JPH05277370A - Catalyst for purification of exhaust gas from engine - Google Patents
Catalyst for purification of exhaust gas from engineInfo
- Publication number
- JPH05277370A JPH05277370A JP4105703A JP10570392A JPH05277370A JP H05277370 A JPH05277370 A JP H05277370A JP 4105703 A JP4105703 A JP 4105703A JP 10570392 A JP10570392 A JP 10570392A JP H05277370 A JPH05277370 A JP H05277370A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- catalyst layer
- layer
- exhaust gas
- noble metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 225
- 238000000746 purification Methods 0.000 title claims description 22
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 28
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 13
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 10
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 36
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 31
- 239000010948 rhodium Substances 0.000 claims description 20
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 6
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 6
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 5
- 229910003445 palladium oxide Inorganic materials 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052760 oxygen Inorganic materials 0.000 abstract description 5
- 239000001301 oxygen Substances 0.000 abstract description 5
- 238000005245 sintering Methods 0.000 abstract description 4
- 238000003860 storage Methods 0.000 abstract description 4
- 229910052878 cordierite Inorganic materials 0.000 abstract description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 abstract description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 abstract 3
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 abstract 3
- 238000010030 laminating Methods 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 27
- 239000002002 slurry Substances 0.000 description 21
- 239000000843 powder Substances 0.000 description 20
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 239000007789 gas Substances 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 238000005275 alloying Methods 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 2
- 229910001593 boehmite Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- JQPTYAILLJKUCY-UHFFFAOYSA-N palladium(ii) oxide Chemical compound [O-2].[Pd+2] JQPTYAILLJKUCY-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/945—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1021—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1023—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1025—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/902—Multilayered catalyst
- B01D2255/9025—Three layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、排気ガス中のCO、H
C、NOxを低減せしめるために用いられるエンジンの
排気ガス浄化用触媒に関する。BACKGROUND OF THE INVENTION The present invention relates to CO, H in exhaust gas.
The present invention relates to an engine exhaust gas purifying catalyst used for reducing C and NOx.
【0002】[0002]
【従来技術】排気ガス中のCO、HC、NOxを浄化す
る排気ガス浄化用触媒としては、特開昭62−5767
1号公報に示すように、触媒担体上に、該触媒担体から
外方側に向けて順に、第1、第2、第3触媒層を設け、
該第1、第2、第3触媒層に、それぞれ異なった貴金属
触媒成分を分離配設したものがある。このものにおいて
は、各貴金属触媒成分同士の合金化による熱劣化を抑圧
して、いままでの触媒層が2つからなるものに比べて浄
化性能が向上することになる。2. Description of the Related Art An exhaust gas purifying catalyst for purifying CO, HC and NOx in exhaust gas is disclosed in Japanese Patent Laid-Open No. 62-5767.
As shown in Japanese Patent Publication No. 1, first, second, and third catalyst layers are provided on a catalyst carrier in this order from the catalyst carrier toward the outside.
There is one in which different noble metal catalyst components are separately disposed in the first, second and third catalyst layers. In this case, the heat deterioration due to the alloying of the noble metal catalyst components is suppressed, and the purification performance is improved as compared with the conventional one having two catalyst layers.
【0003】[0003]
【発明が解決しようとする課題】しかし、上記排気ガス
浄化用触媒において、各貴金属触媒成分が各触媒層に分
離配設されて熱劣化が抑制されると言っても、最外表面
となる第3触媒層が、直接、排気ガスと接して高温とな
ることは従来と変わりがなく、このため、特に、第3触
媒層の貴金属触媒成分がシンタリング(凝集粗大化)を
起こして熱劣化を生じ易い傾向にある。この結果、触媒
の低温活性の安定化を充分に図ることができないでい
る。本発明は上記実情に鑑みてなされたもので、その目
的は、触媒の低温活性の安定化を充分に図ることができ
るエンジンの排気ガス浄化用触媒を提供することにあ
る。However, in the above exhaust gas purifying catalyst, even if it is said that each noble metal catalyst component is separately disposed in each catalyst layer and thermal deterioration is suppressed, it becomes the outermost surface. It is no different from the conventional method that the temperature of the 3rd catalyst layer comes into direct contact with the exhaust gas, and therefore the noble metal catalyst component of the 3rd catalyst layer causes sintering (coagulation coarsening) and heat deterioration. It tends to occur. As a result, the low temperature activity of the catalyst cannot be sufficiently stabilized. The present invention has been made in view of the above circumstances, and an object thereof is to provide a catalyst for purifying exhaust gas of an engine, which can sufficiently stabilize low temperature activity of the catalyst.
【0004】[0004]
【課題を解決するための手段】かかる目的を達成するた
めに本発明(第1の発明)にあっては、触媒担体上に、
該触媒担体からの外方側に向けて順に、第1、第2、第
3触媒層が設けられているエンジンの排気ガス浄化用触
媒において、前記第1、第2触媒層が、それぞれ異なっ
た1種の貴金属触媒成分を含有するアルミナ層からな
り、前記第3触媒層に、パラジウムと酸化セリウムとが
含有されている、構成としてある。In order to achieve the above object, the present invention (first invention) comprises a catalyst carrier,
In an exhaust gas purifying catalyst for an engine in which first, second and third catalyst layers are provided in order from the catalyst carrier toward the outside, the first and second catalyst layers are different from each other. It is composed of an alumina layer containing one noble metal catalyst component, and the third catalyst layer contains palladium and cerium oxide.
【0005】上述の発明の構成により、第1、第2、第
3触媒層に1種の貴金属触媒成分を分離配設して、各貴
金属触媒成分が互いに合金化することを抑制することが
できるだけでなく、最外表面となる第3触媒層に、貴金
属触媒成分として、高い耐熱性を有するパラジウムを配
すると共に酸化セリウムをも第3触媒層に含有させるこ
とから、貴金属触媒成分としてのパラジウムの特性自体
の効果が得られるだけでなく、酸化セリウムの酸素貯蔵
能効果(酸素O2 濃度が高いときO2 を吸着し、O2 濃
度が低くなったときO2 を放出して触媒反応に寄与する
効果)に基づき、第3触媒層のパラジウム酸化物(パラ
ジウムが酸化物として存在する)がパラジウムに解離す
る温度を高めて、第3触媒層における貴金属触媒成分と
してのパラジウムが低い温度でシンタリングすることを
効果的に抑えることができることになる。このため、触
媒の熱劣化が有効に抑制されることになり、触媒の低温
活性の安定化を充分に図ることができることになる。With the above-described structure of the present invention, it is possible to dispose one kind of noble metal catalyst component separately in the first, second and third catalyst layers to prevent the noble metal catalyst components from alloying with each other. However, since palladium having high heat resistance is arranged as a noble metal catalyst component in the third catalyst layer, which is the outermost surface, and cerium oxide is also contained in the third catalyst layer, palladium of the noble metal catalyst component not only the effect of the characteristic itself is obtained, the O 2 adsorbed at high oxygen storage capacity effect (oxygen O 2 concentration of cerium oxide, by releasing O 2 when the O 2 concentration is lower contribute to catalysis Based on the above effect), the temperature at which the palladium oxide of the third catalyst layer (palladium exists as an oxide) is dissociated into palladium is increased, and palladium as a noble metal catalyst component in the third catalyst layer is increased. So that it is possible to suppress the sintering in the stomach temperature effectively. Therefore, the thermal deterioration of the catalyst is effectively suppressed, and the low temperature activity of the catalyst can be sufficiently stabilized.
【0006】[0006]
【実施例】以下、本発明の実施例を説明する。図1は、
第1実施例に係る触媒を示す模式拡大図で、この図1に
示すように、触媒1は、触媒担体2上に、該触媒担体2
から外方側(図1中、上側)に向けて順に、第1、第
2、第3触媒層3、4、5が設けられている。上記触媒
担体2は、その材質として、コ−ジライト等の公知のも
のが用いられ、その形状は、ハニカム構造、ペレットタ
イプ等の公知形状とされている。上記第1触媒層3は、
本実施例においては、貴金属触媒成分としてロジウム
(以下、Rh)を含有するアルミナ層とされており、第
1触媒層3中において、貴金属触媒成分は、Rhだけと
されている。上記第2触媒層4は、本実施例において
は、貴金属触媒成分として白金(以下、Pt)を含有す
るアルミナ層とされており、この第2触媒層4において
は、貴金属触媒成分は、Ptだけとされている。上記第
3触媒層5は、本実施例においては、主成分が酸化セリ
ウム(以下、CeO2 )とアルミナとされ、その内部に
パラジウム(以下、Pd)が分散含有されている。EXAMPLES Examples of the present invention will be described below. Figure 1
FIG. 1 is a schematic enlarged view showing the catalyst according to the first embodiment. As shown in FIG. 1, the catalyst 1 is formed on the catalyst carrier 2 by the catalyst carrier 2
To the outer side (upper side in FIG. 1), the first, second, and third catalyst layers 3, 4, and 5 are provided in this order. As the material of the catalyst carrier 2, a known material such as cordierite is used, and the shape thereof is a known shape such as a honeycomb structure or a pellet type. The first catalyst layer 3 is
In the present embodiment, the alumina layer contains rhodium (hereinafter, Rh) as a noble metal catalyst component, and the noble metal catalyst component is only Rh in the first catalyst layer 3. In the present embodiment, the second catalyst layer 4 is an alumina layer containing platinum (hereinafter, Pt) as a noble metal catalyst component, and in the second catalyst layer 4, the noble metal catalyst component is only Pt. It is said that. In the present embodiment, the third catalyst layer 5 contains cerium oxide (hereinafter, CeO 2 ) and alumina as main components, and palladium (hereinafter, Pd) is dispersedly contained therein.
【0007】上記のような触媒1は、例えば、次のよう
にして形成される。すなわち、先ず、γ−アルミナ(A
l2 O3 )粉末に硝酸ロジウム水溶液を加えて混合撹拌
し、それを、乾燥、焼成し、その後、ボ−ルミルで粉砕
して微粒子状態の粉末とする。そして、上記Rhが固定
化されたγ−Al2 O3 480g、ベ−マイト(水和ア
ルミナ)120g、水1000cc、硝酸10ccをホ
モミキサにより混合撹拌し、アルミナスラリ−を得、そ
のアルミナスラリ−にハニカム構造の触媒担体2を浸漬
して引き上げた後、余分のスラリ−を高圧エア−ブロ−
で除去し、それを、250℃で2時間乾燥してから60
0℃で2時間焼成し、触媒担体2上に第1触媒層3を形
成する。次に、前記第1触媒層3の形成の場合同様に、
γ−Al2 O3 にジントロジアミン白金水溶液を加えて
混合撹拌し、これを、乾燥、焼成した後、ボ−ルミルで
粉砕して微粒子状の粉末とする。そして、上記Ptを固
定したγ−Al2 O3 480g、ベ−マイト120g、
水1000cc、硝酸10ccをホモミキサにより混合
撹拌し、アルミナスラリ−を得、このアルミナに、第1
触媒層3まで形成した触媒担体を浸漬して引き上げ、余
分のスラリ−を除去した後、それを、200℃で2時間
乾燥してから600℃で2時間焼成し、第1触媒層3上
に第2触媒層4を形成する。次に、CeO2 粉末にジン
トロジアミンパラジウム水溶液を加えて混合撹拌し、そ
れを、乾燥、焼成し、その後、ボ−ルミルで粉砕して微
粒子状態の粉末とする。この粉末540g、ベ−マイト
60g、水1000cc、硝酸10ccを混合撹拌し、
スラリ−を得る。そして、そのスラリ−に、第1、第2
触媒層3、4まで形成した触媒担体2を浸漬して引き上
げ、余分のスラリ−を除去した後、それを、200℃で
2時間乾燥してから600℃で2時間焼成し、第2触媒
層4上に第3触媒層5を形成する。尚、前記各層3、
4、5のウォッシュコ−ト量は、触媒担体2の重量に対
して各々14wt%になるように調整し、貴金属触媒成
分としてのPt、Rh、Pd担持量(製品での触媒層全
容積に対する貴金属重量)は、Ptについては1.33
g/l、Rhについては0.27g/l、Pdについて
は1.0g/lになるようにする。The catalyst 1 as described above is formed, for example, as follows. That is, first, γ-alumina (A
1 2 O 3 ) powder, an aqueous rhodium nitrate solution is added, mixed and stirred, dried and fired, and then pulverized with a ball mill to obtain a fine powder. Then, 480 g of γ-Al 2 O 3 having Rh immobilized thereon, 120 g of beehmite (hydrated alumina), 1000 cc of water, and 10 cc of nitric acid were mixed and stirred by a homomixer to obtain an alumina slurry, which was then added to the alumina slurry. After immersing the catalyst carrier 2 having a honeycomb structure and pulling it up, excess slurry is removed by a high pressure air blower.
And dried at 250 ° C. for 2 hours, then 60
The first catalyst layer 3 is formed on the catalyst carrier 2 by firing at 0 ° C. for 2 hours. Next, similarly to the case of forming the first catalyst layer 3,
An aqueous solution of gintrodiamine platinum is added to γ-Al 2 O 3 , mixed and stirred, dried and baked, and then pulverized by a ball mill to obtain fine powder. Then, 480 g of γ-Al 2 O 3 having Pt fixed thereon, 120 g of boehmite,
1000 cc of water and 10 cc of nitric acid were mixed and stirred with a homomixer to obtain an alumina slurry.
After the catalyst carrier formed up to the catalyst layer 3 is dipped and pulled up to remove excess slurry, it is dried at 200 ° C. for 2 hours and then calcined at 600 ° C. for 2 hours to deposit on the first catalyst layer 3. The second catalyst layer 4 is formed. Next, an aqueous solution of gintrodiamine palladium is added to the CeO 2 powder, mixed and stirred, dried and fired, and then pulverized with a ball mill to obtain a fine powder. 540 g of this powder, 60 g of boehmite, 1000 cc of water, and 10 cc of nitric acid were mixed and stirred,
Get the slurry. Then, in the slurry, the first and second
The catalyst carrier 2 formed up to the catalyst layers 3 and 4 is immersed and pulled up to remove excess slurry, then dried at 200 ° C. for 2 hours and then calcined at 600 ° C. for 2 hours to obtain a second catalyst layer. The third catalyst layer 5 is formed on the surface 4. Incidentally, each of the layers 3,
The washcoat amounts of 4 and 5 were adjusted so that each was 14 wt% with respect to the weight of the catalyst carrier 2, and the amount of Pt, Rh, and Pd supported as the noble metal catalyst component (based on the total volume of the catalyst layer in the product) was adjusted. Precious metal weight) is 1.33 for Pt
g / l, 0.27 g / l for Rh, and 1.0 g / l for Pd.
【0008】このような触媒においては、貴金属触媒成
分として、第1触媒層3にPt、第2触媒層4にRh、
第3触媒層5にPdだけを単独にしか設けないようにし
ていることから、合金化を抑えることができ、また、耐
熱性の高いPdを第3触媒層5にCeO2 と共に含有さ
せる一方、そのCeO2 の酸素貯蔵能効果に基づいて、
Pdの解離(Pd酸化物→Pd)温度を高め、Pd同士
のシンタリングを抑制できることになる。この結果、触
媒1の熱劣化を有効に抑えて、触媒の低温活性の安定化
(耐熱性)を充分に図ることができることになる。In such a catalyst, the noble metal catalyst component is Pt in the first catalyst layer 3 and Rh in the second catalyst layer 4.
Since only the Pd is provided solely in the third catalyst layer 5, alloying can be suppressed, and while Pd having high heat resistance is contained in the third catalyst layer 5 together with CeO 2 , Based on the oxygen storage capacity effect of CeO 2 ,
The dissociation of Pd (Pd oxide → Pd) can be increased to suppress sintering between Pd. As a result, it is possible to effectively suppress the thermal deterioration of the catalyst 1 and sufficiently stabilize the low temperature activity (heat resistance) of the catalyst.
【0009】次に、上記触媒1の耐熱性能を裏付けるた
めに、下記比較例1(図2参照)、比較例2(図3参
照)と比較しつつ、下記試験条件の下、耐熱性試験を行
った。Next, in order to support the heat resistance performance of the catalyst 1, a heat resistance test was conducted under the following test conditions while comparing with Comparative Example 1 (see FIG. 2) and Comparative Example 2 (see FIG. 3) below. went.
【0010】比較例1 ネオジム(Nd)、ランタン(La)、セリウム(C
e)の各硝酸塩をそれぞれ活性アルミナ粉末に吸水させ
て乾燥した後、700℃で2時間焼成し、Nd、Laも
しくはCeを0.1mol/l含有するアルミナ粉末を
それぞれ調整する。Ndを含有するアルミナ粉末100
重量部と、アルミナ含有率10wt%のアルミナゾル7
0重量部と水20重量部とを混合撹拌して、アルミナス
ラリ−を製造する。このスラリ−中に触媒担体を浸漬
し、これをスラリ−から引き上げた後、気流でセル内の
スラリ−を吹き飛ばし、250℃で2時間乾燥後600
℃で2時間焼成し、第1のアルミナコ−ト層を形成し
た。この担体を塩化パラジウム(PdCl2 )水溶液に
浸漬し、このアルミナコ−ト層にPdを担持させる。次
にLaを含有する活性アルミナ粉末を用い、同様にし
て、アルミナスラリ−を調整し、このスラリ−内に第1
層を形成した担体を浸漬し、上記と同様にして、第2層
を形成する。この後塩化ロジウム(RhCl3 )水溶液
に浸漬し、第2層にRhを担持させる。さらに、Ceを
含有する活性アルミナを用い、上記と同様にして第3層
を形成し、第1層および第2層を形成した担体をジント
ロジアミン白金(Pt(NH3)2 (NO2 )2 )水溶
液に浸漬し、この第3層にPtを担持させて、図2に示
すようなモノリス触媒を得た。このとき、貴金属触媒成
分担持量(製品での触媒層全容積に対する貴金属重量)
は、Ptについては1.33g/l、Rhについては
0.27g/l、Pdについては1g/lになるように
調整される。 Comparative Example 1 Neodymium (Nd), Lanthanum (La), Cerium (C
Each nitrate of e) is absorbed in activated alumina powder, dried and then calcined at 700 ° C. for 2 hours to prepare alumina powder containing 0.1 mol / l of Nd, La or Ce, respectively. Alumina powder 100 containing Nd
Parts by weight and alumina sol 7 with an alumina content of 10 wt%
0 parts by weight and 20 parts by weight of water are mixed and stirred to produce an alumina slurry. A catalyst carrier was dipped in this slurry, pulled out from the slurry, blown off the slurry in the cell with an air stream, and dried at 250 ° C. for 2 hours.
Firing was carried out for 2 hours at a temperature of ℃ to form a first alumina coat layer. This carrier is immersed in an aqueous solution of palladium chloride (PdCl 2 ) to support Pd on the alumina coat layer. Next, an activated alumina powder containing La was used to prepare an alumina slurry in the same manner, and the first slurry was prepared in this slurry.
The carrier on which the layer is formed is immersed, and the second layer is formed in the same manner as above. After that, it is immersed in a rhodium chloride (RhCl 3 ) aqueous solution to support Rh on the second layer. Furthermore, using activated alumina containing Ce, the third layer was formed in the same manner as above, and the carrier on which the first layer and the second layer were formed was treated with gintrodiamine platinum (Pt (NH 3 ) 2 (NO 2 ). 2 ) Immersed in an aqueous solution, Pt was supported on this third layer to obtain a monolith catalyst as shown in FIG. At this time, the amount of noble metal catalyst component supported (weight of noble metal to the total volume of the catalyst layer in the product)
Is adjusted to 1.33 g / l for Pt, 0.27 g / l for Rh, and 1 g / l for Pd.
【0011】比較例2 触媒担体上に、該触媒担体から外方側に向けて順に、第
1、第2触媒層が設けられ、第1触媒層においてはアル
ミナ内にPtとRhとが分散され、第2触媒層において
は、主成分のCeO2 及びアルミナの内部にPdが分散
含有されている。この場合、各層のウォッシュコ−ト層
は、触媒担体の重量に対して各々14wt%になるよう
に調整され、第1触媒層における触媒担持量は1.6g
/l(Pt/Rh=5/1)、第2触媒層におけるPd
担持量は、1.0g/lとされる。 Comparative Example 2 On a catalyst carrier, first and second catalyst layers were provided in order from the catalyst carrier to the outside, and Pt and Rh were dispersed in alumina in the first catalyst layer. In the second catalyst layer, Pd is dispersedly contained in the main component CeO 2 and alumina. In this case, the washcoat layer of each layer is adjusted to 14 wt% with respect to the weight of the catalyst carrier, and the catalyst loading amount in the first catalyst layer is 1.6 g.
/ L (Pt / Rh = 5/1), Pd in the second catalyst layer
The supported amount is 1.0 g / l.
【0012】試験条件 (1)触媒容量:24ml (2)エ−ジング条件:触媒を、1000℃の温度で5
0時間加熱する。 (3)空燃比14.5の下、空間速度を600000H
-1とする。 Test conditions (1) Catalyst capacity: 24 ml (2) Aging conditions: The catalyst was heated at a temperature of 1000 ° C. for 5 hours.
Heat for 0 hours. (3) Space velocity of 600,000H under an air-fuel ratio of 14.5
-1 .
【0013】上記耐熱性試験の結果、図4に示す内容を
得た。この図4によれば、実施例1に係る触媒1が比較
例1、2に対して、低い温度から高いHC浄化率を示
し、該触媒1は比較例1、2よりも高い耐熱性を示し
た。As a result of the heat resistance test, the contents shown in FIG. 4 were obtained. According to this FIG. 4, the catalyst 1 according to Example 1 exhibits a higher HC purification rate from a lower temperature than Comparative Examples 1 and 2, and the catalyst 1 exhibits higher heat resistance than Comparative Examples 1 and 2. It was
【0014】図5は、第2実施例を示すものである。こ
の第2実施例に係る触媒1は、前記第1実施例同様、触
媒担体2に第1、第2、第3触媒層3、4、5を設ける
構成とされており、第1、第2触媒層3、4の貴金属触
媒成分が第1実施例の場合に対して変えられている。す
なわち、上記第1触媒層3は貴金属触媒成分としてPt
を含有するアルミナ層とされ、そのアルミナ層には、本
実施例においては、さらに、Baが含有されている。上
記第2触媒層4は、貴金属触媒成分としてRhを含有す
るアルミナ層とされ、そのアルミナ層には、本実施例に
おいては、さらに、Zrが含有されている。FIG. 5 shows a second embodiment. The catalyst 1 according to the second embodiment is configured such that the catalyst carrier 2 is provided with the first, second, and third catalyst layers 3, 4, and 5 as in the first embodiment. The noble metal catalyst component of the catalyst layers 3 and 4 is changed from that of the first embodiment. That is, the first catalyst layer 3 contains Pt as a noble metal catalyst component.
In the present embodiment, the alumina layer further contains Ba. The second catalyst layer 4 is an alumina layer containing Rh as a noble metal catalyst component, and the alumina layer further contains Zr in this example.
【0015】上記第2実施例に係る触媒1の形成(製
造)は、前記第1実施例と基本的には同じであるが、第
1、第2触媒層3、4における貴金属触媒成分を変えた
ことに対応して、その第1、第2触媒層3、4の形成の
みが異なっている。すなわち、第1触媒層3の形成にお
いては、γ−Al2 O3 粉末にジントロアミン白金水溶
液を加えて混合撹拌し、それを、乾燥、焼成し、その
後、ボ−ルミルで粉砕して微粒子状態の粉末とする。そ
して、この粉末に硝酸バリウム水溶液を加えて混合撹拌
し、それを乾燥、焼成する。これにより、γ−Al2 O
3 には、そのアルミナ粒子においてPtとBaとが固定
化されることになる。そして、上記PtならびにBaが
固定化されたγ−Al2 O3 を用いて、前記第1実施例
の第1触媒層形成の如く、アルミナスラリ−を得、それ
に触媒担体2を浸漬して引き上げた後、それを乾燥、焼
成することにより、触媒担体2上に第1触媒層3を形成
する。第2触媒層4の形成においては、γ−Al2 O3
に硝酸ロジウム水溶液を加えて混合撹拌し、これを、乾
燥、焼成した後、ボ−ルミルで粉砕して微粒子の粉末と
する。そして、この粉末に硝酸ジルコニウム水溶液を加
えて混合撹拌し、それを乾燥、焼成する。これにより、
γ−Al2 O3 には、そのアルミナ粒子においてRhと
Zrとが固定されることになる。そして、上記RhとZ
rとが固定化されたγ−Al2 O3 を用いて、前記第1
実施例の第2触媒層形成の如く、アルミナスラリ−得、
それに、第1触媒層まで形成した触媒担体を浸漬して引
き上げた後、それを乾燥、焼成することにより、第1触
媒層3上に第2触媒層4を形成する。尚、各層3、4、
5のウォッシュコ−ト量、貴金属触媒成分の担持量は、
前記第1実施例と同様とされ、Ba及びZrの添加量
は、本実施例においては5〜8(wt%/ウォッシュコ
−ト量)とされる。The formation (manufacture) of the catalyst 1 according to the second embodiment is basically the same as that of the first embodiment, but the noble metal catalyst components in the first and second catalyst layers 3 and 4 are changed. Accordingly, only the formation of the first and second catalyst layers 3 and 4 is different. That is, in the formation of the first catalyst layer 3, an aqueous solution of gintroamine platinum is added to the γ-Al 2 O 3 powder, mixed and stirred, dried and fired, and then ground with a ball mill to obtain a fine particle state. Use as powder. Then, an aqueous barium nitrate solution is added to this powder, mixed and stirred, and then dried and fired. Thereby, γ-Al 2 O
3 , Pt and Ba are fixed in the alumina particles. Then, using the above-mentioned Pt and Ba-immobilized γ-Al 2 O 3 , alumina slurry was obtained as in the formation of the first catalyst layer of the first embodiment, and the catalyst carrier 2 was dipped in it and pulled up. After that, it is dried and calcined to form the first catalyst layer 3 on the catalyst carrier 2. In forming the second catalyst layer 4, γ-Al 2 O 3
An aqueous rhodium nitrate solution is added to and mixed with stirring, dried and fired, and then pulverized with a ball mill to obtain fine powder. Then, an aqueous zirconium nitrate solution is added to this powder, mixed and stirred, and dried and fired. This allows
In γ-Al 2 O 3 , Rh and Zr are fixed in the alumina particles. And Rh and Z above
Using γ-Al 2 O 3 in which r and r are immobilized,
As in the case of forming the second catalyst layer in the example, an alumina slurry was obtained,
The catalyst carrier formed up to the first catalyst layer is dipped therein and pulled up, and then dried and fired to form the second catalyst layer 4 on the first catalyst layer 3. In addition, each layer 3, 4,
The wash coat amount of 5 and the amount of the precious metal catalyst component supported are
As in the first embodiment, the amounts of Ba and Zr added are 5 to 8 (wt% / wash coat amount) in this embodiment.
【0016】このような触媒1においては、前述の第1
実施例に係る触媒と同様の作用効果を生じる他に、第2
触媒層4にRhが含有されることから、第2、第3触媒
層4、5の層境界部で、該第3触媒層5におけるCeO
2 酸素貯蔵能効果に基づいてNOX の浄化性能を大幅に
上げることができることになる。In such a catalyst 1, the above-mentioned first catalyst is used.
In addition to producing the same effect as the catalyst according to the example, the second
Since Rh is contained in the catalyst layer 4, CeO in the third catalyst layer 5 is formed at the layer boundary between the second and third catalyst layers 4 and 5.
2 Based on the oxygen storage capacity effect, the purification performance of NO x can be significantly improved.
【0017】次に、上記第2実施例に係る触媒の耐熱性
能(HC浄化率測定)、NOX 浄化性能を裏付けるため
に、前記第1実施例に係る触媒、比較例1、比較例2と
比較しつつ、前述の耐熱性試験の試験条件と同じ試験条
件の下で、耐熱性試験、NOX 浄化性試験を行った。Next, in order to support the heat resistance performance (HC purification rate measurement) and NO x purification performance of the catalyst according to the second embodiment, the catalyst according to the first embodiment, Comparative Example 1 and Comparative Example 2 are described. For comparison, a heat resistance test and a NO x purification test were performed under the same test conditions as the heat resistance test described above.
【0018】上記耐熱性試験の結果については、前述の
図4に示す特性線を得た。この内容によれば、第2実施
例に係る触媒は第1実施例に係る触媒よりも高い耐熱性
を示した。また、上記NOX 浄化性試験の結果について
は、図6の内容を得た。この図6の内容によれば、この
第2実施例に係る触媒は、NOX の浄化性能に関しても
高い性能を示した。Regarding the results of the heat resistance test, the characteristic line shown in FIG. 4 was obtained. According to this content, the catalyst according to the second example exhibited higher heat resistance than the catalyst according to the first example. As for the result of the NO x purification test, the content of FIG. 6 was obtained. According to the contents of FIG. 6, the catalyst according to the second embodiment also showed high NO X purification performance.
【0019】図7は、第3実施例を示すものである。こ
の第3実施例に係る触媒は、基本的には、前述の第1実
施例に係る触媒と同様に構成されているが、本実施例に
おいては、第1、第2、第3触媒層3、4、5の比表面
積が、該第1触媒層3から該第3触媒層5に向うに従っ
て順に、大きくされ、第3触媒層5に向うほど、各層
3、4、5の粒子が微粒化されている。FIG. 7 shows a third embodiment. The catalyst according to the third embodiment is basically configured in the same manner as the catalyst according to the first embodiment described above, but in the present embodiment, the first, second and third catalyst layers 3 are formed. The specific surface areas of Nos. 4, 5 are sequentially increased from the first catalyst layer 3 toward the third catalyst layer 5, and the particles of each layer 3, 4, 5 become finer toward the third catalyst layer 5. Has been done.
【0020】本実施例においては、各層3、4、5の比
表面積を調整するために、該各層3、4、5の材料粉末
を異なった条件で熱処理することとされ、それを用い
て、前述の第1実施例の製造方法により触媒が形成され
ることになっている。すなわち、第1触媒層3の比表面
積を小さくするために、γ−Al2 O3 粉末が、空気
中、1000℃、50時間の条件で熱処理され、第2触
媒層4の比表面積を中程度とするためにγ−Al2 O3
粉末が、空気中、900℃、50時間の条件で熱処理さ
れ、第3触媒層5の比表面積を大きくするために、Ce
O2 粉末が、空気中、800℃、50時間の条件で熱処
理される。In this embodiment, in order to adjust the specific surface area of each of the layers 3, 4 and 5, the material powder of each of the layers 3, 4 and 5 is heat-treated under different conditions. The catalyst is to be formed by the manufacturing method of the first embodiment described above. That is, in order to reduce the specific surface area of the first catalyst layer 3, the γ-Al 2 O 3 powder is heat-treated in the air at 1000 ° C. for 50 hours, so that the specific surface area of the second catalyst layer 4 is moderate. Γ-Al 2 O 3
The powder is heat-treated in air at 900 ° C. for 50 hours, and Ce is added in order to increase the specific surface area of the third catalyst layer 5.
The O 2 powder is heat-treated in the air at 800 ° C. for 50 hours.
【0021】このような触媒1は、反応最表面を形成す
る第3触媒層5の比表面積が大きいことから、低温時か
ら反応速度が促進され、低温活性が的確に向上されるこ
とになる。しかも、比表面積が大きいことに基づく該第
3触媒層5の緻密性はリン、鉛等の侵入を防ぐことにな
り、耐被毒性も向上することになる。その一方、第2、
第1触媒層4、3に向うに従って比表面積が小さくして
あることから、触媒における通気抵抗を減少させること
ができることになる。In such a catalyst 1, since the third catalyst layer 5 forming the outermost surface of the reaction has a large specific surface area, the reaction rate is promoted even at a low temperature and the low temperature activity is properly improved. Moreover, the denseness of the third catalyst layer 5 due to the large specific surface area prevents the invasion of phosphorus, lead, etc., and also improves the poisoning resistance. On the other hand, the second,
Since the specific surface area is made smaller toward the first catalyst layers 4 and 3, the ventilation resistance in the catalyst can be reduced.
【0022】次に、上記触媒1の(低温活性)性能を裏
付けるために、第1実施例に係る触媒(CeO2 粉末の
熱処理条件は空気中で800℃、50時間の条件で熱処
理)との比較の上でHC浄化性試験を行うと共に、第1
〜第3触媒層の比表面積を種々異ならせて、HC50%
浄化率を得るための浄化温度を測定するHC50%浄化
温度試験を行った。この両試験の試験条件は、前述の耐
熱性試験の試験条件と同じである。Next, in order to support the (low temperature activity) performance of the above catalyst 1, the catalyst according to the first embodiment (heat treatment of CeO 2 powder was performed at 800 ° C. for 50 hours in air). The HC purification test was conducted on the basis of comparison, and the first
~ HC50% by varying the specific surface area of the third catalyst layer
An HC 50% purification temperature test was conducted to measure the purification temperature for obtaining the purification rate. The test conditions for both tests are the same as the test conditions for the heat resistance test described above.
【0023】上記HC浄化性試験の結果としては、図8
の内容が、また、上記HC50%浄化温度試験について
は、図9の内容が得られた。図8の内容によれば、第3
実施例に係る触媒は、第1実施例に係る触媒よりも低い
温度から高い浄化性能を示し、また、図9の内容によれ
ば、本実施例における各層の比表面積の組合せが各層の
比表面積を全て大きくしたものと略同様の低温活性度を
示し、触媒における通気抵抗を減少させることを併せも
つことができる点で、本実施例における各層の比表面積
の組合せが、的確であることを示した。As a result of the above HC purifying test, FIG.
And the content of FIG. 9 for the above HC50% purification temperature test. According to the contents of FIG. 8, the third
The catalyst according to the example shows higher purification performance from a lower temperature than the catalyst according to the first example, and according to the content of FIG. 9, the combination of the specific surface areas of the layers in the present example is the specific surface area of each layer. Shows that the combination of specific surface areas of the layers in this example is appropriate in that it has a low temperature activity similar to that of all the above, and can also have the effect of reducing the ventilation resistance in the catalyst. It was
【0024】図10は、第4実施例を示すものである。
この第4実施例に係る触媒も、基本的には、前述の第1
実施例に係る触媒と同様の構成とされているが、本実施
例においては、第3触媒層5のPdは、CeO2 に固定
化する際及びこのスラリ−コ−ト層を焼成する際に、空
気の場合に対してO2 を5%上乗せした酸化雰囲気で焼
成(触媒担体2等を浸漬するスラリ−を得る前のCeO
2 への固定化のための焼成及びこのスラリ−コ−ト層の
焼成:第1実施例における製造方法参照)され、第2触
媒層4のPt、第1触媒層3のRhは、それぞれ、γ−
Al2 O3 に固定化する際及び各スラリ−コ−ト層の焼
成時に、空気の場合に対してH2 が5%上乗せされた還
元雰囲気で焼成されている。FIG. 10 shows a fourth embodiment.
The catalyst according to the fourth embodiment is basically the same as the above first catalyst.
Although it has the same structure as the catalyst according to the example, in this example, Pd of the third catalyst layer 5 is fixed at the time of fixing to CeO 2 and at the time of firing the slurry coat layer. , Calcination in an oxidizing atmosphere in which O 2 is added by 5% relative to the case of air (CeO before obtaining a slurry for immersing the catalyst carrier 2 etc.)
Calcination for fixation to 2 and calcination of this slurry-coat layer: see the manufacturing method in the first embodiment), Pt of the second catalyst layer 4 and Rh of the first catalyst layer 3 are respectively γ-
When the slurry coat layer is fixed to Al 2 O 3 and each of the slurry coat layers is fired, it is fired in a reducing atmosphere in which H 2 is added by 5% with respect to the case of air.
【0025】このような触媒1は、PdOの割合が増え
ると考えることができることから、Pdの解離(PdO
→Pd)温度を高めることができ、耐熱性(低温活性の
安定化)を向上させることができる。In such a catalyst 1, since it can be considered that the proportion of PdO increases, the dissociation of Pd (PdO
→ Pd) Temperature can be raised and heat resistance (stabilization of low temperature activity) can be improved.
【0026】このような触媒の耐熱性能を裏付けるため
に、前述の第1実施例における耐熱性試験と同じ試験条
件の下で、前記第2実施例に係る触媒と比較しつつ、耐
熱性試験を行った。この耐熱性試験の結果、図11の内
容を得た。この図11の内容によれば、この第4実施例
に係る触媒は、第1実施例に係る触媒よりも若干高い耐
熱性能を示した。また、同様に、NOX の浄化性能につ
いても、試験を行ったところ、図12の内容を得た。こ
の図12の内容によれば、第4実施例に係る触媒は、第
1実施例に係る触媒よりも、エンジンのリ−ン空燃比運
転領域におけるNOX 浄化性能に関し、著しく高くなっ
た。In order to support the heat resistance performance of such a catalyst, a heat resistance test was conducted under the same test conditions as the heat resistance test in the above-mentioned first embodiment while comparing with the catalyst according to the second embodiment. went. As a result of this heat resistance test, the contents of FIG. 11 were obtained. According to the contents of FIG. 11, the catalyst according to the fourth example exhibited a slightly higher heat resistance performance than the catalyst according to the first example. Similarly, when the NO x purification performance was also tested, the content shown in FIG. 12 was obtained. According to the content of FIG. 12, the catalyst according to the fourth embodiment is significantly higher than the catalyst according to the first embodiment in the NO x purification performance in the lean air-fuel ratio operation region of the engine.
【0027】[0027]
【発明の効果】本発明は以上述べたように、触媒の低温
活性の安定化を充分に図ることができる。As described above, the present invention can sufficiently stabilize the low temperature activity of the catalyst.
【図1】第1実施例に係る触媒を概念的に示す図。FIG. 1 is a diagram conceptually showing a catalyst according to a first embodiment.
【図2】比較例1に係る触媒を概念的に示す図。FIG. 2 is a view conceptually showing a catalyst according to Comparative Example 1.
【図3】比較例2に係る触媒を概念的に示す図。FIG. 3 is a diagram conceptually showing a catalyst according to Comparative Example 2.
【図4】第1、第2実施例に係る触媒、比較例1、2に
係る触媒の耐熱性試験の結果を示す特性線図。FIG. 4 is a characteristic diagram showing the results of heat resistance tests of the catalysts according to the first and second examples and the catalysts according to comparative examples 1 and 2.
【図5】第2実施例に係る触媒を概念的に示す図。FIG. 5 is a view conceptually showing a catalyst according to a second embodiment.
【図6】第2実施例に係る触媒のNOX 浄化性試験の結
果を示す特性線図。FIG. 6 is a characteristic diagram showing the results of a NO x purification test of the catalyst according to the second example.
【図7】第3実施例に係る触媒を概念的に示す図。FIG. 7 is a diagram conceptually showing a catalyst according to a third embodiment.
【図8】第3実施例に係る触媒の耐熱性試験の結果を示
す特性線図。FIG. 8 is a characteristic diagram showing the results of a heat resistance test of the catalyst according to the third example.
【図9】第1、第2、第3触媒層の比表面積の組合せを
種々変えた場合におけるHC50%浄化温度試験の結果
を示す特性線図。FIG. 9 is a characteristic diagram showing the results of an HC 50% purification temperature test when various combinations of the specific surface areas of the first, second and third catalyst layers were changed.
【図10】第4実施例に係る触媒を概念的に示す図。FIG. 10 is a view conceptually showing a catalyst according to a fourth embodiment.
【図11】第4実施例に係る触媒の耐熱性試験の結果を
示す特性線図。FIG. 11 is a characteristic diagram showing the results of the heat resistance test of the catalyst according to the fourth example.
【図12】第4実施例に係る触媒のNOX 浄化性能試験
の結果を示す特性線図。FIG. 12 is a characteristic diagram showing the results of a NO x purification performance test of the catalyst according to the fourth example.
1 触媒 2 触媒担体 3 第1触媒層 4 第2触媒層 5 第3触媒層 1 catalyst 2 catalyst carrier 3 first catalyst layer 4 second catalyst layer 5 third catalyst layer
Claims (6)
向けて順に、第1、第2、第3触媒層が設けられている
エンジンの排気ガス浄化用触媒において、 前記第1、第2触媒層が、それぞれ異なった1種の貴金
属触媒成分を含有するアルミナ層からなり、 前記第3触媒層に、パラジウムと酸化セリウムとが含有
されている、ことを特徴とするエンジンの排気ガス浄化
用触媒。1. An exhaust gas purifying catalyst for an engine, wherein a first catalyst layer, a second catalyst layer and a third catalyst layer are provided on a catalyst carrier in this order from the catalyst carrier toward the outside. The exhaust gas of an engine, wherein the second catalyst layer is composed of an alumina layer containing different one kind of noble metal catalyst component, and the third catalyst layer contains palladium and cerium oxide. Purification catalyst.
はロジウムの一方が含有され、 前記第2触媒層に、貴金属触媒成分として、白金若しく
はロジウムの他方が含有されている、ことを特徴とする
エンジンの排気ガス浄化用触媒。2. The first catalyst layer according to claim 1, wherein one of platinum and rhodium is contained as a noble metal catalyst component, and the other catalyst of platinum and rhodium is contained as a noble metal catalyst component in the second catalyst layer. A catalyst for purifying engine exhaust gas, which is characterized in that
するエンジンの排気ガス浄化用触媒。3. The exhaust gas purifying catalyst for an engine according to claim 1, wherein the first catalyst layer contains rhodium and the second catalyst layer contains platinum.
徴とするエンジンの排気ガス浄化用触媒。4. The exhaust gas purifying catalyst for an engine according to claim 1, wherein the first catalyst layer contains platinum and the second catalyst layer contains rhodium.
層から該第3触媒層に向かうに従って大きくされてい
る、ことを特徴とするエンジンの排気ガス浄化用触媒。5. The specific surface area according to claim 1, wherein the specific surface areas of the first, second and third catalyst layers are increased from the first catalyst layer toward the third catalyst layer. A catalyst for purifying engine exhaust gas, which is characterized in that
固定化する際に酸化雰囲気で焼成されたものが用いられ
ている、ことを特徴とするエンジンの排気ガス浄化用触
媒。6. The exhaust gas of an engine according to claim 1, wherein as the palladium in the third catalyst layer, one that is fired in an oxidizing atmosphere when being immobilized on cerium oxide is used. Purification catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4105703A JPH05277370A (en) | 1992-03-31 | 1992-03-31 | Catalyst for purification of exhaust gas from engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4105703A JPH05277370A (en) | 1992-03-31 | 1992-03-31 | Catalyst for purification of exhaust gas from engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05277370A true JPH05277370A (en) | 1993-10-26 |
Family
ID=14414726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4105703A Pending JPH05277370A (en) | 1992-03-31 | 1992-03-31 | Catalyst for purification of exhaust gas from engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05277370A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006297372A (en) * | 2005-03-24 | 2006-11-02 | Tokyo Roki Co Ltd | Catalyst for purification of exhaust gas |
WO2009012348A1 (en) * | 2007-07-19 | 2009-01-22 | Basf Catalysts Llc | Multilayered catalyst compositions |
JP2010046656A (en) * | 2008-07-22 | 2010-03-04 | Toyota Central R&D Labs Inc | Catalyst for purifying exhaust gas and exhaust gas purification method using the catalyst |
JP2010234309A (en) * | 2009-03-31 | 2010-10-21 | Toyota Motor Corp | Exhaust gas purifying catalyst and method for manufacturing the same |
JP2010264371A (en) * | 2009-05-14 | 2010-11-25 | Mazda Motor Corp | Exhaust gas purifying device |
JP2016519617A (en) * | 2013-04-05 | 2016-07-07 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Filter substrate with three-way catalyst |
-
1992
- 1992-03-31 JP JP4105703A patent/JPH05277370A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006297372A (en) * | 2005-03-24 | 2006-11-02 | Tokyo Roki Co Ltd | Catalyst for purification of exhaust gas |
WO2009012348A1 (en) * | 2007-07-19 | 2009-01-22 | Basf Catalysts Llc | Multilayered catalyst compositions |
US8007750B2 (en) | 2007-07-19 | 2011-08-30 | Basf Corporation | Multilayered catalyst compositions |
JP2010046656A (en) * | 2008-07-22 | 2010-03-04 | Toyota Central R&D Labs Inc | Catalyst for purifying exhaust gas and exhaust gas purification method using the catalyst |
JP2010234309A (en) * | 2009-03-31 | 2010-10-21 | Toyota Motor Corp | Exhaust gas purifying catalyst and method for manufacturing the same |
JP2010264371A (en) * | 2009-05-14 | 2010-11-25 | Mazda Motor Corp | Exhaust gas purifying device |
JP2016519617A (en) * | 2013-04-05 | 2016-07-07 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Filter substrate with three-way catalyst |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108472590B (en) | Exhaust gas purification device | |
US6261989B1 (en) | Catalytic converter for cleaning exhaust gas | |
JP3145175B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
EP0988890B1 (en) | Oxygen-storage complex oxide and its use in a catalytic converter for automotive pollution control | |
JP3494147B2 (en) | Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method | |
JPH0338250A (en) | Exhaust gas purification catalyst | |
JP4012320B2 (en) | Exhaust gas purification catalyst for lean combustion engine | |
JPH06226096A (en) | Exhaust gas purifying catalyst | |
JPH08168675A (en) | Catalyst for purifying exhaust gas | |
JPH10286462A (en) | Catalyst of purifying exhaust gas | |
JP4831753B2 (en) | Exhaust gas purification catalyst | |
JP3216858B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JPH08131830A (en) | Catalyst for purification of exhaust gas | |
JP3789231B2 (en) | Exhaust gas purification catalyst | |
JP3799466B2 (en) | Exhaust gas purification catalyst | |
JP3227074B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method for lean burn and stoichiometric internal combustion engines | |
JPH09313938A (en) | Catalyst for cleaning exhaust gas | |
JPH09248462A (en) | Exhaust gas-purifying catalyst | |
JPH05277370A (en) | Catalyst for purification of exhaust gas from engine | |
JP3335755B2 (en) | Exhaust gas purification catalyst | |
JP3872153B2 (en) | Exhaust gas purification catalyst | |
JPH0582258B2 (en) | ||
JPH08281116A (en) | Catalyst for purifying exhaust gas | |
JP2001232199A (en) | Exhaust gas cleaning catalyst | |
JP3272395B2 (en) | Engine exhaust gas purification catalyst |