JPH10286462A - Catalyst of purifying exhaust gas - Google Patents

Catalyst of purifying exhaust gas

Info

Publication number
JPH10286462A
JPH10286462A JP9093763A JP9376397A JPH10286462A JP H10286462 A JPH10286462 A JP H10286462A JP 9093763 A JP9093763 A JP 9093763A JP 9376397 A JP9376397 A JP 9376397A JP H10286462 A JPH10286462 A JP H10286462A
Authority
JP
Japan
Prior art keywords
mol
exhaust gas
catalyst
zirconium oxide
gas purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9093763A
Other languages
Japanese (ja)
Other versions
JP3988202B2 (en
Inventor
Shinji Yamamoto
伸司 山本
Sumiaki Hiramoto
純章 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP09376397A priority Critical patent/JP3988202B2/en
Publication of JPH10286462A publication Critical patent/JPH10286462A/en
Application granted granted Critical
Publication of JP3988202B2 publication Critical patent/JP3988202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a catalyst improved in high temp. durability and having excellent low temp. activity and purifying performance even after a durable period. SOLUTION: The integrally structured catalyst having a catalyst component carrying layer contains at least a rhodium-carrying zirconium oxide and a platinum-carrying zirconium oxide. The zirconium oxide carrying rhodium is expressed by a formula, Nda Cab Zrc Od (in the formula, (a), (b) and (c) express an atomic ratio of each element and a=0.01-20 mol%, b=0.05-20 mol%, c=60-95 mol% expressed in terms of metal and (d) expresses the number of an oxygen atom necessary for satisfying the valency of each of the components) and the zirconium oxide carrying platinum is expressed by a formula, (X)e Cef Zrg Oh (in the formula, X expresses at least one kind of an element selected from the group consisting of praseodymium, yttrium, lanthanum and neodymium and (e), (f) and (g) express the atomic ratio of each of the elements, e=0.01-10 mol%, f=5-30 mol% and g=65-95 mol% expressed in terms of metal and (h) expresses the number of an oxygen atom necessary for satisfying the valency of each of the components).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気ガス浄化用触
媒に関し、特に自動車等の内燃機関から排出される排気
ガス中の炭化水素(以下、「HC」と称す)、一酸化炭
素(以下、「CO」と称す)及び窒素酸化物(以下、
「NOx」と称す)を効率良く浄化することができ、し
かも、高温耐久性に優れるとともに耐久後も低温活性と
浄化性能に優れる排気ガス浄化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst and, more particularly, to hydrocarbons (hereinafter referred to as "HC") and carbon monoxide (hereinafter referred to as "HC") in exhaust gas discharged from an internal combustion engine of an automobile or the like. "CO") and nitrogen oxides (hereinafter, referred to as "CO").
The present invention relates to an exhaust gas purifying catalyst that can efficiently purify NOx), has excellent high-temperature durability, and has excellent low-temperature activity and purification performance even after durability.

【0002】[0002]

【従来の技術】従来より、排気ガス浄化用触媒は高温下
での耐久性が十分でなく、耐久後は触媒が劣化し排気ガ
スに対する浄化能が著しく低下するため、高温耐久後も
低温活性と浄化性能に優れる排気ガス浄化用触媒の開発
が期待されている。
2. Description of the Related Art Conventionally, exhaust gas purifying catalysts have not been sufficiently durable at high temperatures, and after the durability, the catalyst deteriorates and the purification performance for exhaust gas is remarkably reduced. The development of an exhaust gas purification catalyst having excellent purification performance is expected.

【0003】かかる排気ガス浄化用触媒としては、例え
ば、特公昭58−20307号公報、特開昭62−28
2641号公報、特開平4−284847号公報、特開
平6−378号公報及び特開平7−60118号公報に
開示されているものがある。特公昭58−20307号
公報に記載された排気ガス浄化用触媒は、白金、ロジウ
ム及びセリウムから成る組成物を耐火性担体に担持させ
たものであり、具体的にはアルミナや酸化セリウムなど
に白金、パラジウム及びロジウムなどの白金族元素を担
持させ、これをモノリス担体にコーティングした構造の
ものである。
As such exhaust gas purifying catalysts, for example, JP-B-58-20307 and JP-A-62-28
2641, JP-A-4-284847, JP-A-6-378 and JP-A-7-60118. The exhaust gas purifying catalyst described in Japanese Patent Publication No. 58-20307 is a catalyst in which a composition comprising platinum, rhodium and cerium is supported on a refractory carrier, and specifically, platinum on alumina or cerium oxide. , Palladium, rhodium, and other platinum group elements, and a monolithic carrier coated with the element.

【0004】また特開昭62−282641号公報に
は、ロジウムを酸化ジルコニウムに担持させた排気ガス
浄化用触媒が開示されており、具体的にはロジウムを含
有させた酸化ジルコニウム、活性アルミナ、酸化セリウ
ムとアルミナゾルとを含むスラリーを、担体に付着・乾
燥・焼成した後、白金を担持させた排気ガス浄化用触媒
が開示されている。
Japanese Patent Application Laid-Open No. 62-282641 discloses a catalyst for purifying exhaust gas in which rhodium is supported on zirconium oxide. More specifically, zirconium oxide containing rhodium, activated alumina, oxidized alumina, and the like are disclosed. An exhaust gas purifying catalyst is disclosed in which a slurry containing cerium and alumina sol is adhered to a carrier, dried, and calcined, and then platinum is supported.

【0005】特開平4−284847号公報には、白
金、ロジウム、活性アルミナ、酸化セリウム等の従来か
ら触媒成分として使用されているものに加え、酸化セリ
ウムとランタン、プラセオジウム、イットリウム、ネオ
ジウム、2A族及び3B族から選ばれた一種又は一種以
上の金属酸化物により安定化されたジルコニウム化合物
とを組み合わせた排気ガス浄化用触媒が開示されてい
る。
Japanese Patent Application Laid-Open No. 4-284847 discloses that in addition to those conventionally used as catalyst components such as platinum, rhodium, activated alumina and cerium oxide, cerium oxide and lanthanum, praseodymium, yttrium, neodymium and 2A group And an exhaust gas purifying catalyst in which a zirconium compound stabilized by one or more metal oxides selected from Group 3B is disclosed.

【0006】特開平6−378号公報には、活性アルミ
ナと酸化セリウムに、触媒成分として白金及び/又はパ
ラジウムと、塩基性元素であるカリウム、セシウム、ス
トロンチウム及びバリウムから成る群より選ばれた少な
くとも一種の金属の酸化物とが担持された排気ガス浄化
用触媒が提案されている。換言すれば、当該触媒は、白
金族元素、活性アルミナ、酸化セリウム等の従来から触
媒成分として使用されているものに加え、塩基性元素で
ある、カリウム化合物、セシウム化合物、ストロンチウ
ム化合物及びバリウム化合物のうち少なくとも一種類と
組み合わせてなるものである。
[0006] JP-A-6-378 discloses that activated alumina and cerium oxide contain at least one selected from the group consisting of platinum and / or palladium as a catalyst component and potassium, cesium, strontium and barium as basic elements. Exhaust gas purifying catalysts supporting a kind of metal oxide have been proposed. In other words, the catalyst is a platinum group element, activated alumina, in addition to those conventionally used as a catalyst component such as cerium oxide, and a basic element such as a potassium compound, a cesium compound, a strontium compound and a barium compound. It is a combination of at least one of them.

【0007】特開平7−60118号公報には、イット
リア、カルシア、マグネシア又はスカンジアで安定化さ
れたジルコニウム酸化物と40〜95重量%のアルミナ
又はチタニアからなり、30〜300m2 gの表面積を
有する酸素イオン伝導性複合体を、ロジウム/白金、ロ
ジウム/パラジウムの担持基材として用いる貴金属触媒
が提案されている。
Japanese Patent Application Laid-Open No. 7-60118 discloses that a zirconium oxide stabilized with yttria, calcia, magnesia or scandia and 40 to 95% by weight of alumina or titania have a surface area of 30 to 300 m 2 g. Noble metal catalysts using an oxygen ion conductive composite as a supporting substrate for rhodium / platinum and rhodium / palladium have been proposed.

【0008】[0008]

【発明が解決しようとする課題】しかし、前記公報中に
記載された従来の触媒は、初期状態から高温耐久後まで
高い排気ガス浄化性能を維持するため、高価な貴金属を
多量に使用しなければならず、このため、排気ガスの浄
化を目的とする三元触媒として、使用する貴金属量が少
なくても高い浄化性能が得られる触媒が望まれている。
然るに、従来の触媒中の貴金属量を低減した場合には、
高温下における耐久性が不十分となり、また耐久後は低
温域での触媒活性や排気ガス浄化性能が悪化するという
問題点があった。
However, the conventional catalyst described in the above-mentioned publication maintains high exhaust gas purification performance from an initial state to after high-temperature durability, so that a large amount of expensive noble metal must be used. For this reason, there is a demand for a three-way catalyst for purifying exhaust gas that can achieve high purification performance even when the amount of noble metal used is small.
However, when the amount of noble metal in the conventional catalyst is reduced,
There has been a problem that the durability at high temperatures becomes insufficient, and after the durability, the catalytic activity and the exhaust gas purification performance at low temperatures deteriorate.

【0009】これは、理論空燃比(以下、「ストイキ」
と称す)を中心に、酸素濃度が不十分な還元雰囲気(以
下、「リッチ」と称す)から酸素濃度が過剰な酸化雰囲
気(以下、「リーン」と称す)まで幅広く組成が変化す
る自動車の排気ガス雰囲気下では、貴金属種の劣化(シ
ンタリング)が促進され、その結果浄化性能が低下する
ためと考えられる。特に、貴金属量を低減する場合に
は、上記影響が顕著に現れて、さらに浄化性能が低下す
るという問題があった。
This is based on the stoichiometric air-fuel ratio (hereinafter referred to as "stoichiometric").
The exhaust of automobiles whose composition varies widely from a reducing atmosphere with insufficient oxygen concentration (hereinafter referred to as "rich") to an oxidizing atmosphere with excessive oxygen concentration (hereinafter referred to as "lean"). It is considered that the deterioration (sintering) of the noble metal species is promoted in the gas atmosphere, and as a result, the purification performance is reduced. In particular, when the amount of the noble metal is reduced, there is a problem that the above-described effect is remarkably exhibited and the purification performance is further reduced.

【0010】また、通常アルミナは熱安定性が不十分
で、高温下ではその結晶構造が変化し、BET比表面積
が著しく小さなα−アルミナへ相転移を起こす。この際
に、貴金属のシリングを促進したり、また、アルミナが
貴金属と固相反応を起こして不活性な化合物を形成し、
その結果浄化性能が大きく低下する。一方、酸化ジルコ
ニウムは熱に対する構造安定性に優れるが、BET比表
面積が小さいため貴金属の分散性が悪く、初期状態から
高温耐久後まで充分な低温活性や浄化性能を得ることが
難しいという問題もあった。
Alumina usually has insufficient thermal stability, and its crystal structure changes at high temperatures, causing a phase transition to α-alumina having a very small BET specific surface area. At this time, it promotes the shilling of the noble metal, and the alumina causes a solid-phase reaction with the noble metal to form an inert compound,
As a result, purification performance is greatly reduced. On the other hand, zirconium oxide is excellent in structural stability against heat, but has a problem that it has a low BET specific surface area and thus has poor dispersibility of noble metals, and it is difficult to obtain sufficient low-temperature activity and purification performance from the initial state to after high-temperature durability. Was.

【0011】従って、本発明の目的は、従来の触媒より
も高温耐久性が向上し、耐久後においても優れた低温活
性と浄化性能を有する排気ガス浄化用触媒を提供するこ
とにある。
Accordingly, it is an object of the present invention to provide an exhaust gas purifying catalyst having improved high-temperature durability over conventional catalysts and having excellent low-temperature activity and purification performance even after durability.

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために研究した結果、白金及びロジウムの高
温耐久性と触媒活性を向上させるために、触媒成分担持
中に白金やロジウムと共に、ジルコニウム酸化物を含有
させることにより、高温耐久性を改善し、耐久後の低温
活性や浄化性能が著しく向上して維持されることを見出
し、本発明に到達した。
Means for Solving the Problems The inventors of the present invention have studied to solve the above-mentioned problems, and as a result, in order to improve the high-temperature durability and catalytic activity of platinum and rhodium, platinum and rhodium were added during loading of the catalyst component. At the same time, it has been found that by containing a zirconium oxide, the high-temperature durability is improved, and the low-temperature activity and purification performance after the durability are remarkably improved and maintained.

【0013】請求項1記載の排気ガス浄化用触媒は、触
媒成分担持層を有する一体構造型触媒において、少なく
ともロジウム担持ジルコニウム酸化物と白金担持ジルコ
ニウム酸化物とを含有することを特徴とする。
According to a first aspect of the present invention, there is provided an exhaust gas purifying catalyst, wherein the catalyst has a catalyst component-supporting layer and comprises at least rhodium-supported zirconium oxide and platinum-supported zirconium oxide.

【0014】更に、請求項1記載の排気ガス浄化用触媒
の耐久性と触媒能を更に向上させるために、請求項2記
載の排気ガス浄化用触媒は、上記のロジウムを担持する
ジルコニウム酸化物が、次の一般式; Nda Cab Zrc d (式中、a,b及びcは、各元素の原子比率を示し、金
属換算で、a=0.01〜20モル%、b=0.05〜
20モル%、c=60〜95モル%、dは上記各成分の
原子価を満足するのに必要な酸素原子数である)で表さ
れることを特徴とする。
Further, in order to further improve the durability and catalytic performance of the exhaust gas purifying catalyst according to the first aspect, the exhaust gas purifying catalyst according to the second aspect is characterized in that the zirconium oxide carrying rhodium contains the zirconium oxide. the following general formula; Nd a Ca b Zr c O d ( where, a, b and c represents an atomic ratio of each element, in terms of a metal, a = 0.01 to 20 mol%, b = 0 .05-
20 mol%, c = 60 to 95 mol%, and d is the number of oxygen atoms necessary to satisfy the valence of each component).

【0015】更に、請求1又は2記載の排気ガス浄化用
触媒の耐被毒性とリッチ雰囲気下における触媒活性を更
に向上させるために、請求項3記載の排気ガス浄化用触
媒は、上記の白金を担持するジルコニウム酸化物が、次
の一般式; 〔X〕 eCef Zrg h (式中、Xは、プラセオジウム、イットリウム、ランタ
ン及びネオジウムからなる群より選ばれた少なくとも一
種の元素であり、e,f及びgは、各元素の原子比率を
示し、金属換算で、e=0.01〜10モル%、f=5
〜30モル%、g=65〜95モル%、hは上記各成分
の原子価を満足するのに必要な酸素原子数である)で表
されることを特徴とする。
Further, in order to further improve the poisoning resistance of the exhaust gas purifying catalyst according to the first or second aspect and the catalytic activity in a rich atmosphere, the exhaust gas purifying catalyst according to the third aspect uses the platinum as a catalyst. zirconium oxide carrying the following general formula; [X] in e Ce f Zr g O h (wherein, X is praseodymium, yttrium, at least one element selected from the group consisting of lanthanum and neodymium, e, f, and g indicate the atomic ratio of each element, e = 0.01 to 10 mol%, and f = 5 in terms of metal.
3030 mol%, g = 65-95 mol%, and h is the number of oxygen atoms necessary to satisfy the valence of each of the above components.

【0016】更に、請求項1〜3いずれかの項記載の排
気ガス浄化用触媒のコーティング性を改良し、しかも、
耐久性を更に高めるために、請求項4記載の排気ガス浄
化用触媒は、上記触媒成分担持層中に更にパラジウム担
持アルミナを含有し、該アルミナはセリウム、ジルコニ
ウム及びランタンからなる群より選ばれた少なくとも一
種を金属換算で1〜10%含むことを特徴とする。
Further, the coating property of the exhaust gas purifying catalyst according to any one of claims 1 to 3 is improved, and
In order to further enhance the durability, the exhaust gas purifying catalyst according to claim 4 further contains palladium-supported alumina in the catalyst component-supporting layer, wherein the alumina is selected from the group consisting of cerium, zirconium, and lanthanum. It is characterized in that at least one kind is contained in an amount of 1 to 10% in terms of metal.

【0017】請求項1〜4いずれかの項記載の排気ガス
浄化用触媒の低温活性とHC浄化性能を更に向上させる
ために、請求項5記載の排気ガス浄化用触媒は、上記触
媒成分担持層中に、更にパラジウム担持セリウム酸化物
を含有し、該セリウム酸化物は、ジルコニウム、ネオジ
ウム及びランタンからなる群より選ばれた一種を金属換
算で1〜40モル%含むことを特徴とする。
In order to further improve the low-temperature activity and the HC purification performance of the exhaust gas purifying catalyst according to any one of the first to fourth aspects, the exhaust gas purifying catalyst according to the fifth aspect includes the catalyst component supporting layer. The cerium oxide further contains a palladium-supported cerium oxide, and the cerium oxide contains 1 to 40 mol% of a metal selected from the group consisting of zirconium, neodymium and lanthanum in terms of metal.

【0018】更に、請求項4又は5記載の排気ガス浄化
用触媒におけるパラジウムとロジウムとの耐被毒性向上
という相乗効果をよく発現させるために、請求項6記載
の排気ガス浄化用触媒は、請求項4又は5記載の排気ガ
ス浄化用触媒において、ロジウム担持ジルコニウム酸化
物を表層側に、パラジウム担持触媒成分を内層側に配置
して成ることを特徴とする。
Furthermore, in order to achieve a good synergistic effect of improving the poisoning resistance of palladium and rhodium in the exhaust gas purifying catalyst according to claim 4 or 5, the exhaust gas purifying catalyst according to claim 6 is preferable. Item 4. The exhaust gas purifying catalyst according to item 4 or 5, wherein a rhodium-supported zirconium oxide is disposed on a surface layer and a palladium-supported catalyst component is disposed on an inner layer side.

【0019】更に、請求項1〜6いずれかの項記載の排
気ガス浄化用触媒の高温耐久後の低温活性とNOx 浄化
性能を更に向上させるために、請求項7記載の排気ガス
浄化用触媒は、、更に、アルカリ金属及びアルカリ土類
金属からなる群より選ばれた少なくとも一種が含有する
ことを特徴とする。
Furthermore, in order to further improve the low temperature activity and the NO x purification performance after high-temperature durability of the exhaust gas purifying catalyst of claims 1 to 6, wherein any one of claims, the catalyst for purifying exhaust gases according to claim 7, wherein Further contains at least one selected from the group consisting of alkali metals and alkaline earth metals.

【0020】[0020]

【発明の実施の形態】本発明の排気ガス浄化用触媒の触
媒成分担持層に含有される貴金属としては、少なくとも
ロジウムと白金がある。当該ロジウムの含有量は、触媒
1L容量中0.01〜3gである。0.01g未満では
低温活性や浄化性能が十分に発現せず、逆に3gを越え
てもロジウムの触媒活性は飽和し、経済的ではない。当
該白金の含有量は、触媒1L容量中0.01〜5gであ
る。0.01g未満では低温活性や浄化性能が十分に発
現せず、逆に5gを越えても白金の触媒活性は飽和し、
経済的にも有効ではない。このように、ロジウムと白金
を共存させることにより、鉛やイオウ等の被毒物質に対
する耐被毒性を向上させることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The noble metals contained in the catalyst component-supporting layer of the exhaust gas purifying catalyst of the present invention include at least rhodium and platinum. The content of the rhodium is 0.01 to 3 g in 1 L of the catalyst. If it is less than 0.01 g, the low-temperature activity and purification performance are not sufficiently exhibited, and if it exceeds 3 g, the catalytic activity of rhodium is saturated, and it is not economical. The content of the platinum is 0.01 to 5 g in 1 L of the catalyst. If the amount is less than 0.01 g, the low-temperature activity and purification performance are not sufficiently exhibited. Conversely, if the amount exceeds 5 g, the catalytic activity of platinum is saturated,
It is not economically effective. Thus, by coexisting rhodium and platinum, the poisoning resistance to poisoning substances such as lead and sulfur can be improved.

【0021】前記ロジウムが担持される基材としては、
ロジウムの分散性を高め、高温耐久性を向上させるため
に、ジルコニウム酸化物が、また白金が担持される基材
としても、白金の耐久性を向上させるためにジルコニウ
ム酸化物が適切である。
As the substrate on which the rhodium is supported,
Zirconium oxide is suitable for enhancing the dispersibility of rhodium and improving high-temperature durability, and zirconium oxide is also suitable for the platinum-supported substrate for improving the durability of platinum.

【0022】すなわち、ロジウムをジルコニウム酸化物
に担持することによって、耐久後のロジウムの不活性化
を抑制でき、また、白金をジルコニウム酸化物に担持す
ることによって、耐久後の白金の触媒能の低下を抑制で
きる。
That is, by supporting rhodium on zirconium oxide, inactivation of rhodium after durability can be suppressed, and by supporting platinum on zirconium oxide, the catalytic performance of platinum after durability can be reduced. Can be suppressed.

【0023】また、請求項2記載の排気ガス浄化用触媒
は、請求項1記載の排気ガス浄化用触媒の耐久後の浄化
性能を特に高めるために、上記ロジウムを担持するジル
コニウム酸化物が、ネオジウムとカルシウムとを含有す
るもので、かかるジルコニウム酸化物の組成は、Nda
Cab Zrc d で表され、前記式中、a=0.01〜
20モル%、b=0.05〜20モル%、c=60〜9
5モル%である。
Further, in the exhaust gas purifying catalyst according to the second aspect, the zirconium oxide carrying rhodium is preferably neodymium in order to particularly enhance the purification performance after the durability of the exhaust gas purifying catalyst according to the first aspect. And calcium, and the composition of such zirconium oxide is Nd a
Represented by Ca b Zr c O d, in the above formula, a = 0.01 to
20 mol%, b = 0.05-20 mol%, c = 60-9
5 mol%.

【0024】a=0.01モル%未満では、ジルコニウ
ム酸化物に添加されているネオジウムの結晶構造安定化
という作用が小さく、充分なBET表面積改良効果が得
られず、ジルコニア(Zr02 )のみの場合と変わらな
い。また、a=20モル%を越えると、ネオジウムがジ
ルコニウム酸化物に固溶した上記式で表されるジルコニ
ウム複合酸化物を形成し難くなり、BET比表面積等の
ジルコニア酸化物の物性が低下するためロジウムの分散
性が悪く、初期状態において充分な浄化性能が得られな
い。
When a is less than 0.01 mol%, the effect of stabilizing the crystal structure of neodymium added to the zirconium oxide is small, and a sufficient effect of improving the BET surface area cannot be obtained, and only zirconia (ZrO 2 ) is used. It is not different from the case. On the other hand, when a exceeds 20 mol%, it becomes difficult to form a zirconium composite oxide represented by the above formula in which neodymium forms a solid solution in zirconium oxide, and physical properties of the zirconia oxide such as BET specific surface area decrease. The dispersibility of rhodium is poor, and sufficient purification performance cannot be obtained in the initial state.

【0025】b=0.05モル%未満では、ジルコニウ
ム酸化物に添加されているカルシウムのロジウムへの電
子供与という作用が小さく、充分な浄化性能改良効果が
得られず、ジルコニア(Zr02 )のみの場合と変わら
ない。また、b=20モル%を越えると、カルシウムが
ジルコニウム酸化物に固溶した上記式で表されるジルコ
ニウム複合酸化物を形成し難くなり、熱安定性等のジル
コニア酸化物の物性が低下するため、高温耐久中にロジ
ウムのシンタリングが促進され、耐久後の浄化性能が悪
化する。
If b = less than 0.05 mol%, the effect of calcium added to the zirconium oxide on electron donation to rhodium is small, and a sufficient effect of improving purification performance cannot be obtained, and only zirconia (ZrO 2 ) is obtained. It is not different from the case. On the other hand, if b exceeds 20 mol%, it becomes difficult to form a zirconium composite oxide represented by the above formula in which calcium is dissolved in the zirconium oxide, and physical properties of the zirconia oxide such as thermal stability deteriorate. In addition, sintering of rhodium is promoted during high-temperature durability, and purification performance after durability deteriorates.

【0026】c=60モル%未満では、ネオジウムやカ
ルシウムが固溶した上記式で表されるジルコニウム複合
酸化物を形成し難くなり、熱安定性やBET比表面積等
のジルコニウム酸化物の物性が低下するため、初期状態
から充分な浄化性能が得られなかったり、高温耐久後の
該ジルコニウム酸化物の構造安定性が悪化する。また、
c=95モル%を越えると、ネオジウムやカルシウムの
構造安定化や電子供与という作用が小さく、充分な浄化
性能改良効果が得られずジルコニア(Zr02)のみの
場合と変わらない。
When c is less than 60 mol%, it is difficult to form a zirconium composite oxide represented by the above formula in which neodymium or calcium is dissolved, and physical properties of the zirconium oxide such as thermal stability and BET specific surface area are reduced. Therefore, sufficient purification performance cannot be obtained from the initial state, or the structural stability of the zirconium oxide after high-temperature durability deteriorates. Also,
When c exceeds 95 mol%, the effects of neodymium and calcium on stabilizing the structure and electron donating are small, and a sufficient purification performance improving effect cannot be obtained, which is the same as the case of using only zirconia (ZrO 2 ).

【0027】かかるジルコニウム酸化物の使用量は、触
媒1Lあたり5〜100gである。5g未満だと貴金属
の分散性が得られず、100gより多く使用しても前記
改良効果は飽和し有効でない。
The amount of the zirconium oxide used is 5 to 100 g per liter of the catalyst. If the amount is less than 5 g, the dispersibility of the noble metal cannot be obtained, and even if the amount is more than 100 g, the improvement effect is saturated and not effective.

【0028】このように、ネオジウム及びカルシウムの
組成比を特定したジルコニウム酸化物とすることによっ
て、添加した元素がジルコニウム酸化物の結晶構造中に
容易に固溶し、しかも、高温下での構造安定性が向上
し、大きなBET比表面積のジルコニウム酸化物を得る
ことができる。
As described above, by using a zirconium oxide having a specified composition ratio of neodymium and calcium, the added element easily forms a solid solution in the crystal structure of the zirconium oxide, and furthermore, has a stable structure at high temperatures. Properties can be improved, and a zirconium oxide having a large BET specific surface area can be obtained.

【0029】特に請求項3記載の排気ガス浄化用触媒
は、請求項1又は2記載の排気ガス浄化用触媒の高温耐
久後の浄化性能を特に高めるために、プラセオジウム、
イットリウム、ランタン及びネオジウムからなる群より
選ばれた少なくとも一種の元素と、セリウムとを含有す
るもので、かかるジルコニウム酸化物の組成は、次の式
〔X〕e Cef Zrg h で表され、前記式中、e=
0.01〜10モル%、f=5〜30モル%、g=65
〜95モル%である。
In particular, the exhaust gas purifying catalyst according to claim 3 is preferably praseodymium, in order to particularly enhance the purifying performance after high-temperature durability of the exhaust gas purifying catalyst according to claim 1 or 2.
Yttrium, and at least one element selected from the group consisting of lanthanum and neodymium, those containing cerium, the composition of such zirconium oxide, represented by the following formula [X] e Ce f Zr g O h , Where e =
0.01 to 10 mol%, f = 5 to 30 mol%, g = 65
~ 95 mol%.

【0030】e=0.01モル%未満では、Zr02
みの場合と変わらず、上記した元素のZr02 のBET
比表面積や熱安定性を改良する効果が現れず、e=10
モル%を越えるとこの効果が飽和もしくは逆に低下す
る。
[0030] In the e = less than 0.01 mol%, unchanged from the case of only Zr0 2, Zr0 2 of BET of the above-mentioned elements
The effect of improving the specific surface area and the thermal stability does not appear, and e = 10
If it exceeds mol%, this effect is saturated or conversely decreases.

【0031】f=5モル%未満ではセリウムの酸素吸蔵
能が充分に発現せず、耐久後のロジウムや白金の浄化性
能の改良効果が十分に得られず、逆に、f=30モル%
を越えると、この効果が飽和もしくは逆に結晶構造の熱
安定性が低下する。
When f is less than 5 mol%, the oxygen storage capacity of cerium is not sufficiently exhibited, and the effect of improving the purification performance of rhodium and platinum after durability cannot be sufficiently obtained.
Is exceeded, this effect is saturated, or conversely, the thermal stability of the crystal structure decreases.

【0032】かかるジルコニウム酸化物の使用量は、触
媒1Lあたり5〜100gである。5g未満だと充分な
貴金属の分散性が得られず、100gより多く使用して
も改良効果は飽和し有効でない。
The amount of the zirconium oxide used is 5 to 100 g per liter of the catalyst. If the amount is less than 5 g, sufficient dispersibility of the noble metal cannot be obtained, and even if the amount is more than 100 g, the improvement effect is saturated and not effective.

【0033】このように、プラセオジウム、イットリウ
ム、ランタン及びネオジウムからなる群より選ばれた少
なくとも一種の元素とセリウムの組成比を特定したジル
コニウム酸化物とすることによって、添加した元素がジ
ルコニウム酸化物の結晶構造中に容易に固溶し高温下で
の構造安定性が向上し、しかも、酸素吸蔵能の高いジル
コニウム酸化物を得ることができる。
As described above, the zirconium oxide having a specific composition ratio of cerium and at least one element selected from the group consisting of praseodymium, yttrium, lanthanum, and neodymium is used. It is possible to obtain a zirconium oxide which easily dissolves in the structure, improves the structural stability at high temperatures, and has a high oxygen storage capacity.

【0034】このように、酸素吸蔵能の高いセリウム含
有ジルコニウム酸化物に白金を担持することによって、
リッチ雰囲気及びストイキ近傍で格子酸素や吸着酸素を
放出し易くなるため、ロジウムの酸化状態を排気ガスの
浄化に適したものとし、ロジウムの触媒能の低下を抑制
できる。
As described above, by supporting platinum on a cerium-containing zirconium oxide having a high oxygen storage capacity,
Since it becomes easy to release lattice oxygen and adsorbed oxygen in a rich atmosphere and in the vicinity of stoichiometry, the oxidation state of rhodium can be made suitable for purifying exhaust gas, and a decrease in the catalytic ability of rhodium can be suppressed.

【0035】また、請求項4記載の排気ガス浄化用触媒
は、請求項1〜3いずれかの項記載の排気ガス浄化用触
媒に加えて、更に、パラジウム担持アルミナを含有する
ものである。当該パラジウムの含有量は、触媒1L容量
中0.1〜20gである。0.01g未満では低温活性
や浄化性能が十分に発現せず、逆に20gを越えてもパ
ラジウムの触媒活性は飽和し、経済的にも有効でない。
The exhaust gas purifying catalyst according to a fourth aspect further includes, in addition to the exhaust gas purifying catalyst according to any one of the first to third aspects, palladium-supported alumina. The content of the palladium is 0.1 to 20 g in 1 L of the catalyst. If it is less than 0.01 g, the low-temperature activity and purification performance are not sufficiently exhibited, and if it exceeds 20 g, the catalytic activity of palladium is saturated, and it is not economically effective.

【0036】前記パラジウムが担持される基材として
は、白金やパラジウムの分散性を高め、触媒性能を向上
させるため、アルミナ、特に活性アルミナが適切であ
る。特に、高温耐久後のアルミナの構造安定性を高め、
α−アルミナへの相転移やBET比表面積の低下を抑制
するために、上記アルミナにはセリウム、ジルコニウム
及びランタンからなる群より選ばれた少なくとも一種が
金属換算で1〜10モル%含有される。
As the substrate on which the palladium is supported, alumina, particularly activated alumina, is suitable in order to enhance the dispersibility of platinum and palladium and to improve the catalytic performance. In particular, enhance the structural stability of alumina after high-temperature durability,
In order to suppress the phase transition to α-alumina and the decrease in the BET specific surface area, the alumina contains 1 to 10 mol% of at least one selected from the group consisting of cerium, zirconium and lanthanum in terms of metal.

【0037】かかるアルミナの使用量は、触媒1Lあた
り10〜200gである。10g未満だと充分な貴金属
の分散性が得られず、200gより多く使用しても触媒
性能は飽和し、顕著な改良効果は得られない。
The amount of the alumina used is 10 to 200 g per liter of the catalyst. If the amount is less than 10 g, sufficient dispersibility of the noble metal cannot be obtained, and even if the amount is more than 200 g, the catalytic performance is saturated, and a remarkable improvement effect cannot be obtained.

【0038】これにより、スラリー化した触媒成分担持
層のコーティング性を改善でき、しかも、触媒成分層の
剥離を防止することができる。
This makes it possible to improve the coating property of the catalyst component supporting layer which has been slurried, and to prevent the catalyst component layer from peeling off.

【0039】更に、請求項5記載の排気ガス浄化用触媒
は、請求項1〜4いずれかの項記載の排気ガス浄化用触
媒に、更に、パラジウム担持セリウム酸化物を含有する
ものである。当該セリウム酸化物には、ジルコニウム、
ネノジウム及びランタンからなる群より選ばれた少なく
とも一種を金属換算で1〜40モル%、セリウムを60
〜98モル%含有もるのである。1〜40モル%とした
のは、セリウム酸化物(CeO2 )にジルコニウム、ネ
オジウム及びランタンからなる群より選ばれた少なくと
も一種の元素を添加し、CeO2 の酸素放出能やBET
比表面積、熱安定性を顕著に改良するためである。1モ
ル%未満ではCeO2 のみの場合と変わらず、上記した
元素の添加効果が現れず、40モル%を超えるとこの効
果が飽和もしくは逆に低下する。
Further, an exhaust gas purifying catalyst according to a fifth aspect is the exhaust gas purifying catalyst according to any one of the first to fourth aspects, further comprising cerium oxide carrying palladium. The cerium oxide includes zirconium,
At least one selected from the group consisting of nenodium and lanthanum is 1 to 40 mol% in terms of metal, and cerium is 60%.
9898 mol%. The reason for setting the content to 1 to 40 mol% is that at least one element selected from the group consisting of zirconium, neodymium and lanthanum is added to cerium oxide (CeO 2 ), and the oxygen releasing ability and BET of CeO 2 are added.
This is for remarkably improving the specific surface area and the thermal stability. If it is less than 1 mol%, the effect of adding the above-mentioned element does not appear as in the case of only CeO 2 , and if it exceeds 40 mol%, this effect is saturated or conversely decreases.

【0040】これにより、高温耐久後の低温活性及びH
C浄化能を向上させることができる。
Thus, the low-temperature activity after high-temperature durability and H
C Purification ability can be improved.

【0041】請求項6記載の排気ガス浄化用触媒は、請
求項4又は5記載の排気ガス浄化用触媒において、上記
パラジウム含有触媒成分をコート層の内層側(下側)に
配置し、前記ロジウム担持ジルコニウム酸化物をコート
表層側(上側)に配置したものである。上記パラジウム
含有触媒成分とは、上記パラジウム担持アルミナ、又
は、上記パラジウム担持アルミナと上記パラジウム担持
セリウム酸化物である。このような配置とすることによ
り、ロジウムとパラジウムの間の耐被毒性向上という相
乗作用が効率良く発現することとなる。
According to a sixth aspect of the present invention, there is provided the exhaust gas purifying catalyst according to the fourth or fifth aspect, wherein the palladium-containing catalyst component is disposed on the inner layer side (lower side) of the coat layer. This is one in which the supported zirconium oxide is disposed on the surface side (upper side) of the coat. The palladium-containing catalyst component is the palladium-supported alumina or the palladium-supported alumina and the palladium-supported cerium oxide. With such an arrangement, a synergistic effect of improving the resistance to poisoning between rhodium and palladium is efficiently exhibited.

【0042】また、請求項7記載の排気ガス浄化触媒
は、請求項1〜6いずれかの項記載の排気ガス浄化用触
媒に、更にアルカリ金属及びアルカリ土類金属からなる
群より選ばれる少なくとも一種を含有するものである。
使用されるアルカリ金属及び/又はアルカリ土類金属に
は、リチウム、ナトリウム、カリウム、セシウム、マグ
ネシウム、カルシウム、ストロンチウム、バリウムが含
まれる。その含有量は触媒1L中1〜40gである。1
g未満では、炭化水素類の吸着被毒やパラジウムのシン
タリングを抑制できず、40gを越えても有為な増量効
果が得られず逆に性能を低下させる。
The exhaust gas purifying catalyst according to claim 7 is the same as the exhaust gas purifying catalyst according to any one of claims 1 to 6, further comprising at least one selected from the group consisting of alkali metals and alkaline earth metals. It contains.
The alkali metals and / or alkaline earth metals used include lithium, sodium, potassium, cesium, magnesium, calcium, strontium, barium. Its content is 1 to 40 g per liter of catalyst. 1
If it is less than g, adsorption poisoning of hydrocarbons and sintering of palladium cannot be suppressed, and if it exceeds 40 g, a significant effect of increasing the amount cannot be obtained, and conversely, the performance is reduced.

【0043】このように、アルカリ金属及びアルカリ土
類金属からなる群より選ばれた少なくとも一種を含有す
ることにより更に、浄化性能向上効果が得られる。これ
らを触媒成分担持層に含有させると、リッチ雰囲気下で
のHC吸着被退く作用を緩和し、また、パラジウムのシ
ンタリングを抑制するため、低温活性や還元雰囲気でN
x 浄化能をさらに向上させることができる。
As described above, by containing at least one selected from the group consisting of alkali metals and alkaline earth metals, the effect of improving purification performance can be further obtained. When these are contained in the catalyst component-supporting layer, the action of desorbing HC by adsorption in a rich atmosphere is reduced, and sintering of palladium is suppressed.
Ox purification ability can be further improved.

【0044】本発明の排気ガス浄化用触媒を製造するに
際しては、上記ジルコニウム酸化物を構成する添加元素
とジルコニウム成分を各々含む触媒原料を純水に加えて
攪拌する。この際、各触媒原料を同時に又は別個に溶解
した液を加えても良い。
In producing the exhaust gas purifying catalyst of the present invention, a catalyst raw material containing the zirconium oxide and the additional element constituting the zirconium oxide is added to pure water and stirred. At this time, a liquid in which each catalyst raw material is dissolved simultaneously or separately may be added.

【0045】次いで、この混合溶液にアンモニア水及び
アンモニウム化合物の水溶液を徐々に添加し、溶液のp
Hを6.0〜10.0の範囲になるように調整した後、
水分を除去し、残留物を熱処理してジルコニウム酸化物
を得、これにロジウム及び/又は白金を含浸担持してさ
らに熱処理することにより請求項1〜3いずれかの項記
載の排気ガス浄化用触媒が得られる。
Next, an aqueous ammonia solution and an aqueous solution of an ammonium compound are gradually added to the mixed solution, and p
After adjusting H to be in the range of 6.0 to 10.0,
The exhaust gas purifying catalyst according to any one of claims 1 to 3, wherein water is removed and the residue is heat-treated to obtain a zirconium oxide, which is further impregnated with rhodium and / or platinum and further heat-treated. Is obtained.

【0046】請求項1〜3いずれかの項記載の排気ガス
浄化用触媒のジルコニウム酸化物は、前記添加元素とジ
ルコニウム成分の各水溶液塩を水に溶解又は分散させた
後、アンモニア水あるいはアンモニウム化合物の水溶液
を加え、溶液のpHを6.0から10.0の範囲になる
ように調整になるように調整した後、水分を除去して乾
燥し、次いで焼成することにより得られる。
The zirconium oxide of the exhaust gas purifying catalyst according to any one of claims 1 to 3, wherein the aqueous solution salt of the additive element and the zirconium component is dissolved or dispersed in water, and then the aqueous ammonia or the ammonium compound is used. And then adjusting the pH of the solution to be in the range of 6.0 to 10.0, removing water, drying, and then firing.

【0047】または、請求項1〜3いずれかの項記載の
排気ガス浄化用触媒のジルコニウム酸化物は、予めジル
コニウム酸化物の沈殿を生成した懸濁液に、前記添加元
素の水溶液塩を水に溶解又は分散させた溶液を徐々に滴
下した後、溶液のpHを6.0から10.0の範囲にな
るように調整し、水分を除去して乾燥し、次いで焼成す
ることにより得ることもできる。
Alternatively, the zirconium oxide of the catalyst for purifying exhaust gas according to any one of claims 1 to 3, may be obtained by converting an aqueous solution salt of the additional element into water in a suspension in which a precipitate of zirconium oxide is previously generated. After the dissolved or dispersed solution is gradually dropped, the pH of the solution is adjusted to be in a range of 6.0 to 10.0, moisture is removed, dried, and then calcined. .

【0048】本発明の排気ガス浄化用触媒に用いるジル
コニウム酸化物は、前記各元素の硝酸塩、炭酸塩、酢酸
塩及び酸化物等の水溶性塩を任意に組み合わせて製造す
ることができる。
The zirconium oxide used in the exhaust gas purifying catalyst of the present invention can be produced by arbitrarily combining water-soluble salts such as nitrates, carbonates, acetates and oxides of the above-mentioned elements.

【0049】前記ジルコニウム酸化物の調製方法として
は特別な方法に限定されず、成分の著しい偏在を伴わな
い限り、公知の沈殿法、含浸法、蒸発乾固法等の種々の
方法の手化から適宜選択して使用することができるが、
上記各元素の塩を水に溶解又は分散させた後、アンモニ
ア水あるいはアンモニウム化合物の水溶液を沈殿剤とし
て加える沈殿法を用いることが、ジルコニウム酸化物の
結晶構造を均一にし、また、表面積を充分に確保するた
めに好ましい。
The method for preparing the above-mentioned zirconium oxide is not limited to a special method, but may be any one of various known methods such as a precipitation method, an impregnation method and an evaporation to dryness method, unless there is a significant uneven distribution of components. It can be selected and used as appropriate,
After dissolving or dispersing the salt of each of the above elements in water, using a precipitation method in which an aqueous solution of ammonia water or an ammonium compound is used as a precipitant, the crystal structure of the zirconium oxide is made uniform, and the surface area is sufficiently increased. It is preferable to secure.

【0050】上記沈殿法を実施するに際しては、溶液の
pHを6.0〜10.0の範囲に調整することにより、
各種金属塩の沈殿物を形成することができる。pHが
6.0より低いと各種元素が充分に沈殿を形成させず、
逆にpHが10.0より高いと沈殿した成分の一部が再
溶解することがある。
In carrying out the precipitation method, the pH of the solution is adjusted to a range of 6.0 to 10.0,
Precipitates of various metal salts can be formed. When the pH is lower than 6.0, various elements do not sufficiently form a precipitate,
Conversely, if the pH is higher than 10.0, some of the precipitated components may be redissolved.

【0051】水の除去は、例えば濾過法や蒸発乾固法の
公知の方法の中から適宜選択して行うことができる。本
発明に用いるジルコニウム酸化物を得るために最初の熱
処理は、特に制限されないが、添加した元素をジルコニ
ウム酸化物に固溶させた複合酸化物を形成し、また、ロ
ジウムや白金の分散性良く担持するための大木な比表面
積を得るため、例えば400℃〜800℃の比較的低温
で空気中及び/又は空気流通下で焼成を行うこと好まし
い。
The removal of water can be appropriately selected from known methods such as a filtration method and an evaporation to dryness method. The first heat treatment for obtaining the zirconium oxide used in the present invention is not particularly limited, but forms a complex oxide in which the added element is dissolved in the zirconium oxide, and also supports rhodium and platinum with good dispersibility. In order to obtain a large specific surface area for sintering, it is preferable to perform calcination at a relatively low temperature of, for example, 400 ° C. to 800 ° C. in the air and / or under the flow of air.

【0052】前記ジルコニウム酸化物にロジウムや白金
を担持する方法としては、例えば含浸法や混練法等の公
知の方法の中から適宜選択して行うことができるが、特
に含浸法を用いることが好ましい。
The method of supporting rhodium or platinum on the zirconium oxide can be appropriately selected from known methods such as an impregnation method and a kneading method, but it is particularly preferable to use the impregnation method. .

【0053】ロジウムの原料化合物としては、硝酸塩等
の水溶性のものであれば任意のものが使用できる。白金
の原料化合物としては、ジニトロジアンミン酸塩、塩化
物、硝酸塩等の水溶性のものであれば任意のものが使用
できる。
As a raw material compound of rhodium, any compound can be used as long as it is water-soluble such as nitrate. As the raw material compound for platinum, any compound can be used as long as it is a water-soluble compound such as dinitrodiamminate, chloride, and nitrate.

【0054】本発明にかかる排気ガス浄化用触媒は、沈
殿法で得られたジルコニウム酸化物が有する微細な細孔
構造と大きなBET比表面積及び均一な結晶構造が、低
温におけるロジウムの触媒活性の発現に重要な役割を果
たしている。これに対し、上記沈殿法を用いずに得たジ
ルコニウム酸化物は、反応に有効な比表面積が小さくな
り、また、添加した元素がジルコニウム酸化物に固溶し
た複合酸化物を形成せず担持表面に偏在し、ロジウムや
白金の触媒活性や耐久後の浄化性能が低下する。
In the exhaust gas purifying catalyst according to the present invention, the fine pore structure, large BET specific surface area and uniform crystal structure of the zirconium oxide obtained by the precipitation method exhibit the catalytic activity of rhodium at a low temperature. Plays an important role. On the other hand, zirconium oxide obtained without using the above precipitation method has a small specific surface area effective for the reaction, and does not form a complex oxide in which the added element is dissolved in the zirconium oxide. And the catalytic activity of rhodium and platinum and the purification performance after durability are reduced.

【0055】また、請求項1〜3記載の排気ガス浄化用
触媒中の触媒成分に加えて、アルミナ粉末にパラジウム
を含浸法で担持した粉末を加えることにより、請求項4
記載の排気ガス浄化用触媒が得られる。パラジウムの原
料化合物としては、ジニトロジアンミン酸塩、塩化物、
硝酸塩等水溶性のものであれば任意のものが使用でき
る。
Further, in addition to the catalyst component in the exhaust gas purifying catalyst according to any one of claims 1 to 3, a powder obtained by impregnating palladium on alumina powder is added.
An exhaust gas purifying catalyst as described is obtained. Raw material compounds of palladium include dinitrodiamminate, chloride,
Any water-soluble substance such as nitrate can be used.

【0056】また、請求項1〜4記載の排気ガス浄化用
触媒中の触媒成分に加えて、セリウム酸化物粉末にパラ
ジウムを含浸法で担持した粉末を加えることにより、請
求項5記載の排気ガス浄化用触媒が得られる。また、該
セリウム酸化物には、ジルコニウム、ネオジウム及びラ
ンタンからなる群より選ばれる少なくとも1種が含有さ
れる。当該ジルコニウム、ネオジウム及びランタンから
なる群より選ばれる少なくとも一種を含有するセリウム
酸化物にパラジウムが担持されたものを添加することに
より、還元雰囲気下において、パラジウムの酸化状態
を、排気ガス浄化に適した状態に、より有効に維持する
ことができる。
Further, in addition to the catalyst component in the exhaust gas purifying catalyst according to any one of claims 1 to 4, a powder obtained by impregnating cerium oxide powder with palladium by impregnation is added. A purification catalyst is obtained. The cerium oxide contains at least one selected from the group consisting of zirconium, neodymium and lanthanum. The zirconium, neodymium and lanthanum by adding a palladium-supported cerium oxide containing at least one selected from the group consisting of, under a reducing atmosphere, the oxidation state of palladium, suitable for exhaust gas purification State can be maintained more effectively.

【0057】このようにして得られる本発明にかかる排
気ガス浄化用触媒は、無担体でも有効に使用することが
できるが、粉砕・スラリーとし、触媒担体にコートし
て、400〜900℃で焼成して用いることが好まし
い。
The exhaust gas purifying catalyst according to the present invention thus obtained can be effectively used without a carrier. However, it is pulverized and slurry, coated on the catalyst carrier and calcined at 400 to 900 ° C. It is preferable to use them.

【0058】従って、得られた前記ロジウム及び/又は
白金担持ジルコニウム酸化物粉末、上記パラジウム担体
アルミナ粉末及び上記パラジウム担持セリウム酸化物粉
末に、アルミナゾルを加えて湿式にて粉砕してスラリー
とし、触媒担体に付着させ、400〜650℃の範囲の
温度で空気中及び/又は空気流通下で焼成を行う。
Therefore, alumina sol was added to the obtained rhodium and / or platinum-supported zirconium oxide powder, the above-mentioned palladium-supported alumina powder and the above-mentioned palladium-supported cerium oxide powder, and wet-milled to obtain a slurry. And calcined at a temperature in the range of 400 to 650 ° C. in the air and / or under a flow of air.

【0059】更に、ロジウム及びパラジウムの耐被毒性
向上という相乗作用を効率よく発現させるために、パラ
ジウムを含有する触媒成分層はコート層の下側(内層
側)に配置し、ロジウムを含有する触媒成分層はコート
層の上側(表層側)に配置することが好ましく、これに
より請求項6記載の排気ガス浄化用触媒が得られる。白
金は、ロジウムを含有する触媒成分層(表層側)及びパ
ラジウムを含有する触媒成分層(内層側)いずれの触媒
成分層中に含有させることもできるが、特に、ロジウム
を含有する触媒成分層(表層側)中に均一に配置するこ
とが耐久性改良の点から好ましい。
Further, in order to efficiently exhibit the synergistic effect of improving the poisoning resistance of rhodium and palladium, the palladium-containing catalyst component layer is disposed below the coat layer (inner layer side), and the rhodium-containing catalyst is provided. The component layer is preferably disposed on the upper side (surface side) of the coat layer, whereby the exhaust gas purifying catalyst according to claim 6 is obtained. Platinum can be contained in any of the catalyst component layers containing rhodium (surface layer side) and the catalyst component layer containing palladium (inner layer side). In particular, the catalyst component layer containing rhodium ( It is preferable to arrange them uniformly in the surface layer) from the viewpoint of improving durability.

【0060】触媒担体としては、公知の触媒担体の中か
ら適宜選択して使用することができ、例えば耐火性材料
からなるモノリス担体やメタル担体等が挙げられる。前
記触媒担体の形状は、特に制限されないが、通常はハニ
カム形状で使用することが好ましく、ハニカム状の各種
基材に触媒粉末を塗布して用いられる。
The catalyst carrier can be appropriately selected from known catalyst carriers and used, and examples thereof include a monolith carrier made of a refractory material and a metal carrier. Although the shape of the catalyst carrier is not particularly limited, it is generally preferable to use the catalyst carrier in a honeycomb shape. The catalyst carrier is used by applying a catalyst powder to various honeycomb base materials.

【0061】このハニカム材料としては、一般にセラミ
ック等のコージェライト質のものが多く用いられるが、
フェライト系ステンレス等の金属材料からなるハニカム
材料を用いることも可能であり、更には触媒成分粉末そ
のものをハニカム状に成形しても良い。触媒の形状をハ
ニカム状とすることにより、触媒と排気ガスとの接触面
積が大きくなり、圧力損失も抑制できるため自動車用排
気ガス浄化用触媒として用いる場合に極めて有効であ
る。
As the honeycomb material, cordierite materials such as ceramics are generally used.
It is also possible to use a honeycomb material made of a metal material such as ferrite stainless steel, and further, the catalyst component powder itself may be formed into a honeycomb shape. By making the shape of the catalyst into a honeycomb shape, the contact area between the catalyst and the exhaust gas is increased and the pressure loss can be suppressed, so that it is extremely effective when used as an exhaust gas purifying catalyst for automobiles.

【0062】ハニカム材料に付着させる触媒成分コート
層の量は、触媒成分全体のトータルで、触媒1Lあた
り、50g〜400gが好ましい。触媒成分担持層が多
い程、触媒寿命の面から好ましいが、コート層が厚くあ
りすぎると、触媒成分担持層内部で反応ガスが拡散不良
となり触媒と充分に接触できなくなるため、活性に対す
る増量効果が飽和し、更にはガスの通過抵抗も大きくな
ってしまう。このため、コート層量は、上記触媒1Lあ
たり50g〜400gが好ましい。
The amount of the catalyst component coat layer adhered to the honeycomb material is preferably 50 g to 400 g per liter of the catalyst in total of the entire catalyst components. The larger the number of catalyst component-supporting layers, the more preferable in terms of catalyst life.However, if the coating layer is too thick, the reaction gas cannot be sufficiently contacted with the catalyst due to poor diffusion of the reaction gas inside the catalyst component-supporting layer. It saturates and further increases the gas passage resistance. Therefore, the amount of the coat layer is preferably 50 g to 400 g per liter of the catalyst.

【0063】更に好ましくは、得られた排気ガス浄化用
触媒に、アルカリ金属及びアルカリ土類金属を含浸担持
させることにより、請求項7記載の排気ガス浄化用触媒
が得られる。使用できるアルカリ金属及びアルカリ土類
金属は、リチウム、ナトリウム、カリウム、セシウム、
マグネシウム、カルシウム、ストロンチウからなる群よ
り選ばれる少なくとも一種の元素が挙げられるが、特
に、カリウム及び/又はバリウムが好ましい。
More preferably, the obtained exhaust gas purifying catalyst is impregnated and supported with an alkali metal and an alkaline earth metal to obtain the exhaust gas purifying catalyst according to claim 7. Alkali metals and alkaline earth metals that can be used are lithium, sodium, potassium, cesium,
Examples include at least one element selected from the group consisting of magnesium, calcium, and strontium, with potassium and / or barium being particularly preferred.

【0064】使用できるアルカリ金属及びアルカリ土類
金属の化合物は、酸化物、硝酸塩及び水酸化物等の水溶
性のものである。これにより、白金及びパラジウムの近
傍に塩基性元素であるアルカル金属及び/又はシルカリ
土類金属を分散性良く担持することが可能となる。
The alkali metal and alkaline earth metal compounds that can be used are water-soluble compounds such as oxides, nitrates and hydroxides. This makes it possible to carry the alkali metal and / or the alkaline earth metal, which are basic elements, in the vicinity of platinum and palladium with good dispersibility.

【0065】具体的には、アルカリ金属化合物及び/又
はアルカリ土類金属からなる粉末の水溶液を、ウォッシ
ュコート成分を担持した上記担体に含浸し、乾燥し、次
いで空気中及び/又は空気流通下で200〜600℃の
比較的低温で焼成するものである。かかる焼成温度が2
00℃未満だとアルカリ金属及びアルカリ土類金属化合
物が酸化物形態になることが充分にできず、逆に600
℃を越えても焼成温度の効果は飽和し、顕著な差異は得
られない。
Specifically, an aqueous solution of a powder comprising an alkali metal compound and / or an alkaline earth metal is impregnated into the above-mentioned carrier supporting a washcoat component, dried, and then dried in air and / or under a stream of air. It is fired at a relatively low temperature of 200 to 600 ° C. If the firing temperature is 2
If the temperature is lower than 00 ° C., the alkali metal and alkaline earth metal compounds cannot be sufficiently converted into the oxide form.
Even if the temperature exceeds ℃, the effect of the sintering temperature is saturated, and no remarkable difference is obtained.

【0066】本発明を次の実施例及び比較例により説明
する。
The present invention will be described with reference to the following examples and comparative examples.

【0067】[0067]

【実施例】実施例1 セリウム3モル%(CeO2 に換算して8.7重量
%)、ジルコニウム3モル%(ZrO2 に換算して6.
3重量%)とランタン2モル%(La2 3 に換算して
5.5重量%)を含有するアルミナ粉末(粉末A)に硝
酸パラジウム水溶液を含浸し、150℃で12時間乾燥
した後、400℃で1時間焼成して、Pd担持アルミナ
粉末(粉末B)を得た。この粉末BのPd濃度は4.8
重量%であった。
EXAMPLE 1 3 mol% of cerium (8.7 wt% in terms of CeO 2 ), 3 mol% of zirconium (in terms of ZrO 2 , 6.
Alumina powder (powder A) containing 3% by weight) and 2% by mole of lanthanum (5.5% by weight in terms of La 2 O 3 ) was impregnated with an aqueous palladium nitrate solution and dried at 150 ° C. for 12 hours. It was calcined at 400 ° C. for 1 hour to obtain Pd-supported alumina powder (powder B). The Pd concentration of this powder B was 4.8.
% By weight.

【0068】ランタン1モル%(La2 3 に換算して
2重量%)とジルコニウム32モル%(ZrO2 に換算
して25重量%)を含むセリウム酸化物粉末(粉末C)
に硝酸パラジウム水溶液を含浸し、150℃で12時間
乾燥した後、400℃で1時間焼成して、Pd担持セリ
ウム酸化物(La0.01Zr0.32Ce0.67x )粉末(粉
末D)を得た。この粉末DのPd濃度は0.9重量%で
あった。
Cerium oxide powder (powder C) containing 1 mol% of lanthanum (2 wt% in terms of La 2 O 3 ) and 32 mol% of zirconium (25 wt% in terms of ZrO 2 )
Was impregnated with an aqueous solution of palladium nitrate, dried at 150 ° C. for 12 hours, and calcined at 400 ° C. for 1 hour to obtain Pd-supported cerium oxide (La 0.01 Zr 0.32 Ce 0.67 O x ) powder (powder D). The Pd concentration of this powder D was 0.9% by weight.

【0069】上記粉末B907g、粉末D400gと活
性アルミナ193g、硝酸水溶液1000gを磁性ボー
ルミルに投入し、混合・粉砕してスラリーを得た。この
スラリー液をコージェラト質モノリス担体(1.7L、
400セル)に付着させ、空気流にてセル内の余剰のス
ラリーを除去・乾燥し、400℃で1時間焼成した。こ
の作業を2度行い、コート層重量150g/L一担体
(担体A)を得た。パラジウム担持量は133.3g/
cf(4.71g/L)であった。
907 g of the powder B, 400 g of powder D, 193 g of activated alumina, and 1000 g of an aqueous nitric acid solution were charged into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid is applied to a cordieritic monolith carrier (1.7 L,
(400 cells), the excess slurry in the cells was removed by an air stream, dried, and fired at 400 ° C. for 1 hour. This operation was performed twice to obtain a coat layer weight of 150 g / L per carrier (carrier A). The amount of palladium carried was 133.3 g /
cf (4.71 g / L).

【0070】Nd10モル%、Ca10モル%、Zr8
0モル%のジルコニウム酸化物粉末(粉末E)に硝酸ロ
ジウム水溶液を含浸し、150℃で12時間乾燥した
後、400℃で1時間焼成して、Rh担持Nd0.1 Ca
0.1 Zr0.8 x 粉末(粉末F)を得た。この粉末Fの
Rh濃度は1.5重量%であった。
Nd 10 mol%, Ca 10 mol%, Zr8
A 0 mol% zirconium oxide powder (powder E) is impregnated with an aqueous solution of rhodium nitrate, dried at 150 ° C. for 12 hours, and calcined at 400 ° C. for 1 hour to obtain Rh-supported Nd 0.1 Ca
A 0.1 Zr 0.8 O x powder (powder F) was obtained. The Rh concentration of this powder F was 1.5% by weight.

【0071】La1モル%、Ce20モル%、Zr79
モル%のジルコニウム酸化物粉末(粉末G)にジニトロ
ジアンミン酸白金水溶液を含浸し、150℃で12時間
乾燥した後、400℃で1時間焼成してPt担持ジルコ
ニウム酸化物粉末(粉末H)を得た。この粉末HのPt
濃度は1.5重量%であった。
La 1 mol%, Ce 20 mol%, Zr 79
Molar% zirconium oxide powder (powder G) is impregnated with an aqueous solution of platinum dinitrodiamminate, dried at 150 ° C. for 12 hours, and calcined at 400 ° C. for 1 hour to obtain a Pt-supported zirconium oxide powder (powder H). Was. Pt of this powder H
The concentration was 1.5% by weight.

【0072】上記粉末F313g、粉末H313gと、
ジルコニウム3モル%(ZrO2 に換算して6.3重量
%)とを含むアルミナ粉末(粉末I)149gと活性ア
ルミナ25g、硝酸水溶液1000gを磁性ボールミル
に投入し、混合・粉砕してスラリーを得た。このスラリ
ー液を前記Pd含有触媒成分層を担持したコージェラト
質モノリス担体(1.7L、400セル)(担持A)に
付着させ、空気流にてセル内の余剰のスラリーを除去・
乾燥し、400℃で1時間焼成した。コート層重量80
g/L一担体(担持B)を得た。Rhの担持量は13.
3g/cf(0.47g/L)、Ptの担持量は13.
3g/cf(0.47g/L)であった。次いで、上記
触媒成分担持コージェラト質モノリス担体(担持B)に
酢酸バリウム溶液を付着させた後、400℃で1時間焼
成し、BaOとして10g/Lを含有させて、排気ガス
浄化用触媒を得た。
The above-mentioned powder F313g, powder H313g,
149 g of alumina powder (powder I) containing 3 mol% of zirconium (6.3% by weight in terms of ZrO 2 ), 25 g of activated alumina, and 1000 g of a nitric acid aqueous solution are put into a magnetic ball mill, mixed and pulverized to obtain a slurry. Was. This slurry liquid is adhered to a cordieritic monolith carrier (1.7 L, 400 cells) (support A) supporting the Pd-containing catalyst component layer, and excess slurry in the cells is removed by air flow.
It was dried and baked at 400 ° C. for 1 hour. Coat layer weight 80
g / L carrier (Support B) was obtained. The supported amount of Rh is 13.
3 g / cf (0.47 g / L), Pt loading 13.
It was 3 g / cf (0.47 g / L). Next, after a barium acetate solution was adhered to the above-mentioned catalyst component-carrying monolithic carrier (supported B), it was baked at 400 ° C. for 1 hour to contain 10 g / L as BaO to obtain an exhaust gas purifying catalyst. .

【0073】実施例2 Nd10モル%、Ca10モル%、Zr80モル%のジ
ルコニウム酸化物粉末の代わりに、Nd5モル%、Ca
10モル%、Zr85モル%のジルコニウム酸化物粉末
を用いた以外は、実施例1と同様にして排気ガス浄化用
触媒を得た。
Example 2 Instead of zirconium oxide powder of 10 mol% of Nd, 10 mol% of Ca and 80 mol% of Zr, 5 mol% of Nd,
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1, except that zirconium oxide powder of 10 mol% and 85 mol% of Zr was used.

【0074】実施例3 Nd10モル%、Ca10モル%、Zr80モル%のジ
ルコニウム酸化物粉末の代わりに、Nd20モル%、C
a10モル%、Zr70モル%のジルコニウム酸化物粉
末を用いた以外は、実施例1と同様にして排気ガス浄化
用触媒を得た。
Example 3 Instead of zirconium oxide powder of 10 mol% of Nd, 10 mol% of Ca and 80 mol% of Zr, 20 mol% of Nd and C
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1, except that zirconium oxide powder of a 10 mol% and Zr 70 mol% was used.

【0075】実施例4 Nd10モル%、Ca10モル%、Zr80モル%のジ
ルコニウム酸化物粉末の代わりに、Nd5モル%、Ca
5モル%、Zr90モル%のジルコニウム酸化物粉末を
用いた以外は、実施例1と同様にして排気ガス浄化用触
媒を得た。
Example 4 Instead of zirconium oxide powder of 10 mol% of Nd, 10 mol% of Ca, and 80 mol% of Zr, 5 mol% of Nd,
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1, except that zirconium oxide powder of 5 mol% and Zr 90 mol% was used.

【0076】実施例5 Nd10モル%、Ca10モル%、Zr80モル%のジ
ルコニウム酸化物粉末の代わりに、Nd5モル%、Ca
20モル%、Zr75モル%のジルコニウム酸化物粉末
を用いた以外は、実施例1と同様にして排気ガス浄化用
触媒を得た。
Example 5 Instead of zirconium oxide powder of 10 mol% of Nd, 10 mol% of Ca and 80 mol% of Zr, 5 mol% of Nd,
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1, except that zirconium oxide powder of 20 mol% and Zr 75 mol% was used.

【0077】実施例6 Nd10モル%、Ca10モル%、Zr80モル%のジ
ルコニウム酸化物粉末の代わりに、Nd15モル%、C
a15モル%、Zr70モル%のジルコニウム酸化物粉
末を用いた以外は、実施例1と同様にして排気ガス浄化
用触媒を得た。
Example 6 Instead of zirconium oxide powder of 10 mol% of Nd, 10 mol% of Ca and 80 mol% of Zr, 15 mol% of Nd and C
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1, except that zirconium oxide powder of a 15 mol% and Zr 70 mol% was used.

【0078】実施例7 La1モル%、Ce20モル%、Zr79モル%のジル
コニウム酸化物粉末の代わりに、La1モル%、Ce1
0モル%、Zr89モル%のジルコニウム酸化物粉末を
用いた以外は、実施例1と同様にして排気ガス浄化用触
媒を得た。
Example 7 Instead of zirconium oxide powder of 1 mol% of La, 20 mol% of Ce and 79 mol% of Zr, 1 mol% of La, Ce 1
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that zirconium oxide powder of 0 mol% and 89 mol% of Zr was used.

【0079】実施例8 La1モル%、Ce20モル%、Zr79モル%のジル
コニウム酸化物粉末の代わりに、La1モル%、Ce3
0モル%、Zr69モル%のジルコニウム酸化物粉末を
用いた以外は、実施例1と同様にして排気ガス浄化用触
媒を得た。
Example 8 Instead of zirconium oxide powder of 1 mol% of La, 20 mol% of Ce, and 79 mol% of Zr, 1 mol% of La, Ce 3
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1, except that zirconium oxide powder of 0 mol% and Zr 69 mol% was used.

【0080】実施例9 実施例1で得られた粉末B907g、粉末D400g、
粉末H157g、活性アルミナ36g、硝酸水溶液10
00gを磁性ボールミルに投入し、混合・粉砕してスラ
リーを得た。このスラリー液をコージェラト質モノリス
担体(1.7L、400セル)に付着させ、空気流にて
セル内の余剰のスラリーを除去・乾燥し、400℃で1
時間焼成した。この作業を2度行い、コート層重量15
0g/Lの担体(担体C)を得た。パラジウム担持量は
133.3g/cf(4.71g/L)、白金担持量
6.7g/cf(0.24g/L)であった。
Example 9 907 g of powder B obtained in Example 1, 400 g of powder D,
Powder H157g, activated alumina 36g, nitric acid aqueous solution 10
00g was charged into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was adhered to a cordieritic monolithic carrier (1.7 L, 400 cells), and the excess slurry in the cells was removed and dried with an air stream.
Fired for hours. This operation was performed twice, and the coat layer weight 15
0 g / L carrier (carrier C) was obtained. The supported amount of palladium was 133.3 g / cf (4.71 g / L), and the supported amount of platinum was 6.7 g / cf (0.24 g / L).

【0081】実施例1で得られた粉末F313g、粉末
G157g、粉末H157gと、ジルコニウム3モル%
(ZrO2 に換算して6.3重量%)とを含むアルミナ
粉末(粉末I)148gと活性アルミナ25g、硝酸水
溶液1000gを磁性ボールミルに投入し、混合・粉砕
してスラリーを得た。このスラリー液を前記PdとPt
含有触媒成分層を担持したコージェラト質モノリス担体
(1.7L、400セル)(担体C)に付着させ、空気
流にてセル内の余剰のスラリーを除去・乾燥し、400
℃で1時間焼成した。コート層重量80g/L一担体
(担体D)を得た。Rhの担持量は13.3g/cf
(0.47g/L)、Ptの担持量は6.7g/cf
(0.24g/L)であった。次いで、上記触媒成分担
持コージェラト質モノリス担体(担体D)に酢酸バリウ
ム溶液を付着させた後、400℃で1時間焼成し、Ba
Oとして10g/Lを含有させた。
313 g of powder F, 157 g of powder G, 157 g of powder H obtained in Example 1 and 3 mol% of zirconium
148 g of alumina powder (powder I) containing (6.3% by weight in terms of ZrO 2 ), 25 g of activated alumina, and 1000 g of an aqueous nitric acid solution were charged into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid is mixed with Pd and Pt.
The monolithic carrier (1.7 L, 400 cells) carrying the catalyst component layer (1.7 L, 400 cells) was adhered to the carrier (carrier C), and the excess slurry in the cells was removed by air flow and dried.
Calcination was carried out at ℃ for 1 hour. A coat layer weight of 80 g / L (carrier D) was obtained. The supported amount of Rh is 13.3 g / cf.
(0.47 g / L), the loading amount of Pt is 6.7 g / cf.
(0.24 g / L). Next, a barium acetate solution was adhered to the catalyst component-supported cogelato monolithic carrier (carrier D), and calcined at 400 ° C. for 1 hour to form Ba.
O was contained at 10 g / L.

【0082】実施例10 粉末Fを調製する際のNd10モル%、Ca10モル
%、Zr80モル%のジルコニウム酸化物粉末の代わり
に、Nd5モル%、Ca10モル%、Zr85モル%の
ジルコニウム酸化物粉末を用いた以外は、実施例9と同
様にして排気ガス浄化用触媒を得た。
Example 10 A zirconium oxide powder of 5 mol% of Nd, 10 mol% of Ca and 85 mol% of Zr was used instead of a zirconium oxide powder of 10 mol% of Nd, 10 mol% of Ca and 80 mol% of Zr when preparing powder F. Except for using, an exhaust gas purifying catalyst was obtained in the same manner as in Example 9.

【0083】実施例11 粉末Fを調製する際のNd10モル%、Ca10モル
%、Zr80モル%のジルコニウム酸化物粉末の代わり
に、Nd20モル%、Ca10モル%、Zr70モル%
のジルコニウム酸化物粉末を用いた以外は、実施例9と
同様にして排気ガス浄化用触媒を得た。
Example 11 Instead of zirconium oxide powder of 10 mol% of Nd, 10 mol% of Ca and 80 mol% of Zr in preparing powder F, 20 mol% of Nd, 10 mol% of Ca and 70 mol% of Zr
Except that the zirconium oxide powder was used, an exhaust gas purifying catalyst was obtained in the same manner as in Example 9.

【0084】実施例12 粉末Fを調製する際のNd10モル%、Ca10モル
%、Zr80モル%のジルコニウム酸化物粉末の代わり
に、Nd5モル%、Ca5モル%、Zr90モル%のジ
ルコニウム酸化物粉末を用いた以外は、実施例9と同様
にして排気ガス浄化用触媒を得た。
Example 12 A zirconium oxide powder of 5 mol% of Nd, 5 mol% of Ca, and 90 mol% of Zr was replaced with a zirconium oxide powder of 10 mol% of Nd, 10 mol% of Ca, and 80 mol% of Zr in preparing powder F. Except for using, an exhaust gas purifying catalyst was obtained in the same manner as in Example 9.

【0085】実施例13 粉末Fを調製する際のNd10モル%、Ca10モル
%、Zr80モル%のジルコニウム酸化物粉末の代わり
に、Nd5モル%、Ca20モル%、Zr75モル%の
ジルコニウム酸化物粉末を用いた以外は、実施例9と同
様にして排気ガス浄化用触媒を得た。
Example 13 A zirconium oxide powder of 5 mol% of Nd, 20 mol% of Ca and 75 mol% of Zr was used in place of the zirconium oxide powder of 10 mol% of Nd, 10 mol% of Ca and 80 mol% of Zr in preparing powder F. Except for using, an exhaust gas purifying catalyst was obtained in the same manner as in Example 9.

【0086】実施例14 粉末Fを調製する際のNd10モル%、Ca10モル
%、Zr80モル%のジルコニウム酸化物粉末の代わり
に、Nd15モル%、Ca15モル%、Zr70モル%
のジルコニウム酸化物粉末を用いた以外は、実施例9と
同様にして排気ガス浄化用触媒を得た。
Example 14 Instead of zirconium oxide powder of 10 mol% of Nd, 10 mol% of Ca and 80 mol% of Zr in preparing powder F, 15 mol% of Nd, 15 mol% of Ca and 70 mol% of Zr
Except that the zirconium oxide powder was used, an exhaust gas purifying catalyst was obtained in the same manner as in Example 9.

【0087】実施例15 粉末Gを調製する際のLa1モル%、Ce20モル%、
Zr79モル%のジルコニウム酸化物粉末の代わりに、
La1モル%Ce10モル%Zr89モル%のジルコニ
ウム酸化物粉末を用いた以外は、実施例9と同様にして
排気ガス浄化用触媒を得た。
Example 15 La 1 mol%, Ce 20 mol% when preparing powder G,
Instead of Zr 79 mol% zirconium oxide powder,
An exhaust gas purifying catalyst was obtained in the same manner as in Example 9 except that zirconium oxide powder of La 1 mol% Ce 10 mol% Zr 89 mol% was used.

【0088】実施例16 粉末Gを調製する際のLa1モル%、Ce20モル%、
Zr79モル%のジルコニウム酸化物粉末の代わりに、
La1モル%、Ce30モル%、Zr69モル%のジル
コニウム酸化物粉末を用いた以外は、実施例9と同様に
して排気ガス浄化用触媒を得た。
Example 16 La 1 mol%, Ce 20 mol% when preparing powder G,
Instead of Zr 79 mol% zirconium oxide powder,
An exhaust gas purifying catalyst was obtained in the same manner as in Example 9, except that zirconium oxide powder of 1 mol% of La, 30 mol% of Ce, and 69 mol% of Zr was used.

【0089】実施例17 粉末Gを調製する際のLa1モル%、Ce20モル%、
Zr79モル%のジルコニウム酸化物粉末の代わりに、
Pr1モル%、Le20モル%、Zr78モル%のジル
コニウム酸化物粉末を用いた以外は、実施例1と同様に
して排気ガス浄化用触媒を得た。
Example 17 La 1 mol%, Ce 20 mol% when preparing powder G,
Instead of Zr 79 mol% zirconium oxide powder,
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1, except that zirconium oxide powder of 1 mol% of Pr, 20 mol% of Le, and 78 mol% of Zr was used.

【0090】実施例18 粉末Gを調製する際のLa1モル%、Ce20モル%、
Zr79モル%のジルコニウム酸化物粉末の代わりに、
Y1モル%、Nd1モル%、Ce20モル%、Zr78
モル%のジルコニウム酸化物粉末を用いた以外は、実施
例9と同様にして排気ガス浄化用触媒を得た。
Example 18 La 1 mol%, Ce 20 mol% when preparing powder G,
Instead of Zr 79 mol% zirconium oxide powder,
Y 1 mol%, Nd 1 mol%, Ce 20 mol%, Zr78
An exhaust gas purifying catalyst was obtained in the same manner as in Example 9 except that zirconium oxide powder of mol% was used.

【0091】実施例19 粉末Gを調製する際のLa1モル%、Ce20モル%、
Zr79モル%のジルコニウム酸化物粉末の代わりに、
Pr1モル%、Nd1モル%、Y1モル%、La1モル
%、Ce10モル%、Zr86モル%のジルコニウム酸
化物粉末を用いた以外は、実施例1と同様にして排気ガ
ス浄化用触媒を得た。
Example 19 La 1 mol%, Ce 20 mol%, and
Instead of Zr 79 mol% zirconium oxide powder,
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1, except that zirconium oxide powder of 1 mol% of Pr, 1 mol% of Nd, 1 mol% of Y, 1 mol% of La, 10 mol% of Ce, and 86 mol% of Zr was used.

【0092】実施例20 粉末Gを調製する際のLa1モル%、Ce20モル%、
Zr79モル%のジルコニウム酸化物粉末の代わりに、
Pr1モル%、Nd1モル%、La1モル%、Ce30
モル%、Zr66モル%のジルコニウム酸化物粉末を用
いた以外は、実施例9と同様にして排気ガス浄化用触媒
を得た。
Example 20 La 1 mol%, Ce 20 mol% when preparing powder G,
Instead of Zr 79 mol% zirconium oxide powder,
Pr 1 mol%, Nd 1 mol%, La 1 mol%, Ce30
Exhaust gas purifying catalyst was obtained in the same manner as in Example 9 except that zirconium oxide powder of mol% and Zr 66 mol% was used.

【0093】比較例1 粉末Fを調製する際のNd10モル%、Ca10モル
%、Zr80モル%のジルコニウム酸化物粉末の代わり
に、活性アルミナを用いた以外は、実施例1と同様にし
て排気ガス浄化用触媒を得た。
Comparative Example 1 Exhaust gas was prepared in the same manner as in Example 1 except that activated alumina was used instead of zirconium oxide powder of 10 mol% of Nd, 10 mol% of Ca, and 80 mol% of Zr in preparing powder F. A purification catalyst was obtained.

【0094】比較例2 粉末Fを調製する際のNd10モル%、Ca10モル
%、Zr80モル%のジルコニウム酸化物粉末の代わり
に、ZrO2 を用いた以外は、実施例1と同様にして排
気ガス浄化用触媒を得た。
Comparative Example 2 Exhaust gas was prepared in the same manner as in Example 1 except that ZrO 2 was used in place of zirconium oxide powder of 10 mol% of Nd, 10 mol% of Ca, and 80 mol% of Zr when preparing powder F. A purification catalyst was obtained.

【0095】比較例3 粉末Fを調製する際のNd10モル%、Ca10モル
%、Zr80モル%のジルコニウム酸化物粉末の代わり
に、Nd20モル%、Ca30モル%、Zr50モル%
のジルコニウム酸化物粉末を用いた以外は、実施例1と
同様にして排気ガス浄化用触媒を得た。
Comparative Example 3 Instead of zirconium oxide powder of 10 mol% of Nd, 10 mol% of Ca and 80 mol% of Zr in preparing powder F, 20 mol% of Nd, 30 mol% of Ca and 50 mol% of Zr
Except that the zirconium oxide powder was used, an exhaust gas purifying catalyst was obtained in the same manner as in Example 1.

【0096】比較例4 粉末Fを調製する際のNd10モル%、Ca10モル
%、Zr80モル%のジルコニウム酸化物粉末の代わり
に、活性アルミナを用いた以外は、実施例9と同様にし
て排気ガス浄化用触媒を得た。
Comparative Example 4 Exhaust gas was prepared in the same manner as in Example 9 except that activated alumina was used instead of zirconium oxide powder of 10 mol% of Nd, 10 mol% of Ca, and 80 mol% of Zr in preparing powder F. A purification catalyst was obtained.

【0097】比較例5 粉末Fを調製する際のNd10モル%、Ca10モル
%、Zr80モル%のジルコニウム酸化物粉末の代わり
に、ZrO2 を用いた以外は、実施例9と同様にして排
気ガス浄化用触媒を得た。
Comparative Example 5 Exhaust gas was prepared in the same manner as in Example 9 except that ZrO 2 was used in place of zirconium oxide powder of 10 mol% of Nd, 10 mol% of Ca, and 80 mol% of Zr in preparing powder F. A purification catalyst was obtained.

【0098】比較例6 粉末Fを調製する際のNd10モル%、Ca10モル
%、Zr80モル%のジルコニウム酸化物粉末の代わり
に、Nd20モル%、Ca30モル%、Zr50モル%
のジルコニウム酸化物粉末を用いた以外は、実施例9と
同様にして排気ガス浄化用触媒を得た。
Comparative Example 6 Instead of zirconium oxide powder of 10 mol% of Nd, 10 mol% of Ca and 80 mol% of Zr in preparing powder F, 20 mol% of Nd, 30 mol% of Ca and 50 mol% of Zr
Except that the zirconium oxide powder was used, an exhaust gas purifying catalyst was obtained in the same manner as in Example 9.

【0099】上記実施例1〜20及び比較例1〜6で得
られた排気ガス浄化用触媒中におけるロジウム、白金、
パラジウム、アルカリ金属及びアルカリ土類金属の含有
量を表1に示す。
In the exhaust gas purifying catalysts obtained in the above Examples 1 to 20 and Comparative Examples 1 to 6, rhodium, platinum,
Table 1 shows the contents of palladium, alkali metals and alkaline earth metals.

【0100】[0100]

【表1】 [Table 1]

【0101】試験例 前記実施例1〜20及び比較例1〜6の排気ガス浄化用
触媒について、以下の耐久条件により耐久を行った後、
下記評価条件で触媒活性評価を行った。
Test Example The exhaust gas purifying catalysts of Examples 1 to 20 and Comparative Examples 1 to 6 were subjected to durability under the following durability conditions.
The catalyst activity was evaluated under the following evaluation conditions.

【0102】 耐久条件 エンジン排気量 4400cc 燃料 有鉛ガソリン(Pd50mg/usg) 触媒入口ガス温度 900℃ 耐久時間 100時間 入口ガス組成 CO 0.5±0.1% O2 0.5±0.1% HC 約1100ppm NO 1300ppm CO2 15% A/F変動 5500回(周期65秒/回) 周期:A/F=14.6 55秒 燃料カット 5秒 リッチ スパイク 5秒 Endurance conditions Engine displacement 4400cc Fuel Leaded gasoline (Pd 50mg / usg) Catalyst inlet gas temperature 900 ° C Endurance time 100 hours Inlet gas composition CO 0.5 ± 0.1% O 2 0.5 ± 0.1% HC Approx. 1100 ppm NO 1300 ppm CO 2 15% A / F fluctuation 5500 times (65 seconds / cycle) Cycle: A / F = 14.655 seconds Fuel cut 5 seconds Rich spike 5 seconds

【0103】評価条件1:低温活性 エンジン排気量 2000cc 燃料 無鉛ガソリン 昇温速度 10℃/分 測定温度範囲 150〜500℃ 耐久後の各排気ガス浄化用触媒の低温活性を、HC、C
O及びNOx の転化率が50%になった時の温度(T5
0/℃)で表し、その結果を表2に示す。
Evaluation condition 1: Low-temperature active engine displacement 2000 cc fuel Unleaded gasoline Heating rate 10 ° C./min Measurement temperature range 150-500 ° C. The low-temperature activity of each exhaust gas purifying catalyst after endurance was determined by HC, C
O and NO x temperature when the conversion reached 50% (T5
0 / ° C.), and the results are shown in Table 2.

【0104】 耐久後の各排気ガス浄化用触媒の浄化性能を、ストイキ
雰囲気におけるHC、CO及びNOx の平均転化率
(%)を以下の式により決定し、その結果を表2に示
す。
[0104] The purifying performance of the exhaust gas purifying catalyst after the durability test was determined HC, the average conversion rate (%) The following equation for CO and NO x at stoichiometric atmosphere, and the results are shown in Table 2.

【0105】[0105]

【数1】 (Equation 1)

【数2】 (Equation 2)

【数3】 (Equation 3)

【0106】[0106]

【表2】 [Table 2]

【0107】[0107]

【発明の効果】請求項1記載の排気ガス浄化用触媒は、
耐久性と耐被毒性に優れ、耐久後の低温活性及びストイ
キ転化率等の排気ガス浄化性能を向上させることができ
る。
The exhaust gas purifying catalyst according to claim 1 is
It is excellent in durability and resistance to poisoning, and can improve exhaust gas purification performance such as low-temperature activity and stoichiometric conversion after durability.

【0108】請求項2記載の排気ガス浄化用触媒は、上
記効果に加えて、更にロジウムの不活性化を抑制し、耐
久後の触媒性能を向上させることができる。
The exhaust gas purifying catalyst according to claim 2 can further suppress the inactivation of rhodium and improve the catalyst performance after the durability, in addition to the above effects.

【0109】請求項3記載の排気ガス浄化用触媒は、上
記効果に加えて、触媒成分の低下を抑制できる。
The exhaust gas purifying catalyst according to the third aspect can suppress the reduction of the catalyst component in addition to the above effects.

【0110】請求項4記載の排気ガス浄化用触媒は、上
記効果に加えて、更に低温活性や浄化性能を向上し、触
媒成分の完全に起因する触媒性能の低下を抑制できる。
The exhaust gas purifying catalyst according to the fourth aspect, in addition to the above effects, can further improve low-temperature activity and purifying performance, and can suppress a decrease in catalytic performance due to a complete catalytic component.

【0111】請求項5記載の排気ガス浄化用触媒は、上
記効果に加えて、更にパラジウムの還元による不活性化
を抑制し、更に耐久後の触媒性能の低下を抑制できる。
In the exhaust gas purifying catalyst according to the fifth aspect, in addition to the above effects, the inactivation of palladium by reduction can be further suppressed, and the deterioration of the catalytic performance after durability can be suppressed.

【0112】請求項6記載の排気ガス浄化用触媒は、上
記効果に加えて、パラジウムの耐被毒性を向上し、更
に、ロジウムの耐久後の触媒性能の低下を抑制できる。
The exhaust gas purifying catalyst according to claim 6 can improve the poisoning resistance of palladium in addition to the above-mentioned effects, and can suppress a decrease in catalytic performance of rhodium after durability.

【0113】請求項7記載の排気ガス浄化用触媒は、上
記効果に加えて、触媒成分中のパラジウムのシンタリン
グを抑制して、更に低温活性や浄化性能を向上させるこ
とができる。
In the exhaust gas purifying catalyst according to the seventh aspect, in addition to the above effects, sintering of palladium in the catalyst component can be suppressed, and the low-temperature activity and the purifying performance can be further improved.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 触媒成分担持層を有する一体構造型触媒
において、少なくともロジウム担持ジルコニウム酸化物
と白金担持ジルコニウム酸化物とを含有することを特徴
とする排気ガス浄化用触媒。
1. An exhaust gas purifying catalyst, comprising: a monolithic catalyst having a catalyst component-supporting layer, comprising at least rhodium-supported zirconium oxide and platinum-supported zirconium oxide.
【請求項2】 請求項1記載の排気ガス浄化用触媒にお
いて、ロジウムを担持するジルコニウム酸化物は、次の
一般式; Nda Cab Zrc d (式中、a,b及びcは、各元素の原子比率を示し、金
属換算で、a=0.01〜20モル%、b=0.05〜
20モル%、c=60〜95モル%、dは上記各成分の
原子価を満足するのに必要な酸素原子数である)で表さ
れることを特徴とする排気ガス浄化用触媒。
2. A catalyst for purifying exhaust gases according to claim 1, zirconium oxide carrying rhodium, the following general formula: in Nd a Ca b Zr c O d ( wherein, a, b and c, Indicates the atomic ratio of each element, a = 0.01 to 20 mol%, b = 0.05 to
20 mol%, c = 60 to 95 mol%, and d is the number of oxygen atoms required to satisfy the valence of each of the above components).
【請求項3】 請求項1又は2記載の排気ガス浄化用触
媒において、白金を担持するジルコニウム酸化物は、次
の一般式; 〔X〕 eCef Zrg h (式中、Xは、プラセオジウム、イットリウム、ランタ
ン及びネオジウムからなる群より選ばれた少なくとも一
種の元素であり、e,f及びgは、各元素の原子比率を
示し、金属換算で、e=0.01〜10モル%、f=5
〜30モル%、g=65〜95モル%、hは上記各成分
の原子価を満足するのに必要な酸素原子数である)で表
されることを特徴とする排気ガス浄化用触媒。
3. A catalyst for purifying exhaust gases according to claim 1 or 2, wherein the zirconium oxide carrying platinum, the following general formula; [X] in e Ce f Zr g O h (wherein, X is At least one element selected from the group consisting of praseodymium, yttrium, lanthanum, and neodymium; e, f, and g each represent an atomic ratio of each element; e = 0.01 to 10 mol% in terms of metal; f = 5
-30 mol%, g = 65-95 mol%, and h is the number of oxygen atoms required to satisfy the valence of each of the above components).
【請求項4】 請求項1〜3いずれかの項記載の排気ガ
ス浄化用触媒の触媒成分担持層中に、更にパラジウム担
持アルミナが含有され、該アルミナはセリウム、ジルコ
ニウム及びランタンからなる群より選ばれた少なくとも
一種を金属換算で1〜10%含むことを特徴とする排気
ガス浄化用触媒。
4. The catalyst component-supporting layer of the exhaust gas purifying catalyst according to claim 1, further comprising palladium-supported alumina, wherein the alumina is selected from the group consisting of cerium, zirconium, and lanthanum. An exhaust gas purifying catalyst comprising 1 to 10% of at least one of the above components in terms of metal.
【請求項5】 請求項1〜4いずれかの項記載の排気ガ
ス浄化用触媒の触媒成分担持層中に、更にパラジウム担
持セリウム酸化物が含有され、該セリウム酸化物は、ジ
ルコニウム、ネオジウム及びランタンからなる群より選
ばれた一種を金属換算で1〜40モル%含むことを特徴
とする排気ガス浄化用触媒。
5. The exhaust gas purifying catalyst according to claim 1, further comprising a palladium-supported cerium oxide in the catalyst component-supporting layer, the cerium oxide comprising zirconium, neodymium, and lanthanum. An exhaust gas purifying catalyst comprising 1 to 40 mol% of one selected from the group consisting of:
【請求項6】 請求項4又は5記載の排気ガス浄化用触
媒において、ロジウム担持ジルコニウム酸化物を表層側
に、パラジウム担持触媒成分を内層側に配置して成るこ
とを特徴とする排気ガス浄化用触媒。
6. The exhaust gas purifying catalyst according to claim 4, wherein a rhodium-supported zirconium oxide is disposed on a surface layer and a palladium-supported catalyst component is disposed on an inner layer side. catalyst.
【請求項7】 請求項1〜6いずれかの項記載の排気ガ
ス浄化用触媒に、更に、アルカリ金属及びアルカリ土類
金属からなる群より選ばれた少なくとも一種が含有され
ることを特徴とする排気ガス浄化用触媒。
7. The exhaust gas purifying catalyst according to claim 1, further comprising at least one selected from the group consisting of alkali metals and alkaline earth metals. Exhaust gas purification catalyst.
JP09376397A 1997-04-11 1997-04-11 Exhaust gas purification catalyst Expired - Fee Related JP3988202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09376397A JP3988202B2 (en) 1997-04-11 1997-04-11 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09376397A JP3988202B2 (en) 1997-04-11 1997-04-11 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH10286462A true JPH10286462A (en) 1998-10-27
JP3988202B2 JP3988202B2 (en) 2007-10-10

Family

ID=14091479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09376397A Expired - Fee Related JP3988202B2 (en) 1997-04-11 1997-04-11 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3988202B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062295A (en) * 1999-08-30 2001-03-13 Daihatsu Motor Co Ltd Exhaust gas cleaning catalyst
JP2001070792A (en) * 1999-09-03 2001-03-21 Daihatsu Motor Co Ltd Catalyst for cleaning exhaust gas
JP2001079404A (en) * 1999-09-14 2001-03-27 Daihatsu Motor Co Ltd Exhaust gas cleaning catalyst
JP2001079403A (en) * 1999-09-14 2001-03-27 Daihatsu Motor Co Ltd Exhaust gas cleaning catalyst
JP2001104785A (en) * 1999-10-08 2001-04-17 Daihatsu Motor Co Ltd Catalyst for purifying exhaust gas
JP2001104786A (en) * 1999-10-08 2001-04-17 Daihatsu Motor Co Ltd Catalyst for purifying exhaust gas
JP2002011350A (en) * 1999-05-24 2002-01-15 Daihatsu Motor Co Ltd Exhaust gas cleaning catalyst
JP2002535135A (en) * 1999-01-28 2002-10-22 エンゲルハード・コーポレーシヨン Catalyst composition containing oxygen storage component
JP2003170047A (en) * 2001-09-27 2003-06-17 Tokyo Roki Co Ltd Catalyst for cleaning exhaust gas and method for manufacturing the same
WO2007116881A1 (en) * 2006-04-03 2007-10-18 Johnson Matthey Japan Incorporated Exhaust gas catalyst and exhaust gas processing apparatus using the same
WO2007132829A1 (en) * 2006-05-15 2007-11-22 Toyota Jidosha Kabushiki Kaisha Catalyst for exhaust gas purification and method for producing the same
JP2009090238A (en) * 2007-10-10 2009-04-30 Mazda Motor Corp Catalyst material for purification of exhaust gas ingredient and particulate filter equipped with the catalyst material
JP2009090237A (en) * 2007-10-10 2009-04-30 Mazda Motor Corp Catalyst material for purification of exhaust gas ingredient and particulate filter equipped with the catalyst material
JP2009106858A (en) * 2007-10-30 2009-05-21 Mazda Motor Corp Catalyst material for cleaning exhaust gas component and particulate filter with the same catalyst material
JP2009526729A (en) * 2006-02-17 2009-07-23 ロデイア・オペラシヨン Compositions based on oxides of zirconium, oxides of cerium, oxides of yttrium, oxides of lanthanum and other rare earths, methods for preparing the same and use as catalysts
US8153549B2 (en) 2004-10-15 2012-04-10 Johnson Matthey Public Limited Company Catalyst for treating exhaust gas and device for treating exhaust gas using the same
JP2012518531A (en) * 2009-02-20 2012-08-16 ビー・エイ・エス・エフ、コーポレーション Palladium supported catalyst composite
JP2013059759A (en) * 2011-08-22 2013-04-04 Mazda Motor Corp Catalyst for burning particulate matter
JP2014200771A (en) * 2013-04-09 2014-10-27 トヨタ自動車株式会社 Exhaust gas purification catalyst and exhaust gas cleaning method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138627A (en) * 1984-07-31 1986-02-24 Hitachi Ltd Catalyst stable at high temperature, process for preparing the catalyst, and process for carrying out chemical reaction using the catalyst
JPS63178847A (en) * 1987-01-20 1988-07-22 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas
JPH02265646A (en) * 1989-04-04 1990-10-30 Nissan Motor Co Ltd Exhaust gas purification catalyst
JPH0459049A (en) * 1990-06-20 1992-02-25 Nippon Shokubai Co Ltd Catalyst for diesel engine exhaust gas cleanup
JPH04334548A (en) * 1991-05-10 1992-11-20 Nissan Motor Co Ltd Exhaust gas purifying catalyst
JPH05285386A (en) * 1992-04-09 1993-11-02 Nissan Motor Co Ltd Production of catalyst for purification of exhaust gas
JPH0663403A (en) * 1992-08-24 1994-03-08 Nissan Motor Co Ltd Exhaust gas cleaning catalyst
JPH0768175A (en) * 1993-06-11 1995-03-14 Daihatsu Motor Co Ltd Catalyst for purification of exhaust gas
JPH08229395A (en) * 1995-02-24 1996-09-10 Mazda Motor Corp Exhaust gas purifying catalyst
JPH10356A (en) * 1996-06-13 1998-01-06 Toyota Motor Corp Catalyst of purification of exhaust gas and method for purifying exhaust gas
JPH10501737A (en) * 1994-06-17 1998-02-17 エンゲルハード・コーポレーシヨン Layered catalyst composite

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138627A (en) * 1984-07-31 1986-02-24 Hitachi Ltd Catalyst stable at high temperature, process for preparing the catalyst, and process for carrying out chemical reaction using the catalyst
JPS63178847A (en) * 1987-01-20 1988-07-22 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas
JPH02265646A (en) * 1989-04-04 1990-10-30 Nissan Motor Co Ltd Exhaust gas purification catalyst
JPH0459049A (en) * 1990-06-20 1992-02-25 Nippon Shokubai Co Ltd Catalyst for diesel engine exhaust gas cleanup
JPH04334548A (en) * 1991-05-10 1992-11-20 Nissan Motor Co Ltd Exhaust gas purifying catalyst
JPH05285386A (en) * 1992-04-09 1993-11-02 Nissan Motor Co Ltd Production of catalyst for purification of exhaust gas
JPH0663403A (en) * 1992-08-24 1994-03-08 Nissan Motor Co Ltd Exhaust gas cleaning catalyst
JPH0768175A (en) * 1993-06-11 1995-03-14 Daihatsu Motor Co Ltd Catalyst for purification of exhaust gas
JPH10501737A (en) * 1994-06-17 1998-02-17 エンゲルハード・コーポレーシヨン Layered catalyst composite
JPH08229395A (en) * 1995-02-24 1996-09-10 Mazda Motor Corp Exhaust gas purifying catalyst
JPH10356A (en) * 1996-06-13 1998-01-06 Toyota Motor Corp Catalyst of purification of exhaust gas and method for purifying exhaust gas

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535135A (en) * 1999-01-28 2002-10-22 エンゲルハード・コーポレーシヨン Catalyst composition containing oxygen storage component
JP2002011350A (en) * 1999-05-24 2002-01-15 Daihatsu Motor Co Ltd Exhaust gas cleaning catalyst
JP2001062295A (en) * 1999-08-30 2001-03-13 Daihatsu Motor Co Ltd Exhaust gas cleaning catalyst
JP2001070792A (en) * 1999-09-03 2001-03-21 Daihatsu Motor Co Ltd Catalyst for cleaning exhaust gas
JP2001079404A (en) * 1999-09-14 2001-03-27 Daihatsu Motor Co Ltd Exhaust gas cleaning catalyst
JP2001079403A (en) * 1999-09-14 2001-03-27 Daihatsu Motor Co Ltd Exhaust gas cleaning catalyst
JP2001104785A (en) * 1999-10-08 2001-04-17 Daihatsu Motor Co Ltd Catalyst for purifying exhaust gas
JP2001104786A (en) * 1999-10-08 2001-04-17 Daihatsu Motor Co Ltd Catalyst for purifying exhaust gas
JP2003170047A (en) * 2001-09-27 2003-06-17 Tokyo Roki Co Ltd Catalyst for cleaning exhaust gas and method for manufacturing the same
US8153549B2 (en) 2004-10-15 2012-04-10 Johnson Matthey Public Limited Company Catalyst for treating exhaust gas and device for treating exhaust gas using the same
JP2009526729A (en) * 2006-02-17 2009-07-23 ロデイア・オペラシヨン Compositions based on oxides of zirconium, oxides of cerium, oxides of yttrium, oxides of lanthanum and other rare earths, methods for preparing the same and use as catalysts
JP2007275704A (en) * 2006-04-03 2007-10-25 Johnson Matthey Japan Inc Exhaust gas catalyst and exhaust gas treating device using the same
WO2007116881A1 (en) * 2006-04-03 2007-10-18 Johnson Matthey Japan Incorporated Exhaust gas catalyst and exhaust gas processing apparatus using the same
US8999252B2 (en) 2006-04-03 2015-04-07 Johnson Matthey Japan Incorporated Exhaust gas catalyst and exhaust gas processing apparatus using same
JP2007301526A (en) * 2006-05-15 2007-11-22 Toyota Central Res & Dev Lab Inc Catalyst for cleaning exhaust gas and its manufacturing method
WO2007132829A1 (en) * 2006-05-15 2007-11-22 Toyota Jidosha Kabushiki Kaisha Catalyst for exhaust gas purification and method for producing the same
JP2009090238A (en) * 2007-10-10 2009-04-30 Mazda Motor Corp Catalyst material for purification of exhaust gas ingredient and particulate filter equipped with the catalyst material
JP2009090237A (en) * 2007-10-10 2009-04-30 Mazda Motor Corp Catalyst material for purification of exhaust gas ingredient and particulate filter equipped with the catalyst material
JP2009106858A (en) * 2007-10-30 2009-05-21 Mazda Motor Corp Catalyst material for cleaning exhaust gas component and particulate filter with the same catalyst material
JP2012518531A (en) * 2009-02-20 2012-08-16 ビー・エイ・エス・エフ、コーポレーション Palladium supported catalyst composite
JP2013059759A (en) * 2011-08-22 2013-04-04 Mazda Motor Corp Catalyst for burning particulate matter
JP2014200771A (en) * 2013-04-09 2014-10-27 トヨタ自動車株式会社 Exhaust gas purification catalyst and exhaust gas cleaning method
US9861959B2 (en) 2013-04-09 2018-01-09 Toyota Jidosha Kabushiki Kaisha Catalyst composition and exhaust gas purifying method

Also Published As

Publication number Publication date
JP3988202B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
JP3498453B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4092441B2 (en) Exhaust gas purification catalyst
JP2659796B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3664182B2 (en) High heat-resistant exhaust gas purification catalyst and production method thereof
WO2002066155A1 (en) Exhaust gas clarification catalyst
JP3988202B2 (en) Exhaust gas purification catalyst
JP3827838B2 (en) Exhaust gas purification catalyst
JP3798727B2 (en) Exhaust gas purification catalyst
JP3799466B2 (en) Exhaust gas purification catalyst
JPH09313938A (en) Catalyst for cleaning exhaust gas
JP3568728B2 (en) Oxygen storage cerium-based composite oxide
JPH09248462A (en) Exhaust gas-purifying catalyst
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4859100B2 (en) Exhaust gas purification catalyst
JPH08281116A (en) Catalyst for purifying exhaust gas
JP2010022892A (en) Catalyst for cleaning exhaust gas
JP2007301471A (en) Catalyst for cleaning exhaust gas
JP2001232199A (en) Exhaust gas cleaning catalyst
JP3882422B2 (en) Method for producing exhaust gas purification catalyst
JP3246295B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH0857315A (en) Catalyst for purification of exhaust gas
JPH11226405A (en) Catalyst for purification of exhaust gas and its production
JP2002361090A (en) Catalyst for cleaning exhaust gas
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst
JP3885376B2 (en) Exhaust gas purification catalyst and method of using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees