JPH0331396Y2 - - Google Patents

Info

Publication number
JPH0331396Y2
JPH0331396Y2 JP1983107283U JP10728383U JPH0331396Y2 JP H0331396 Y2 JPH0331396 Y2 JP H0331396Y2 JP 1983107283 U JP1983107283 U JP 1983107283U JP 10728383 U JP10728383 U JP 10728383U JP H0331396 Y2 JPH0331396 Y2 JP H0331396Y2
Authority
JP
Japan
Prior art keywords
palladium
layer
catalyst
rhodium
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983107283U
Other languages
Japanese (ja)
Other versions
JPS6017239U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10728383U priority Critical patent/JPS6017239U/en
Publication of JPS6017239U publication Critical patent/JPS6017239U/en
Application granted granted Critical
Publication of JPH0331396Y2 publication Critical patent/JPH0331396Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) 本考案は、自動車等の内燃機関から排出される
排気ガスの浄化用触媒に関するものである。 (従来技術) 従来より排気ガス浄化用触媒として種々のもの
が提案されており、例えばコージエライト等の無
機質担体基材上に活性アルミナ層を形成し、この
アルミナ層にロジウム(Rh)、パラジウム
(Pd)、白金(Pt)などの触媒金属の一種または
二種以上を担持せしめたものが知られている。 上記触媒金属のうち、Ptは活性、耐久性等の
特性が優れているためロジウムと組合せて最も良
く使用されるものであるが、価格が高いという欠
点があつた。このため、近年白金に比べて安価で
あり、酸化反応に高い活性を示すパラジウムを白
金の代りに使用したPd/Rh系の触媒を3元触媒
として用いる試みがなされている。 しかしながら、従来のこの種の触媒において
は、還元雰囲気でシンタリングし易い、被毒され
易い等のPdの持つ欠点を克服できず、Pt/Rh触
媒より活性が低いという問題点があつた。 (考案の目的) 本考案は上記従来技術の問題点を解決するため
のものであり、その目的とするところはPdの欠
点を克服し、Pt/Rh触媒と同等以上の活性を有
する安価なPd/Rh触媒を提供することにある。 (考案の構成) すなわち本考案の排気ガス浄化用触媒は、コー
ジエライト等からなる無機質担体基材の表面に活
性アルミナ層を上下2層に積層し、下層にはパラ
ジウムを、上層にはパラジウムとロジウムを、下
層のパラジウムと上層のパラジウムの重量比が
7/3ないし9/1で且つ上層のパラジウムとロ
ジウムの重量比が3/1ないし1/1となるよう
に担持せしめたことを特徴とする。 パラジウムは還元性雰囲気下においてシンタリ
ングし易く、このようなシンタリングが起ると活
性点が減少するため活性が低下する。また鉛、燐
等の排気ガス中に含まれている有害物質によつて
も被毒され易い。従つて上記欠点を解決するため
上下2層に積層した活性アルミナ層の下層(内部
層)には多く、上層(外部層)には少くなるよう
に分割してパラジウムを担持する。上層に担持さ
れたパラジウムは下層のものに比べてより多く排
気ガスの浄化に伴う高温にさらされ、また被毒さ
れる等のため触媒活性が低下するが、反面これに
より下層のパラジウムを防護するものとなるた
め、全体としては均一に担持するよりも触媒性能
を向上させることができる。 この場合上層と下層の分配比を最適に選択する
ことが重要である。上層に担持されたパラジウム
をPd(上)、下層に担持されたパラジウムをPd
(下)で表わすと、Pd(下)/Pd(上)(重量比)
は7/3ないし9/1である。 パラジウムは触媒担体1当り通常0.5gない
し3g担持する。 ロジウムは高温での耐久性および耐被毒性に優
れているため上層に担持する。ロジウムも白金と
同様高価なので使用量はなるべく少ない方が良
い。また、パラジウム(全体)に対する使用比率
もなるべく小さい方が良い。上層のパラジウムと
ロジウムの重量比が3/1ないし1/1〔パラジ
ウム(全体)とロジウムの重量比は10/1〕とな
るような量使用すれば、十分な触媒性能が得られ
る。それ故、ロジウムは通常触媒担体1当たり
0.05gないし0.3g担持する。 活性アルミナ層は通常は2層で充分であるが、
必要であれば更に多層に分割して設けてもよい。
活性アルミナの種類としては平均粒径10μ程度の
θ−またはγ−アルミナ等の通常この種の目的に
使用されるものを用いることができる。 活性アルミナ層の形成方法および触媒金属の担
持方法も通常の方法を用いることができる。 (実施例) 以下に本考案の一実施例を参考例および比較例
と共に述べる。なお本考案は下記実施例に限定さ
れるものではない。 参考例 1: アルミナ含有率10重量%の市販のアルミナゾル
70重量部、活性アルミナ粉末100重量部、水20重
量部をよく混合撹拌してアルミナスラリーとし
た。このアルミナスラリーにコージエライト質モ
ノリス担体基材を1分間浸漬して引き上げ、空気
流でセル内に残留したスラリーを吹き飛ばした
後、200℃で1時間乾燥後700℃で2時間焼成して
活性アルミナ層Aを形成した。層厚さは約40μm
であつた。次いで塩化パラジウム水溶液に1時間
浸漬した後、水素化ホウ素ナトリウム水溶液に浸
漬して還元し、パラジウムを担持した後80℃の湯
で洗つてナトリウムを洗い流した。更に上記と同
じ組成のアルミナスラリーを用いて同様の操作に
よりアルミナ層Aの上に貴金属を含有しないアル
ミナ層Bを形成した。次いで上記と同様の操作に
より、上記より低濃度の塩化パラジウム水溶液を
アルミナ層Bに含浸させ還元、湯洗した。次に塩
化ロジウム水溶液に1時間浸漬した後200℃で1
時間乾燥して参考例1の触媒1を得た。 参考例2および実施例1〜3 参考例1と同様の方法により、ただしアルミナ
層A(下層)およびアルミナ層B(上層)に担持し
たパラジウムの量のみを変えて参考例2の触媒2
および実施例1〜3の触媒1〜3を調製した。 第1図に本考案の排気ガス浄化用触媒1の斜視
図を示す。 第2図は上記触媒の一部拡大断面図であり、図
中2はコージエライト質担体基材、3はアルミナ
層A、4はアルミナ層Bを表わす。 比較例 1: 参考例1と同じ組成のアルミナスラリーを用い
て同じ条件でコージエライト質モノリス担体基材
を浸漬してアルミナ層を形成した。この時アルミ
ナ層の厚さを参考例1と同一にするために上記の
操作を2回繰り返した。これに参考例1と同様の
操作により塩化パラジウム水溶液を用いてPdを
担持し、次に塩化ロジウム水溶液を用いてRhを
担持して比較例1の触媒を得た。 比較例 2: 比較例1と同様の方法により、ただし塩化パラ
ジウム水溶液の代りにジニトロジアミノ白金水溶
液を用いて比較例2の触媒を調製した。 上記参考例1〜2、実施例1〜3および比較例
1〜2の触媒の触媒金属担持量を第1表に示す。
(Field of Industrial Application) The present invention relates to a catalyst for purifying exhaust gas emitted from internal combustion engines such as automobiles. (Prior art) Various catalysts have been proposed for exhaust gas purification. For example, an activated alumina layer is formed on an inorganic carrier base material such as cordierite, and rhodium (Rh) and palladium (Pd) are added to this alumina layer. ), platinum (Pt), and other catalyst metals are known. Among the above catalyst metals, Pt is most often used in combination with rhodium because it has excellent properties such as activity and durability, but it has the disadvantage of being expensive. Therefore, in recent years, attempts have been made to use Pd/Rh-based catalysts as three-way catalysts in which palladium, which is cheaper than platinum and exhibits high activity in oxidation reactions, is used instead of platinum. However, conventional catalysts of this type cannot overcome the disadvantages of Pd, such as being easily sintered and easily poisoned in a reducing atmosphere, and have had the problem of lower activity than Pt/Rh catalysts. (Purpose of the invention) The present invention is intended to solve the problems of the prior art described above, and its purpose is to overcome the drawbacks of Pd and to develop an inexpensive Pd catalyst that has an activity equal to or higher than that of Pt/Rh catalysts. /Rh catalyst. (Structure of the invention) In other words, the exhaust gas purification catalyst of the present invention has activated alumina layers laminated in two layers, upper and lower, on the surface of an inorganic carrier base material made of cordierite, etc., with palladium in the lower layer and palladium and rhodium in the upper layer. is supported such that the weight ratio of palladium in the lower layer to palladium in the upper layer is 7/3 to 9/1, and the weight ratio of palladium to rhodium in the upper layer is 3/1 to 1/1. . Palladium is easily sintered in a reducing atmosphere, and when such sintering occurs, the number of active sites decreases, resulting in a decrease in activity. They are also easily poisoned by harmful substances contained in exhaust gas, such as lead and phosphorus. Therefore, in order to solve the above-mentioned drawbacks, palladium is supported by dividing the active alumina layers stacked into two layers, with more palladium being supported in the lower layer (inner layer) and less palladium in the upper layer (outer layer). The palladium supported on the upper layer is exposed to higher temperatures during exhaust gas purification than the lower layer, and is poisoned, resulting in a decrease in catalytic activity, but on the other hand, this protects the palladium on the lower layer. Therefore, the catalyst performance can be improved as a whole compared to when the catalyst is uniformly supported. In this case, it is important to optimally select the distribution ratio between the upper layer and the lower layer. Palladium supported on the upper layer is Pd (top), palladium supported on the lower layer is Pd
(Bottom): Pd (bottom) / Pd (top) (weight ratio)
is 7/3 to 9/1. Palladium is usually supported in an amount of 0.5 to 3 g per catalyst carrier. Rhodium is supported in the upper layer because it has excellent durability and toxicity resistance at high temperatures. Like platinum, rhodium is expensive, so it is better to use as little as possible. Further, the ratio of use to palladium (total) is also preferably as small as possible. Sufficient catalytic performance can be obtained if the amount used is such that the weight ratio of palladium to rhodium in the upper layer is 3/1 to 1/1 [the weight ratio of palladium (total) to rhodium is 10/1]. Therefore, rhodium is usually
Carrying 0.05g to 0.3g. Two activated alumina layers are usually sufficient, but
If necessary, it may be further divided into multiple layers.
As the type of activated alumina, those normally used for this type of purpose, such as θ- or γ-alumina with an average particle size of about 10 μm, can be used. Conventional methods can be used for forming the activated alumina layer and supporting the catalyst metal. (Example) An example of the present invention will be described below along with a reference example and a comparative example. Note that the present invention is not limited to the following examples. Reference example 1: Commercially available alumina sol with alumina content of 10% by weight
70 parts by weight of activated alumina powder, 100 parts by weight of activated alumina powder, and 20 parts by weight of water were thoroughly mixed and stirred to obtain an alumina slurry. The cordierite monolith carrier base material was immersed in this alumina slurry for 1 minute and pulled up, the slurry remaining in the cell was blown off with an air stream, dried at 200°C for 1 hour, and then fired at 700°C for 2 hours to form an activated alumina layer. A was formed. Layer thickness is approximately 40μm
It was hot. Next, it was immersed in an aqueous palladium chloride solution for 1 hour, and then immersed in an aqueous sodium borohydride solution for reduction to support palladium, and then washed with hot water at 80°C to wash away the sodium. Further, an alumina layer B containing no noble metal was formed on the alumina layer A by the same operation using an alumina slurry having the same composition as above. Next, by the same operation as above, the alumina layer B was impregnated with a palladium chloride aqueous solution having a lower concentration than the above, reduced, and washed with hot water. Next, after soaking in rhodium chloride aqueous solution for 1 hour,
After drying for hours, catalyst 1 of Reference Example 1 was obtained. Reference Example 2 and Examples 1 to 3 Catalyst 2 of Reference Example 2 was prepared in the same manner as in Reference Example 1, except that only the amount of palladium supported on alumina layer A (lower layer) and alumina layer B (upper layer) was changed.
And catalysts 1 to 3 of Examples 1 to 3 were prepared. FIG. 1 shows a perspective view of an exhaust gas purifying catalyst 1 of the present invention. FIG. 2 is a partially enlarged sectional view of the above catalyst, in which 2 represents the cordierite carrier base material, 3 represents the alumina layer A, and 4 represents the alumina layer B. Comparative Example 1: Using an alumina slurry having the same composition as in Reference Example 1, a cordierite monolithic carrier base material was immersed under the same conditions to form an alumina layer. At this time, in order to make the thickness of the alumina layer the same as in Reference Example 1, the above operation was repeated twice. Pd was supported on this using an aqueous palladium chloride solution in the same manner as in Reference Example 1, and then Rh was supported using an aqueous rhodium chloride solution to obtain a catalyst of Comparative Example 1. Comparative Example 2: A catalyst of Comparative Example 2 was prepared in the same manner as in Comparative Example 1, but using a dinitrodiaminoplatinum aqueous solution instead of the palladium chloride aqueous solution. Table 1 shows the amount of catalyst metal supported in the catalysts of Reference Examples 1 and 2, Examples 1 and 3, and Comparative Examples 1 and 2.

【表】 ミナ層全体に触媒金属を均一に担持した

耐久試験: 参考例と実施例と比較例の触媒を触媒コンバー
タに装填してこれを6気筒2.8エンジンの排気
系に連設し、下記の条件により耐久試験を行つ
た。 〈試験条件〉 空燃比(A/F) 14.6 空間速度 6万hr-1 触媒床温度 700℃ 試験時間 300hr 浄化性能評価試験: 耐久試験終了後の触媒についてモデルガスを使
用し、下記の条件により浄化性能を評価した。 〈試験条件〉 モデルガス組成(容量%)CO;0.8%、NOx;
0.2% C3H6;0.08%,O2;0.8% H2;0.17%,H2O;10% CO2;10%,残部N2 空間速度 9万hr-1 触媒入口ガス温度 300℃ 結果を第2表に示す。
[Table] Catalytic metal was uniformly supported throughout the Mina layer.
Durability Test: The catalysts of Reference Example, Example, and Comparative Example were loaded into a catalytic converter, which was connected to the exhaust system of a 6-cylinder 2.8 engine, and a durability test was conducted under the following conditions. <Test conditions> Air-fuel ratio (A/F) 14.6 Space velocity 60,000 hr -1 Catalyst bed temperature 700°C Test time 300 hr Purification performance evaluation test: After the durability test, the catalyst was purified under the following conditions using model gas. Performance was evaluated. <Test conditions> Model gas composition (volume %) CO; 0.8%, NOx;
0.2% C 3 H 6 ; 0.08%, O 2 ; 0.8% H 2 ; 0.17%, H 2 O; 10% CO 2 ; 10%, balance N 2 Space velocity 90,000 hr -1 Catalyst inlet gas temperature 300°C Results are shown in Table 2.

【表】 参考例1〜2および実施例1〜3を比較すると
初期活性は表面のPd濃度すなわちアルミナ層B
のPd濃度が高い程良く、逆に耐久後の活性はあ
る程度内部すなわちアルミナ層AのPd濃度が高
い場合に良いこと、および実施例1〜3の触媒は
初期活性と耐久後の活性がほぼ同じであり、参考
例1〜2の触媒に比べて活性が安定していること
が判る。また参考例1と比較例1の触媒を比べる
と、初期および耐久後の活性共に参考例1の触媒
の方が良く、PdとRhの存在比に適当な点がある
ことがわかる。 更に実施例1〜3の触媒はいずれも較例1の触
媒よりも初期および耐久後共に活性が高く、
Pt/Rh系の比較例2の触媒とほぼ同等であり、
このことは同一量のPdおよびRhを用いても従来
の様に全体に均一に担持させるよりも本考案の様
に還元反応に高い特性を示すロジウムは上層にの
み担持し、酸化反応に高い活性を示すパラジウム
は下層により多く担持させた方が好ましい結果を
与えることを示している。Pdのアルミナ層Aお
よびアルミナ層Bへの分配比は総合特性を考慮し
て7/3〜9/1が最適であり、またアルミナ層
BのPdとRhの比は3/1〜1/1が最適であ
る。 (考案の効果) 上述のように本考案の排気ガス浄化用触媒は高
価な白金の代りにより安価なパラジウムを使用
し、ロジウムと組合せて上層と下層特に下層の活
性アルミナ層にパラジウムが多くなるように最適
に分配し且つ上層のパラジウムとロジウムの比を
最適に選択することにより、シンタリングし易く
被毒され易いというパラジウムの欠点を克服し、
総合特性において従来の白金/ロジウム系の触媒
と同等もしくはそれ以上の触媒性能を有するもの
となり、触媒の製造コストの低減に大きな効果を
奏する。
[Table] Comparing Reference Examples 1 to 2 and Examples 1 to 3, the initial activity is determined by the Pd concentration on the surface, that is, the alumina layer B.
The higher the Pd concentration is, the better; conversely, the activity after durability is better when the Pd concentration inside, that is, in the alumina layer A, is higher to some extent, and the catalysts of Examples 1 to 3 have almost the same initial activity and activity after durability. It can be seen that the activity is more stable than the catalysts of Reference Examples 1 and 2. Furthermore, when comparing the catalysts of Reference Example 1 and Comparative Example 1, it can be seen that the catalyst of Reference Example 1 has better activity both at the initial stage and after durability, and that the abundance ratio of Pd and Rh is appropriate. Furthermore, the catalysts of Examples 1 to 3 all had higher activity than the catalyst of Comparative Example 1 both at the initial stage and after durability.
Almost equivalent to the Pt/Rh-based catalyst of Comparative Example 2,
This means that even if the same amount of Pd and Rh is used, rhodium, which has high properties for reduction reactions, is supported only in the upper layer, and has high activity for oxidation reactions. This shows that more palladium supported in the lower layer gives more favorable results. The optimal distribution ratio of Pd to alumina layer A and alumina layer B is 7/3 to 9/1 considering the overall characteristics, and the ratio of Pd to Rh in alumina layer B is 3/1 to 1/1. is optimal. (Effect of the invention) As mentioned above, the exhaust gas purification catalyst of the present invention uses cheaper palladium instead of expensive platinum, and in combination with rhodium, the upper and lower layers, especially the lower activated alumina layer, have a large amount of palladium. By optimally distributing palladium and selecting the ratio of palladium and rhodium in the upper layer, we can overcome the disadvantages of palladium such as being easily sintered and easily poisoned.
In terms of overall characteristics, it has catalytic performance equivalent to or better than conventional platinum/rhodium-based catalysts, and is highly effective in reducing catalyst manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の排気ガス浄化用触媒の斜視
図、第2図は第1図の触媒の一部拡大断面図であ
る。 図中、1……排気ガス浄化用触媒、2……コー
ジエライト質担体基材、3……アルミナ層A、4
……アルミナ層B。
FIG. 1 is a perspective view of the exhaust gas purifying catalyst of the present invention, and FIG. 2 is a partially enlarged sectional view of the catalyst of FIG. 1. In the figure, 1... Exhaust gas purification catalyst, 2... Cordierite carrier base material, 3... Alumina layer A, 4
...Alumina layer B.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] コージエライト等からなる無機質担体基材の表
面に活性アルミナ層を上下2層に積層し、下層に
はパラジウムを、上層にはパラジウムとロジウム
を、下層のパラジウムと上層のパラジウムの重量
比が7/3ないし9/1で且つ上層のパラジウム
とロジウムの重量比が3/1ないし1/1となる
ように担持せしめたことを特徴とする排気ガス浄
化用触媒。
Activated alumina layers are laminated in two layers, upper and lower, on the surface of an inorganic carrier base material made of cordierite, etc., with palladium in the lower layer, palladium and rhodium in the upper layer, and a weight ratio of palladium in the lower layer to palladium in the upper layer is 7/3. An exhaust gas purifying catalyst characterized in that the weight ratio of palladium and rhodium in the upper layer is 3/1 to 1/1.
JP10728383U 1983-07-11 1983-07-11 Catalyst for exhaust gas purification Granted JPS6017239U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10728383U JPS6017239U (en) 1983-07-11 1983-07-11 Catalyst for exhaust gas purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10728383U JPS6017239U (en) 1983-07-11 1983-07-11 Catalyst for exhaust gas purification

Publications (2)

Publication Number Publication Date
JPS6017239U JPS6017239U (en) 1985-02-05
JPH0331396Y2 true JPH0331396Y2 (en) 1991-07-03

Family

ID=30250727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10728383U Granted JPS6017239U (en) 1983-07-11 1983-07-11 Catalyst for exhaust gas purification

Country Status (1)

Country Link
JP (1) JPS6017239U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5173180B2 (en) * 2006-10-30 2013-03-27 株式会社キャタラー Exhaust gas purification catalyst
JP5842656B2 (en) * 2012-02-14 2016-01-13 トヨタ自動車株式会社 Method for producing exhaust gas purifying catalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145381A (en) * 1974-05-14 1975-11-21
JPS5478389A (en) * 1977-12-06 1979-06-22 Mitsui Mining & Smelting Co Impregnating liquid for catalyst manufacture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537755Y2 (en) * 1974-05-17 1978-02-27

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145381A (en) * 1974-05-14 1975-11-21
JPS5478389A (en) * 1977-12-06 1979-06-22 Mitsui Mining & Smelting Co Impregnating liquid for catalyst manufacture

Also Published As

Publication number Publication date
JPS6017239U (en) 1985-02-05

Similar Documents

Publication Publication Date Title
JP4454855B2 (en) Exhaust gas catalyst comprising rhodium, zirconia and rare earth element oxide
JP4853291B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3145175B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3391878B2 (en) Exhaust gas purification catalyst
JP3503101B2 (en) Exhaust gas purification catalyst
JPH0760117A (en) Exhaust gas purifying catalyst
JPH03207445A (en) Multi-functional catalyst for conversion of contaminant containing ce and u as well as metal exhausted from internal combustion engine, and preparation of said catalyst
JPH09215922A (en) Catalyst for purifying exhaust gas
JPH11267504A (en) Catalyst for cleaning exhaust gas and exhaust gas cleaning system using it
JPH08131830A (en) Catalyst for purification of exhaust gas
JPS61242644A (en) Production of catalyst for purifying exhaust gas
JP3882627B2 (en) Exhaust gas purification catalyst
JPH0699069A (en) Catalyst for purification of exhaust gas
JPH08117600A (en) Catalyst for purifying exhaust gas and preparation of catalyst
JPH0331396Y2 (en)
JP3872153B2 (en) Exhaust gas purification catalyst
JP3335755B2 (en) Exhaust gas purification catalyst
JPS6031828A (en) Catalyst for purifying exhaust gas and its preparation
JPH03196841A (en) Catalyst for purification of exhaust gas
JPH05277370A (en) Catalyst for purification of exhaust gas from engine
JPS6178438A (en) Monolithic catalyst for purifying exhaust gas
JPH0520435Y2 (en)
JPH0957066A (en) Catalyst for purification of exhaust gas
JPH0522261Y2 (en)
JP3330154B2 (en) Exhaust gas purification catalyst