JPH0522261Y2 - - Google Patents

Info

Publication number
JPH0522261Y2
JPH0522261Y2 JP1987061117U JP6111787U JPH0522261Y2 JP H0522261 Y2 JPH0522261 Y2 JP H0522261Y2 JP 1987061117 U JP1987061117 U JP 1987061117U JP 6111787 U JP6111787 U JP 6111787U JP H0522261 Y2 JPH0522261 Y2 JP H0522261Y2
Authority
JP
Japan
Prior art keywords
catalyst
platinum
exhaust gas
particle size
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987061117U
Other languages
Japanese (ja)
Other versions
JPS63168032U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987061117U priority Critical patent/JPH0522261Y2/ja
Publication of JPS63168032U publication Critical patent/JPS63168032U/ja
Application granted granted Critical
Publication of JPH0522261Y2 publication Critical patent/JPH0522261Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔産業上の利用分野〕 この考案は、自動車等の内燃機関において排ガ
スの浄化に用いられる一体構造型排ガス浄化用触
媒に関する。 〔従来の技術〕 従来の排ガス浄化用触媒としては、あらかじめ
セリウムを含有した活性アルミナ粉末をモノリス
担体基材の表面に付着させた後、Pt,Rh,Pd等
をそれぞれ単独あるいは組み合わせて担体に均一
に担持した触媒が、特開昭52−116779、特開昭54
−159391等に提案されている。 〔従来技術の問題点〕 しかしながら、このような従来の排ガス浄化用
触媒にあつては、排ガス中に含まれるHC成分の
浄化の際に発生する反応熱により、特に加速時に
はかなり多量のHC成分が排ガス中に含まれるの
でこれを浄化する際の反応熱により触媒の活性点
近傍では局所的にかなり高温にさらされる。この
局所的な高温が触媒の劣化をひきおこすという問
題点があつた。 〔問題点を解決するための手段〕 この考案は、このような従来の問題点に着目し
てなされたもので、触媒担体において、上流側に
少なくとも空気中で加熱し粒径を大きくし熱安定
化した白金を担持させた部分を設け、この部分で
プロパンなどのHCをある温度選択的に反応させ
後続する部分に流れ込むHC量を減少させ、後続
部の発熱成分を減少することにより、上記問題点
を解決しようとするものである。 なお、上流側の少なくとも白金をつけた部分と
下流の触媒とは一体の触媒でも良く、各々別個で
も良く、後者の場合上流と下流の触媒は密着して
も良いし、若干間〓を設けても良い。また、上流
側の少なくとも白金をつけた部分は触媒担体の全
長の1/10〜1/2の長さが好ましい。 〔作用〕 自動車の内燃機関は、加速時にはかなり多くの
HCが排出されそのHCの中にはプロパンなどパ
ラフイン系のHCが多量に含まれている。エンジ
ン排ガス浄化反応の中で発熱反応ではHCの酸化
が最も大きく、触媒床の温度上昇に結びつくのは
HCの酸化である。従つて排ガス浄化中にHCが
多く含まれるガスが触媒に接触すると触媒が局所
的に高温にさらされその部分でシンターリングな
どをひきおこし、触媒の劣化を生じる。ところが
アルミナに担持した白金触媒は高温にさらすと分
散度が低下し、粒径が大きくなるが、プロパンな
どのHCの酸化性能は分散度には全く依存せず、
常に変わらない活性を示している。一方COなど
の浄化反応は一般に粒径の大きいものほど性能が
劣る。つまり粒径を大きくすることでプロパンな
どのHCをある程度選択的に酸化できる。従つて
本考案の様に、触媒の上流側に設置した白金/ア
ルミナ触媒部で、白金の平均粒子径を85Å(分散
度0.1)〜170Å(分散度0.05)とし多大な発熱を
伴なうプロパンなどのパラフイン系HCをある程
度反応させ後続の部分には好ましくは白金の平均
粒子径を30Å(分散度0.3)以下としHCが少ない
残りのガス成分を送りこむことにより、後続部分
での局所的な発熱をある程度おさえ、後続の白
金/ロジウムの熱劣化を抑制し、高分散の状態を
維持するものである。従つて触媒全体としての耐
久性は向上する。 以下、本考案を実施例、比較例および試験例で
説明する。 実施例 1 第1図は、この考案の一実施例を示す図であ
る。 触媒コンバータ1は、内部に無機質より成る担
体触媒2が収納されており、この担体触媒は上流
側触媒部3と下流側触媒部4より構成されてい
る。 触媒コンバータ1の上流側入口5、より排ガス
が入り込み、触媒コンバータの上流側にある少な
くともPtを含む上流側触媒部3、において排ガ
ス中のHCをある程度反応させ、後続の下流側触
媒部4、に残りのガスが入り、浄化され触媒コン
バータ下流側出口6、より排出される。 1インチ平方当り、400セルの密度をもつ、容
量1.7のコーデイエライト製担体を作製し、セ
リウムを予め付着した活性アルミナを基体全体に
均一にコーテイングし、乾燥後、650℃で2時間
焼成する。次に担体の一端部から全長の1/3の部
分までPt溶液に浸漬し、Ptだけを担持させ、650
℃、2時間焼成、750℃、4時間熱処理後Pt 0.9g
を含んだ触媒部イを得た。続いて残りの末担持部
分にPtとRhを含む混合液に浸漬し、乾燥、650
℃、2時間の焼成後Pt 1.0g,Rh 0.19gを担持し
た触媒部ロを得た。この場合、最初にPtだけを
含浸した部分には再度貴金属が含浸されないよう
にする。この工程により、触媒部イには貴金属と
して熱処理により熱安定化し粒径の大きくなつた
Ptだけが担持され、触媒部ロにはPtとRhが均一
に高分散して担持された触媒Aを得た。尚、本実
施例で得られた触媒Aにおける触媒部イのPtの
平均粒子径は130Å、また触媒部ロのPtの平均粒
子径は20Åであつた。 実施例 2 触媒部イのPt担持量を0.5g、触媒部ロのPtおよ
びRhの担持量をそれぞれ1.5g,0.19gとした他は
実施例1と同様にして触媒Bを得た。尚、触媒B
における触媒部イのPtの平均粒子径は130Å、ま
た触媒部ロのPtの平均粒子径は20Åであつた。 実施例 3 担体の一端部から全長の1/5の部分までPtとRh
を担持させ、触媒部イのPt担持量を0.38g,Rh担
持量を0.04g,触媒部ロのPtおよびRhの担持量を
それぞれ1.5g,0.15gとした他は実施例1と同様
にして触媒Cを得た。尚、触媒Cにおける触媒部
イのPtの平均粒子径は130Å、また触媒部ロのPt
の平均粒子径は20Åであつた。 比較例 1 1インチ平方当り、400セルの密度をもつ容量
1.7のコーデイエライト製担体に、セリウムを
予め付着した活性アルミナを基体全体に均一にコ
ーテイングし、乾燥後、650℃で2時間焼成する。
次いでPtとRhを含む混合液に担体全体を浸漬し、
乾燥、650℃、2時間の焼成後、Pt 1.9g/個,
Rh 0.19g/個を担持した触媒Xを得た。尚、触
媒XにおけるPtの平均粒子径は20Åであつた。 試験例 1 実施例1,2,3で得た触媒A,B,C及び比
較例1で得た触媒Xについて下記条件で実車耐久
試験(エンジン耐久)を行い、10モードエミツシ
ヨンの浄化率を測定し、浄化率を√×
として第1表に示す。 エンジン耐久条件 触媒入口温度 750℃ 耐久時間 100hr 空間速度 約70000hr-1 評価条件 車両 60年型スカイライン エンジン 排気量2000c.c.ECCS
[Industrial Field of Application] This invention relates to a monolithic exhaust gas purifying catalyst used for purifying exhaust gas in internal combustion engines such as automobiles. [Prior art] Conventional catalysts for exhaust gas purification are made by depositing activated alumina powder containing cerium on the surface of a monolithic carrier base material, and then uniformly applying Pt, Rh, Pd, etc. individually or in combination to the carrier. The catalyst supported on
−159391 etc. [Problems with the prior art] However, with such conventional catalysts for purifying exhaust gas, due to the reaction heat generated during purification of the HC components contained in the exhaust gas, a considerable amount of HC components are removed, especially during acceleration. Since it is contained in the exhaust gas, the reaction heat generated when purifying the exhaust gas causes the area near the active site of the catalyst to be locally exposed to quite high temperatures. There was a problem in that this localized high temperature caused deterioration of the catalyst. [Means for solving the problem] This idea was made by focusing on such conventional problems.The catalyst carrier is heated at least in air on the upstream side to increase the particle size and stabilize it thermally. The above problem can be solved by providing a part that supports oxidized platinum, reacting HC such as propane selectively at a certain temperature, reducing the amount of HC flowing into the subsequent part, and reducing the exothermic components in the succeeding part. This is an attempt to resolve the issue. In addition, at least the part coated with platinum on the upstream side and the catalyst on the downstream side may be an integrated catalyst or may be separate from each other. In the latter case, the upstream and downstream catalysts may be in close contact with each other, or may be separated by a slight gap. Also good. In addition, at least the portion coated with platinum on the upstream side preferably has a length of 1/10 to 1/2 of the total length of the catalyst carrier. [Operation] The internal combustion engine of a car produces a considerable amount of energy during acceleration.
HC is discharged, and the HC contains a large amount of paraffinic HC such as propane. Among the engine exhaust gas purification reactions, oxidation of HC is the largest exothermic reaction, and it is the one that leads to a rise in the temperature of the catalyst bed.
This is oxidation of HC. Therefore, when gas containing a large amount of HC comes into contact with the catalyst during exhaust gas purification, the catalyst is locally exposed to high temperatures, causing sintering or the like in that area, resulting in deterioration of the catalyst. However, when a platinum catalyst supported on alumina is exposed to high temperatures, the degree of dispersion decreases and the particle size increases, but the oxidation performance of HC such as propane does not depend on the degree of dispersion.
It shows constant activity. On the other hand, in general, the larger the particle size, the worse the performance in purifying reactions such as CO. In other words, by increasing the particle size, HC such as propane can be oxidized selectively to some extent. Therefore, as in the present invention, in the platinum/alumina catalyst section installed upstream of the catalyst, the average particle diameter of platinum is 85 Å (dispersity 0.1) to 170 Å (dispersity 0.05), and propane is produced with a large amount of heat. By reacting paraffin-based HC such as to some extent and sending the remaining gas component with less HC into the subsequent part, preferably with an average platinum particle size of 30 Å (dispersity 0.3), local heat generation is generated in the subsequent part. This suppresses the thermal deterioration of platinum/rhodium that follows, and maintains a highly dispersed state. Therefore, the durability of the catalyst as a whole is improved. The present invention will be explained below with reference to Examples, Comparative Examples, and Test Examples. Example 1 FIG. 1 is a diagram showing an example of this invention. The catalytic converter 1 houses therein a carrier catalyst 2 made of inorganic material, and the carrier catalyst is composed of an upstream catalyst section 3 and a downstream catalyst section 4. Exhaust gas enters from the upstream inlet 5 of the catalytic converter 1, causes HC in the exhaust gas to react to some extent in the upstream catalyst section 3 containing at least Pt, which is located upstream of the catalytic converter, and then passes through the subsequent downstream catalyst section 4. The remaining gas enters, is purified, and is discharged from the outlet 6 on the downstream side of the catalytic converter. A cordierite support with a density of 400 cells per square inch and a capacity of 1.7 was prepared, and activated alumina to which cerium was pre-attached was uniformly coated over the entire substrate, dried, and then fired at 650°C for 2 hours. . Next, the carrier is immersed in a Pt solution from one end to 1/3 of its total length to support only Pt.
℃, 2 hours baking, 750℃, 4 hours heat treatment Pt 0.9g
A catalyst part (a) containing the following was obtained. Subsequently, the remaining end-supported portion was immersed in a mixed solution containing Pt and Rh, dried, and heated to 650°C.
After calcination at ℃ for 2 hours, a catalyst part B supporting 1.0 g of Pt and 0.19 g of Rh was obtained. In this case, the part that was first impregnated only with Pt should not be impregnated with noble metal again. Through this process, the catalyst part A is made of noble metal that is thermally stabilized by heat treatment and has a large particle size.
A catalyst A was obtained in which only Pt was supported, and Pt and Rh were supported in a uniform and highly dispersed manner in the catalyst part (b). In addition, in the catalyst A obtained in this example, the average particle diameter of Pt in catalyst part (a) was 130 Å, and the average particle diameter of Pt in catalyst part (b) was 20 Å. Example 2 Catalyst B was obtained in the same manner as in Example 1, except that the amount of Pt supported in catalyst section A was 0.5 g, and the amounts of Pt and Rh supported in catalyst section B were 1.5 g and 0.19 g, respectively. Furthermore, catalyst B
The average particle diameter of Pt in catalyst part (a) was 130 Å, and the average particle diameter of Pt in catalyst part (b) was 20 Å. Example 3 Pt and Rh from one end of the carrier to 1/5 of the total length
The same procedure as in Example 1 was carried out, except that the amount of Pt supported in catalyst part A was 0.38 g and the amount of Rh supported was 0.04 g, and the amount of Pt and Rh supported in catalyst part B was 1.5 g and 0.15 g, respectively. Catalyst C was obtained. In addition, in catalyst C, the average particle diameter of Pt in catalyst part A is 130 Å, and the Pt in catalyst part B is 130 Å.
The average particle diameter was 20 Å. Comparative Example 1 Capacity with density of 400 cells per square inch
Activated alumina pre-deposited with cerium is uniformly coated on the cordierite support No. 1.7 over the entire substrate, dried, and then fired at 650°C for 2 hours.
Next, the entire carrier is immersed in a mixed solution containing Pt and Rh.
After drying and firing at 650℃ for 2 hours, Pt 1.9g/piece,
A catalyst X supporting 0.19 g/piece of Rh was obtained. Note that the average particle diameter of Pt in Catalyst X was 20 Å. Test Example 1 An actual vehicle durability test (engine durability) was conducted on catalysts A, B, and C obtained in Examples 1, 2, and 3 and catalyst X obtained in Comparative Example 1 under the following conditions, and the purification rate of 10 mode emission was Measure the purification rate by √×
are shown in Table 1. Engine durability conditions Catalyst inlet temperature 750℃ Durability time 100hr Space velocity Approx. 70000hr -1 Evaluation conditions Vehicle 1960 Skyline Engine Displacement 2000c.c.ECCS

〔考案の効果〕[Effect of idea]

以上説明してきたように、この考案によれば、
一体構造排ガス浄化用触媒において、上流側に少
なくとも平均粒径が85Å〜170Åの白金を担持し
た触媒と、これに続く下流側部分には、ロジウム
と前記上流側の白金よりも小さい粒径の白金を担
持する構成としたため、上流側触媒部において多
大な発熱を伴なうプロパンなどのパラフイン系
HCをある程度反応させるため、下流側触媒での
HC浄化時の局所的な発熱を抑えることができ、
白金、ロジウムの熱劣化を抑制し、触媒の耐久性
を向上することができるという効果が得られる。
As explained above, according to this idea,
In the monolithic exhaust gas purification catalyst, the upstream side of the catalyst supports at least platinum with an average particle size of 85 Å to 170 Å, and the subsequent downstream part contains rhodium and platinum with a smaller particle size than the platinum on the upstream side. Because of the structure in which it carries
In order to cause HC to react to some extent, the downstream catalyst
Local heat generation during HC purification can be suppressed,
The effect of suppressing thermal deterioration of platinum and rhodium and improving the durability of the catalyst can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示す断面図であり、
第2図は白金触媒の酸化活性と分散度の関係を示
す図である。 1……触媒コンバータ、2……担体触媒、3…
…上流側触媒部、4……下流側触媒部、5……上
流側入口、6……下流側出口、7……Pt(NO32
(NH32溶液を含浸したプロパン−O2系の反応、
8……H2PtCl6溶液を含浸したプロパン−O2系の
反応、9……Pt(NO32(NH32溶液を含浸した
CO−O2系の反応、10……H2PtCl6溶液を含浸
したCO−O2系の反応。
FIG. 1 is a sectional view showing an embodiment of the present invention,
FIG. 2 is a diagram showing the relationship between the oxidation activity and the degree of dispersion of a platinum catalyst. 1...Catalytic converter, 2...Carrier catalyst, 3...
...upstream catalyst section, 4...downstream catalyst section, 5...upstream inlet, 6...downstream outlet, 7...Pt(NO 3 ) 2
Reaction of propane-O 2 system impregnated with (NH 3 ) 2 solution,
8... Reaction of propane-O 2 system impregnated with H 2 PtCl 6 solution, 9... Impregnated with Pt(NO 3 ) 2 (NH 3 ) 2 solution
CO-O 2 system reaction, 10... CO-O 2 system reaction impregnated with H 2 PtCl 6 solution.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 一体構造型排ガス浄化用触媒において、上流側
に少なくとも平均粒径が85Å〜170Åの白金を担
持した触媒と、これに続く下流側部分には、ロジ
ウムと前記上流側の白金よりも小さい粒径の白金
を担持した触媒とからなることを特徴とする排ガ
ス浄化用触媒。
In the monolithic exhaust gas purification catalyst, the catalyst supports platinum with an average particle size of at least 85 Å to 170 Å on the upstream side, and the subsequent downstream portion supports rhodium and platinum with a particle size smaller than the platinum on the upstream side. An exhaust gas purifying catalyst characterized by comprising a catalyst supporting platinum.
JP1987061117U 1987-04-22 1987-04-22 Expired - Lifetime JPH0522261Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987061117U JPH0522261Y2 (en) 1987-04-22 1987-04-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987061117U JPH0522261Y2 (en) 1987-04-22 1987-04-22

Publications (2)

Publication Number Publication Date
JPS63168032U JPS63168032U (en) 1988-11-01
JPH0522261Y2 true JPH0522261Y2 (en) 1993-06-08

Family

ID=30894156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987061117U Expired - Lifetime JPH0522261Y2 (en) 1987-04-22 1987-04-22

Country Status (1)

Country Link
JP (1) JPH0522261Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4935219B2 (en) * 2006-07-20 2012-05-23 トヨタ自動車株式会社 Exhaust gas purification catalyst

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126437A (en) * 1980-03-08 1981-10-03 Mazda Motor Corp Catalyst for purification of exhaust gas of automobile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126437A (en) * 1980-03-08 1981-10-03 Mazda Motor Corp Catalyst for purification of exhaust gas of automobile

Also Published As

Publication number Publication date
JPS63168032U (en) 1988-11-01

Similar Documents

Publication Publication Date Title
JPH0760117A (en) Exhaust gas purifying catalyst
US20200340383A1 (en) Exhaust gas purification catalyst
JP3327054B2 (en) Exhaust gas purification catalyst
JPH11267504A (en) Catalyst for cleaning exhaust gas and exhaust gas cleaning system using it
JP3882627B2 (en) Exhaust gas purification catalyst
JPS6384635A (en) Catalyst for purifying exhaust gas
JPS6051543A (en) Oxidizing catalyst
JP4459346B2 (en) Exhaust gas purification catalyst
JPH0522261Y2 (en)
JPS62282641A (en) Production of catalyst for purifying exhaust gas
JPH0578378B2 (en)
JPS6125644A (en) Monolithic catalyst for purifying waste gas
JP2001259423A (en) Catalyst for cleaning exhaust gas
JPS6031828A (en) Catalyst for purifying exhaust gas and its preparation
JPH10216514A (en) Catalyst for exhaust gas purification
JPH0554381B2 (en)
JPH0578379B2 (en)
JPH0331396Y2 (en)
JPH0578380B2 (en)
JP2823251B2 (en) Exhaust gas purifying catalyst and method for producing exhaust gas purifying catalyst
JPH0573463B2 (en)
JP2000246103A (en) Production of catalyst for cleaning exhaust gas
JPS60238152A (en) Monolithic catalyst for purifying exhaust gas
JPH0699076A (en) Catalyst with tandem metallic carrier
JPH0622674B2 (en) Engine exhaust gas purification catalyst