなるPd担持ZrCeNd複合酸化物と、LaアルミナにPdが担持されてなるPd担持Laアルミナと、ZrとCeとNdとを含有するZrCeNd複合酸化物とが含まれていることを特徴とする。 The invention according to claim 2 of the present application is the invention according to claim 1, in which Pd is supported on a ZrCeNd composite oxide containing Zr, Ce and Nd on the catalyst layer containing Pd. It includes a supported ZrCeNd composite oxide, a Pd-supported La alumina in which Pd is supported on La alumina, and a ZrCeNd composite oxide containing Zr, Ce, and Nd .

更に、本願の請求項3に係る発明は、請求項1又は請求項2に係る発明において、前記Rh担持ZrCeNd複合酸化物におけるRh担持量が、前記Rh担持ZrLa−活性アルミナにおけるRh担持量よりも大きく設定されていることを特徴とする。 Further, in the invention according to claim 3 of the present application, in the invention according to claim 1 or 2, the Rh supported amount in the Rh supported ZrCe Nd composite oxide is greater than the Rh supported amount in the Rh supported ZrLa-activated alumina. Is also set large.

以上の構成により、本願各請求項の発明によれば、次の効果が得られる。   With the above configuration, according to the invention of each claim of the present application, the following effects can be obtained.

まず、本願の請求項1に係る発明によれば、主成分としてのZrOと、2質量%以上10質量%以下のLaと、2質量%以上20質量%以下のYとを含有するZrLaY複合酸化物にRhが担持されてなるRh担持ZrLaY複合酸化物と、ZrとLaとを含有するZrLa複合酸化物が担持された活性アルミナにRhが担持されてなるRh担持ZrLa−活性アルミナとを含む排気ガス浄化用触媒材を採用することで、ZrLa複合酸化物が担持されたアルミナにRhを担持した触媒成分を含む排気ガス浄化用触媒材において、前記触媒成分の少なくとも一部をZrLaY複合酸化物にRhを担持した触媒成分に代えた場合に、Rhの一部がアルミナと固溶してRhが失活することを抑制することができると共に、ZrLa複合酸化物よりも高温時における比表面積の低下が小さいZrLaY複合酸化物によってRhが失活することを抑制することができ、排気ガスの浄化性能を向上させることができる。即ち、当該ZrLaY複合酸化物はZrLa複合酸化物よりも高温時における比表面積の低下が小さい、換言すれば、ZrLaY複合酸化物が凝集し難いことにより、当該ZrLaY複合酸化物表面でのRhの分散度が維持し易くなり、熱エージングを経た後の浄化性能がZrLa複合酸化物を用いた場合よりも向上する。 First, according to the invention according to claim 1 of the present application, ZrO 2 as a main component, 2% by mass or more and 10% by mass or less La 2 O 3 , and 2% by mass or more and 20% by mass or less Y 2 O 3. Rh-supported ZrLaY composite oxide in which Rh is supported on a ZrLaY composite oxide containing ZrLaY, and Rh-supported ZrLa in which Rh is supported on activated alumina in which a ZrLa composite oxide containing Zr and La is supported -By adopting an exhaust gas purifying catalyst material containing activated alumina, in an exhaust gas purifying catalyst material containing a catalyst component in which Rh is supported on alumina on which a ZrLa composite oxide is supported, at least one of the catalyst components When the part is replaced with a catalyst component in which Rh is supported on a ZrLaY composite oxide, it is possible to prevent Rh from being deactivated due to a part of Rh being dissolved in alumina, and Zr Inactivation of Rh can be suppressed by the ZrLaY composite oxide, which has a smaller decrease in specific surface area at a higher temperature than that of the La composite oxide, and the exhaust gas purification performance can be improved. That is, the ZrLaY composite oxide has a smaller decrease in specific surface area at a higher temperature than the ZrLa composite oxide. In other words, the ZrLaY composite oxide is less likely to aggregate, so that Rh is dispersed on the ZrLaY composite oxide surface. The degree of purification becomes easier, and the purification performance after the thermal aging is improved as compared with the case of using the ZrLa composite oxide.

また、排気ガス浄化用触媒材において、Rh担持ZrLa−活性アルミナのRh担持量を、Rh担持ZrLaY複合酸化物のRh担持量よりも大きくすることで、Rh担持ZrLaY複合酸化物のRh担持量と同一若しくはそれよりも小さくする場合に比して、触媒の低温活性を向上させることができる。Rh担持ZrLa−活性アルミナは、Rh担持ZrLaY複合酸化物に比して、炭化水素のスチームリフォーミング反応を促進させることができるので、生成した一酸化炭素及び水素によってNOxの還元浄化を促進させることができ、前記効果を有効に奏することができる。
また更に、触媒担体基材上にRhを含有する触媒層の他にPdを含有する触媒層が形成され、Rhを含有する触媒層は、Pdを含有する触媒層よりも排気ガス通路側に形成されていることにより、Rhを含有する触媒層とPdを含有する触媒層を設けることで、前記効果を有効に奏することができる。
また、排気ガス浄化用触媒材に、ZrとCeとNdとを含有するZrCeNd複合酸化物にRhが担持されてなるRh担持ZrCeNd複合酸化物が含まれていることにより、Rhを介して酸素をZrCeNd複合酸化物内部に取り込み、且つ、取り込んだ酸素を酸素濃度の低い部分に送り出すことができるので、HC及びCOの酸化を部分的に促進させることができ、前記効果をより有効に奏することができる。
Further, in the exhaust gas purification catalyst material, the Rh supported amount of the Rh supported ZrLaY composite oxide is made larger than the Rh supported amount of the Rh supported ZrLaY composite oxide, so that the Rh supported amount of the Rh supported ZrLaY composite oxide The low-temperature activity of the catalyst can be improved as compared with the case where it is the same or smaller. Rh-supported ZrLa-activated alumina can promote the steam reforming reaction of hydrocarbons compared to Rh-supported ZrLaY composite oxide, and therefore promotes reduction purification of NOx by the generated carbon monoxide and hydrogen. And the above effect can be effectively achieved.
Furthermore, in addition to the catalyst layer containing Rh, a catalyst layer containing Pd is formed on the catalyst carrier substrate, and the catalyst layer containing Rh is formed on the exhaust gas passage side of the catalyst layer containing Pd. Thus, by providing the catalyst layer containing Rh and the catalyst layer containing Pd, the above-described effect can be effectively achieved.
Further, since the exhaust gas purification catalyst material includes the Rh-supported ZrCeNd composite oxide in which Rh is supported on the ZrCeNd composite oxide containing Zr, Ce, and Nd, oxygen is supplied via Rh. Since it can be taken into the ZrCeNd composite oxide and the taken-in oxygen can be sent out to a portion having a low oxygen concentration, the oxidation of HC and CO can be partially promoted, and the above-described effect can be achieved more effectively. it can.

また、本願の請求項2に係る発明によれば、Pdを含有する触媒層に、ZrとCeとNdとを含有するZrCeNd複合酸化物にPdが担持されてなるPd担持ZrCeNd複合酸化物と、LaアルミナにPdが担持されてなるPd担持Laアルミナと、ZrとCeとNdとを含有するZrCeNd複合酸化物とが含まれることにより、前記効果を有効に奏することができる。 Further, according to the invention of claim 2 of the present application, a Pd-supported ZrCeNd composite oxide in which Pd is supported on a ZrCeNd composite oxide containing Zr, Ce, and Nd on a catalyst layer containing Pd; By including Pd-supported La alumina in which Pd is supported on La alumina and a ZrCeNd composite oxide containing Zr, Ce, and Nd, the above-described effects can be effectively achieved.

更に、本願の請求項3に係る発明によれば、Rh担持ZrCeNd複合酸化物のRh担持量を、Rh担持ZrLa−活性アルミナのRh担持量よりも大きくすることにより、前記効果を有効に得ることができる。 Furthermore, according to the invention of claim 3 of the present application, the above-mentioned effect can be effectively obtained by making the Rh supported amount of the Rh supported ZrCe Nd composite oxide larger than the Rh supported amount of the Rh supported ZrLa-activated alumina. be able to.

実施例及び比較例として用いたRh担持ZrLaY複合酸化物、Rh担持ZrLa複合酸化物及びRh担持ZrY複合酸化物の酸化物含有率を示す図である。It is a figure which shows the oxide content rate of Rh carrying | support ZrLaY complex oxide used as an Example and a comparative example, Rh carrying | support ZrLa complex oxide, and Rh carrying | support ZrY complex oxide. Rh担持ZrLaY複合酸化物におけるY含有率とライトオフ温度の測定結果との関係を示すグラフである。It is a graph showing the relationship between the measurement results of Y 2 O 3 content and the light-off temperature of Rh supported ZrLaY composite oxide. Rh担持ZrLaY複合酸化物におけるLa含有率とライトオフ温度の測定結果との関係を示すグラフである。Is a graph showing the relationship between the measurement result of the content of La 2 O 3 ratio and the light-off temperature in Rh supported ZrLaY composite oxide. 実施例及び比較例として用いたRh担持ZrLaY複合酸化物、Rh担持ZrLa複合酸化物及びRh担持ZrY複合酸化物のLa含有率とY含有率とを示す図である。Rh loaded ZrLaY composite oxide used as Examples and Comparative Examples, it illustrates the content of La 2 O 3 ratio of Rh carried ZrLa mixed oxide and Rh supported ZrY mixed oxide and Y 2 O 3 content. 本発明の実施形態に係る排気ガス浄化用触媒のライトオフ温度の測定結果を示すグラフである。It is a graph which shows the measurement result of the light-off temperature of the exhaust gas purification catalyst which concerns on embodiment of this invention. Rh担持ZrLaY複合酸化物、Rh担持ZrLa−活性アルミナ、Rh担持ZrY複合酸化物及びRh担持Zr酸化物のスチームリフォーミング反応におけるプロピレン変換率を示すグラフである。It is a graph which shows the propylene conversion rate in the steam reforming reaction of Rh carrying | support ZrLaY complex oxide, Rh carrying | support ZrLa-activated alumina, Rh carrying | support ZrY complex oxide, and Rh carrying | support Zr oxide. Rh担持ZrLaY複合酸化物、Rh担持ZrLa−活性アルミナ、Rh担持ZrLa複合酸化物及びRh担持Zr酸化物におけるRhの状態を示すXPS分析結果を示すグラフである。It is a graph which shows the XPS analysis result which shows the state of Rh in Rh carrying | support ZrLaY complex oxide, Rh carrying | support ZrLa-activated alumina, Rh carrying | support ZrLa complex oxide, and Rh carrying | support Zr oxide. 実施例として用いた排気ガス浄化用触媒の各触媒成分のRh担持量とライトオフ温度の測定結果とを示す図である。It is a figure which shows the measurement result of Rh carrying amount and light-off temperature of each catalyst component of the exhaust gas purification catalyst used as an Example.

以下、本発明の実施形態について添付図面を参照しながら説明する。
本実施形態では、排気ガスを浄化するための排気ガス浄化用触媒として、主成分としてのZrOと、Laと、Yとを含有するZrLaY複合酸化物にRhを担持した排気ガス浄化用触媒材(図面又は表では、Rh/ZrLaYOと表すことがある)を触媒担体基材上に形成した触媒層に含ませたものを用いた。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
In this embodiment, Rh is supported on a ZrLaY composite oxide containing ZrO 2 , La 2 O 3 , and Y 2 O 3 as main components as an exhaust gas purification catalyst for purifying exhaust gas. An exhaust gas purifying catalyst material (which may be represented as Rh / ZrLaYO in the drawings or tables) contained in a catalyst layer formed on a catalyst carrier substrate was used.

排気ガス浄化用触媒材として、主成分としてのZrOと、Laと、Yとを含有するZrLaY複合酸化物にRhを担持したRh担持ZrLaY複合酸化物においてLa含有率とY含有率とをそれぞれ変化させたもの、具体的には14種類のRh担持ZrLaY複合酸化物を実施例として用い、排気ガス浄化性能を評価した。 As the exhaust gas purification catalyst member, and ZrO 2 as the main component, La 2 O 3 and, Y 2 O 3 and La 2 O 3 in the Rh-loaded ZrLaY composite oxide carrying Rh on ZrLaY composite oxide containing Exhaust gas purification performance was evaluated using examples in which the content rate and the Y 2 O 3 content rate were changed, specifically, 14 types of Rh-supported ZrLaY composite oxides.

また、主成分としてのZrOと、Laとを含有するZrLa複合酸化物にRhを担持したRh担持ZrLa複合酸化物(図面又は表では、Rh/ZrLaOと表すことがある)においてLa含有率を変化させたもの、具体的には3種類のRh担持ZrLa複合酸化物と、主成分としてのZrOと、Yとを含有するZrY複合酸化物にRhを担持したRh担持ZrY複合酸化物(図面又は表では、Rh/ZrYOと表すことがある)においてY含有率を変化させたもの、具体的には3種類のRh担持ZrY複合酸化物とを比較例として用い、これらについても排気ガス浄化性能を評価した。 In addition, in a Rh-supported ZrLa composite oxide in which Rh is supported on a ZrLa composite oxide containing ZrO 2 as a main component and La 2 O 3 (in the drawing or table, it may be expressed as Rh / ZrLaO). those obtained by changing the 2 O 3 content, supported in particular the three Rh loaded ZrLa composite oxide, and ZrO 2 as a main component, a Rh to ZrY composite oxide containing Y 2 O 3 Rh-supported ZrY composite oxide (which may be represented as Rh / ZrYO in the drawings or tables) with the Y 2 O 3 content changed, specifically, three types of Rh-supported ZrY composite oxide Used as comparative examples, the exhaust gas purification performance was also evaluated for these.

<触媒材の調製>
実施例において、排気ガス浄化用触媒材としてのRh担持ZrLaY複合酸化物を調製する際には先ず、Zr、La及びYの各硝酸塩を混合し、水を加えて室温で約1時間撹拌する。次に、この硝酸塩混合溶液とアルカリ性溶液(好ましくは28%アンモニア水)とを室温から80℃の温度で混合して中和処理をする。そして、中和処理により白濁した溶液を一昼夜放置した上で、遠心分離器により沈殿物を分離させ、上澄み液を除去して得られたケーキを十分に水洗し、水洗後のケーキを約150℃の温度で乾燥させ、その後に500℃の温度に5時間保持して加熱焼成し、粉砕してZrLaY複合酸化物の粉末を得た。
<Preparation of catalyst material>
In Examples, when preparing an Rh-supported ZrLaY composite oxide as an exhaust gas purification catalyst material, first, Zr, La and Y nitrates are mixed, water is added, and the mixture is stirred at room temperature for about 1 hour. Next, this nitrate mixed solution and an alkaline solution (preferably 28% ammonia water) are mixed at a temperature of room temperature to 80 ° C. for neutralization treatment. Then, after leaving the solution clouded by the neutralization treatment for a whole day and night, the precipitate is separated by a centrifuge, and the cake obtained by removing the supernatant is sufficiently washed with water. And then heated and fired at 500 ° C. for 5 hours, and pulverized to obtain a ZrLaY composite oxide powder.

次に、得られたZrLaY複合酸化物の粉末に対して、硝酸ロジウム溶液を加えて混合し、混合後に蒸発乾固させる。蒸発乾固後に、得られた乾固物を粉砕し、大気中で加熱焼成することにより、ZrLaY複合酸化物にRhを担持したRh担持ZrLaY複合酸化物を得た。   Next, a rhodium nitrate solution is added to and mixed with the obtained ZrLaY composite oxide powder. After mixing, the powder is evaporated to dryness. After evaporation to dryness, the obtained dried product was pulverized and heated and fired in the air to obtain an Rh-supported ZrLaY composite oxide in which Rh was supported on the ZrLaY composite oxide.

比較例では、排気ガス浄化用触媒材としてのRh担持ZrLa複合酸化物の調製として、実施例に係るRh担持ZrLaY複合酸化物の調製におけるZr、La及びYの各硝酸塩を混合することに代えてZr及びLaの各硝酸塩を混合すること以外は同様にして行うことができ、かかる調製によってZrLa複合酸化物にRhを担持したRh担持ZrLa複合酸化物を得た。   In the comparative example, instead of mixing each nitrate of Zr, La and Y in the preparation of the Rh-supported ZrLaY composite oxide according to the example, as the preparation of the Rh-supported ZrLa composite oxide as the exhaust gas purification catalyst material Rh-supported ZrLa composite oxide in which Rh was supported on ZrLa composite oxide was obtained in the same manner except that each nitrate of Zr and La was mixed.

また、排気ガス浄化用触媒材としてのRh担持ZrY複合酸化物の調製として、実施例に係るRh担持ZrLaY複合酸化物の調製におけるZr、La及びYの各硝酸塩を混合することに代えてZr及びYの各硝酸塩を混合すること以外は同様にして行うことができ、かかる調製によってZrY複合酸化物にRhを担持したRh担持ZrY複合酸化物を得た。   Further, as the preparation of the Rh-supported ZrY composite oxide as the exhaust gas purification catalyst material, instead of mixing the nitrates of Zr, La and Y in the preparation of the Rh-supported ZrLaY composite oxide according to the example, Zr and Except for mixing each nitrate of Y, it was carried out in the same manner, and Rh-supported ZrY composite oxide in which Rh was supported on ZrY composite oxide was obtained by such preparation.

<触媒層の形成>
次に、排気ガス浄化性能を評価するために、実施例に係るRh担持ZrLaY複合酸化物、比較例に係るRh担持ZrLa複合酸化物及びRh担持ZrY複合酸化物をそれぞれ触媒担体基材としてのハニカム担体にコーティングし、ハニカム担体基材上に触媒層を形成する。
<Formation of catalyst layer>
Next, in order to evaluate the exhaust gas purifying performance, the Rh-supported ZrLaY composite oxide according to the example, the Rh-supported ZrLa composite oxide and the Rh-supported ZrY composite oxide according to the comparative example are respectively used as catalyst carrier bases. The support is coated and a catalyst layer is formed on the honeycomb support substrate.

実施例では、Rh担持ZrLaY複合酸化物とバインダーとしての硝酸ジルコニルと水とを混合してスラリーを調製し、該スラリーにハニカム担体を浸漬させ、その後に引き上げて余分なスラリーをエアブローにより吹き飛ばし、乾燥させてハニカム担体上にRh担持ZrLaY複合酸化物を含む触媒層を形成する。ハニカム担体に所定量の触媒層が形成されるまでスラリーへの浸漬、エアブロー及び乾燥を繰り返し、所定量の触媒層が形成されると、ハニカム担体を500℃の温度に保持して加熱焼成し、ハニカム担体上にRh担持ZrLaY複合酸化物を含む触媒層を形成した。   In the examples, a slurry is prepared by mixing Rh-supported ZrLaY composite oxide, zirconyl nitrate as a binder, and water, and a honeycomb carrier is immersed in the slurry, and then pulled up to blow off excess slurry by air blowing, followed by drying. Thus, a catalyst layer containing the Rh-supported ZrLaY composite oxide is formed on the honeycomb carrier. Until the predetermined amount of catalyst layer is formed on the honeycomb carrier, immersion in the slurry, air blowing and drying are repeated.When the predetermined amount of catalyst layer is formed, the honeycomb carrier is heated and fired at a temperature of 500 ° C., A catalyst layer containing an Rh-supported ZrLaY composite oxide was formed on the honeycomb carrier.

比較例についても、実施例に係るRh担持ZrLaY複合酸化物を含む触媒層の形成においてRh担持ZrLaY複合酸化物に代えてRh担持ZrLa複合酸化物又はRh担持ZrY複合酸化物を用いること以外は同様にして行うことができ、かかる方法によって、ハニカム担体上にRh担持ZrLa複合酸化物を含む触媒層及びRh担持ZrY複合酸化物を含む触媒層をそれぞれ形成した。なお、実施例及び比較例では、触媒材が異なること以外は同様の条件で行った。   The comparative example is the same except that Rh-supported ZrLaY composite oxide or Rh-supported ZrLaY composite oxide is used in place of the Rh-supported ZrLaY composite oxide in the formation of the catalyst layer containing the Rh-supported ZrLaY composite oxide according to the example. By this method, the catalyst layer containing the Rh-supported ZrLa composite oxide and the catalyst layer containing the Rh-supported ZrY composite oxide were formed on the honeycomb carrier. In Examples and Comparative Examples, the same conditions were used except that the catalyst materials were different.

図1は、実施例及び比較例として用いたRh担持ZrLaY複合酸化物、Rh担持ZrLa複合酸化物及びRh担持ZrY複合酸化物の酸化物含有率を示す図である。図1に示すように、実施例1から実施例6では、ZrLaY複合酸化物においてLa含有率を略一定(6質量%から7質量%)にしてY含有率を変化させ、実施例4及び実施例7から実施例10では、ZrLaY複合酸化物においてY含有率を一定(10質量%)にしてLa含有率を変化させ、実施例1、実施例11及び実施例12では、ZrLaY複合酸化物においてY含有率を一定(2質量%)にしてLa含有率を変化させ、実施例13及び実施例14では、ZrLaY複合酸化物においてY含有率を一定(20質量%)にしてLa含有率を変化させた。 FIG. 1 is a diagram showing the oxide content of Rh-supported ZrLaY composite oxide, Rh-supported ZrLa composite oxide, and Rh-supported ZrY composite oxide used as examples and comparative examples. As shown in FIG. 1, in Example 1 to Example 6, in the ZrLaY composite oxide, the La 2 O 3 content was made substantially constant (6 to 7% by mass), and the Y 2 O 3 content was changed. In Examples 4 and 7 to 10, in the ZrLaY composite oxide, the Y 2 O 3 content was kept constant (10% by mass), and the La 2 O 3 content was changed. In Examples 11 and 12, the La 2 O 3 content was changed by making the Y 2 O 3 content constant (2% by mass) in the ZrLaY composite oxide. In Examples 13 and 14, the ZrLaY composite oxide was changed. In Example 1, the La 2 O 3 content was changed while keeping the Y 2 O 3 content constant (20% by mass).

また、図1に示すように、比較例1、比較例3及び比較例4では、ZrLa複合酸化物においてLa含有率を変化させ、比較例2、比較例5及び比較例6では、ZrY複合酸化物においてY含有率を変化させた。 Moreover, as shown in FIG. 1, in Comparative Example 1, Comparative Example 3 and Comparative Example 4, the La 2 O 3 content was changed in the ZrLa composite oxide, and in Comparative Example 2, Comparative Example 5 and Comparative Example 6, In the ZrY composite oxide, the Y 2 O 3 content was changed.

<排気ガス浄化性能評価>
次に、Rh担持ZrLaY複合酸化物、Rh担持ZrLa複合酸化物及びRh担持ZrY複合酸化物を含む触媒層をそれぞれ形成したハニカム担体を大気雰囲気中で1000℃の温度に24時間保持するエージングを行った後に、直径2.54cm、長さ50mmの円筒状に切り出した。なお、ハニカム担体は、セル密度が3.5mil/600cpsiのものを用いた。
<Exhaust gas purification performance evaluation>
Next, aging is performed in which the honeycomb carrier on which the catalyst layer containing the Rh-supported ZrLaY composite oxide, the Rh-supported ZrLa composite oxide, and the Rh-supported ZrY composite oxide is formed is maintained at a temperature of 1000 ° C. for 24 hours in an air atmosphere. After that, it was cut into a cylindrical shape having a diameter of 2.54 cm and a length of 50 mm. A honeycomb carrier having a cell density of 3.5 mil / 600 cpsi was used.

そして、このハニカム担体を固定床流通式反応評価装置に取り付けて、モデルガスを流し、HC、CO及びNOxの浄化に関するライトオフ温度を測定した。ライトオフ温度は、モデルガスのガス温度を常温から漸次上昇させ、HC、CO及びNOxの浄化率が50%に達したときのガス温度である。   Then, this honeycomb carrier was attached to a fixed bed flow type reaction evaluation apparatus, a model gas was allowed to flow, and a light-off temperature related to purification of HC, CO, and NOx was measured. The light-off temperature is a gas temperature when the gas temperature of the model gas is gradually increased from room temperature and the purification rates of HC, CO, and NOx reach 50%.

モデルガスのガス組成を以下の表1に示す。モデルガスは、理論空燃比A/F=14.7のメインストリームガスを定常的に流しつつ、表1に示した所定量の変動用ガスを周期1Hzで変動させ、A/Fを±0.9の振幅で強制的に振動させた。モデルガスはまた、空間速度SVを60000/時間とし、その昇温速度を30℃/分とした。   The gas composition of the model gas is shown in Table 1 below. As the model gas, a main stream gas having a theoretical air-fuel ratio A / F = 14.7 is steadily flowed, and a predetermined amount of the fluctuation gas shown in Table 1 is fluctuated at a period of 1 Hz, and A / F is ± 0. It was forcibly vibrated with an amplitude of 9. The model gas also had a space velocity SV of 60000 / hour and a temperature increase rate of 30 ° C./minute.

Figure 0006167834
Figure 0006167834

図1にはまた、実施例及び比較例として用いたRh担持ZrLaY複合酸化物、Rh担持ZrLa複合酸化物及びRh担持ZrY複合酸化物のライトオフ温度の測定結果を示している。図2は、Rh担持ZrLaY複合酸化物におけるY含有率とライトオフ温度の測定結果との関係を示すグラフであり、図1に示す実施例1から実施例6及び比較例1のHC、CO及びNOxの浄化に関するライトオフ温度の測定結果を示している。 FIG. 1 also shows the measurement results of the light-off temperatures of the Rh-supported ZrLaY composite oxide, the Rh-supported ZrLa composite oxide, and the Rh-supported ZrY composite oxide used as examples and comparative examples. FIG. 2 is a graph showing the relationship between the Y 2 O 3 content in the Rh-supported ZrLaY composite oxide and the measurement result of the light-off temperature. The HC of Examples 1 to 6 and Comparative Example 1 shown in FIG. The measurement result of the light-off temperature regarding purification | cleaning of CO and NOx is shown.

図1及び図2に示すように、HCの浄化に関するライトオフ温度について、Rh担持ZrLaY複合酸化物においてLa含有率を略一定(6質量%から7質量%)にしてY含有率を変化させた場合、Y含有率が2質量%から15質量%であるRh担持ZrLaY複合酸化物(実施例1から実施例6)はいずれも、La含有率が6質量%であるがY含有率がゼロであるRh担持ZrLa複合酸化物(比較例1)に対して、HCの浄化に関するライトオフ温度が低下している。 As shown in FIGS. 1 and 2, the light-off temperature related to the purification of HC is set so that the La 2 O 3 content in the Rh-supported ZrLaY composite oxide is substantially constant (6% to 7% by mass), and Y 2 O 3. When the content rate is changed, all of the Rh-supported ZrLaY composite oxides (Example 1 to Example 6) whose Y 2 O 3 content is 2% to 15% by mass have La 2 O 3 content of The light-off temperature related to HC purification is lower than the Rh-supported ZrLa composite oxide (Comparative Example 1) which has 6% by mass but zero Y 2 O 3 content.

CO及びNOxの浄化に関するライトオフ温度についてもそれぞれ、Rh担持ZrLaY複合酸化物においてLa含有率を略一定(6質量%から7質量%)にしてY含有率を変化させた場合、Y含有率が2質量%から15質量%であるRh担持ZrLaY複合酸化物(実施例1から実施例6)はいずれも、La含有率が6質量%であるがY含有率がゼロであるRh担持ZrLa複合酸化物(比較例1)に対して、CO及びNOxの浄化に関するライトオフ温度がそれぞれ低下している。 Each regard to light-off temperature for the purification of CO and NOx, were by the content of La 2 O 3 ratio substantially constant (7% from 6 wt%) to change the Y 2 O 3 content in Rh supported ZrLaY composite oxide In each case, the Rh-supported ZrLaY composite oxide (Example 1 to Example 6) having a Y 2 O 3 content of 2% to 15% by mass has a La 2 O 3 content of 6% by mass. Compared to the Rh-supported ZrLa composite oxide (Comparative Example 1) in which the content of Y 2 O 3 is zero, the light-off temperatures related to the purification of CO and NOx are lowered.

図1に示す実施例11、実施例7、実施例13及び比較例3のライトオフ温度の測定結果から分かるように、Rh担持ZrLaY複合酸化物においてLa含有率を2質量%にしてY含有率を変化させた場合においても、Y含有率が2質量%から20質量%であるRh担持ZrLaY複合酸化物(実施例11、実施例7及び実施例13)はいずれも、La含有率が2質量%であるがY含有率がゼロであるRh担持ZrLa複合酸化物(比較例3)に対して、HC、CO及びNOxの浄化に関するライトオフ温度がそれぞれ低下している。 As can be seen from the measurement results of the light-off temperature of Example 11, Example 7, Example 13 and Comparative Example 3 shown in FIG. 1, the La 2 O 3 content in the Rh-supported ZrLaY composite oxide was set to 2% by mass. Even when the Y 2 O 3 content is changed, the Rh-supported ZrLaY composite oxide having the Y 2 O 3 content of 2% by mass to 20% by mass (Example 11, Example 7 and Example 13) In any case, the light regarding purification of HC, CO and NOx with respect to the Rh-supported ZrLa composite oxide (Comparative Example 3) having a La 2 O 3 content of 2 mass% but a Y 2 O 3 content of zero. Each of the off temperatures decreases.

また、図1に示す実施例12、実施例10、実施例14及び比較例4のライトオフ温度の測定結果から分かるように、Rh担持ZrLaY複合酸化物においてLa含有率を10質量%にしてY含有率を変化させた場合においても、Y含有率が2質量%から20質量%であるRh担持ZrLaY複合酸化物(実施例12、実施例10及び実施例14)はいずれも、La含有率が10質量%であるがY含有率がゼロであるRh担持ZrLa複合酸化物(比較例4)に対して、HC、CO及びNOxの浄化に関するライトオフ温度がそれぞれ低下している。 Further, as can be seen from the measurement results of the light-off temperature of Example 12, Example 10, Example 14 and Comparative Example 4 shown in FIG. 1, the La 2 O 3 content in the Rh-supported ZrLaY composite oxide is 10% by mass. Even when the Y 2 O 3 content is changed, the Rh-supported ZrLaY composite oxide having the Y 2 O 3 content of 2% by mass to 20% by mass (Example 12, Example 10 and Example 14). ) Purifies HC, CO and NOx with respect to the Rh-supported ZrLa composite oxide (Comparative Example 4) having a La 2 O 3 content of 10% by mass but a Y 2 O 3 content of zero. The light-off temperature for each has decreased.

このように、主成分としてのZrOとLaとYとを含有するZrLaY複合酸化物にRhを担持したRh担持ZrLaY複合酸化物を排気ガス浄化用触媒材として用いることで、Rh担持ZrLa複合酸化物を排気ガス浄化用触媒材として用いる場合に比して、HC、CO及びNOxの浄化に関するライトオフ温度を低下させることができ、排気ガス浄化性能を向上させることができる。 Thus, by using the Rh-supported ZrLaY composite oxide in which Rh is supported on the ZrLaY composite oxide containing ZrO 2 , La 2 O 3 and Y 2 O 3 as the main components, as an exhaust gas purification catalyst material, Compared with the case where the Rh-supported ZrLa composite oxide is used as an exhaust gas purification catalyst material, the light-off temperature relating to the purification of HC, CO and NOx can be lowered, and the exhaust gas purification performance can be improved. .

また、図3は、Rh担持ZrLaY複合酸化物におけるLa含有率とライトオフ温度の測定結果との関係を示すグラフであり、図1に示す実施例4、実施例7から実施例10及び比較例2のHC、CO及びNOxの浄化に関するライトオフ温度の測定結果を示している。 FIG. 3 is a graph showing the relationship between the La 2 O 3 content in the Rh-supported ZrLaY composite oxide and the measurement result of the light-off temperature. Examples 4 and 7 to 10 shown in FIG. And the measurement result of the light-off temperature regarding purification | cleaning of HC, CO, and NOx of the comparative example 2 is shown.

図1及び図3に示すように、HCの浄化に関するライトオフ温度について、Rh担持ZrLaY複合酸化物においてY含有率を一定(10質量%)にしてLa含有率を変化させた場合、La含有率が2質量%から10質量%であるRh担持ZrLaY複合酸化物(実施例4及び実施例7から実施例10)はいずれも、Y含有率が10質量%であるがLa含有率がゼロであるRh担持ZrY複合酸化物(比較例2)に対して、HCの浄化に関するライトオフ温度が低下している。 As shown in FIGS. 1 and 3, the light-off temperature related to the purification of HC was changed by changing the La 2 O 3 content with the Y 2 O 3 content constant (10% by mass) in the Rh-supported ZrLaY composite oxide. In this case, the Rh-supported ZrLaY composite oxide (Example 4 and Example 7 to Example 10) having a La 2 O 3 content of 2% by mass to 10% by mass has a Y 2 O 3 content of 10%. is a weight% Rh supported ZrY mixed oxide content of La 2 O 3 ratio is zero for (Comparative example 2), the light-off temperature for purification of HC is reduced.

CO及びNOxの浄化に関するライトオフ温度についてもそれぞれ、Rh担持ZrLaY複合酸化物においてY含有率を一定(10質量%)にしてLa含有率を変化させた場合、La含有率が2質量%から10質量%であるRh担持ZrLaY複合酸化物(実施例4及び実施例7から実施例10)はいずれも、Y含有率が10質量%であるがLa含有率がゼロであるRh担持ZrY複合酸化物(比較例2)に対して、CO及びNOxの浄化に関するライトオフ温度がそれぞれ低下している。 Each regard to light-off temperature for purification of CO and NOx, when changing the content of La 2 O 3 ratio and the Y 2 O 3 content constant (10 wt%) in Rh supported ZrLaY composite oxide, La 2 O The Rh-supported ZrLaY composite oxides (Example 4 and Examples 7 to 10) having a 3 content of 2% to 10% by mass all have a Y 2 O 3 content of 10% by mass, but La Compared to the Rh-supported ZrY composite oxide (Comparative Example 2) in which the 2 O 3 content is zero, the light-off temperatures for the purification of CO and NOx are lowered.

図1に示す実施例11、実施例1、実施例12及び比較例5のライトオフ温度の測定結果から分かるように、Rh担持ZrLaY複合酸化物においてY含有率を2質量%にしてLa含有率を変化させた場合においても、La含有率が2質量%から10質量%であるRh担持ZrLaY複合酸化物(実施例11、実施例1及び実施例12)はいずれも、Y含有率が2質量%であるがLa含有率がゼロであるRh担持ZrY複合酸化物(比較例5)に対して、HC、CO及びNOxの浄化に関するライトオフ温度がそれぞれ低下している。 As can be seen from the measurement results of the light-off temperature of Example 11, Example 1, Example 12 and Comparative Example 5 shown in FIG. 1, the Y 2 O 3 content in the Rh-supported ZrLaY composite oxide was set to 2% by mass. Even when the La 2 O 3 content is changed, the Rh-supported ZrLaY composite oxide (Example 11, Example 1 and Example 12) having a La 2 O 3 content of 2% by mass to 10% by mass is obtained. In any case, the light relating to the purification of HC, CO and NOx with respect to the Rh-supported ZrY composite oxide (Comparative Example 5) having a Y 2 O 3 content of 2 mass% but a La 2 O 3 content of zero. Each of the off temperatures decreases.

また、図1に示す実施例13、実施例14及び比較例6のライトオフ温度の測定結果から分かるように、Rh担持ZrLaY複合酸化物においてY含有率を20質量%にしてLa含有率を変化させた場合においても、La含有率が2質量%から10質量%であるRh担持ZrLaY複合酸化物(実施例13及び実施例14)はいずれも、Y含有率が20質量%であるがLa含有率がゼロであるRh担持ZrY複合酸化物(比較例6)に対して、HC、CO及びNOxの浄化に関するライトオフ温度がそれぞれ低下している。 In addition, as can be seen from the measurement results of the light-off temperature of Example 13, Example 14 and Comparative Example 6 shown in FIG. 1, in the Rh-supported ZrLaY composite oxide, the Y 2 O 3 content is set to 20% by mass and La 2 Even when the O 3 content was changed, both of the Rh-supported ZrLaY composite oxides (Examples 13 and 14) having a La 2 O 3 content of 2% by mass to 10% by mass were Y 2 O. Compared to the Rh-supported ZrY composite oxide (Comparative Example 6) in which the content of 3 is 20% by mass but the content of La 2 O 3 is zero, the light-off temperature relating to the purification of HC, CO, and NOx respectively decreases. ing.

このように、主成分としてのZrOとLaとYとを含有するZrLaY複合酸化物にRhを担持したRh担持ZrLaY複合酸化物を排気ガス浄化用触媒材として用いることで、Rh担持ZrY複合酸化物を排気ガス浄化用触媒材として用いる場合に対しても、HC、CO及びNOxの浄化に関するライトオフ温度をそれぞれ低下させることができ、排気ガス浄化性能を向上させることができる。 Thus, by using the Rh-supported ZrLaY composite oxide in which Rh is supported on the ZrLaY composite oxide containing ZrO 2 , La 2 O 3 and Y 2 O 3 as the main components, as an exhaust gas purification catalyst material, Even when the Rh-supported ZrY composite oxide is used as an exhaust gas purification catalyst material, the light-off temperature relating to the purification of HC, CO and NOx can be lowered, and the exhaust gas purification performance can be improved. it can.

図4は、実施例及び比較例として用いたRh担持ZrLaY複合酸化物、Rh担持ZrLa複合酸化物及びRh担持ZrY複合酸化物のLa含有率とY含有率とを示す図であり、図4では、実施例1から実施例14のRh担持ZrLaY複合酸化物をそれぞれW1からW14として白丸で表示し、比較例1、比較例3及び比較例4のRh担持ZrLa複合酸化物をそれぞれC1、C3及びC4として黒丸で表示し、比較例2、比較例5及び比較例6のRh担持ZrLa複合酸化物をそれぞれC2、C5及びC6として黒丸で表示している。 FIG. 4 is a graph showing La 2 O 3 content and Y 2 O 3 content of Rh-supported ZrLaY composite oxide, Rh-supported ZrLa composite oxide, and Rh-supported ZrY composite oxide used as examples and comparative examples. In FIG. 4, the Rh-supported ZrLaY composite oxides of Examples 1 to 14 are indicated by white circles as W1 to W14, respectively, and the Rh-supported ZrLa composite oxides of Comparative Example 1, Comparative Example 3, and Comparative Example 4 are shown. Are indicated by black circles as C1, C3 and C4, respectively, and the Rh-supported ZrLa composite oxides of Comparative Example 2, Comparative Example 5 and Comparative Example 6 are indicated by black circles as C2, C5 and C6, respectively.

図4ではまた、実施例1から実施例14のRh担持ZrLaY酸化物において、La含有率の最大値及び最小値の実施例をそれぞれ破線で繋ぐとともに、Y含有率の最大値及び最小値の実施例をそれぞれ破線で繋いで表示しているが、この破線によって囲まれる領域内のY含有率とLa含有率とを有するRh担持ZrLaY酸化物では、Rh担持ZrLa複合酸化物及びRh担持ZrY複合酸化物に比して、HC、CO及びNOxの浄化に関するライトオフ温度を低下させることができ、排気ガス浄化性能を向上させることができる。 In FIG. 4, in the Rh-supported ZrLaY oxides of Example 1 to Example 14, examples of the maximum value and the minimum value of La 2 O 3 content are connected by broken lines, respectively, and the maximum of Y 2 O 3 content is In the Rh-supported ZrLaY oxide having the Y 2 O 3 content and the La 2 O 3 content in the region surrounded by the broken line, the examples of the value and the minimum value are respectively connected by a broken line. Compared with the Rh-supported ZrLa composite oxide and the Rh-supported ZrY composite oxide, the light-off temperature relating to the purification of HC, CO and NOx can be lowered, and the exhaust gas purification performance can be improved.

このように、主成分としてのZrOと、2質量%以上10質量%以下のLaと、2質量%以上20質量%以下のYとを含有するZrLaY複合酸化物にRhを担持したRh担持ZrLaY複合酸化物を排気ガス浄化用触媒材として用いることで、Rh担持ZrLa複合酸化物を用いる場合に比して、HC、CO及びNOxの浄化に関するライトオフ温度を低下させることができ、排気ガス浄化性能を向上させることができる。 Thus, a ZrLaY composite oxide containing ZrO 2 as a main component, 2% by mass to 10% by mass La 2 O 3 and 2% by mass to 20% by mass Y 2 O 3 is added to Rh. By using the Rh-supported ZrLaY composite oxide supporting HC as an exhaust gas purification catalyst material, the light-off temperature for purification of HC, CO, and NOx can be reduced as compared with the case of using the Rh-supported ZrLa composite oxide. The exhaust gas purification performance can be improved.

<BET比表面積の測定>
本実施形態ではまた、ライトオフ温度の測定による排気ガス浄化性能評価に加え、実施例4に用いたZrLaY複合酸化物、比較例1に用いたZrLa複合酸化物及び比較例2に用いたZrY複合酸化物について、フレッシュ時(エージング前)及びエージング後のBET比表面積をN吸着法により測定した。また、Zrを含有するZr酸化物(ZrO)についてもBET比表面積を測定した。なお、エージングは、2%O、10%HO及び残部Nの雰囲気において、1000℃の温度に24時間保持することにより行った。
<Measurement of BET specific surface area>
In this embodiment, in addition to the exhaust gas purification performance evaluation by measuring the light-off temperature, the ZrLaY composite oxide used in Example 4, the ZrLa composite oxide used in Comparative Example 1, and the ZrY composite used in Comparative Example 2 are used. for oxides, when fresh (before aging) and a BET specific surface area after aging was measured by N 2 adsorption method. Further, the BET specific surface area was measured also for Zr oxide containing Zr (ZrO 2). Aging was performed by holding at a temperature of 1000 ° C. for 24 hours in an atmosphere of 2% O 2 , 10% H 2 O and the balance N 2 .

ZrLaY複合酸化物、ZrLa複合酸化物、ZrY複合酸化物及びZr酸化物について、フレッシュ時(エージング前)及びエージング後のBET比表面積の測定結果を以下の表2に示す。表2では、ZrLaY複合酸化物、ZrLa複合酸化物、ZrY複合酸化物及びZr酸化物について各酸化物の含有率も示している。   Table 2 below shows the measurement results of the BET specific surface area at the time of fresh (before aging) and after aging for the ZrLaY composite oxide, the ZrLa composite oxide, the ZrY composite oxide, and the Zr oxide. In Table 2, the content of each oxide is also shown about ZrLaY complex oxide, ZrLa complex oxide, ZrY complex oxide, and Zr oxide.

Figure 0006167834
Figure 0006167834

表2に示すように、ZrLaY複合酸化物は、フレッシュ時にはZrLa複合酸化物に比してBET比表面積が小さいものの、エージング後にはZrLa複合酸化物に比してBET比表面積が大きくなっており、ZrLa複合酸化物よりも高温時における比表面積の低下が小さくなっている。   As shown in Table 2, the ZrLaY composite oxide has a smaller BET specific surface area than the ZrLa composite oxide when fresh, but has a larger BET specific surface area than the ZrLa composite oxide after aging. The decrease in specific surface area at high temperature is smaller than that of ZrLa composite oxide.

また、ZrLaY複合酸化物は、フレッシュ時及びエージング後にZrY複合酸化物に比してBET比表面積が大きく、且つZrY複合酸化物よりも高温時における比表面積の低下が小さくなっている。また、ZrLaY複合酸化物は、フレッシュ時及びエージング後にZr酸化物に比してBET比表面積が大きく、且つZr酸化物よりも高温時における比表面積の低下が小さくなっている。   In addition, the ZrLaY composite oxide has a larger BET specific surface area than that of the ZrY composite oxide when fresh and after aging, and a decrease in the specific surface area at a higher temperature is smaller than that of the ZrY composite oxide. In addition, the ZrLaY composite oxide has a larger BET specific surface area than that of the Zr oxide when fresh and after aging, and a decrease in the specific surface area at a higher temperature is smaller than that of the Zr oxide.

このように、ZrLaY複合酸化物は、ZrLa複合酸化物、ZrY複合酸化物及びZr酸化物に比して高温時における比表面積の低下が小さく、ZrLaY複合酸化物にRhを担持した場合、ZrLa複合酸化物、ZrY複合酸化物及びZr酸化物にそれぞれRhを担持した場合に比して、Rhが凝集することを抑制することができ、触媒の耐熱性を向上させることができる。   Thus, the ZrLaY composite oxide has a lower specific surface area at high temperatures than ZrLa composite oxides, ZrY composite oxides, and Zr oxides. When Rh is supported on the ZrLaY composite oxide, Compared with the case where Rh is supported on each of the oxide, the ZrY composite oxide, and the Zr oxide, aggregation of Rh can be suppressed, and the heat resistance of the catalyst can be improved.

本実施形態ではまた、触媒担体基材上にRhを含有するRh含有触媒層とPdを含有するPd含有触媒層を形成すると共にPd含有触媒層よりも排気ガス通路側にRh含有触媒層を形成した排気ガス浄化用触媒において、Rh含有触媒層にRh担持ZrLaY複合酸化物、具体的には主成分としてのZrOと2質量%以上10質量%以下のLと2質量%以上20質量%以下のYとを含有するRh担持ZrLaY複合酸化物を含ませたものを用い、排気ガス浄化性能を評価した。 In the present embodiment, an Rh-containing catalyst layer containing Rh and a Pd-containing catalyst layer containing Pd are formed on the catalyst carrier substrate, and an Rh-containing catalyst layer is formed on the exhaust gas passage side of the Pd-containing catalyst layer. In the exhaust gas purifying catalyst, the Rh-containing catalyst layer has an Rh-supported ZrLaY composite oxide, specifically, ZrO 2 as a main component, 2% by mass or more and 10% by mass or less L 2 O 3 and 2% by mass or more 20 Exhaust gas purification performance was evaluated using a material containing an Rh-supported ZrLaY composite oxide containing Y 2 O 3 of less than mass%.

排気ガス浄化用触媒として、Rh含有触媒層である上側触媒層に、ZrCe系複合酸化物としてZrとCeとNdとを含有するZrCeNd複合酸化物にRhを担持したRh担持ZrCeNd複合酸化物と、前述した実施例5のRh担持ZrLaY複合酸化物と、触媒金属が担持されていないLa含有アルミナとを触媒成分として混合し、Pd含有触媒層である下側触媒層に、ZrCeNd複合酸化物にPdを担持したPd担持ZrCeNd複合酸化物と、LaアルミナにPdを担持したPd担持Laアルミナと、触媒金属が担持されていないZrCeNd複合酸化物とを触媒成分として混合したものを実施例5Aとして用い、排気ガス浄化性能を評価した。   As an exhaust gas purification catalyst, an Rh-supported ZrCeNd composite oxide in which Rh is supported on a ZrCeNd composite oxide containing Zr, Ce, and Nd as a ZrCe-based composite oxide, on the upper catalyst layer that is an Rh-containing catalyst layer, The Rh-supported ZrLaY composite oxide of Example 5 described above and La-containing alumina on which no catalyst metal is supported are mixed as a catalyst component, and the lower catalyst layer, which is a Pd-containing catalyst layer, is mixed with the ZrCeNd composite oxide with Pd. Example 5A was used as a mixture of a Pd-supported ZrCeNd composite oxide supporting Pd, a Pd-supported La alumina supporting Pd on La alumina, and a ZrCeNd composite oxide not supporting a catalyst metal as catalyst components. The exhaust gas purification performance was evaluated.

また、実施例5Aの上側触媒層に含まれるRh担持ZrLaY複合酸化物の半分を、ZrとLaとを含有するZrLa複合酸化物を担持した活性アルミナにRhを担持させたものに代えたものを実施例5Bとして用い、排気ガス浄化性能を評価した。   Further, half of the Rh-supported ZrLaY composite oxide contained in the upper catalyst layer of Example 5A was replaced with one in which Rh was supported on activated alumina supporting a ZrLa composite oxide containing Zr and La. Using as Example 5B, the exhaust gas purification performance was evaluated.

一方、実施例5Aの上側触媒層に含まれるRh担持ZrLaY複合酸化物を全て、ZrとLaとを含有するZrLa複合酸化物を担持した活性アルミナにRhを担持させたものに代えたものを比較例5Aとして用い、これについても排気ガス浄化性能を評価した。   On the other hand, all the Rh-supported ZrLaY composite oxides contained in the upper catalyst layer of Example 5A were compared with those in which Rh was supported on activated alumina supporting a ZrLa composite oxide containing Zr and La. Used as Example 5A, the exhaust gas purification performance was also evaluated.

実施例5A、実施例5B及び比較例5Aとして用いた排気ガス浄化用触媒の上側触媒層及び下側触媒層の触媒成分を以下の表3に示す。表3では、Rh担持ZrCeNd複合酸化物をRh担持ZrCeNdOと表し、Rh担持ZrLaY複合酸化物をRh担持ZrLaYOと表し、Pd担持ZrCeNd複合酸化物をPd担持ZrCeNdOと表し、ZrLa複合酸化物を担持した活性アルミナにRhを担持させたものをRh担持ZrLaアルミナと表している。   The catalyst components of the upper catalyst layer and the lower catalyst layer of the exhaust gas purifying catalyst used as Example 5A, Example 5B, and Comparative Example 5A are shown in Table 3 below. In Table 3, the Rh-supported ZrCeNd composite oxide is represented as Rh-supported ZrCeNdO, the Rh-supported ZrLaY composite oxide is represented as Rh-supported ZrLaYO, the Pd-supported ZrCeNd composite oxide is represented as Pd-supported ZrCeNdO, and the ZrLa composite oxide was supported. A material in which Rh is supported on activated alumina is represented as Rh-supported ZrLa alumina.

Figure 0006167834
Figure 0006167834

排気ガス浄化性能の評価に用いた実施例5Aに係る排気ガス浄化用触媒の調製について説明する。   The preparation of the exhaust gas purification catalyst according to Example 5A used for the evaluation of the exhaust gas purification performance will be described.

<下側触媒層の触媒材の調製>
ZrCeNd複合酸化物を調製する際には先ず、Zr、Ce及びNdの各硝酸塩を混合し、水を加えて室温で約1時間撹拌し、この硝酸塩混合溶液とアンモニア水とを混合して中和処理をする。そして、中和処理により白濁した溶液を一昼夜放置した上で、遠心分離器により沈殿物を分離させ、上澄み液を除去して得られたケーキを十分に水洗し、水洗後のケーキを約150℃の温度で乾燥させ、その後に500℃の温度に5時間保持して加熱焼成し、粉砕してZrCeNd複合酸化物の粉末を得た。ZrCeNd複合酸化物は、酸化物含有率(質量%)をZrO/CeO/Nd=55/35/10に設定した。
<Preparation of catalyst material for lower catalyst layer>
When preparing a ZrCeNd composite oxide, first, nitrates of Zr, Ce, and Nd are mixed, water is added, and the mixture is stirred at room temperature for about 1 hour. Process. Then, after leaving the solution clouded by the neutralization treatment for a whole day and night, the precipitate is separated by a centrifuge, and the cake obtained by removing the supernatant is sufficiently washed with water. And then heated and fired at 500 ° C. for 5 hours, and pulverized to obtain a ZrCeNd composite oxide powder. In the ZrCeNd composite oxide, the oxide content (% by mass) was set to ZrO 2 / CeO 2 / Nd 2 O 3 = 55/35/10.

また、Pd担持ZrCeNd複合酸化物を調製する際には先ず、ZrCeNd複合酸化物の粉末が、ZrCeNd複合酸化物の調製と同様にして得られるが、ZrCeNd複合酸化物は、酸化物含有率(質量%)をZrO/CeO/Nd=67/23/10に設定した。次に、ZrLaY複合酸化物の粉末に対して、硝酸パラジウム溶液を加えて混合し、混合後に蒸発乾固させ、得られた乾固物を粉砕し、大気中で加熱焼成することにより、ZrCeNd複合酸化物にPdが担持されたPd担持ZrCeNd複合酸化物を得た。 In preparing a Pd-supported ZrCeNd composite oxide, first, a ZrCeNd composite oxide powder is obtained in the same manner as the preparation of the ZrCeNd composite oxide. %) Was set to ZrO 2 / CeO 2 / Nd 2 O 3 = 67/23/10. Next, a palladium nitrate solution is added to the ZrLaY composite oxide powder, mixed, evaporated to dryness after mixing, and the resulting dried product is pulverized and heated and fired in the atmosphere to produce a ZrCeNd composite. A Pd-supported ZrCeNd composite oxide in which Pd was supported on the oxide was obtained.

Pd担持Laアルミナは、Laを4質量%添加してなる活性アルミナの粉末に、硝酸パラジウム溶液を滴下して、500℃の温度で加熱焼成することにより、Pd担持Laアルミナを得た。   Pd-supported La alumina was obtained by dropping a palladium nitrate solution into activated alumina powder obtained by adding 4% by mass of La and heating and firing at a temperature of 500 ° C. to obtain Pd-supported La alumina.

<上側触媒層の触媒材の調製>
Rh担持ZrCeNd複合酸化物を調製する際には先ず、ZrCeNd複合酸化物の粉末が、下側触媒層のZrCeNd複合酸化物の調製と同様にして得られるが、ZrCeNd複合酸化物は、酸化物含有率(質量%)をZrO/CeO/Nd=80/10/10に設定した。次に、ZrCeNd複合酸化物の粉末に対して、硝酸ロジウム溶液を加えて混合し、混合後に蒸発乾固させ、得られた乾固物を粉砕し、大気中で加熱焼成することにより、ZrCeNd複合酸化物にRhが担持されたRh担持ZrCeNd複合酸化物を得た。
<Preparation of catalyst material for upper catalyst layer>
When preparing the Rh-supported ZrCeNd composite oxide, first, the ZrCeNd composite oxide powder is obtained in the same manner as the preparation of the ZrCeNd composite oxide of the lower catalyst layer, but the ZrCeNd composite oxide contains an oxide. The rate (mass%) was set to ZrO 2 / CeO 2 / Nd 2 O 3 = 80/10/10. Next, the rhodium nitrate solution is added to the powder of the ZrCeNd composite oxide, mixed, evaporated to dryness after mixing, the obtained dried product is pulverized, and heated and fired in the atmosphere to obtain the ZrCeNd composite oxide. An Rh-supported ZrCeNd composite oxide in which Rh was supported on the oxide was obtained.

また、Rh担持ZrLaY複合酸化物の調製については先ず、ZrLaY複合酸化物の粉末が、下側触媒層のZrCeNd複合酸化物の調製においてZr、Ce及びNdの各硝酸塩を混合することに代えてZr、La及びYの各硝酸塩を混合すること以外は同様にして得られる。ZrLaY複合酸化物は、酸化物含有率(質量%)をZrO/La/Y=82/6/12に設定した。次に、ZrLaY複合酸化物の粉末に対して、硝酸ロジウム溶液を加えて混合し、混合後に蒸発乾固させ、得られた乾固物を粉砕し、大気中で加熱焼成することにより、ZrLaY複合酸化物にRhが担持されたRh担持ZrLaY複合酸化物を得た。 In addition, for the preparation of the Rh-supported ZrLaY composite oxide, first, the ZrLaY composite oxide powder was replaced with Zr, Ce and Nd nitrates in the preparation of the ZrCeNd composite oxide of the lower catalyst layer. , La and Y, except that the nitrates are mixed. In the ZrLaY composite oxide, the oxide content (% by mass) was set to ZrO 2 / La 2 O 3 / Y 2 O 3 = 82/6/12. Next, the rhodium nitrate solution is added to the ZrLaY composite oxide powder, mixed, evaporated to dryness after mixing, the resulting dried product is pulverized, and heated and fired in the atmosphere to produce the ZrLaY composite oxide. An Rh-supported ZrLaY composite oxide in which Rh was supported on the oxide was obtained.

Laアルミナは、Laを4質量%添加してなる活性アルミナの粉末を用いた。   As La alumina, powder of activated alumina obtained by adding 4 mass% of La was used.

<下側触媒層の形成>
下側触媒層の触媒材の調製において得られたZrCeNd複合酸化物、Pd担持ZrCeNd複合酸化物及びPd担持Laアルミナとバインダーとしての硝酸ジルコニルと水とを混合してスラリーを調製し、該スラリーにハニカム担体を浸漬させ、その後に引き上げて余分なスラリーをエアブローにより吹き飛ばし、乾燥させてハニカム担体上に下側触媒層を形成する。ハニカム担体に所定量の下側触媒層が形成されるまでスラリーへの浸漬、エアブロー及び乾燥を繰り返し、所定量の下側触媒層が形成されると、ハニカム担体を500℃の温度に保持して加熱焼成し、ハニカム担体上に下側触媒層を形成した。
<Formation of lower catalyst layer>
ZrCeNd composite oxide, Pd-supported ZrCeNd composite oxide obtained in preparation of catalyst material of lower catalyst layer, Pd-supported La alumina, zirconyl nitrate as binder and water were mixed to prepare slurry, The honeycomb carrier is immersed, and then pulled up to blow off excess slurry by air blow and dried to form a lower catalyst layer on the honeycomb carrier. The immersion, air blowing, and drying are repeated until a predetermined amount of the lower catalyst layer is formed on the honeycomb carrier. When the predetermined amount of the lower catalyst layer is formed, the honeycomb carrier is maintained at a temperature of 500 ° C. The lower catalyst layer was formed on the honeycomb carrier by heating and firing.

<上側触媒層の形成>
上側触媒層の触媒材の調製において得られたRh担持ZrCeNd複合酸化物、Rh担持ZrLaY複合酸化物及びLaアルミナとバインダーとしての硝酸ジルコニルと水とを混合してスラリーを調製し、該スラリーに実施例Aに係る下側触媒層を形成したハニカム担体を浸漬させ、その後に引き上げて余分なスラリーをエアブローにより吹き飛ばし、乾燥させてハニカム担体上に下側触媒層の上に上側触媒層を形成する。所定量の上側触媒層が形成されるまでスラリーへの浸漬、エアブロー及び乾燥を繰り返し、所定量の上側触媒層が形成されると、ハニカム担体を500℃の温度に保持して加熱焼成し、ハニカム担体上に下側触媒層の上に上側触媒層を形成した。
<Formation of upper catalyst layer>
A slurry was prepared by mixing the Rh-supported ZrCeNd composite oxide, Rh-supported ZrLaY composite oxide obtained in the preparation of the catalyst material of the upper catalyst layer, La alumina, zirconyl nitrate as a binder, and water. The honeycomb carrier on which the lower catalyst layer according to Example A is formed is dipped, and then pulled up, excess slurry is blown off by air blow, and dried to form an upper catalyst layer on the lower catalyst layer on the honeycomb carrier. The immersion, air blowing, and drying are repeated until a predetermined amount of the upper catalyst layer is formed, and when the predetermined amount of the upper catalyst layer is formed, the honeycomb carrier is heated and fired at a temperature of 500 ° C. An upper catalyst layer was formed on the lower catalyst layer on the support.

次に、実施例5Bに係る排気ガス浄化用触媒の調製について説明する。   Next, preparation of the exhaust gas purifying catalyst according to Example 5B will be described.

<下側触媒層の触媒材の調製>
下側触媒層の触媒材の調製については、実施例Aの下側触媒層の触媒材の調製と同様にして行い、ZrCeNd複合酸化物、Pd担持ZrCeNd複合酸化物及びPd担持Laアルミナを得た。
<Preparation of catalyst material for lower catalyst layer>
The catalyst material for the lower catalyst layer was prepared in the same manner as the catalyst material for the lower catalyst layer in Example A to obtain a ZrCeNd composite oxide, a Pd-supported ZrCeNd composite oxide, and a Pd-supported La alumina. .

<上側触媒層の触媒材の調製>
上側触媒層の触媒材の調製についても、実施例5Aの下側触媒層の触媒材の調製と同様にして行い、Rh担持ZrCeNd複合酸化物、Rh担持ZrLaY複合酸化物及びLaアルミナを得たが、Rh担持ZrLaY複合酸化物の粉末を1/2にした。また、実施例5Bでは、1/2にしたRh担持ZrLaY複合酸化物と同量のRh担持ZrLaアルミナを調製した。
<Preparation of catalyst material for upper catalyst layer>
The catalyst material of the upper catalyst layer was prepared in the same manner as the catalyst material of the lower catalyst layer of Example 5A, and Rh-supported ZrCeNd composite oxide, Rh-supported ZrLaY composite oxide and La alumina were obtained. The Rh-supported ZrLaY composite oxide powder was halved. In Example 5B, the same amount of Rh-supported ZrLa alumina as the Rh-supported ZrLaY composite oxide halved was prepared.

Rh担持ZrLaアルミナは、ZrLa複合酸化物を担持した活性アルミナにRhを担持したものであり、Rh担持ZrLaアルミナの調製では先ず、Zr及びLaの各硝酸塩の混合溶液と活性アルミナ粉末とアンモニア水とを混合して中和処理をし、中和処理により白濁した溶液を一昼夜放置した上で、遠心分離器により沈殿物を分離させ、上澄み液を除去して得られたケーキを十分に水洗し、水洗後のケーキを約150℃の温度で乾燥させ、その後に500℃の温度に5時間保持して加熱焼成し、粉砕してZrLaアルミナの粉末を得た。   Rh-supported ZrLa alumina is obtained by supporting Rh on activated alumina supporting a ZrLa composite oxide. In preparing Rh-supported ZrLa alumina, first, a mixed solution of each nitrate of Zr and La, activated alumina powder, ammonia water, The mixture was neutralized by leaving the solution clouded by neutralization for a whole day and night, the precipitate was separated by a centrifuge, and the cake obtained by removing the supernatant was thoroughly washed with water. The cake after washing with water was dried at a temperature of about 150 ° C., then held at a temperature of 500 ° C. for 5 hours, heated and fired, and pulverized to obtain a ZrLa alumina powder.

次に、得られたZrLaアルミナの粉末に対して、硝酸ロジウム溶液を加えて混合し、混合後に蒸発乾固させ、蒸発乾固後に、得られた乾固物を粉砕し、大気中で加熱焼成することにより、Rh担持ZrLaアルミナを得た。Rh担持ZrLaアルミナにおいて、ZrLaアルミナは、酸化物含有率(質量%)をZrO/La/Al=38/2/60に設定した。 Next, the rhodium nitrate solution is added to and mixed with the obtained ZrLa alumina powder, and after mixing, the mixture is evaporated to dryness. After the evaporation to dryness, the resulting dried product is pulverized and heated and fired in the atmosphere. As a result, Rh-supported ZrLa alumina was obtained. In the Rh-supported ZrLa alumina, the oxide content (mass%) of ZrLa alumina was set to ZrO 2 / La 2 O 3 / Al 2 O 3 = 38/2/60.

<下側触媒層の形成>
下側触媒層の形成については、実施例5Aの下側触媒層の形成と同様にして行い、ハニカム担体上に下側触媒層を形成した。
<Formation of lower catalyst layer>
The formation of the lower catalyst layer was performed in the same manner as the formation of the lower catalyst layer of Example 5A, and the lower catalyst layer was formed on the honeycomb carrier.

<上側触媒層の形成>
上側触媒層の形成については、実施例5Aの上側触媒層の形成において、スラリーの調製時にZrCeNd複合酸化物、Pd担持ZrCeNd複合酸化物、Rh担持ZrLaアルミナ及びPd担持Laアルミナと硝酸ジルコニルと水とを混合すること以外は同様にして行い、ハニカム担体上に下側触媒層の上に上側触媒層を形成した。
<Formation of upper catalyst layer>
Regarding the formation of the upper catalyst layer, in the formation of the upper catalyst layer of Example 5A, during the preparation of the slurry, ZrCeNd composite oxide, Pd-supported ZrCeNd composite oxide, Rh-supported ZrLa alumina, Pd-supported La alumina, zirconyl nitrate, water, The upper catalyst layer was formed on the lower catalyst layer on the honeycomb carrier in the same manner except for mixing.

一方、比較例5Aに係る排気ガス浄化用触媒の調製では、実施例5Aに係る排気ガス浄化用触媒の調製においてRh担持ZrLaY複合酸化物の粉末に代えて、該Rh担持ZrLaY複合酸化物の粉末と同量のRh担持ZrLaアルミナが用いられること以外は、実施例5Aに係る排気ガス浄化用触媒の調製と同様にして行った。また、Rh担持ZrLaアルミナの調製は、実施例5Bに係るRh担持ZrLaアルミナの調製と同様にして行った。   On the other hand, in the preparation of the exhaust gas purification catalyst according to Comparative Example 5A, the Rh-supported ZrLaY composite oxide powder was used instead of the Rh-supported ZrLaY composite oxide powder in the preparation of the exhaust gas purification catalyst according to Example 5A. The same procedure as in the preparation of the exhaust gas purifying catalyst according to Example 5A was performed except that the same amount of Rh-supported ZrLa alumina was used. The Rh-supported ZrLa alumina was prepared in the same manner as the Rh-supported ZrLa alumina according to Example 5B.

このようにして得られた実施例5A、実施例5B及び比較例5Aのハニカム担体を大気雰囲気中で1000℃の温度に24時間保持するエージングを行った後に、直径2.54cm、長さ50mmの円筒状に切り出し、固定床流通式反応評価装置に取り付けて、モデルガスを流し、HC、CO及びNOxの浄化に関するライトオフ温度を測定した。ライトオフ温度の測定は、前述した実施例1から実施例14及び比較例1から比較例6の場合と同様にして行った。   The honeycomb carriers of Examples 5A, 5B, and 5A thus obtained were aged at a temperature of 1000 ° C. for 24 hours in an air atmosphere, and then 2.54 cm in diameter and 50 mm in length. It was cut out into a cylindrical shape, attached to a fixed bed flow type reaction evaluation apparatus, a model gas was flowed, and a light-off temperature related to purification of HC, CO, and NOx was measured. The light-off temperature was measured in the same manner as in Examples 1 to 14 and Comparative Examples 1 to 6.

本実施形態では、実施例5Aにおいて、下側触媒層の触媒成分のハニカム担体への担持量を、Pd担持ZrCeNd複合酸化物は35g/L(Pd担持量は0.28g/L)、Pd担持Laアルミナは45.2(Pd担持量は4.42g/L)、ZrCeNd複合酸化物は10g/Lとし、上側触媒層の触媒成分のハニカム担体への担持量を、Rh担持ZrCeNd複合酸化物は90g/L(Rh担持量は0.2g/L)、Rh担持ZrLaY複合酸化物は30g/L(Rh担持量は0.1g/L)、Laアルミナは12.8g/Lとした。   In this embodiment, in Example 5A, the amount of the catalyst component of the lower catalyst layer supported on the honeycomb carrier is 35 g / L for Pd-supported ZrCeNd composite oxide (Pd support amount is 0.28 g / L), and Pd-supported. La alumina is 45.2 (Pd loading is 4.42 g / L), ZrCeNd composite oxide is 10 g / L, and the loading amount of the catalyst component of the upper catalyst layer on the honeycomb carrier is Rh-supported ZrCeNd composite oxide. 90 g / L (Rh supported amount was 0.2 g / L), Rh supported ZrLaY composite oxide was 30 g / L (Rh supported amount was 0.1 g / L), and La alumina was 12.8 g / L.

前述したように、実施例5Bでは、実施例5Aにおいて、上側触媒層のRh担持ZrLaY複合酸化物の1/2をRh担持ZrLaアルミナに代え、比較例5Aでは、実施例5Aにおいて、上側触媒層のRh担持ZrLaY複合酸化物を全て同量のRh担持ZrLaアルミナに代えた。   As described above, in Example 5B, in Example 5A, 1/2 of the Rh-supported ZrLaY composite oxide in the upper catalyst layer was replaced with Rh-supported ZrLa alumina, and in Comparative Example 5A, the upper catalyst layer in Example 5A. The Rh-supported ZrLaY composite oxide was replaced with the same amount of Rh-supported ZrLa alumina.

実施例5A、実施例5B及び比較例5Aの排気ガス浄化用触媒について、HC、CO及びNOxの浄化に関するライトオフ温度の測定結果を以下の表4にそれぞれ示す。また、図5は、本発明の実施形態に係る排気ガス浄化用触媒のライトオフ温度の測定結果を示すグラフであり、実施例5A、実施例5B及び比較例5Aのライトオフ温度の測定結果をグラフとして表している。   Table 4 below shows the measurement results of the light-off temperature for the purification of HC, CO, and NOx for the exhaust gas purification catalysts of Example 5A, Example 5B, and Comparative Example 5A. FIG. 5 is a graph showing the measurement result of the light-off temperature of the exhaust gas purifying catalyst according to the embodiment of the present invention. The measurement result of the light-off temperature of Example 5A, Example 5B and Comparative Example 5A is shown in FIG. Represented as a graph.

Figure 0006167834
Figure 0006167834

表4及び図5に示すように、HCの浄化に関するライトオフ温度について、上側触媒層に所定量のRh担持ZrLaアルミナを含む比較例5Aに対して、比較例5AのRh担持ZrLaアルミナの1/2をRh担持ZrLaY複合酸化物に代えた実施例5BではHCの浄化に関するライトオフ温度が低下し、比較例5AのRh担持ZrLaアルミナを全てRh担持ZrLaY複合酸化物に代えた実施例5AではHCの浄化に関するライトオフ温度がさらに低下している。   As shown in Table 4 and FIG. 5, with respect to the light-off temperature related to HC purification, the comparative example 5A in which the upper catalyst layer contains a predetermined amount of Rh-supported ZrLa alumina is 1 / of the Rh-supported ZrLa alumina of Comparative Example 5A. In Example 5B in which 2 was replaced with Rh-supported ZrLaY composite oxide, the light-off temperature related to HC purification decreased, and in Example 5A in which Rh-supported ZrLa alumina in Comparative Example 5A was entirely replaced with Rh-supported ZrLaY composite oxide, HC The light-off temperature related to the purification is further lowered.

COの浄化に関するライトオフ温度についても、上側触媒層に所定量のRh担持ZrLaアルミナを含む比較例5Aに対して、比較例5AのRh担持ZrLaアルミナの1/2をRh担持ZrLaY複合酸化物に代えた実施例5BではCOの浄化に関するライトオフ温度が低下し、比較例5AのRh担持ZrLaアルミナを全てRh担持ZrLaY複合酸化物に代えた実施例5AではCOの浄化に関するライトオフ温度がさらに低下している。   Regarding the light-off temperature related to CO purification, 1/2 of the Rh-supported ZrLa alumina of Comparative Example 5A is used as the Rh-supported ZrLaY composite oxide as compared with Comparative Example 5A in which the upper catalyst layer includes a predetermined amount of Rh-supported ZrLa alumina. In Example 5B, the light-off temperature related to CO purification decreased, and in Example 5A where all the Rh-supported ZrLa alumina in Comparative Example 5A was replaced with the Rh-supported ZrLaY composite oxide, the light-off temperature related to CO purification was further decreased. doing.

また、NOxの浄化に関するライトオフ温度についても、上側触媒層に所定量のRh担持ZrLaアルミナを含む比較例5Aに対して、比較例5AのRh担持ZrLaアルミナの1/2をRh担持ZrLaY複合酸化物に代えた実施例5BではNOxの浄化に関するライトオフ温度が低下し、比較例5AのRh担持ZrLaアルミナを全てRh担持ZrLaY複合酸化物に代えた実施例5AではNOxの浄化に関するライトオフ温度がさらに低下している。   In addition, regarding the light-off temperature related to the purification of NOx, 1/2 of the Rh-supported ZrLa alumina of Comparative Example 5A is reduced to Rh-supported ZrLaY composite oxide as compared with Comparative Example 5A in which the upper catalyst layer includes a predetermined amount of Rh-supported ZrLa alumina. In Example 5B, the light-off temperature related to NOx purification decreased in Example 5B, and in Example 5A where all the Rh-supported ZrLa alumina in Comparative Example 5A was replaced with Rh-supported ZrLaY composite oxide, the light-off temperature related to NOx purification was It has further declined.

これらの結果から、ZrLa複合酸化物にRhが担持されたアルミナにRhを担持した触媒成分を含む排気ガス浄化用触媒材において、前記触媒成分の少なくとも一部をZrLaY複合酸化物にRhを担持した触媒成分に代えることで、Rhの一部がアルミナと固溶してRhが失活することを抑制することができると共に、ZrLa複合酸化物よりも高温時における比表面積の低下が小さいZrLaY複合酸化物によってRhが失活することを抑制することができ、排気ガスの浄化性能を向上させることができる。即ち、当該ZrLaY複合酸化物はZrLa複合酸化物よりも高温時における比表面積の低下が小さい、換言すれば、ZrLaY複合酸化物が凝集し難いことにより、当該ZrLaY複合酸化物表面でのRhの分散度が維持し易くなり、熱エージングを経た後の浄化性能がZrLa複合酸化物を用いた場合よりも向上する。   From these results, in the exhaust gas purifying catalyst material containing the catalyst component in which Rh is supported on alumina in which Rh is supported on ZrLa composite oxide, at least a part of the catalyst component has Rh supported on ZrLaY composite oxide. By substituting with the catalyst component, it is possible to suppress the inactivation of Rh due to a part of Rh being dissolved in alumina, and the reduction in specific surface area at high temperature is smaller than that of the ZrLa composite oxide. It is possible to prevent Rh from being deactivated by an object, and it is possible to improve exhaust gas purification performance. That is, the ZrLaY composite oxide has a smaller decrease in specific surface area at a higher temperature than the ZrLa composite oxide. In other words, the ZrLaY composite oxide is less likely to aggregate, so that Rh is dispersed on the ZrLaY composite oxide surface. The degree of purification becomes easier, and the purification performance after the thermal aging is improved as compared with the case of using the ZrLa composite oxide.

また、排気ガス浄化用触媒材に、ZrとCeとを含有するZrCe系複合酸化物が含まれ、該ZrCe系複合酸化物にRhが担持されていることにより、Rhを介して酸素をZrCe系複合酸化物内部に取り込み、且つ、取り込んだ酸素を酸素濃度の低い部分に送り出すことができ、前記効果をさらに有効に奏することができる。   Further, the exhaust gas purifying catalyst material contains a ZrCe-based composite oxide containing Zr and Ce, and Rh is supported on the ZrCe-based composite oxide, so that oxygen is converted into ZrCe-based via Rh. The oxygen can be taken into the complex oxide and the taken-in oxygen can be sent out to a portion having a low oxygen concentration, and the above-described effect can be more effectively achieved.

実施例5A及び実施例5Bの排気ガス浄化用触媒では、上側触媒層に前述した実施例5のRh担持ZrLaY複合酸化物を含んでいるが、実施例1〜実施例14のRh担持ZrLaY複合酸化物など、主成分としてのZrOと、2質量%以上10質量%以下のLaと、2質量%以上20質量%以下のYとを含有するZrLaY複合酸化物にRhが担持されたRh担持ZrLaY複合酸化物を含むようにしてもよい。 In the exhaust gas purifying catalysts of Example 5A and Example 5B, the upper catalyst layer contains the Rh-supported ZrLaY composite oxide of Example 5 described above, but the Rh-supported ZrLaY composite oxide of Examples 1 to 14 is used. In a ZrLaY composite oxide containing ZrO 2 as a main component, La 2 O 3 of 2 % by mass or more and 10% by mass or less of Y 2 O 3 of 2 % by mass or more and 20% by mass or less of Y 2 O 3 A supported Rh-supported ZrLaY composite oxide may be included.

かかる場合においても、Rhの一部がアルミナと固溶してRhが失活することを抑制することができると共に、ZrLa複合酸化物よりも高温時における比表面積の低下が小さいZrLaY複合酸化物によってRhが失活することを抑制することができ、排気ガスの浄化性能を向上させることができる。   Even in such a case, it is possible to suppress the deactivation of Rh due to the solid solution of a part of Rh with alumina, and the ZrLaY composite oxide has a lower specific surface area at a higher temperature than the ZrLa composite oxide. Inactivation of Rh can be suppressed, and exhaust gas purification performance can be improved.

本実施形態ではまた、Rh担持ZrLaY複合酸化物とRh担持ZrLaアルミナとを含む排気ガス浄化用触媒において、Rh担持ZrLaY複合酸化物及びRh担持ZrLaアルミナにそれぞれ担持させるRh担持量の割合を変化させて排気ガス浄化性能を評価した。   In the present embodiment, in the exhaust gas purification catalyst including the Rh-supported ZrLaY composite oxide and the Rh-supported ZrLa alumina, the ratio of the Rh-supported amount supported on the Rh-supported ZrLaY composite oxide and the Rh-supported ZrLa alumina is changed. The exhaust gas purification performance was evaluated.

ここで、排気ガス浄化用触媒として、前述した実施例5Bのように、Rh担持ZrLaY複合酸化物とRh担持ZrLaアルミナとを混合させたものを用いるのは、ライトオフ性能に加えて、高温浄化性能を考慮したためである。   Here, as the exhaust gas purification catalyst, a mixture of Rh-supported ZrLaY composite oxide and Rh-supported ZrLa alumina as in Example 5B described above is used in addition to the light-off performance, as well as high-temperature purification. This is because performance is taken into consideration.

ライトオフ浄化性能及び高温浄化性能については、Rh担持ZrLaY複合酸化物のみを用いた排気ガス浄化用触媒をサンプルAとし、サンプルAのRh担持ZrLaY複合酸化物の半分をRh担持ZrLaアルミナに代えた排気ガス浄化用触媒をサンプルBとし、サンプルAのRh担持ZrLaY複合酸化物を全てRh担持ZrLaアルミナに代えたものをサンプルCとし、排気ガス浄化性能をそれぞれ評価した。   Regarding the light-off purification performance and the high-temperature purification performance, the exhaust gas purification catalyst using only the Rh-supported ZrLaY composite oxide was sample A, and half of the Rh-supported ZrLaY composite oxide of sample A was replaced with Rh-supported ZrLa alumina. Exhaust gas purification performance was evaluated by using Sample B as the exhaust gas purification catalyst, and Sample C in which all the Rh-supported ZrLaY composite oxide of Sample A was replaced with Rh-supported ZrLa alumina.

排気ガス浄化性能の評価については、エージングとして、大気雰囲気中で900℃の温度に50時間保持するエージングを行うこと以外は、前述した実施例1〜14及び比較例1〜6と同様にして行い、ライトオフ浄化性能及び高温浄化性能を評価した。高温浄化性能についてはモデルガスのガス温度が400℃であるときのHC、CO及びNOxの排気ガス浄化率によって評価した。   Exhaust gas purification performance was evaluated in the same manner as in Examples 1 to 14 and Comparative Examples 1 to 6 described above except that aging was performed for 50 hours at a temperature of 900 ° C. in an air atmosphere. The light-off purification performance and the high-temperature purification performance were evaluated. The high temperature purification performance was evaluated by the exhaust gas purification rate of HC, CO, and NOx when the gas temperature of the model gas was 400 ° C.

サンプルA及びサンプルBでは、酸化物含有量(質量%)をZrO/La/Y=82/6/12に設定したZrLaY複合酸化物からなるRh担持ZrLaY複合酸化物を使用し、サンプルB及びサンプルCでは、酸化物含有率(質量%)をZrO/La/Al=38/2/60に設定したZrLaアルミナからなるRh担持ZrLaアルミナを使用した。サンプルA、サンプルB及びサンプルCのRh担持量はそれぞれ合計1.0g/Lに設定した。 In Sample A and Sample B, an Rh-supported ZrLaY composite oxide composed of a ZrLaY composite oxide having an oxide content (mass%) set to ZrO 2 / La 2 O 3 / Y 2 O 3 = 82/6/12 is used. In Sample B and Sample C, Rh-supported ZrLa alumina made of ZrLa alumina with an oxide content (mass%) set to ZrO 2 / La 2 O 3 / Al 2 O 3 = 38/2/60 is used. did. The Rh loadings of Sample A, Sample B, and Sample C were each set to a total of 1.0 g / L.

サンプルA、サンプルB及びサンプルCの排気ガス浄化用触媒について、HC、CO及びNOxの浄化に関するライトオフ温度の測定結果を以下の表5に示し、400℃におけるHC、CO及びNOxの浄化率についての測定結果を以下の表6に示す。表5及び表6では、Rh担持ZrLaY複合酸化物をRh/ZrLaYOと表し、Rh担持ZrLaアルミナをRh/ZrLa−Alと表している。 Regarding the exhaust gas purification catalysts of Sample A, Sample B and Sample C, the measurement results of the light-off temperature relating to the purification of HC, CO and NOx are shown in Table 5 below, and the purification rate of HC, CO and NOx at 400 ° C. The measurement results are shown in Table 6 below. In Tables 5 and 6, the Rh-supported ZrLaY composite oxide is represented as Rh / ZrLaYO, and the Rh-supported ZrLa alumina is represented as Rh / ZrLa-Al 2 O 3 .

Figure 0006167834
Figure 0006167834

表5に示すように、サンプルAは、サンプルCに比べて、HC、CO及びNOxの浄化に関するライトオフ温度がそれぞれ低くなっており、Rh担持ZrLaY複合酸化物を含む排気ガス浄化用触媒は、Rh担持ZrLaアルミナを含む排気ガス浄化用触媒に比して、HC、CO及びNOxの浄化に関するライトオフ温度を低下させることができることが分かる。   As shown in Table 5, Sample A has lower light-off temperatures for purification of HC, CO, and NOx than Sample C, and the exhaust gas purification catalyst containing the Rh-supported ZrLaY composite oxide is It can be seen that the light-off temperature relating to the purification of HC, CO and NOx can be lowered as compared with the exhaust gas purification catalyst containing Rh-supported ZrLa alumina.

Figure 0006167834
Figure 0006167834

一方、表6に示すように、サンプルCは、サンプルAに比べて、400℃におけるHC、CO及びNOxの排気ガス浄化率がそれぞれ高くなっており、Rh担持ZrLaアルミナを含む排気ガス浄化用触媒は、Rh担持ZrLaY複合酸化物を含む排気ガス浄化用触媒に比して、400℃におけるHC、CO及びNOxの排気ガス浄化率を高めることができることが分かる。   On the other hand, as shown in Table 6, sample C has higher exhaust gas purification rates of HC, CO, and NOx at 400 ° C. than sample A, and an exhaust gas purification catalyst containing Rh-supported ZrLa alumina. It can be seen that the exhaust gas purification rate of HC, CO and NOx at 400 ° C. can be increased as compared with the exhaust gas purification catalyst containing the Rh-supported ZrLaY composite oxide.

これらの結果から、サンプルAは、サンプルCに比べて、ライトオフ浄化性能に優れているものの高温浄化性能が劣っていることから、サンプルBのように、Rh担持ZrLaY複合酸化物とRh担持ZrLaアルミナとを含む排気ガス浄化用触媒を用いることで、ライトオフ浄化性能及び高温浄化性能を両立させることができる。   From these results, sample A is superior to sample C in light-off purification performance, but is inferior in high-temperature purification performance. Therefore, like sample B, Rh-supported ZrLaY composite oxide and Rh-supported ZrLa By using an exhaust gas purification catalyst containing alumina, it is possible to achieve both light-off purification performance and high-temperature purification performance.

本実施形態ではまた、Rh担持ZrLaY複合酸化物とRh担持ZrLaアルミナとについて、スチームリフォーミング反応の活性を調べた。スチームリフォーミング反応の活性については、ZrY複合酸化物にRhが担持されたRh担持ZrY複合酸化物、及びZr酸化物としてのZrOにRhが担持されたRh担持Zr酸化物についても同様に調べた。 In this embodiment, the activity of the steam reforming reaction was also examined for the Rh-supported ZrLaY composite oxide and the Rh-supported ZrLa alumina. The activity of the steam reforming reaction was similarly examined for the Rh-supported ZrY composite oxide in which Rh was supported on the ZrY composite oxide and the Rh-supported Zr oxide in which Rh was supported on ZrO 2 as the Zr oxide. It was.

スチームリフォーミング反応の活性については、Rh担持ZrLaY複合酸化物、Rh担持ZrLaアルミナ、Rh担持ZrY複合酸化物及びRh担持Zr酸化物を含む触媒層をそれぞれ形成したハニカム担体を用い、エージングを行った後に、固定床流通式反応評価装置に取り付けて、モデルガスを昇温させながら流して反応活性を調べた。   For the activity of the steam reforming reaction, aging was performed using a honeycomb carrier on which a catalyst layer containing Rh-supported ZrLaY composite oxide, Rh-supported ZrLa alumina, Rh-supported ZrY composite oxide and Rh-supported Zr oxide was formed. Later, it was attached to a fixed bed flow reaction evaluation apparatus, and the reaction activity was examined by flowing the model gas while raising the temperature.

モデルガスのガス組成を以下の表7に示す。表7に示したモデルガスを、ガス供給量を26/Lとし、昇温速度30℃/分で昇温させながら各触媒層を形成したハニカム担体に供給し、プロピレンの変換率を測定した。モデルガスに含まれるプロピレンは、以下の化学式(1)によって示されるスチームリフォーミング反応によって一酸化炭素及び水素に変換される。   The gas composition of the model gas is shown in Table 7 below. The model gas shown in Table 7 was supplied to the honeycomb carrier on which each catalyst layer was formed while increasing the gas supply rate to 26 / L and increasing the temperature at a temperature increase rate of 30 ° C./min, and the conversion rate of propylene was measured. Propylene contained in the model gas is converted into carbon monoxide and hydrogen by a steam reforming reaction represented by the following chemical formula (1).

Figure 0006167834
Figure 0006167834

Figure 0006167834
Figure 0006167834

図6は、Rh担持ZrLaY複合酸化物、Rh担持ZrLaアルミナ、Rh担持ZrY複合酸化物及びRh担持Zr酸化物のスチームリフォーミング反応におけるプロピレン変換率を示すグラフである。図6に示すように、Rh担持ZrLaY複合酸化物及びRh担持ZrLaアルミナは、Rh担持ZrY複合酸化物及びRh担持Zr酸化物に比して、スチームリフォーミング反応活性が高くなっている。   FIG. 6 is a graph showing the propylene conversion rate in the steam reforming reaction of Rh-supported ZrLaY composite oxide, Rh-supported ZrLa alumina, Rh-supported ZrY composite oxide, and Rh-supported Zr oxide. As shown in FIG. 6, the Rh-supported ZrLaY composite oxide and the Rh-supported ZrLa alumina have higher steam reforming reaction activities than the Rh-supported ZrY composite oxide and the Rh-supported Zr oxide.

本実施形態ではまた、スチームリフォーミング反応活性が高いRh担持ZrLaY複合酸化物及びRh担持ZrLaアルミナについてそれぞれ、X線光電子分光法(XPS)を用いてRhの状態を調べた。ZrLa複合酸化物にRhが担持されたRh担持ZrLa複合酸化物及びZr酸化物としてZrOにRhが担持されたRh担持Zr酸化物についても同様に、X線光電子分光法を用いてRhの状態を調べた。 In the present embodiment, the state of Rh was examined using X-ray photoelectron spectroscopy (XPS) for each of the Rh-supported ZrLaY composite oxide and the Rh-supported ZrLa alumina having high steam reforming reaction activity. Similarly, for the Rh-supported ZrLa composite oxide in which Rh is supported on the ZrLa composite oxide and the Rh-supported Zr oxide in which Rh is supported on ZrO 2 as the Zr oxide, the state of Rh is determined using X-ray photoelectron spectroscopy. I investigated.

図7は、Rh担持ZrLaY複合酸化物、Rh担持ZrLaアルミナ、Rh担持ZrLa複合酸化物及びRh担持Zr酸化物におけるRhの状態を示すXPS分析結果を示すグラフである。図7に示すように、Rh担持ZrLaY複合酸化物及びRh担持ZrLaアルミナでは、結合エネルギー約307eVにピークを有しており、Rhは金属状態に維持されていることが分かる。一方、Rh担持ZrLa複合酸化物及びRh担持Zr酸化物では、結合エネルギー約307eVにピークがなく、酸化状態を示す方向にピークがずれており、酸化状態に維持されていることが分かる。   FIG. 7 is a graph showing XPS analysis results showing the state of Rh in Rh-supported ZrLaY composite oxide, Rh-supported ZrLa alumina, Rh-supported ZrLa composite oxide, and Rh-supported Zr oxide. As shown in FIG. 7, the Rh-supported ZrLaY composite oxide and the Rh-supported ZrLa alumina have a peak at a binding energy of about 307 eV, indicating that Rh is maintained in a metallic state. On the other hand, in the Rh-supported ZrLa composite oxide and the Rh-supported Zr oxide, it can be seen that there is no peak in the binding energy of about 307 eV, the peak is shifted in the direction indicating the oxidation state, and the oxidation state is maintained.

これらの結果から、Rh担持ZrLaY複合酸化物及びRh担持ZrLaアルミナは、Rh担持ZrY複合酸化物及びRh担持Zr酸化物に比して炭化水素のスチームリフォーミング反応を促進させ、生成した一酸化炭素及び水素によってNOxの還元浄化を促進させることができると共に、Rhが酸化状態ではなく金属状態に維持されて、排気ガス性能を高温まで維持できることが分かる。   From these results, Rh-supported ZrLaY composite oxide and Rh-supported ZrLa alumina promoted the steam reforming reaction of hydrocarbons as compared with Rh-supported ZrY composite oxide and Rh-supported Zr oxide, and produced carbon monoxide. It can be seen that the reduction and purification of NOx can be promoted by hydrogen and hydrogen, and that Rh is maintained in a metal state rather than an oxidized state, so that the exhaust gas performance can be maintained up to a high temperature.

このように、本実施形態では、ライトオフ性能及び高温浄化性能を考慮して、Rh担持ZrLaY複合酸化物とRh担持ZrLaアルミナとを含む排気ガス浄化用触媒において、Rh担持ZrLaY複合酸化物及びRh担持ZrLaアルミナにそれぞれ担持させるRh担持量の割合を変化させて排気ガス浄化性能を評価した。   As described above, in the present embodiment, in consideration of the light-off performance and the high-temperature purification performance, in the exhaust gas purification catalyst containing the Rh-supported ZrLaY composite oxide and the Rh-supported ZrLa alumina, the Rh-supported ZrLaY composite oxide and the Rh The exhaust gas purification performance was evaluated by changing the ratio of the amount of Rh supported on each supported ZrLa alumina.

排気ガス浄化用触媒として、前述した実施例5Bと同様に、Rh含有触媒層である上側触媒層に、Rh担持ZrCeNd複合酸化物と、前述した実施例4のRh担持ZrLaY複合酸化物と、触媒金属が担持されていないLa含有アルミナとを触媒成分として混合し、Pd含有触媒層である下側触媒層に、Pd担持ZrCeNd複合酸化物と、Pd担持Laアルミナと、触媒金属が担持されていないZrCeNd複合酸化物とを触媒成分として混合したものを実施例4A、4Bとして用い、排気ガス浄化性能を評価した。   As the exhaust gas purifying catalyst, similarly to Example 5B described above, the Rh-supported ZrCeNd composite oxide, the Rh-supported ZrLaY composite oxide of Example 4 described above, La-containing alumina on which metal is not supported is mixed as a catalyst component, and a Pd-supported ZrCeNd composite oxide, Pd-supported La alumina, and catalyst metal are not supported on the lower catalyst layer, which is a Pd-containing catalyst layer. A mixture of ZrCeNd composite oxide as a catalyst component was used as Examples 4A and 4B to evaluate the exhaust gas purification performance.

実施例4A及び実施例4Bでは、ZrLaY複合酸化物は、酸化物含有率(質量%)をZrO/La/Y=84/6/10に設定したこと以外は、前述した実施例5Bと同様のものを用い、実施例4Aでは、Rh担持ZrLaアルミナにおけるRh担持量がRh担持ZrLaY複合酸化物におけるRh担持量よりも大きく設定し、実施例4Bでは、Rh担持ZrLaアルミナにおけるRh担持量がRh担持ZrLaY複合酸化物におけるRh担持量と同量に設定した。実施例4A及び実施例4Bではまた、Rh担持ZrCeNd複合酸化物におけるRh担持量は、Rh担持ZrLaアルミナにおけるRh担持量及びRh担持ZrLaY複合酸化物におけるRh担持量よりも大きく設定した。 In Example 4A and Example 4B, the ZrLaY composite oxide was the same as that described above except that the oxide content (% by mass) was set to ZrO 2 / La 2 O 3 / Y 2 O 3 = 84/6/10. In Example 4A, the Rh supported amount in the Rh supported ZrLa alumina was set larger than the Rh supported amount in the Rh supported ZrLaY composite oxide. In Example 4B, the Rh supported ZrLa alumina was used. The amount of Rh supported in was set to the same amount as the amount of Rh supported in the Rh-supported ZrLaY composite oxide. In Example 4A and Example 4B, the Rh supported amount in the Rh supported ZrCeNd composite oxide was set to be larger than the Rh supported amount in the Rh supported ZrLa alumina and the Rh supported amount in the Rh supported ZrLaY composite oxide.

具体的には、実施例4A及び実施例4Bでは、Rh担持量をそれぞれ合計0.3g/Lに設定し、実施例4Aでは、Rh担持ZrCeNd複合酸化物、Rh担持ZrLaアルミナ及びRh担持ZrLaY複合酸化物におけるRh担持量をそれぞれ0.25g/L(0.278wt%)、0.03g/L(0.2wt%)及び0.02g/L(0.132wt%)に設定し、実施例4Bでは、Rh担持ZrCeNd複合酸化物、Rh担持ZrLaアルミナ及びRh担持ZrLaY複合酸化物におけるRh担持量をそれぞれ0.225g/L(0.25wt%)、0.0375g/L(0.25wt%)及び0.0375g/L(0.25wt%)に設定したこと以外は、同様に設定した。   Specifically, in Example 4A and Example 4B, the total amount of Rh supported is set to 0.3 g / L, and in Example 4A, Rh supported ZrCeNd composite oxide, Rh supported ZrLa alumina and Rh supported ZrLaY composite are used. The amount of Rh supported in the oxide was set to 0.25 g / L (0.278 wt%), 0.03 g / L (0.2 wt%), and 0.02 g / L (0.132 wt%), respectively. Example 4B In the Rh-supported ZrCeNd composite oxide, the Rh-supported ZrLa alumina, and the Rh-supported ZrLaY composite oxide, the Rh support amounts were 0.225 g / L (0.25 wt%), 0.0375 g / L (0.25 wt%) and It set similarly except having set to 0.0375 g / L (0.25 wt%).

実施例4A及び実施例4Bとして用いた排気ガス浄化用触媒の上側触媒層及び下側触媒層の触媒成分を以下の表8に示す。表8では、Rh担持ZrCeNd複合酸化物をRh/ZrCeNdOと表し、Rh担持ZrLaアルミナをRh/ZrLa−Alと表し、Rh担持ZrLaY複合酸化物をRh/ZrLaYOと表し、LaアルミナをLa−Alと表し、Pd担持ZrCeNd複合酸化物をPd/ZrCeNdOと表し、Pd担持LaアルミナをPd/La−Alと表し、ZrCeNd複合酸化物をZrCeNdOと表している。 The catalyst components of the upper catalyst layer and the lower catalyst layer of the exhaust gas purifying catalyst used as Example 4A and Example 4B are shown in Table 8 below. In Table 8, Rh-supported ZrCeNd composite oxide is represented as Rh / ZrCeNdO, Rh-supported ZrLa alumina is represented as Rh / ZrLa-Al 2 O 3 , Rh-supported ZrLaY composite oxide is represented as Rh / ZrLaYO, and La alumina is represented as La. represents a -Al 2 O 3, the Pd-supported ZrCeNd composite oxide expressed as Pd / ZrCeNdO, represents Pd supported La alumina and Pd / La-Al 2 O 3 , and represents a ZrCeNdO the ZrCeNd composite oxide.

Figure 0006167834
Figure 0006167834

排気ガス浄化性能の評価に用いた実施例4A及び実施例4Bに係る排気ガス浄化用触媒の調製については、前述した実施例5Bと同様にして調製し、HC、CO及びNOxの浄化に関するライトオフ温度についても同様して測定した。   About the preparation of the exhaust gas purifying catalyst according to Example 4A and Example 4B used for the evaluation of the exhaust gas purifying performance, it was prepared in the same manner as in Example 5B described above, and the light-off related to the purification of HC, CO, and NOx. The temperature was measured in the same manner.

図8は、実施例として用いた排気ガス浄化用触媒の各触媒成分のRh担持量とライトオフ温度の測定結果とを示す図である。図8に示すように、実施例4Aは、実施例4Bに比して、HC、CO及びNOxの浄化に関するライトオフ温度がそれぞれ低下している。   FIG. 8 is a diagram showing the measurement results of the Rh carrying amount and the light-off temperature of each catalyst component of the exhaust gas purifying catalyst used as an example. As shown in FIG. 8, in Example 4A, the light-off temperature related to purification of HC, CO, and NOx is lower than that in Example 4B.

このように、Rh担持ZrLaY複合酸化物とRh担持ZrLaアルミナとを含む排気ガス浄化用触媒において、Rh担持ZrLaアルミナのRh担持量を、Rh担持ZrLaY複合酸化物のRh担持量よりも大きくすることで、Rh担持ZrLaY複合酸化物のRh担持量と同一若しくはそれよりも小さくする場合に比して、触媒の低温活性を向上させることができる。   As described above, in the exhaust gas purification catalyst including the Rh-supported ZrLaY composite oxide and the Rh-supported ZrLa alumina, the Rh-supported amount of the Rh-supported ZrLa alumina should be larger than the Rh-supported amount of the Rh-supported ZrLaY composite oxide. Thus, the low temperature activity of the catalyst can be improved as compared with the case where the Rh supported amount of the Rh supported ZrLaY composite oxide is equal to or smaller than the Rh supported amount.

また、排気ガス浄化用触媒に、Rh担持ZrCe系複合酸化物が含まれ、Rh担持ZrCe系複合酸化物のRh担持量を、Rh担持ZrLaアルミナのRh担持量よりも大きくすることにより、Rhを介して酸素をZrCe系複合酸化物内部に取り込み、且つ、取り込んだ酸素を酸素濃度の低い部分に送り出すことができるので、HC及びCOの酸化を部分的に促進させることができ、前記効果をより有効に奏することができる。   Further, the exhaust gas purifying catalyst contains an Rh-supported ZrCe-based composite oxide, and the Rh-supported amount of the Rh-supported ZrCe-based composite oxide is made larger than the Rh-supported amount of the Rh-supported ZrLa alumina. Oxygen can be taken into the ZrCe-based composite oxide through the gas, and the taken-in oxygen can be sent out to a portion having a low oxygen concentration, so that the oxidation of HC and CO can be partially promoted, and the above effect can be further improved. It can play effectively.

実施例11、12、13、14の複合酸化物についても、実施例4と同様に、Rh含有触媒層である上側触媒層に、Rh担持ZrCeNd複合酸化物と、前述した実施例11、12、13、14のRh担持ZrLaY複合酸化物と、触媒金属が担持されていないLa含有アルミナとを触媒成分として混合し、Pd含有触媒層である下側触媒層に、Pd担持ZrCeNd複合酸化物と、Pd担持Laアルミナと、触媒金属が担持されていないZrCeNd複合酸化物とを触媒成分として混合したものをそれぞれ実施例11A、11B、12A、12B、13A、13B、14A、14Bとして用い、排気ガス浄化性能を評価した。   For the composite oxides of Examples 11, 12, 13, and 14, as in Example 4, the Rh-supported ZrCeNd composite oxide and the aforementioned Examples 11, 12, 13 and 14 Rh-supported ZrLaY composite oxide and La-containing alumina on which no catalytic metal is supported are mixed as a catalyst component, and a Pd-supported ZrCeNd composite oxide is added to the lower catalyst layer, which is a Pd-containing catalyst layer, Exhaust gas purification using Pd-supported La alumina and ZrCeNd composite oxide not supporting a catalyst metal as catalyst components in Examples 11A, 11B, 12A, 12B, 13A, 13B, 14A, and 14B, respectively. Performance was evaluated.

ZrLaY複合酸化物について、実施例11A及び実施例11Bでは酸化物含有率(質量%)をZrO/La/Y=96/2/2に設定し、実施例12A及び実施例12Bでは酸化物含有率(質量%)をZrO/La/Y=88/10/2に設定し、実施例13A及び実施例13Bでは酸化物含有率(質量%)をZrO/La/Y=78/2/20に設定し、実施例14A及び実施例14Bでは酸化物含有率(質量%)をZrO/La/Y=70/10/20に設定したこと以外は、実施例11A〜14A、実施例11B〜14Bではそれぞれ、前述した実施例4A、4Bとそれぞれ同様のものを用い、それぞれ同量に設定した。 For the ZrLaY composite oxide, in Example 11A and Example 11B, the oxide content (% by mass) was set to ZrO 2 / La 2 O 3 / Y 2 O 3 = 96/2/2, and Example 12A and Example 12 In Example 12B, the oxide content (mass%) was set to ZrO 2 / La 2 O 3 / Y 2 O 3 = 88/10/2, and in Examples 13A and 13B, the oxide content (mass%). Is set to ZrO 2 / La 2 O 3 / Y 2 O 3 = 78/2/20. In Example 14A and Example 14B, the oxide content (mass%) is set to ZrO 2 / La 2 O 3 / Y 2. O 3 = except 70/10/20 that was set to, examples 11A to 14A, respectively in examples 11B~14B, used as in example 4A described above, 4B respectively similar, were set to the same amount .

実施例11A〜14Aでは、Rh担持ZrCeNd複合酸化物、Rh担持ZrLaアルミナ及びRh担持ZrLaY複合酸化物におけるRh担持量をそれぞれ0.25g/L(0.278wt%)、0.03g/L(0.2wt%)及び0.02g/L(0.132wt%)に設定し、実施例11B〜14Bでは、Rh担持ZrCeNd複合酸化物、Rh担持ZrLaアルミナ及びRh担持ZrLaY複合酸化物におけるRh担持量をそれぞれ0.225g/L(0.25wt%)、0.0375g/L(0.25wt%)及び0.0375g/L(0.25wt%)に設定した。   In Examples 11A to 14A, the Rh supported amounts in the Rh supported ZrCeNd composite oxide, the Rh supported ZrLa alumina, and the Rh supported ZrLaY composite oxide were 0.25 g / L (0.278 wt%) and 0.03 g / L (0 2 wt%) and 0.02 g / L (0.132 wt%). In Examples 11B to 14B, the Rh supported amount in the Rh supported ZrCeNd composite oxide, the Rh supported ZrLa alumina and the Rh supported ZrLaY composite oxide They were set to 0.225 g / L (0.25 wt%), 0.0375 g / L (0.25 wt%) and 0.0375 g / L (0.25 wt%), respectively.

図8に示すように、実施例11Aは、実施例11Bに比して、HC、CO及びNOxの浄化に関するライトオフ温度がそれぞれ低下している。実施例12A、13A、14Aについてもそれぞれ、実施例12B、13B、14Bに比して、HC、CO及びNOxの浄化に関するライトオフ温度がそれぞれ低下している。   As shown in FIG. 8, in Example 11A, the light-off temperature related to purification of HC, CO, and NOx is lower than that in Example 11B. In Examples 12A, 13A, and 14A, the light-off temperatures related to the purification of HC, CO, and NOx are lower than those in Examples 12B, 13B, and 14B, respectively.

このように、Rh担持ZrLaY複合酸化物とRh担持ZrLaアルミナとを含む排気ガス浄化用触媒において、Rh担持ZrLaアルミナのRh担持量を、Rh担持ZrLaY複合酸化物のRh担持量よりも大きくすることで、Rh担持ZrLaY複合酸化物のRh担持量と同一若しくはそれよりも小さくする場合に比して、触媒の低温活性を向上させることができる。   As described above, in the exhaust gas purification catalyst including the Rh-supported ZrLaY composite oxide and the Rh-supported ZrLa alumina, the Rh-supported amount of the Rh-supported ZrLa alumina should be larger than the Rh-supported amount of the Rh-supported ZrLaY composite oxide. Thus, the low temperature activity of the catalyst can be improved as compared with the case where the Rh supported amount of the Rh supported ZrLaY composite oxide is equal to or smaller than the Rh supported amount.

本実施形態では、Rh担持ZrLaY複合酸化物として実施例4、11、12、13、14を用いているが、実施例1〜実施例14のRh担持ZrLaY複合酸化物など、主成分としてのZrOと、2質量%以上10質量%以下のLaと、2質量%以上20質量%以下のYとを含有するZrLaY複合酸化物にRhが担持されたRh担持ZrLaY複合酸化物を用いる場合においても、Rh担持ZrLaアルミナにおけるRh担持量がRh担持ZrLaY複合酸化物におけるRh担持量よりも大きく設定することで、Rh担持ZrLaアルミナにおけるRh担持量がRh担持ZrLaY複合酸化物におけるRh担持量と同量若しくはそれ以下に設定する場合に比して、触媒の低温活性を向上させることができる。 In this embodiment, Examples 4, 11, 12, 13, and 14 are used as the Rh-supported ZrLaY composite oxide. However, ZrO as a main component such as the Rh-supported ZrLaY composite oxide of Examples 1 to 14 is used. 2 , Rh-supported ZrLaY composite oxide in which Rh is supported on a ZrLaY composite oxide containing 2 % by mass to 10% by mass La 2 O 3 and 2% by mass to 20% by mass Y 2 O 3 Even in the case of using a product, the Rh supported amount in the Rh supported ZrLa alumina is set so that the Rh supported amount in the Rh supported ZrLa alumina is larger than the Rh supported amount in the Rh supported ZrLaY composite oxide. The low temperature activity of the catalyst can be improved as compared with the case where the amount is set equal to or less than the amount of Rh supported.

このように、本実施形態では、主成分としてのZrOと、2質量%以上10質量%以下のLaと、2質量%以上20質量%以下のYとを含有するZrLaY複合酸化物にRhが担持されてなるRh担持ZrLaY複合酸化物と、ZrとLaとを含有するZrLa複合酸化物が担持された活性アルミナにRhが担持されてなるRh担持ZrLa−活性アルミナとを含む排気ガス浄化用触媒材を採用することで、ZrLa複合酸化物が担持されたアルミナにRhを担持した触媒成分を含む排気ガス浄化用触媒材において、前記触媒成分の少なくとも一部をZrLaY複合酸化物にRhを担持した触媒成分に代えた場合に、Rhの一部がアルミナと固溶してRhが失活することを抑制することができると共に、ZrLa複合酸化物よりも高温時における比表面積の低下が小さいZrLaY複合酸化物によってRhが失活することを抑制することができ、排気ガスの浄化性能を向上させることができる。即ち、当該ZrLaY複合酸化物はZrLa複合酸化物よりも高温時における比表面積の低下が小さい、換言すれば、ZrLaY複合酸化物が凝集し難いことにより、当該ZrLaY複合酸化物表面でのRhの分散度が維持し易くなり、熱エージングを経た後の浄化性能がZrLa複合酸化物を用いた場合よりも向上する。 Thus, in this embodiment, ZrO2 containing ZrO 2 as a main component, 2% by mass or more and 10% by mass or less of La 2 O 3 and 2% by mass or more and 20% by mass or less of Y 2 O 3. Rh-supported ZrLaY composite oxide in which Rh is supported on the composite oxide, and Rh-supported ZrLa-active alumina in which Rh is supported on an active alumina in which a ZrLa composite oxide containing Zr and La is supported. In the exhaust gas purifying catalyst material including the catalyst component in which Rh is supported on the alumina on which the ZrLa composite oxide is supported by adopting the exhaust gas purifying catalyst material that includes the ZrLaY composite oxide When a catalyst component having Rh supported thereon is used, it is possible to prevent Rh from being deactivated due to a part of Rh being dissolved in alumina, and ZrLa composite oxidation. It is possible to suppress the deactivation of Rh by the ZrLaY composite oxide, which has a smaller decrease in specific surface area at a higher temperature than the product, and the exhaust gas purification performance can be improved. That is, the ZrLaY composite oxide has a smaller decrease in specific surface area at a higher temperature than the ZrLa composite oxide. In other words, the ZrLaY composite oxide is less likely to aggregate, so that Rh is dispersed on the ZrLaY composite oxide surface. The degree of purification becomes easier, and the purification performance after the thermal aging is improved as compared with the case of using the ZrLa composite oxide.

また、排気ガス浄化用触媒材において、Rh担持ZrLaアルミナのRh担持量を、Rh担持ZrLaY複合酸化物のRh担持量よりも大きくすることで、Rh担持ZrLaY複合酸化物のRh担持量と同一若しくはそれよりも小さくする場合に比して、触媒の低温活性を向上させることができる。Rh担持ZrLaアルミナは、Rh担持ZrLaY複合酸化物に比して、炭化水素のスチームリフォーミング反応を促進させることができるので、生成した一酸化炭素及び水素によってNOxの還元浄化を促進させることができ、前記効果を有効に奏することができる。   Further, in the exhaust gas purification catalyst material, by making the Rh supported amount of the Rh supported ZrLaY composite oxide larger than the Rh supported amount of the Rh supported ZrLaY composite oxide, The low temperature activity of the catalyst can be improved as compared with the case of making it smaller. Rh-supported ZrLa alumina can promote the steam reforming reaction of hydrocarbons as compared with Rh-supported ZrLaY composite oxide, so that the reduction purification of NOx can be promoted by the generated carbon monoxide and hydrogen. The effect can be effectively achieved.

更に、排気ガス浄化用触媒材に、ZrとCeとを含有するZrCe系複合酸化物にRhが担持されてなるRh担持ZrCe系複合酸化物が含まれていることにより、Rhを介して酸素をZrCe系複合酸化物内部に取り込み、且つ、取り込んだ酸素を酸素濃度の低い部分に送り出すことができるので、HC及びCOの酸化を部分的に促進させることができ、前記効果をより有効に奏することができる。   Further, the exhaust gas purifying catalyst material contains an Rh-supported ZrCe-based composite oxide in which Rh is supported on a ZrCe-based composite oxide containing Zr and Ce. Since it can be taken into the ZrCe-based composite oxide and the taken-in oxygen can be sent to a portion with a low oxygen concentration, the oxidation of HC and CO can be partially promoted, and the above-mentioned effect can be achieved more effectively. Can do.

また更に、Rh担持ZrCe系複合酸化物のRh担持量を、Rh担持ZrLa−活性アルミナのRh担持量よりも大きくすることにより、前記効果を有効に得ることができる。   Furthermore, the above-mentioned effect can be effectively obtained by making the Rh carrying amount of the Rh carrying ZrCe-based composite oxide larger than the Rh carrying amount of the Rh carrying ZrLa-activated alumina.

また更に、触媒担体基材上にRhを含有する触媒層の他にPdを含有する触媒層が形成され、Rhを含有する触媒層は、Pdを含有する触媒層よりも排気ガス通路側に形成されていることにより、Rhを含有する触媒層とPdを含有する触媒層を設けることで、前記効果を有効に奏することができる。   Furthermore, in addition to the catalyst layer containing Rh, a catalyst layer containing Pd is formed on the catalyst carrier substrate, and the catalyst layer containing Rh is formed on the exhaust gas passage side of the catalyst layer containing Pd. Thus, by providing the catalyst layer containing Rh and the catalyst layer containing Pd, the above-described effect can be effectively achieved.

本発明は、例示された実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改良及び設計上の変更が可能である。   The present invention is not limited to the illustrated embodiments, and various improvements and design changes can be made without departing from the scope of the present invention.

以上のように、本発明によれば、Rhの一部がアルミナと固溶してRhが失活することを抑制し、排気ガス浄化性能を向上させることができることから、例えば自動車等の車両の排気ガス浄化用触媒として好適に適用可能である。   As described above, according to the present invention, it is possible to suppress the inactivation of Rh due to a part of Rh being dissolved in alumina and improve the exhaust gas purification performance. The present invention can be suitably applied as an exhaust gas purification catalyst.

Claims (3)

エンジンから排出される排気ガスを浄化するための排気ガス浄化用触媒材を含有する触媒層が触媒担体基材上に形成された排気ガス浄化用触媒であって、
前記排気ガス浄化用触媒材は、主成分としてのZrOと、2質量%以上10質量%以下のLaと、2質量%以上20質量%以下のYとを含有するZrLaY複合酸化物にRhが担持されてなるRh担持ZrLaY複合酸化物と、ZrとLaとを含有するZrLa複合酸化物が担持された活性アルミナにRhが担持されてなるRh担持ZrLa−活性アルミナとを含み、前記Rh担持ZrLa−活性アルミナにおけるRh担持量が、前記Rh担持ZrLaY複合酸化物におけるRh担持量よりも大きく設定され、
前記触媒担体基材上にRhを含有する前記触媒層の他にPdを含有する触媒層が形成され、
前記Rhを含有する触媒層は、前記Pdを含有する触媒層よりも排気ガス通路側に形成され、
前記Rhを含有する触媒層にさらに、ZrとCeとNdとを含有するZrCeNd複合酸化物にRhが担持されてなるRh担持ZrCeNd複合酸化物と、Laアルミナとが含まれている、
ことを特徴とする排気ガス浄化用触媒。
An exhaust gas purification catalyst in which a catalyst layer containing an exhaust gas purification catalyst material for purifying exhaust gas discharged from an engine is formed on a catalyst carrier substrate,
The exhaust gas purification catalyst material contains ZrO 2 as a main component, 2% by mass or more and 10% by mass or less La 2 O 3 , and 2% by mass or more and 20% by mass or less Y 2 O 3. Rh-supported ZrLaY composite oxide in which Rh is supported on the composite oxide, and Rh-supported ZrLa-active alumina in which Rh is supported on an active alumina in which a ZrLa composite oxide containing Zr and La is supported. Including, the Rh supported amount in the Rh supported ZrLa-activated alumina is set larger than the Rh supported amount in the Rh supported ZrLaY composite oxide ,
In addition to the catalyst layer containing Rh, a catalyst layer containing Pd is formed on the catalyst support substrate,
The catalyst layer containing Rh is formed closer to the exhaust gas passage than the catalyst layer containing Pd,
The Rh-containing catalyst layer further includes an Rh-supported ZrCeNd composite oxide in which Rh is supported on a ZrCeNd composite oxide containing Zr, Ce, and Nd, and La alumina.
An exhaust gas purifying catalyst characterized by that.
前記Pdを含有する触媒層に、ZrとCeとNdとを含有するZrCeNd複合酸化物にPdが担持されてなるPd担持ZrCeNd複合酸化物と、LaアルミナにPdが担持されてなるPd担持Laアルミナと、ZrとCeとNdとを含有するZrCeNd複合酸化物とが含まれている、A Pd-supported ZrCeNd composite oxide in which Pd is supported on a ZrCeNd composite oxide containing Zr, Ce, and Nd, and a Pd-supported La alumina in which Pd is supported on La alumina. And a ZrCeNd composite oxide containing Zr, Ce and Nd.
ことを特徴とする請求項1に記載の排気ガス浄化用触媒。The exhaust gas purifying catalyst according to claim 1.
前記Rh担持ZrCeNd複合酸化物におけるRh担持量が、前記Rh担持ZrLa−活性アルミナにおけるRh担持量よりも大きく設定されている、
ことを特徴とする請求項1又は請求項2に記載の排気ガス浄化用触媒。
The Rh supported amount in the Rh supported ZrCe Nd composite oxide is set larger than the Rh supported amount in the Rh supported ZrLa-activated alumina.
The exhaust gas purifying catalyst according to claim 1 or 2, wherein the exhaust gas purifying catalyst according to claim 1 or 2 is used.
JP2013213068A 2013-10-10 2013-10-10 Exhaust gas purification catalyst Expired - Fee Related JP6167834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013213068A JP6167834B2 (en) 2013-10-10 2013-10-10 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013213068A JP6167834B2 (en) 2013-10-10 2013-10-10 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2015073961A JP2015073961A (en) 2015-04-20
JP6167834B2 true JP6167834B2 (en) 2017-07-26

Family

ID=52999244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013213068A Expired - Fee Related JP6167834B2 (en) 2013-10-10 2013-10-10 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP6167834B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101683491B1 (en) * 2014-12-09 2016-12-07 현대자동차 주식회사 Heat exchanger for vehicle
WO2018147408A1 (en) * 2017-02-13 2018-08-16 エヌ・イーケムキャット株式会社 Exhaust gas purifying catalyst composition, method for producing same and exhaust gas purifying catalyst for automobiles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2868768B1 (en) * 2004-04-07 2007-07-20 Rhodia Chimie Sa COMPOSITION BASED ON ZIRCONIUM OXIDES AND YTRIUM, PROCESS FOR THE PREPARATION AND USE IN A CATALYTIC SYSTEM
JP5549258B2 (en) * 2010-02-15 2014-07-16 マツダ株式会社 Exhaust gas purification catalyst
JP5772167B2 (en) * 2011-04-11 2015-09-02 マツダ株式会社 Exhaust gas purification catalyst
JP5982987B2 (en) * 2012-04-23 2016-08-31 マツダ株式会社 Exhaust gas purification catalyst containing exhaust gas purification catalyst material
JP5966594B2 (en) * 2012-05-15 2016-08-10 マツダ株式会社 Exhaust gas purification catalyst and method for producing the same
JP2014083492A (en) * 2012-10-23 2014-05-12 Toyota Motor Corp Exhaust gas cleaning catalyst

Also Published As

Publication number Publication date
JP2015073961A (en) 2015-04-20

Similar Documents

Publication Publication Date Title
JP5982987B2 (en) Exhaust gas purification catalyst containing exhaust gas purification catalyst material
JP5085176B2 (en) Exhaust gas purification catalyst and exhaust gas purification device
JP5910833B2 (en) Exhaust gas purification catalyst
JP5921387B2 (en) Exhaust gas purification catalyst
JP6073805B2 (en) Thermally stable catalyst support with barium sulfate
JP4935219B2 (en) Exhaust gas purification catalyst
JP5709005B2 (en) Exhaust gas purification catalyst and method for producing the same
JP5864444B2 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
JPH0631173A (en) Catalyst for purification of exhaust gas and method for purifying exhaust gas
JP4806613B2 (en) Gas purification method, gas purification device, and gas purification catalyst
JP2012086199A (en) Exhaust purifying catalyst
JP2005103410A (en) Exhaust gas cleaning catalyst
JP2013252465A (en) Exhaust gas-purifying catalyst carrier and exhaust gas-purifying catalyst
JP6906624B2 (en) Oxygen absorption and release materials, catalysts, exhaust gas purification systems, and exhaust gas treatment methods
JP5607131B2 (en) Exhaust gas purification catalyst
JP2006175386A (en) Filter catalyst for exhaust gas cleaning of diesel engine and its production method
CN101534942A (en) Exhaust gas purification catalyst, exhaust gas purification system, and exhaust gas purification method
JP6167834B2 (en) Exhaust gas purification catalyst
JP6174115B2 (en) Method for removing carbon monoxide and hydrocarbons from exhaust gas of a lean burn internal combustion engine
KR20150086490A (en) Oxidation catalyst and method for its preparation
JP2006297259A (en) Exhaust gas clarifying catalyst
JP2007007606A (en) Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method
JP2015047568A (en) Exhaust gas purification catalyst
JP6273859B2 (en) Three-way catalyst and exhaust gas purification method using the same
JP4624598B2 (en) Exhaust gas purification catalyst and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R150 Certificate of patent or registration of utility model

Ref document number: 6167834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees