JPH0857315A - Catalyst for purification of exhaust gas - Google Patents

Catalyst for purification of exhaust gas

Info

Publication number
JPH0857315A
JPH0857315A JP6202379A JP20237994A JPH0857315A JP H0857315 A JPH0857315 A JP H0857315A JP 6202379 A JP6202379 A JP 6202379A JP 20237994 A JP20237994 A JP 20237994A JP H0857315 A JPH0857315 A JP H0857315A
Authority
JP
Japan
Prior art keywords
catalyst
cerium oxide
exhaust gas
alumina
barium compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6202379A
Other languages
Japanese (ja)
Inventor
Hirobumi Shinjo
博文 新庄
Motohisa Saiki
基久 斎木
Toshitaka Tanabe
稔貴 田辺
Mayuko Nagai
麻祐子 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP6202379A priority Critical patent/JPH0857315A/en
Publication of JPH0857315A publication Critical patent/JPH0857315A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE: To enhance the NOx removing performance of a catalyst for purification of exhaust gas contg. both of a barium compd. and cerium oxide by carrying at least one of Pd and Pt on each of porous carriers separately contg. the barium compd. and cerium oxide. CONSTITUTION: This catalyst consists of a carrier substrate 1, a 1st catalyst carrying layer 2 formed on the surface of the substrate 1 and contg. at least one of Pd and Pt, cerium oxide and alumina, and a 2nd catalyst carrying layer 3 formed on the surface of the layer 2 and contg. at least one of Pd and Pt, a barium compd. and alumina. The porous carriers of the layers 2, 3 are preferably made of activated alumina and the total amt. of Pd or Pt carried is preferably 0.05-30g per 1l of this catalyst. The contents of the barium compd. and cerium oxide are preferably 0.01-1.0mol and 0.01-3.0mol per 1l of this catalyst, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車等の内燃機関か
ら排出される排ガス中に含まれる、炭化水素(HC)、
一酸化炭素(CO)、窒素酸化物(NOx)の三成分を
同時に浄化できる排ガス浄化用触媒に関し、さらに詳し
くは、ロジウム(Rh)を用いずにロジウムを用いた場
合と同等の三元活性を示す排ガス浄化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to hydrocarbon (HC) contained in exhaust gas discharged from an internal combustion engine of an automobile,
The present invention relates to an exhaust gas purifying catalyst that can purify three components of carbon monoxide (CO) and nitrogen oxide (NOx) at the same time. More specifically, it has the same three-way activity as when rhodium is used without using rhodium (Rh). The present invention relates to an exhaust gas purifying catalyst.

【0002】[0002]

【従来の技術】従来より、自動車の排ガス浄化用触媒と
して、CO及びHCの酸化とNOxの還元とを同時に行
って排ガスを浄化する三元触媒が用いられている。この
ような三元触媒としては、例えばコーディエライトなど
からなる耐熱性基材にγ−アルミナからなる多孔質担体
層を形成し、その多孔質担体層に白金、ロジウムなどの
貴金属元素を担持させたものが広く知られている。ま
た、酸素貯蔵効果をもつセリア(セリウム酸化物)を併
用し、低温活性を高めた三元触媒も知られている。
2. Description of the Related Art Conventionally, a three-way catalyst for purifying exhaust gas by simultaneously oxidizing CO and HC and reducing NOx has been used as a catalyst for purifying exhaust gas of automobiles. As such a three-way catalyst, for example, a porous carrier layer made of γ-alumina is formed on a heat-resistant base material made of cordierite or the like, and a noble metal element such as platinum or rhodium is supported on the porous carrier layer. Things are widely known. Also known is a three-way catalyst in which ceria (cerium oxide) having an oxygen storage effect is used in combination to enhance low temperature activity.

【0003】ところが、白金及びロジウムは高価であ
り、特にロジウムは資源的に稀少であるため、自動車用
三元触媒の全世界的な普及を考えると、これらの貴金属
を使用しない触媒の開発が必要とされてきた。そこで貴
金属元素の中で、排気浄化特性が白金やロジウムに近い
パラジウムを用いた排ガス浄化用触媒が考えられる。し
かしパラジウムは、リッチ雰囲気及び理論空燃比(スト
イキ)よりややリーン雰囲気側におけるNOxの浄化性
能に劣っている。そのためパラジウムのみではNOxの
浄化は困難と考えられ、高いNOx浄化性能を有するロ
ジウムと併用することで三元触媒として用いられてい
る。しかしロジウムは非常に高価であるので、高価な排
ガス浄化用触媒となってしまう。
However, platinum and rhodium are expensive, and rhodium is a scarce resource, so considering the worldwide spread of three-way catalysts for automobiles, it is necessary to develop a catalyst that does not use these precious metals. Has been said. Therefore, among the precious metal elements, an exhaust gas purifying catalyst using palladium, which has an exhaust gas purifying property close to that of platinum or rhodium, is conceivable. However, palladium is inferior to the NOx purification performance in the lean atmosphere side rather than the rich atmosphere and the stoichiometric air-fuel ratio (stoichiometric ratio). Therefore, it is considered difficult to purify NOx using only palladium, and it is used as a three-way catalyst in combination with rhodium, which has a high NOx purification performance. However, since rhodium is extremely expensive, it becomes an expensive exhaust gas purifying catalyst.

【0004】そこでロジウムを用いずにNOxの浄化性
能を向上させるものとして、例えば特開平5−2002
86号公報には、パラジウム、アルカリ土類金属、セリ
ウム酸化物、ジルコニウム酸化物及びチタン酸化物より
なる触媒活性成分と、活性アルミナよりなる多孔質担体
とからなる混合物をモノリス担体基材に被覆してなる三
元触媒が開示されている。
To improve the NOx purification performance without using rhodium, for example, Japanese Patent Laid-Open No. 2002-2002 is known.
No. 86 discloses that a monolith carrier substrate is coated with a mixture of a catalytically active component composed of palladium, alkaline earth metal, cerium oxide, zirconium oxide and titanium oxide, and a porous carrier composed of activated alumina. A three-way catalyst is disclosed.

【0005】また特開平6−99069号公報には、パ
ラジウムと、アルミナと、酸化セリウムと、酸化バリウ
ムとを含む排ガス浄化用触媒が開示されている。
Further, JP-A-6-99069 discloses an exhaust gas purifying catalyst containing palladium, alumina, cerium oxide and barium oxide.

【0006】[0006]

【発明が解決しようとする課題】ロジウムを用いない従
来の排ガス浄化用触媒では、NOxの浄化活性を向上さ
せるために、アルカリ土類金属などの塩基性物質が添加
されている。この塩基性物質としてはバリウム化合物が
代表的に用いられている。このバリウム化合物によりN
O吸着量が増加し、排ガスに含まれる酸化性ガス
(O2 ,NO)のうちNOの反応選択性が向上する。ま
た還元性雰囲気下でのHC被毒による反応抑制が緩和さ
れる。したがってNOx浄化性能が向上するのである。
In the conventional exhaust gas purifying catalyst that does not use rhodium, a basic substance such as an alkaline earth metal is added in order to improve the NOx purifying activity. A barium compound is typically used as the basic substance. With this barium compound, N
The O adsorption amount is increased, and the reaction selectivity of NO among the oxidizing gases (O 2 , NO) contained in the exhaust gas is improved. In addition, reaction suppression due to HC poisoning under a reducing atmosphere is alleviated. Therefore, the NOx purification performance is improved.

【0007】またセリウム酸化物は酸素を一時的に貯留
する性質を有し、ストイキ近辺での空燃比の変動を緩和
する機能をもつので、安定した三元活性が得られその結
果浄化性能が向上する。ところが従来のセリウム酸化物
とバリウム化合物の両方を含む排ガス浄化用触媒におい
ても、NOxの浄化性能が充分高いとはいえず、さらな
る向上が求められている。
Further, cerium oxide has a property of temporarily storing oxygen and has a function of alleviating fluctuations of the air-fuel ratio in the vicinity of stoichiometry, so that stable ternary activity can be obtained and as a result, purification performance is improved. To do. However, even in the conventional exhaust gas-purifying catalysts containing both cerium oxide and barium compound, the NOx purification performance cannot be said to be sufficiently high, and further improvement is required.

【0008】本発明はこのような事情に鑑みてなされた
ものであり、セリウム酸化物とバリウム化合物の両方を
含む排ガス浄化用触媒において、特にNOx浄化性能を
一層向上させることを目的とする。
The present invention has been made in view of such circumstances, and it is an object of the present invention to further improve the NOx purification performance of an exhaust gas purification catalyst containing both a cerium oxide and a barium compound.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する本発
明の排ガス浄化用触媒は、多孔質担体と、多孔質担体に
担持されたパラジウム及び白金の少なくとも一種と、多
孔質担体に含まれたバリウム化合物及びセリウム酸化物
と、からなる排ガス浄化用触媒であって、バリウム化合
物とセリウム酸化物は互いに分離して含まれていること
を特徴とする。
The exhaust gas-purifying catalyst of the present invention for solving the above-mentioned problems is contained in a porous carrier and at least one of palladium and platinum supported on the porous carrier. An exhaust gas purifying catalyst comprising a barium compound and a cerium oxide, characterized in that the barium compound and the cerium oxide are contained separately from each other.

【0010】[0010]

【作用】本発明の排ガス浄化用触媒では、バリウム化合
物の添加によりNO吸着量が増加し、排ガスに含まれる
酸化性ガス(O2 ,NO)のうちNOの反応選択性が向
上する。そして排ガスが還元性雰囲気になると、バリウ
ム化合物によりHC被毒による反応抑制が緩和される。
これによりNOx浄化性能が向上する。
In the exhaust gas purifying catalyst of the present invention, the NO adsorption amount is increased by the addition of the barium compound, and the NO reaction selectivity of the oxidizing gas (O 2 , NO) contained in the exhaust gas is improved. When the exhaust gas becomes a reducing atmosphere, the barium compound alleviates the reaction suppression due to HC poisoning.
This improves the NOx purification performance.

【0011】一方、セリウム酸化物は酸素を一時的に貯
留する機能をもち、酸化性雰囲気では酸素を貯留し、還
元性雰囲気では酸素を放出する。これによりストイキ近
辺における排ガスの雰囲気変動が緩和され、その結果触
媒性能が向上する。ところで本発明者らは、例えば貴金
属触媒としてパラジウムを用い、セリウム酸化物とアル
ミナとにそれぞれバリウム化合物(酢酸塩)を添加して
NO浄化性能を測定する実験を行った。その結果、Pd
/アルミナ系では図4に示すようにバリウム化合物量が
増えるにつれてNO浄化性能が向上していたが、Pd/
セリウム酸化物系では図5に示すようにバリウム化合物
量が増えるにつれてNO浄化性能が低下することがわか
った。
On the other hand, cerium oxide has a function of temporarily storing oxygen, stores oxygen in an oxidizing atmosphere and releases oxygen in a reducing atmosphere. As a result, fluctuations in the atmosphere of the exhaust gas in the vicinity of stoichiometry are alleviated, and as a result catalyst performance is improved. By the way, the present inventors conducted an experiment in which palladium was used as a noble metal catalyst, and barium compounds (acetates) were added to cerium oxide and alumina to measure NO purification performance. As a result, Pd
In the / alumina system, the NO purification performance was improved as the amount of barium compound increased as shown in FIG.
As shown in FIG. 5, it was found that the NO purification performance of the cerium oxide system deteriorates as the amount of barium compound increases.

【0012】また、ストイキ条件の排ガス浄化反応にお
ける酸化性ガス(O2 ,NO)の反応選択性を調査した
ところ、図6に示すようにPd/アルミナ触媒にバリウ
ム化合物を添加した触媒では、バリウム化合物量の増加
にともなってNOの反応選択性が向上していた。つまり
バリウム化合物量が増えるにつれてNO吸着量も増え、
2 に比べて反応に使われるNOの割合も増大するので
ある。
Further, when the reaction selectivity of the oxidizing gas (O 2 , NO) in the exhaust gas purification reaction under the stoichiometric condition was investigated, it was found that the barium compound was added to the Pd / alumina catalyst as shown in FIG. The reaction selectivity of NO was improved as the amount of the compound was increased. In other words, as the barium compound amount increases, the NO adsorption amount also increases,
The proportion of NO used in the reaction also increases as compared to O 2 .

【0013】しかし図7に示すように、Pd/セリウム
酸化物系の酸化性ガスの反応選択性は、バリウム化合物
の量が増えるにつれて低下することも明らかとなった。
すなわちセリウム酸化物にバリウム化合物を添加する
と、Pd/セリウム酸化物の触媒活性を損なうのみなら
ず、バリウム化合物がNOの浄化に寄与しないことが明
らかとなった。
However, as shown in FIG. 7, it became clear that the reaction selectivity of the Pd / cerium oxide-based oxidizing gas decreases as the amount of the barium compound increases.
That is, it was clarified that the addition of the barium compound to the cerium oxide not only impairs the catalytic activity of Pd / cerium oxide, but also that the barium compound does not contribute to the purification of NO.

【0014】この原因としては、セリウム酸化物から放
出された酸素がHCやCOの酸化に消費され、バリウム
化合物近傍に吸着するNOの還元反応が生じにくくなっ
ていると考えられる。そこで本発明では、バリウム化合
物とセリウム酸化物は互いに分離して含まれている構成
とした。したがってバリウム化合物近傍に吸着するNO
はセリウム酸化物から放出される酸素の影響を受けにく
くなるので、NOxは多孔質担体に担持されたPd又は
Ptの触媒作用により排ガス中のHCやCOと円滑に反
応して還元されNOx浄化率が向上する。またセリウム
酸化物は酸素の一時貯留能を充分に発揮するので、排ガ
スの雰囲気変動が緩和され触媒活性が向上する。
It is considered that the cause of this is that the oxygen released from the cerium oxide is consumed for the oxidation of HC and CO, and the reduction reaction of NO adsorbed in the vicinity of the barium compound is less likely to occur. Therefore, in the present invention, the barium compound and the cerium oxide are contained separately from each other. Therefore, NO adsorbed near the barium compound
Is less likely to be affected by oxygen released from cerium oxide, and NOx is reduced by reacting smoothly with HC and CO in exhaust gas by the catalytic action of Pd or Pt supported on the porous carrier. Is improved. Further, since cerium oxide sufficiently exhibits the ability to temporarily store oxygen, fluctuations in the atmosphere of exhaust gas are alleviated and the catalytic activity is improved.

【0015】[0015]

【実施例】【Example】

(発明の具体例)多孔質担体としては、アルミナ、シリ
カ、ジルコニア、チタニアなど、従来より用いられてい
る耐火性無機酸化物等を用いることができる。中でも、
高比表面積で高耐熱性を有する活性アルミナが最も好ま
しい。
(Specific Examples of the Invention) As the porous carrier, conventionally used refractory inorganic oxides such as alumina, silica, zirconia, and titania can be used. Above all,
Most preferred is activated alumina having a high specific surface area and high heat resistance.

【0016】パラジウム又は白金の担持量は、触媒の使
用条件により異なるが、通常は触媒1L当たり総量で
0.05〜30gの範囲が好ましい。0.05g/Lよ
り少ないと浄化性能が低く、30g/Lを超えて担持し
ても効果が飽和し高価となるだけである。バリウム化合
物の含有量は、触媒1L当たり0.01〜1.0モルの
範囲が好ましい。0.01モル/Lより少ないとNOx
浄化性能に劣り、1.0モル/Lを超えて含有させると
触媒の強度低下などの不具合が生じるので好ましくな
い。
The amount of palladium or platinum supported varies depending on the conditions under which the catalyst is used, but normally the total amount is preferably in the range of 0.05 to 30 g per liter of catalyst. If the amount is less than 0.05 g / L, the purification performance is low, and even if the amount exceeds 30 g / L, the effect is saturated and the cost becomes high. The barium compound content is preferably in the range of 0.01 to 1.0 mol per liter of catalyst. NOx less than 0.01 mol / L
Purification performance is poor, and if the content exceeds 1.0 mol / L, problems such as reduction in strength of the catalyst occur, which is not preferable.

【0017】またセリウム酸化物の含有量は、触媒1L
当たり0.01〜3.0モルの範囲が好ましい。0.0
1モル/Lより少ないと添加した効果がほとんどみられ
ず、3.0モル/Lを超えて含有させても効果が飽和す
る。なお、本発明の排ガス浄化用触媒には、さらにラン
タン(La)、ジルコニウム(Zr)、ネオジウム(N
d)などの元素を含むことが好ましい。La及びNdは
バリウム化合物と同様の作用によりNOx浄化性能を向
上させる。特にLaは、NOとH2 との反応を促進させ
るため、低温におけるNOx浄化性能が向上する。また
Zrはセリウム酸化物と固溶体を形成するため、セリウ
ム酸化物の耐熱性が向上する。
The content of cerium oxide is 1 L of the catalyst.
The range of 0.01 to 3.0 mol is preferable. 0.0
If it is less than 1 mol / L, almost no effect of addition is observed, and if it exceeds 3.0 mol / L, the effect is saturated. The exhaust gas-purifying catalyst of the present invention further includes lanthanum (La), zirconium (Zr), neodymium (N).
It is preferable to include an element such as d). La and Nd improve the NOx purification performance by the same action as the barium compound. In particular, La promotes the reaction between NO and H 2 , so that the NOx purification performance at low temperatures is improved. Further, since Zr forms a solid solution with cerium oxide, the heat resistance of cerium oxide is improved.

【0018】また、バリウム化合物とセリウム酸化物を
分離して含有させるには、以下のような形態が考えられ
る。 (A)図1に示すように、担体基材1と、担体基材1表
面に形成されPd及びPtの少なくとも一種とセリウム
酸化物及びアルミナを含む第1触媒担持層2と、第1触
媒担持層2表面に形成されPd及びPtの少なくとも一
種とバリウム化合物及びアルミナを含む第2触媒担持層
3と、からなる構成。 (B)図2に示すように、担体基材10と、担体基材1
0表面に形成されPd及びPtの少なくとも一種とバリ
ウム化合物及びアルミナを含む第1触媒担持層20と、
第1触媒担持層20表面に形成されPd及びPtの少な
くとも一種とセリウム酸化物及びアルミナを含む第2触
媒担持層30と、からなる構成。 (C)図3に示すように、Pd及びPtの少なくとも一
種とバリウム化合物及びアルミナを含む第1触媒4と、
Pd及びPtの少なくとも一種とセリウム酸化物及びア
ルミナを含む第2触媒5とからなり、この第1触媒4を
上流側とし第2触媒5を下流側にして、排ガス流れ方向
に直列に配置した構成。 (D)(C)の二つの触媒を排ガス流れ方向に並列に配
置した構成。 (E)粒状のセリウム酸化物と粒状のバリウム化合物
に、それぞれPd及びPtの少なくとも一種を担持さ
せ、これをアルミナと混合して担体基材表面に被覆した
構成。
Further, in order to separately contain the barium compound and the cerium oxide, the following forms are possible. (A) As shown in FIG. 1, a carrier substrate 1, a first catalyst supporting layer 2 formed on the surface of the carrier substrate 1 and containing at least one of Pd and Pt, cerium oxide and alumina, and a first catalyst carrier. A structure comprising a second catalyst supporting layer 3 formed on the surface of the layer 2 and containing at least one of Pd and Pt and a barium compound and alumina. (B) As shown in FIG. 2, a carrier substrate 10 and a carrier substrate 1
A first catalyst supporting layer 20 formed on the surface 0 and containing at least one of Pd and Pt, a barium compound, and alumina;
A configuration including a second catalyst supporting layer 30 formed on the surface of the first catalyst supporting layer 20 and containing at least one of Pd and Pt, and cerium oxide and alumina. (C) As shown in FIG. 3, a first catalyst 4 containing at least one of Pd and Pt, a barium compound and alumina,
A structure in which at least one of Pd and Pt and a second catalyst 5 containing cerium oxide and alumina are arranged in series in the exhaust gas flow direction with the first catalyst 4 on the upstream side and the second catalyst 5 on the downstream side. . A configuration in which the two catalysts (D) and (C) are arranged in parallel in the exhaust gas flow direction. (E) A structure in which at least one of Pd and Pt is supported on the granular cerium oxide and the granular barium compound, respectively, and this is mixed with alumina to coat the surface of the carrier substrate.

【0019】なお、バリウム化合物とセリウム酸化物を
分離して含有させる形態は、バリウム化合物とセリウム
酸化物の大部分が分離していればよく、上記形態に限定
されるものではない。また、バリウム化合物はセリウム
酸化物と分離して多孔質担体に担持された形態としても
よい。以下、実施例により具体的に説明する。 (実施例1)γ−アルミナ粉末120gをPdが2g含
まれたジニトロジアミノパラジウム水溶液に浸漬し、蒸
発乾固した後110℃で1昼夜乾燥し、さらに大気中6
00℃で3時間焼成処理を施した。得られたPd担持粉
末を0.2モルの酢酸バリウム化合物を溶解させた水溶
液に浸漬し、蒸発乾固した後110℃で1昼夜乾燥し、
さらに大気中600℃で3時間焼成処理を施して、Pd
/Ba/Al2 3 からなる第1粉末を調製した。
The form in which the barium compound and the cerium oxide are separately contained is not limited to the above-mentioned form as long as most of the barium compound and the cerium oxide are separated. Further, the barium compound may be separated from the cerium oxide and supported on the porous carrier. Hereinafter, a specific description will be given with reference to examples. (Example 1) 120 g of γ-alumina powder was immersed in an aqueous solution of dinitrodiaminopalladium containing 2 g of Pd, evaporated to dryness, and then dried at 110 ° C. for one day and then in the air.
Baking treatment was performed at 00 ° C. for 3 hours. The obtained Pd-supported powder was immersed in an aqueous solution in which 0.2 mol of a barium acetate compound was dissolved, evaporated to dryness, and then dried at 110 ° C. for a whole day and night,
Furthermore, after performing a baking treatment at 600 ° C. in the atmosphere for 3 hours, Pd
A first powder composed of / Ba / Al 2 O 3 was prepared.

【0020】一方、酸化セリウム(CeO2 )粉末0.
3モルをPdが1g含まれたジニトロジアミノパラジウ
ム水溶液に浸漬し、蒸発乾固した後110℃で1昼夜乾
燥し、さらに大気中600℃で3時間焼成処理を施して
第2粉末を調製した。第1粉末と第2粉末はそれぞれ圧
粉成型され、それぞれ0.5〜1mmの第1ペレット及
び第2ペレットとされた後に、全量が混合されて本実施
例の排ガス浄化用触媒とされた。 (比較例1)実施例1で調製されたPd担持粉末と第2
粉末を物理的に充分混合した。この混合粉末を0.2モ
ルの酢酸バリウムを溶解させた水溶液に浸漬し、蒸発乾
固した後110℃で1昼夜乾燥し、さらに大気中600
℃で3時間焼成処理を施した。得られた粉末は圧粉成型
され、それぞれ0.5〜1mmのペレット状とされて比
較例1の触媒を調製した。
On the other hand, cerium oxide (CeO 2 ) powder 0.
3 mol was immersed in an aqueous solution of dinitrodiaminopalladium containing 1 g of Pd, evaporated to dryness, dried at 110 ° C. for one day and then calcined in air at 600 ° C. for 3 hours to prepare a second powder. The first powder and the second powder were respectively pressed and molded into 0.5 to 1 mm first pellets and second pellets, respectively, and then the whole amount was mixed to obtain an exhaust gas purifying catalyst of this example. Comparative Example 1 Pd-supporting powder prepared in Example 1 and second
The powder was physically thoroughly mixed. This mixed powder was immersed in an aqueous solution in which 0.2 mol of barium acetate was dissolved, evaporated to dryness, dried at 110 ° C. for one day, and further dried in the air at 600 ° C.
A calcination treatment was performed at ℃ for 3 hours. The obtained powder was pressed and molded into pellets of 0.5 to 1 mm to prepare a catalyst of Comparative Example 1.

【0021】なお、各元素の含有量は実施例1と全く同
一である。 (比較例2)実施例1で調製された第2粉末を0.2モ
ルの酢酸バリウムを溶解させた水溶液に浸漬し、蒸発乾
固した後110℃で1昼夜乾燥し、さらに大気中600
℃で3時間焼成処理を施して、Pd/Ba/CeO2
末を調製した。そして実施例1と同様のPd担持粉末
と、上記Pd/Ba/CeO2 粉末をそれぞれ圧粉成型
後0.5〜1mmの第1ペレット及び第2ペレットと
し、この2種類のペレットを混合して比較例2の触媒を
調製した。
The content of each element is exactly the same as in Example 1. (Comparative Example 2) The second powder prepared in Example 1 was dipped in an aqueous solution in which 0.2 mol of barium acetate was dissolved, evaporated to dryness, dried at 110 ° C for one day, and further dried in air at 600
A Pd / Ba / CeO 2 powder was prepared by performing a firing treatment at 3 ° C. for 3 hours. Then, the same Pd-supporting powder as in Example 1 and the above Pd / Ba / CeO 2 powder were pressed into 0.5 to 1 mm first and second pellets, respectively, and the two types of pellets were mixed. The catalyst of Comparative Example 2 was prepared.

【0022】なお、各元素の含有量は実施例1と全く同
一である。 (前処理)表1に示す排気モデルガスに対し、酸素とC
O/H2 (モル比で3/1)とを交互に10分周期で注
入したモデルガスを用い、実施例1と比較例1〜2の各
触媒について1L/minの条件下、900℃で3時間
加熱して触媒を安定化させる前処理を行った。
The content of each element is exactly the same as in Example 1. (Pretreatment) For the exhaust model gas shown in Table 1, oxygen and C
Using a model gas in which O / H 2 (3/1 in molar ratio) was alternately injected at a cycle of 10 minutes, each catalyst of Example 1 and Comparative Examples 1 and 2 was heated at 900 ° C. under a condition of 1 L / min. A pretreatment was performed to stabilize the catalyst by heating for 3 hours.

【0023】[0023]

【表1】 (評価試験)前処理をなった後の各触媒について、固定
床流通型反応装置を用い以下の条件で表2に示す排気モ
デルガスを用いた降温測定評価を行った。
[Table 1] (Evaluation test) With respect to each of the catalysts after the pretreatment, the temperature drop measurement and evaluation using the exhaust model gas shown in Table 2 was performed under the following conditions using the fixed bed flow reactor.

【0024】降温速度 :12℃/min 空間速度(SV) :5万/hrCooling rate: 12 ° C./min Space velocity (SV): 50,000 / hr

【0025】[0025]

【表2】 評価結果はNO、CO及びHCの50%浄化温度で表
し、表3に示す。また温度に対するNO浄化活性を測定
し、結果を図8に示す。
[Table 2] The evaluation results are shown by the 50% purification temperature of NO, CO and HC, and are shown in Table 3. Further, the NO purification activity with respect to temperature was measured, and the results are shown in FIG.

【0026】[0026]

【表3】 表3より、実施例の排ガス浄化用触媒は比較例に比べて
高い触媒活性を示していることが明らかである。また比
較例2の方が比較例1より触媒活性に劣っているが、こ
れは比較例2の排ガス浄化用触媒の方がバリウム化合物
とセリウム酸化物との接触程度が大きいからであろう。
[Table 3] From Table 3, it is clear that the exhaust gas-purifying catalysts of the Examples have higher catalytic activity than the Comparative Examples. Further, Comparative Example 2 is inferior to Comparative Example 1 in catalytic activity, which is probably because the exhaust gas purifying catalyst of Comparative Example 2 has a larger contact degree between the barium compound and the cerium oxide.

【0027】また図8より、NO浄化活性も実施例1>
比較例1>比較例2の順となり、バリウム化合物とセリ
ウム酸化物を分離担持したことによる効果が明らかであ
る。
Further, from FIG. 8, the NO purifying activity is also shown in Example 1>
The order of Comparative Example 1> Comparative Example 2 is followed, and the effect of separately supporting the barium compound and the cerium oxide is clear.

【0028】[0028]

【発明の効果】すなわち本発明の排ガス浄化用触媒によ
れば、バリウム化合物とセリウム酸化物の本来有するそ
れぞれの作用が互いに抑制されることなく充分に発揮で
きるので、高価なロジウムを用いなくとも高い浄化性能
が得られ、特にNOxの浄化性能を従来より大きく向上
させることができる。
[Effects of the Invention] According to the exhaust gas purifying catalyst of the present invention, the respective functions of the barium compound and the cerium oxide can be sufficiently exerted without being suppressed from each other, so that it is high without using expensive rhodium. Purification performance can be obtained, and in particular, NOx purification performance can be greatly improved as compared with the conventional case.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の排ガス浄化用触媒の構成説
明図である。
FIG. 1 is a structural explanatory view of an exhaust gas purifying catalyst according to an embodiment of the present invention.

【図2】本発明の他の実施例の排ガス浄化用触媒の構成
説明図である。
FIG. 2 is a structural explanatory view of an exhaust gas purifying catalyst according to another embodiment of the present invention.

【図3】本発明の他の実施例の排ガス浄化用触媒の構成
説明図である。
FIG. 3 is a structural explanatory view of an exhaust gas purifying catalyst according to another embodiment of the present invention.

【図4】Pd/アルミナ系触媒のBa濃度とNOの50
%浄化温度の関係を示すグラフである。
FIG. 4 is a Ba concentration of Pd / alumina-based catalyst and 50 of NO.
It is a graph which shows the relationship of% purification temperature.

【図5】Pd/セリア系触媒のBa濃度とNOの50%
浄化温度の関係を示すグラフである。
FIG. 5: Ba concentration of Pd / ceria catalyst and 50% of NO
It is a graph which shows the relationship of purification temperature.

【図6】Pd/Ba/アルミナ系触媒において、Ba濃
度を変化させた場合の酸化性ガス(NO,O2 )の反応
選択性を示すグラフである。
FIG. 6 is a graph showing the reaction selectivity of oxidizing gas (NO, O 2 ) when changing the Ba concentration in a Pd / Ba / alumina catalyst.

【図7】Pd/Ba/セリア系触媒において、Ba濃度
を変化させた場合の酸化性ガス(NO,O2 )の反応選
択性を示すグラフである。
FIG. 7 is a graph showing the reaction selectivity of oxidizing gas (NO, O 2 ) when changing the Ba concentration in a Pd / Ba / ceria catalyst.

【図8】本発明の実施例及び比較例の触媒の、各温度に
おけるNO浄化率を示すグラフである。
FIG. 8 is a graph showing the NO purification rate at each temperature of the catalysts of Examples and Comparative Examples of the present invention.

【符号の説明】[Explanation of symbols]

1:担体基材 2:第1触媒担持層 3:第2触
媒担持層 4:第1触媒 5:第2触媒 10:担体
基材 20:第1触媒担持層 30:第2
触媒担持層
1: Support base material 2: First catalyst support layer 3: Second catalyst support layer 4: First catalyst 5: Second catalyst 10: Support base material 20: First catalyst support layer 30: Second
Catalyst support layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎木 基久 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 田辺 稔貴 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 永井 麻祐子 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Motohisa Saiki, Nagakute-cho, Aichi-gun, Aichi 1st 41st side road, Nagakage, Toyota Central Research Institute Co., Ltd. (72) Minoru Tanabe Nagakute-cho, Aichi-gun, Aichi 1 in 41, Yokomichi, Yokouchi Central Research Institute, Ltd. (72) Inventor Mayuko Nagai 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Automobile Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多孔質担体と、 該多孔質担体に担持されたパラジウム及び白金の少なく
とも一種と、 該多孔質担体に含まれたバリウム化合物及びセリウム酸
化物と、からなる排ガス浄化用触媒であって、 前記バリウム化合物と前記セリウム酸化物は互いに分離
して含まれていることを特徴とする排ガス浄化用触媒。
1. An exhaust gas purifying catalyst comprising a porous carrier, at least one of palladium and platinum supported on the porous carrier, and a barium compound and a cerium oxide contained in the porous carrier. The barium compound and the cerium oxide are contained separately from each other, and the exhaust gas-purifying catalyst is characterized.
JP6202379A 1994-08-26 1994-08-26 Catalyst for purification of exhaust gas Pending JPH0857315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6202379A JPH0857315A (en) 1994-08-26 1994-08-26 Catalyst for purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6202379A JPH0857315A (en) 1994-08-26 1994-08-26 Catalyst for purification of exhaust gas

Publications (1)

Publication Number Publication Date
JPH0857315A true JPH0857315A (en) 1996-03-05

Family

ID=16456528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6202379A Pending JPH0857315A (en) 1994-08-26 1994-08-26 Catalyst for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPH0857315A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728643A (en) * 1996-02-09 1998-03-17 Isuzu Ceramics Research Institute Co., Ltd. NOx decomposition catalyst and exhaust gas purifier using said catalyst
EP0993861A1 (en) * 1998-10-15 2000-04-19 ICT Co., Ltd. Catalyst for purifying exhaust gas from lean-burn engine
FR2799665A1 (en) * 1999-10-15 2001-04-20 Toyota Motor Co Ltd Catalyst, for exhaust gas purification, includes inorganic oxide layer containing noble and transition metals to protect nitrogen oxide absorber from poisoning by sulfur oxides
JP2002506500A (en) * 1997-06-26 2002-02-26 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Catalytic converter for lean-burn internal combustion engines
CN1330036C (en) * 2001-12-27 2007-08-01 日产自动车株式会社 Exhaust gas purifying method and system for fuel cell vehicle
JP2011169324A (en) * 2002-09-13 2011-09-01 Johnson Matthey Plc Method for treating exhaust gas discharged from compression ignition engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728643A (en) * 1996-02-09 1998-03-17 Isuzu Ceramics Research Institute Co., Ltd. NOx decomposition catalyst and exhaust gas purifier using said catalyst
JP2002506500A (en) * 1997-06-26 2002-02-26 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Catalytic converter for lean-burn internal combustion engines
EP0993861A1 (en) * 1998-10-15 2000-04-19 ICT Co., Ltd. Catalyst for purifying exhaust gas from lean-burn engine
FR2799665A1 (en) * 1999-10-15 2001-04-20 Toyota Motor Co Ltd Catalyst, for exhaust gas purification, includes inorganic oxide layer containing noble and transition metals to protect nitrogen oxide absorber from poisoning by sulfur oxides
CN1330036C (en) * 2001-12-27 2007-08-01 日产自动车株式会社 Exhaust gas purifying method and system for fuel cell vehicle
JP2011169324A (en) * 2002-09-13 2011-09-01 Johnson Matthey Plc Method for treating exhaust gas discharged from compression ignition engine
JP2014128797A (en) * 2002-09-13 2014-07-10 Johnson Matthey Plc Process for treating compression ignition engine exhaust gas

Similar Documents

Publication Publication Date Title
JP4092441B2 (en) Exhaust gas purification catalyst
JP3498453B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3988202B2 (en) Exhaust gas purification catalyst
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
JP3409894B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH09215922A (en) Catalyst for purifying exhaust gas
JPH08192051A (en) Catalyst for purification of exhaust gas
JP3798727B2 (en) Exhaust gas purification catalyst
JP2008114153A (en) Catalyst for purification of exhaust gas and system and method for purification of exhaust gas
JP3216858B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3685463B2 (en) Exhaust gas purification catalyst
JP3446915B2 (en) Exhaust gas purification catalyst
JPH09313938A (en) Catalyst for cleaning exhaust gas
JPH09248462A (en) Exhaust gas-purifying catalyst
JPH0857315A (en) Catalyst for purification of exhaust gas
JPH06378A (en) Catalyst for purification of exhaust gas
JP3335755B2 (en) Exhaust gas purification catalyst
JP5328133B2 (en) Exhaust gas purification catalyst
JP3496348B2 (en) Exhaust gas purification catalyst
JPH08117602A (en) Catalyst for purifying exhaust gas
JPH10165817A (en) Catalyst for cleaning of exhaust gas
JP2002168117A (en) Exhaust emission control system
JP3551346B2 (en) Exhaust gas purification equipment
JPH08281071A (en) Waste gas purifying method and waste gas purifying catalyst
JPH0716466A (en) Catalyst for purification exhaust gas