JPH03196841A - Catalyst for purification of exhaust gas - Google Patents

Catalyst for purification of exhaust gas

Info

Publication number
JPH03196841A
JPH03196841A JP1337061A JP33706189A JPH03196841A JP H03196841 A JPH03196841 A JP H03196841A JP 1337061 A JP1337061 A JP 1337061A JP 33706189 A JP33706189 A JP 33706189A JP H03196841 A JPH03196841 A JP H03196841A
Authority
JP
Japan
Prior art keywords
concentration
oxide
layer
mol
cerium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1337061A
Other languages
Japanese (ja)
Inventor
Shigeo Akiyama
秋山 重雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP1337061A priority Critical patent/JPH03196841A/en
Publication of JPH03196841A publication Critical patent/JPH03196841A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To obtain a catalyst for purification of exhaust gas having satisfactory purifying performance by forming alumina carrier layers and cerium oxide- zirconium oxide promoter layers on the base material of a columnar monolithic catalyst carrier having many pores extending in the axial direction and further forming a rhodium layer at the downstream side. CONSTITUTION:An alumina layer stabilized with the oxide of a rare earth element is formed on a columnar monolithic catalyst carrier having many pores extending in the axial direction. A layer consisting of <=0.5mol/l, in total, of <=0.1mol/l cerium oxide and zirconium oxide and a layer consisting of <=0.5 mol/l, in total, of 0.1-0.3mol/l cerium oxide and zirconium oxide are then formed at the upper stream side and downstream side, respectively. A palladium layer, a similar alumina layer and a layer consisting of <=0.5mol/l, in total, of 0.1-0.3mol/l cerium oxide and zirconium oxide are further formed and a rhodium layer is formed only at the downstream side. The resulting catalyst contains separate palladium and rhodium layers and has superior activity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、排気ガス浄化用触媒に関する。更し;′詳し
くは、浄化性能を向」二せしめた排気ガス浄化用モノリ
ス触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a catalyst for purifying exhaust gas. More specifically, the present invention relates to a monolithic catalyst for exhaust gas purification that has improved purification performance.

〔従来の技術〕[Conventional technology]

内燃機関から排出される、有毒成分を含有するガスを浄
化する浄化触媒、特に自動車の排気ガス浄化用モノリス
触媒に対しては、浄化性能、耐久性、コスト面などにお
ける要求が厳しくなりつ一つある。
Purification catalysts that purify gas containing toxic components discharged from internal combustion engines, especially monolithic catalysts for purifying automobile exhaust gas, are becoming increasingly demanding in terms of purification performance, durability, cost, etc. be.

従来用いられている3元系モノリス触媒は、希土類元素
酸化物によって安定化されたアルミナ−Lに、助触媒成
分であるセリウム(Ce )などの酸化物と触媒成分で
あるロジウム(Rh)と白金(Pt)とを担持させたも
のである。
Conventionally used ternary monolith catalysts consist of alumina-L stabilized by rare earth element oxides, oxides such as cerium (Ce) as co-catalyst components, and rhodium (Rh) and platinum as catalyst components. (Pt).

助触媒である酸化セリウムは、酸素の貯蔵・放出を行っ
て理論空燃比からはずれたときの浄化性能の低下を軽減
する。しかしながら、酸化セリウムは600°C以−1
−の高温においてはシンタリングを起こし易く、その上
に担持されたRhなどの触媒成分の粒成長をもたらし、
触媒活性を低下させる。
Cerium oxide, which is a cocatalyst, stores and releases oxygen to reduce the decrease in purification performance when the air-fuel ratio deviates from the stoichiometric air-fuel ratio. However, cerium oxide is
- At high temperatures, sintering tends to occur, leading to grain growth of catalyst components such as Rh supported on it,
Decrease catalyst activity.

そこで、このような粒成長を防止するために、酸化セリ
ウムと共に、酸化ジルコニウムを共存させることが行わ
れている。しかるに、この場合においても、酸素の貯蔵
・放出能を有する酸化セリウムを高濃度で用いると暖機
性能が低下し、エンジン始動時の浄化特性が悪化すると
いう問題がみられる。
Therefore, in order to prevent such grain growth, zirconium oxide is used together with cerium oxide. However, even in this case, if cerium oxide, which has the ability to store and release oxygen, is used in a high concentration, there is a problem in that the warm-up performance deteriorates and the purification characteristics at engine startup deteriorate.

また、触媒成分として用いられているRhとptとは、
RhがNOxを、 ptがHC−Coをそれぞれ浄化す
る作用を有している。この触媒系は、浄化性能にはすぐ
れているが、+((、CO浄化用としてより廉価なPd
を用いたRh/Pd/Pt系あるいはRh/Pd系の触
媒の実用化が期待されている。しかるに、 PrJを用
いた場合の最大の問題点は、600℃以上の高温におい
て、 PdがRhと相互に反応し、浄化性能が低下して
しまうところにある。
In addition, Rh and pt used as catalyst components are:
Rh has the effect of purifying NOx, and pt has the effect of purifying HC-Co. Although this catalyst system has excellent purification performance, +((, Pd, which is cheaper for CO purification)
It is expected that Rh/Pd/Pt-based or Rh/Pd-based catalysts will be put to practical use. However, the biggest problem when using PrJ is that at high temperatures of 600° C. or higher, Pd reacts with Rh and the purification performance deteriorates.

更に、自動車用モノリス触媒は、排気ガスの流れに対し
上流側部分が特に被毒され易く、高価な貴金属が無駄と
なることがある。
Furthermore, monolithic automotive catalysts are particularly susceptible to poisoning in the upstream portion of the exhaust gas flow, and expensive precious metals may be wasted.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、柱状をなし、軸方向に延びる多数の細
孔を有するモノリス触媒担体基材上に、アルミナ担体層
および酸化セリウム−酸化ジルコニウム助触媒層を設け
た触媒であって、触媒をRh/Pd系で形成せしめても
有効に作用する排気ガス浄化用触媒を提供することにあ
る。
The object of the present invention is to provide a catalyst in which an alumina carrier layer and a cerium oxide-zirconium oxide promoter layer are provided on a monolithic catalyst carrier base material having a columnar shape and having a large number of pores extending in the axial direction. It is an object of the present invention to provide an exhaust gas purifying catalyst that functions effectively even when formed from a Rh/Pd system.

〔課題を解決するための手段〕[Means to solve the problem]

かかる本発明の目的を達成せしめる排気ガス浄化用触媒
は、柱状をなし、軸方向に延びる多数の細孔を有するモ
ノリス触媒担体基材上に、次の各層を形成せしめてなる
The exhaust gas purifying catalyst that achieves the object of the present invention is formed by forming the following layers on a monolithic catalyst carrier base material having a columnar shape and having a large number of pores extending in the axial direction.

(1)希土類元素酸化物によって安定化されたアルミナ
層 (2)排気ガス流れ方向の上流側部分に0.1モル/l
以下の濃度の、またその下流側部分に0.1〜0.3モ
ル/lの濃度の酸化セリウムと該酸化セリウム濃度との
合計が上流側、下流側各部分で0.5モル/p以下とな
る濃度の酸化ジルコニウムとからなる層 (3)パラジウム層 (4)希土類元素酸化物によって安定化されたアルミナ
層 (5)0.1〜0.3モル/lの濃度の酸化セリウムと
該酸化セリウム濃度との合計が0.5モル/l、以下と
なるa度の酸化ジルコニウムとからなる層(6)前記下
流側部分にのみ形成させたロジウム層 担体として用いられる安定化アルミナは、約50〜30
0m”1gの比表面積を有するγ−アルミナ、δ−アル
ミナ、θ−アルミナなどの少なくとも一種、好ましくは
γ−アルミナの粉末を硝酸ランタンなどの水溶液中に浸
漬し、アルミナとの合計量に対してランタン量として約
0.1〜5モル%の硝酸ランタンを含浸させた後焼成し
、一般に平均粒径約1〜5μmの微粉末に粉砕した形で
用いられる。
(1) Alumina layer stabilized by rare earth element oxide (2) 0.1 mol/l in the upstream part in the exhaust gas flow direction
The total of cerium oxide with the following concentration and the concentration of 0.1 to 0.3 mol/l in the downstream part and the cerium oxide concentration is 0.5 mol/p or less in each part on the upstream and downstream sides. (3) palladium layer (4) alumina layer stabilized by rare earth element oxide (5) cerium oxide with a concentration of 0.1 to 0.3 mol/l and the oxide (6) Rhodium layer formed only in the downstream portion The stabilized alumina used as a carrier is about 50% ~30
A powder of at least one of γ-alumina, δ-alumina, θ-alumina, etc., preferably γ-alumina, having a specific surface area of 0m"1g is immersed in an aqueous solution of lanthanum nitrate or the like, and It is impregnated with about 0.1 to 5 mol % of lanthanum nitrate and then calcined, and is generally used in the form of a fine powder with an average particle size of about 1 to 5 μm.

かかる安定化処理により、高温、特に約900℃以上の
雰囲気中で比表面積の小さなα−アルミナに変態するの
を防止すると共に、そこに担持された触媒成分の浄化性
能の低下の防止を図っている。
This stabilization treatment prevents transformation into α-alumina with a small specific surface area in high-temperature environments, particularly at temperatures above about 900°C, and also prevents deterioration in the purification performance of the catalyst component supported thereon. There is.

担体基材上への安定化アルミナ層の形成は、通常のウォ
ッシュコートスラリーを用いる方法によって行われる。
The formation of the stabilized alumina layer on the carrier substrate is carried out by conventional washcoat slurry methods.

かかる安定化アルミナ担体層」二へは、酸化セリウムお
よび酸化ジルコニウムとからなる助触媒層が、一般にこ
の順序で形成される。
A cocatalyst layer consisting of cerium oxide and zirconium oxide is generally formed in this order on such a stabilized alumina support layer.

酸化セリウムは、上流側部分に0.1モル/l以下、好
ましくは0.05〜0.08モル/lで、また下流側部
分には0.1〜0.3モル/l、好ましくは0.12〜
0.25モル/lの濃度分布でそれぞれ担持されている
Cerium oxide is added in an amount of 0.1 mol/l or less, preferably 0.05 to 0.08 mol/l, in the upstream part, and 0.1 to 0.3 mol/l, preferably 0 in the downstream part. .12~
Each is supported at a concentration distribution of 0.25 mol/l.

酸化セリウム担持量に関しては、」二流側部分を0.1
モル/l以上とすると暖機性能が低下するため浄化効率
が悪化するようになり、下流側部分では0.1モル/l
以下では02ストレージ能が不十分で浄化効率が悪化し
、一方0.3モル/l以上では活性アルミナの比表面積
低下を招いて、触媒成分である貴金属担持効率が低下す
る。
Regarding the amount of cerium oxide supported, the second flow side part is 0.1
If it exceeds 0.1 mol/l, the warm-up performance will deteriorate and the purification efficiency will deteriorate.
If it is less than 0.3 mol/l, the purification efficiency will be deteriorated due to insufficient 02 storage capacity, while if it is more than 0.3 mol/l, the specific surface area of the activated alumina will decrease, and the efficiency of supporting the precious metal as a catalyst component will decrease.

触媒支持体の上流側部分(端部から約5〜10%の長さ
の部分)および下流側部分への異なる濃度分布での酸化
セリウムの担持は、硝酸セリウム、炭酸セリウムなどの
焼成によって酸化セリウムを与える化合物の水溶液を用
い、より低濃度の水溶液中にアルミナコート触媒支持体
を浸漬、乾燥した後、今度は上流側部分に相当する長さ
の部分を残してより高濃度の水溶液中に浸漬、乾燥し、
約300〜800℃で約10分間〜10時間焼成するこ
とにより、上流側部分に0.1モル/l以下の、またそ
の下流側部分に0.1〜0.3モル/lの酸化セリウム
を担持させることによって行われる。
Cerium oxide can be supported at different concentration distributions on the upstream portion (approximately 5 to 10% of the length from the end) and downstream portion of the catalyst support by calcination of cerium nitrate, cerium carbonate, etc. Using an aqueous solution of a compound that gives , dry,
By firing at about 300 to 800°C for about 10 minutes to 10 hours, 0.1 mol/l or less of cerium oxide is added to the upstream part and 0.1 to 0.3 mol/l of cerium oxide to the downstream part. This is done by making it carry.

また、酸化ジルコニウムの担持は、硝酸ジルコニウム、
炭酸ジルコニウムなどの焼成によって酸化ジルコニウム
を与える化合物の水溶液を用い、酸化セリウムを部分的
に異なる濃度で担持させた担体をこの水溶液中に一様に
浸漬、乾燥し、約300〜800℃で約10分〜10時
間焼成することによって行われ、その担持量は上記酸化
セリウム濃度との合計が上流側、下流側の各部分で0.
5モル/l以下の濃度、一般には各部分で同一濃度とな
るように選択される。
In addition, zirconium oxide is supported by zirconium nitrate,
Using an aqueous solution of a compound such as zirconium carbonate that yields zirconium oxide by firing, a carrier partially supported with cerium oxide at different concentrations is uniformly immersed in this aqueous solution, dried, and heated at about 300 to 800°C for about 10 minutes. This is carried out by firing for 10 minutes to 10 hours, and the amount supported is such that the total amount of cerium oxide supported is 0.000% on the upstream and downstream sides.
The concentration is selected to be less than or equal to 5 mol/l, generally the same concentration in each part.

次いで、この酸化セリウムおよび酸化ジルコニウム担持
担体にパラジウム触媒を担持させることが行われるが、
これの担持についても同様の手法が適用される。即ち、
ジニトロジアンミンパラジウム、硝酸パラジウム、塩化
パラジウムなどの焼成によってパラジウムを与える化合
物の水溶液中への浸漬、乾燥および焼成(約150〜4
00℃、約10分〜3時間)により、0.04〜2.0
g/lの担持量でパラジウムを担持させる。
Next, a palladium catalyst is supported on this cerium oxide and zirconium oxide supported carrier,
A similar method is applied to support this. That is,
Immersion in an aqueous solution of a compound that gives palladium by calcination, such as dinitrodiammine palladium, palladium nitrate, palladium chloride, etc., drying and calcination (approximately 150 to 4
0.04 to 2.0 depending on
Palladium is supported in an amount of g/l.

この後、更に0.1〜0.3モル/lの濃度の酸化セリ
ウムとこの酸化セリウム濃度との合計が0.5モル/l
以下となる濃度の酸化ジルコニウムとからなる層の形成
が、前記と同様の手法により、パラジウム触媒担持面上
に一様に行われる。
After this, cerium oxide with a concentration of 0.1 to 0.3 mol/l is added, and the total of this cerium oxide concentration is 0.5 mol/l.
A layer consisting of zirconium oxide having the following concentration is uniformly formed on the palladium catalyst supporting surface by the same method as described above.

酸化セリウムと酸化ジルコニウムとが共に担持される各
層にあっては、酸化ジルコニウムに対して酸化セリウム
が約1〜3の濃度比で一般に用いられる。
In each layer in which both cerium oxide and zirconium oxide are supported, a concentration ratio of cerium oxide to zirconium oxide of about 1 to 3 is generally used.

最後に、塩化ロジウムなどの焼成によってロジウムを与
える化合物の水溶液中への浸漬が、前記下流側の部分に
ついてのみ行われ、乾燥および焼成(約150〜400
℃、約10分〜3時間)によって、そこに0.004〜
1.0g/ Qの担持量でロジウムを担持させ、目的と
する触媒が調製される。
Finally, immersion in an aqueous solution of a compound that gives rhodium by calcination, such as rhodium chloride, is carried out only on the downstream part, followed by drying and calcination (approximately 150-400 m
℃, about 10 minutes to 3 hours), there 0.004 to
The desired catalyst is prepared by supporting rhodium in an amount of 1.0 g/Q.

なお、触媒であるパラジウムおよびロジウムの上記担持
量については、これ以下では触媒の浄化性能が不十分と
なり、一方これより多く用いても、これ以上の浄化性能
が期待できず、高価な貴金属によるコスト増を招くばか
りではなく、これらの貴金属が単独であるいは相互に反
応し、浄化効率をかえって低下させるようになる。
Regarding the supported amounts of palladium and rhodium, which are catalysts, if the supported amount is less than this, the purification performance of the catalyst will be insufficient.On the other hand, even if more than this is used, no further purification performance can be expected, and the cost of expensive precious metals will increase. In addition to this, these precious metals may react with each other, either alone or with each other, resulting in a reduction in purification efficiency.

〔発明の効果〕〔Effect of the invention〕

本発明に係る排気ガス浄化用触媒は、次のような特徴を
有している。
The exhaust gas purifying catalyst according to the present invention has the following characteristics.

(1)パラジウム触媒とロジウム触媒とを互いに分離さ
せて担持しているので、パラジウム触媒を用いたときに
一般に問題となるロジウムとの相互作用による浄化性能
の低下のおそれがない。
(1) Since the palladium catalyst and the rhodium catalyst are supported separately from each other, there is no risk of deterioration in purification performance due to interaction with rhodium, which is generally a problem when using a palladium catalyst.

(2)被毒の影響を最も受ける上流側にロジウムを担持
しておらず、高価なロジウムの使用量を少なくすること
ができる。
(2) Rhodium is not supported on the upstream side, which is most affected by poisoning, and the amount of expensive rhodium used can be reduced.

(3)一体性触媒担体を用いると、下流側に比べ上流側
の温度が低くなるため、エンジン始動時など内燃機関温
度の低いときに浄化効率が悪化するが、本発明の触媒に
あっては、上流側の酸化セリウム濃度、特にその下層側
の酸化セリウム濃度を低く抑えているため、暖機特性も
向上している。
(3) When a monolithic catalyst carrier is used, the temperature on the upstream side is lower than that on the downstream side, so the purification efficiency deteriorates when the internal combustion engine temperature is low, such as when starting the engine. However, with the catalyst of the present invention, Since the cerium oxide concentration on the upstream side, especially the cerium oxide concentration on the lower layer side, is kept low, the warm-up characteristics are also improved.

(4)後記50%浄化温度の結果に示されるように。(4) As shown in the results of 50% purification temperature below.

耐久試験後においても、すぐれた触媒活性を保持してい
る。
Even after the durability test, it maintains excellent catalytic activity.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する。 Next, the present invention will be explained with reference to examples.

実施例 比表面積175+++”/gのγ−アルミナ粉末に、硝
酸ランタンの水溶液を、アルミナ99モル%に対して1
モル%のランタン量となるように含浸させ、乾燥させた
後、600℃、5時間および880℃、3時間の焼成を
順次行い、これを粉砕して平均粒径2μm以下の安定化
アルミナ微粉末を得た。
Example: To γ-alumina powder with a specific surface area of 175+++”/g, an aqueous solution of lanthanum nitrate was added at a concentration of 1% to 99 mol% of alumina.
After impregnating the lanthanum with a mol% amount of lanthanum and drying, sequentially calcining at 600°C for 5 hours and 880°C for 3 hours, and pulverizing it to obtain stabilized alumina fine powder with an average particle size of 2 μm or less. I got it.

このようにして得られた安定化アルミナ微粉末100重
量部、市販の硝酸アルミニウム水溶液25重厘部、12
N硝酸2重量部および水400重量部を粉砕しながら混
合して得られたウォッシュコートスラリー中に、容量0
.8 Q、セル密度400セル/平方インチのコーディ
エライト製一体性担体を浸漬した後、圧縮空気で過剰の
スラリーを吹き去り、乾燥してから700℃で1時間焼
成し、約15μ■の膜厚のアルミナコートを一体性担体
上に形成させた(コート量165g/Ω)、。
100 parts by weight of the thus obtained stabilized alumina fine powder, 25 parts by weight of a commercially available aluminum nitrate aqueous solution, 12 parts by weight
In the wash coat slurry obtained by mixing 2 parts by weight of N nitric acid and 400 parts by weight of water while grinding, a volume of 0
.. 8 Q. After soaking a monolithic cordierite support with a cell density of 400 cells/in2, the excess slurry was blown off with compressed air, dried, and fired at 700°C for 1 hour to form a film of approximately 15 μι. A thick alumina coat was formed on the monolithic support (coat weight 165 g/Ω).

このアルミナコート一体性担体を、 1M硝酸セリウム
水溶液中に浸漬し、乾燥した後、今度は1.7阿硝酸セ
リウム水溶液中に上記一体性担体(長さ122mm)を
10mmの長さの部分を残して浸漬、乾燥し、最後に0
.88M硝酸ジルコニウム水溶液中に全体を浸漬、乾燥
し、600℃で3時間焼成して、1oIl11の長さの
部分は0.06モル/lの濃度で、また他の部分は0.
12モル/lの濃度でそれぞれ酸化セリウムを担持させ
、更に0.05モル/lの濃度で酸化ジルコニウムを全
体に担持させた。
This alumina-coated monolithic carrier was immersed in a 1M cerium nitrate aqueous solution and dried, and then the monolithic carrier (length 122 mm) was soaked in a 1.7 cerium nitrate aqueous solution, leaving a 10 mm length portion. soak, dry, and finally
.. The entire body was immersed in an 88M aqueous zirconium nitrate solution, dried, and fired at 600°C for 3 hours to give a concentration of 0.06 mol/l in the length of 1oIl11, and 0.06 mol/l in other parts.
Cerium oxide was supported on each at a concentration of 12 mol/l, and zirconium oxide was further supported on the whole at a concentration of 0.05 mol/l.

次いで、この酸化セリウムおよび酸化ジルコニウム担持
担体を9mMジニトロジアンミンパラジウムの硝酸酸性
水溶液中に浸漬し、乾燥後、200℃で1時間焼成して
、担体上に1.5g/ρの濃度でパラジウムを担持させ
た。
Next, this support carrying cerium oxide and zirconium oxide was immersed in an acidic nitric acid aqueous solution of 9mM dinitrodiammine palladium, dried, and then calcined at 200°C for 1 hour to support palladium at a concentration of 1.5 g/ρ on the support. I let it happen.

このパラジウム触媒上に、前記と同様にして膜厚約15
μmのアルミナコートをウォッシュコートスラリーを用
いる方法によって形成させた後、1.7阿硝酸セリウム
水溶液中への浸漬、乾燥、0.88M硝酸ジルコニウム
水溶液中への浸漬、乾燥および600℃、3時間の焼成
を順次行い、濃度0.12モル/aの酸化セリウムおよ
び濃度O,OSモル/Ωの酸化ジルコニウムをそれぞれ
担持させた。
On this palladium catalyst, a film with a thickness of about 15 cm was applied in the same manner as above.
After forming an alumina coat of μm by a method using wash coat slurry, it was immersed in a 1.7 cerium nitrate aqueous solution, dried, immersed in a 0.88 M zirconium nitrate aqueous solution, dried, and heated at 600°C for 3 hours. Firing was performed sequentially to support cerium oxide at a concentration of 0.12 mol/a and zirconium oxide at a concentration of O, OS mol/Ω.

最後に、 2mM塩化ロジウム水溶液中に、前記10m
mの長さの部分を残して浸漬、乾燥し、200℃で1時
間焼成して、ロジウムを0.27g/ Qの濃度で担持
させた不均一系触媒を得た。
Finally, in a 2mM rhodium chloride aqueous solution, the 10m
The sample was immersed and dried, leaving a length of m, and then calcined at 200°C for 1 hour to obtain a heterogeneous catalyst on which rhodium was supported at a concentration of 0.27 g/Q.

比較例1 コーディエライト製一体性担体の内表面に、アルミナを
主成分とし、酸化セリウムを0.12モル/l、白金を
1.5g/l、ロジウムを0.3g/ Qの濃度で含有
する膜厚約25μ園のウォッシュコート層(コート量1
40gへ〇を設けた不均一系触媒を調製した。
Comparative Example 1 The inner surface of an integral support made of cordierite contains alumina as the main component, cerium oxide at a concentration of 0.12 mol/l, platinum at 1.5 g/l, and rhodium at a concentration of 0.3 g/Q. Wash coat layer with a film thickness of approximately 25 μm (coat amount 1
A heterogeneous catalyst was prepared in which 40g was marked with 0.

比較例2 比較例1において、白金の代わりに、同濃度のパラジウ
ムを担持させた不均一系触媒を!Ill製した。
Comparative Example 2 In Comparative Example 1, instead of platinum, a heterogeneous catalyst supporting palladium at the same concentration was used! Made by Ill.

以上の実施例および各比較例で得られた不均一系または
均一系触媒について、次のような測定を行った。
The following measurements were performed on the heterogeneous or homogeneous catalysts obtained in the above Examples and Comparative Examples.

浄化率: 各触媒をそれぞれエンジンの排気系に装着し、エンジン
始動時より、触媒入口温度を測定しながら、HC,C0
1NOxの各浄化率(ガスクロマトグラフィーによる:
単位幻を測定した。得られた結果は。
Purification rate: Each catalyst is installed in the exhaust system of the engine, and from the time the engine starts, the catalyst inlet temperature is measured and HC, CO
Each purification rate of 1NOx (by gas chromatography:
The unit illusion was measured. The results obtained are:

次の表1に示される。It is shown in Table 1 below.

表1 Co     28      10       9
NOx    31      13       1
2300℃  HC59403I C0724233 NOx    71      50       3
g350℃  HC988583 CO96838O NOx    90       80       
  6950%浄化温度: 各触媒を、それぞれ800℃、0□濃度錦のエンジン排
気ガス中で20時間劣化させた後、ラボ用反応装置に取
り付け、0.7%C010,23%H2,0,65%0
2.1600ppm C3H,、1200pp+w N
Ox、 10%CO,,10%H,0および残りN2よ
りなるガスを5℃/分の昇温速度で昇温しながら、触媒
成分との接触時間に係る空間速度(F/V)100,0
00で触媒を取り付けた反応装置中に導入し、そのとき
のHC,Co、NOxの浄化率を各温度で測定した。次
の表2には、これらの各成分が50%浄化される温度(
単位℃)として示した。
Table 1 Co 28 10 9
NOx 31 13 1
2300℃ HC59403I C0724233 NOx 71 50 3
g350℃ HC988583 CO96838O NOx 90 80
6950% purification temperature: After each catalyst was aged at 800°C for 20 hours in engine exhaust gas with a concentration of 0□, it was installed in a laboratory reactor and 0.7% CO10, 23% H2, 0,65 %0
2.1600ppm C3H, 1200pp+w N
While heating a gas consisting of Ox, 10% CO, 10% H, 0 and the remainder N2 at a heating rate of 5°C/min, the space velocity (F/V) 100, 0
00 into a reactor equipped with a catalyst, and the purification rates of HC, Co, and NOx at that time were measured at each temperature. Table 2 below shows the temperature at which each of these components is purified by 50% (
Unit: °C).

ラ1間友メー HC O Ox 表2 失胤杵劇柑↓ 294  352 290  320 286  322 ルm 56 24 28La 1 friend mail H.C. O Ox Table 2 Loss of money ↓ 294 352 290 320 286 322 le m 56 24 28

Claims (1)

【特許請求の範囲】 1、柱状をなし、軸方向に延びる多数の細孔を有するモ
ノリス触媒担体基材上に、次の各層を形成せしめてなる
排気ガス浄化用触媒。 (1)希土類元素酸化物によって安定化されたアルミナ
層 (2)排気ガス流れ方向の上流側部分に0.1モル/l
以下の濃度の、またその下流側部分に0.1〜0.3モ
ル/lの濃度の酸化セリウムと該酸化セリウム濃度との
合計が上流側、下流側各部分で0.5モル/l以下とな
る濃度の酸化ジルコニウムとからなる層 (3)パラジウム層 (4)希土類元素酸化物によって安定化されたアルミナ
層 (5)0.1〜0.3モル/lの濃度の酸化セリウムと
該酸化セリウム濃度との合計が0.5モル/l以下とな
る濃度の酸化ジルコニウムとからなる層 (6)前記下流側部分にのみ形成させたロジウム層
[Scope of Claims] 1. An exhaust gas purifying catalyst comprising the following layers formed on a monolithic catalyst carrier base material having a columnar shape and having a large number of pores extending in the axial direction. (1) Alumina layer stabilized by rare earth element oxide (2) 0.1 mol/l in the upstream part in the exhaust gas flow direction
The total of cerium oxide with the following concentration and the concentration of 0.1 to 0.3 mol/l in the downstream part and the cerium oxide concentration is 0.5 mol/l or less in each part on the upstream and downstream sides. (3) palladium layer (4) alumina layer stabilized by rare earth element oxide (5) cerium oxide with a concentration of 0.1 to 0.3 mol/l and the oxide A layer consisting of zirconium oxide at a concentration such that the total concentration with the cerium concentration is 0.5 mol/l or less (6) Rhodium layer formed only in the downstream part
JP1337061A 1989-12-26 1989-12-26 Catalyst for purification of exhaust gas Pending JPH03196841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337061A JPH03196841A (en) 1989-12-26 1989-12-26 Catalyst for purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337061A JPH03196841A (en) 1989-12-26 1989-12-26 Catalyst for purification of exhaust gas

Publications (1)

Publication Number Publication Date
JPH03196841A true JPH03196841A (en) 1991-08-28

Family

ID=18305063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337061A Pending JPH03196841A (en) 1989-12-26 1989-12-26 Catalyst for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPH03196841A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702675A (en) * 1994-12-16 1997-12-30 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases and process for producing the same
WO1999000177A1 (en) * 1997-06-26 1999-01-07 Johnson Matthey Public Limited Company Catalytic converter for a lean burn internal combustion engine
US5883037A (en) * 1994-05-27 1999-03-16 Rhone-Poulenc Chimie Thermally stable/highly reducible catalyst compositions comprising alumina and the oxides of cerium and zirconium
EP1674148A2 (en) 2004-12-27 2006-06-28 Cataler Corporation Exhaust gas purifying catalyst
JP2009101360A (en) * 1995-12-21 2009-05-14 Basf Catalysts Llc Engine exhaust treatment apparatus and method of use
US8071502B2 (en) 2005-05-24 2011-12-06 Cataler Corporation Exhaust gas purifying catalyst

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883037A (en) * 1994-05-27 1999-03-16 Rhone-Poulenc Chimie Thermally stable/highly reducible catalyst compositions comprising alumina and the oxides of cerium and zirconium
US5702675A (en) * 1994-12-16 1997-12-30 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases and process for producing the same
JP2009101360A (en) * 1995-12-21 2009-05-14 Basf Catalysts Llc Engine exhaust treatment apparatus and method of use
WO1999000177A1 (en) * 1997-06-26 1999-01-07 Johnson Matthey Public Limited Company Catalytic converter for a lean burn internal combustion engine
US6413483B1 (en) 1997-06-26 2002-07-02 Johnson Matthey Public Limited Company Catalytic converter for a lean burn internal combustion engine
EP1674148A2 (en) 2004-12-27 2006-06-28 Cataler Corporation Exhaust gas purifying catalyst
US7846863B2 (en) 2004-12-27 2010-12-07 Cataler Corporation Exhaust gas purifying catalyst
US8071502B2 (en) 2005-05-24 2011-12-06 Cataler Corporation Exhaust gas purifying catalyst

Similar Documents

Publication Publication Date Title
JP3498453B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2979809B2 (en) Exhaust gas purification catalyst and method for producing the same
JP5910833B2 (en) Exhaust gas purification catalyst
KR101059807B1 (en) Exhaust gas purification catalyst
JPS6377543A (en) Catalyst for purifying exhaust gas
JPH10286462A (en) Catalyst of purifying exhaust gas
JP3216858B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3882627B2 (en) Exhaust gas purification catalyst
JPH0547263B2 (en)
JPH09313938A (en) Catalyst for cleaning exhaust gas
JP3430823B2 (en) Exhaust gas purification catalyst
JPH03196841A (en) Catalyst for purification of exhaust gas
JPH09248462A (en) Exhaust gas-purifying catalyst
JP3624277B2 (en) Exhaust gas purification catalyst
JP5328133B2 (en) Exhaust gas purification catalyst
JP4382180B2 (en) Exhaust gas purification catalyst
JPH10165817A (en) Catalyst for cleaning of exhaust gas
JP3299286B2 (en) Exhaust gas purification catalyst
JPH10216514A (en) Catalyst for exhaust gas purification
JP3272015B2 (en) Exhaust gas purification catalyst
JPWO2002055194A1 (en) Nitrogen oxide purification catalyst
JP2786933B2 (en) Exhaust gas purification catalyst
JPH05237384A (en) Catalyst for purifying exhaust gas
JPS61209045A (en) Catalyst for purifying exhaust gas
JPH05277370A (en) Catalyst for purification of exhaust gas from engine