JPH0716466A - Catalyst for purification exhaust gas - Google Patents

Catalyst for purification exhaust gas

Info

Publication number
JPH0716466A
JPH0716466A JP5150604A JP15060493A JPH0716466A JP H0716466 A JPH0716466 A JP H0716466A JP 5150604 A JP5150604 A JP 5150604A JP 15060493 A JP15060493 A JP 15060493A JP H0716466 A JPH0716466 A JP H0716466A
Authority
JP
Japan
Prior art keywords
catalyst
nitrate
exhaust gas
changed
cesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5150604A
Other languages
Japanese (ja)
Other versions
JP3505739B2 (en
Inventor
Shinji Yamamoto
伸司 山本
Toru Sekiba
徹 関場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP15060493A priority Critical patent/JP3505739B2/en
Publication of JPH0716466A publication Critical patent/JPH0716466A/en
Application granted granted Critical
Publication of JP3505739B2 publication Critical patent/JP3505739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Abstract

PURPOSE:To obtain a catalyst for purification of exhaust gas used for removal of hydrocarbon, CO and NOx in exhaust gas discharged from the internal-combustion engine of an automobile, etc., and varying its compsn. in a wide range from an oxidizing state to a reducing state. CONSTITUTION:This catalyst is a monolithic structure type catalyst having a catalytic component-supporting layer contg. at least one of Pt and Pd, activated alumina, cerium oxide, at least one among K, Cs, Sr and Ba and at least one of Co and Mn as catalytic components.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自動車などの内燃機
関から排出される排ガス中の炭化水素(HC),一酸化
炭素(CO),および窒素酸化物(NOx )を浄化する
排ガス浄化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to exhaust gas purification for purifying hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NO x ) in exhaust gas discharged from internal combustion engines such as automobiles. Regarding catalysts.

【0002】[0002]

【従来の技術】従来の排ガス浄化用触媒としては、アル
ミナや酸化セリウムなどに白金(Pt),パラジウム
(Pd),ロジウム(Rh)などの白金族金属成分を担
持し、これをモノリス担体にコーティングした構造のH
C,COおよびNOx を一度に除去する3元触媒と称せ
られる触媒が多用されてきた。
As a conventional exhaust gas purifying catalyst, a platinum group metal component such as platinum (Pt), palladium (Pd) and rhodium (Rh) is supported on alumina, cerium oxide or the like, which is coated on a monolith carrier. The structure of H
A catalyst called a three-way catalyst that removes C, CO and NO x at a time has been frequently used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、かかる
触媒は内燃機関をストイキ近傍の条件で運転した場合の
み有効であり、排ガス浄化用触媒は還元性から酸化性ま
で幅広く組成が変動する排ガスを処理することが要求さ
れ、特に炭化水素濃度が高く酸素濃度が十分でない条件
では炭化水素の強い吸着被毒が触媒活性金属に対して起
こることにより浄化反応が阻害され、有害成分の浄化率
が低くなってしまうという問題点があった。
However, such a catalyst is effective only when the internal combustion engine is operated under conditions near stoichiometry, and the exhaust gas purifying catalyst treats exhaust gas whose composition varies widely from reducing to oxidizing. In particular, under conditions where the concentration of hydrocarbons is high and the concentration of oxygen is not sufficient, the purification reaction is hindered by the strong adsorption poisoning of hydrocarbons on the catalytically active metal, which lowers the purification rate of harmful components. There was a problem that it would end up.

【0004】[0004]

【課題を解決するための手段】本発明は、このような従
来の問題点に着目してなされたもので、白金族元素,活
性アルミナ,酸化セリウム等、従来から触媒成分として
使われるものに加えて、カリウム,セシウム,ストロン
チウムおよびバリウムのうち少なくとも1種類、コバル
トとマンガンのうち少なくとも1種類を組合わせること
により、炭化水素濃度が高く酸素濃度が低い排気ガスに
対しても高い浄化率を達成することができることを見い
だしたことに基づくものである。
The present invention has been made by paying attention to such conventional problems, and in addition to those conventionally used as catalyst components such as platinum group elements, activated alumina, and cerium oxide. By combining at least one of potassium, cesium, strontium and barium, and at least one of cobalt and manganese, a high purification rate is achieved even for exhaust gas with high hydrocarbon concentration and low oxygen concentration. It is based on finding what can be done.

【0005】従って、本発明の排ガス浄化用触媒は、触
媒成分担持層を有する一体構造型触媒において、該担持
層が触媒成分として白金とパラジウムのうち少なくとも
一種類、活性アルミナと酸化セリウムを加えて、カリウ
ム,セシウム,ストロンチウムおよびバリウムのうち少
なくとも1種類と、コバルトとマンガンのうち少なくと
も1種類を含むことを特徴とする。触媒成分の担持量、
即ち白金とパラジウムの担持量は、白金とパラジウムの
うち少なくとも1種が完成触媒1リットル当り0.1〜10
gであり、カリウム,セシウム,ストロンチウムおよび
バリウム担持量は、これらのうち少なくとも1種がそれ
ぞれ酸化カリウム,酸化セシウム,酸化ストロンチウ
ム,および酸化バリウムに換算して完成触媒1リットル
当り1〜30gであり、かつコバルトとマンガンの担持量
は、これらの少なくとも1種を酸化コバルトと酸化マン
ガンに換算して完成触媒1リットル当り1〜50g含む。
上記触媒成分の各担持量は、規定範囲未満では効果がな
く、一方規定範囲より多く担持させても得られる効果は
向上しない。
Therefore, the catalyst for purifying exhaust gas of the present invention is an integrated structure type catalyst having a catalyst component supporting layer, in which at least one of platinum and palladium, activated alumina and cerium oxide are added to the supporting layer as catalyst components. , At least one of potassium, cesium, strontium and barium, and at least one of cobalt and manganese. Amount of catalyst component supported,
That is, the loading amount of platinum and palladium should be 0.1-10 per liter of the finished catalyst, with at least one of platinum and palladium.
g, and the supported amount of potassium, cesium, strontium and barium is 1 to 30 g per 1 liter of the finished catalyst in terms of potassium oxide, cesium oxide, strontium oxide, and barium oxide of at least one of them. In addition, the supported amount of cobalt and manganese is 1 to 50 g per liter of the finished catalyst, when at least one of these is converted into cobalt oxide and manganese oxide.
When the loading amount of each of the above catalyst components is less than the specified range, the effect is not obtained, whereas when the loading amount exceeds the specified range, the effect obtained is not improved.

【0006】次にこの発明の触媒の製造方法を説明す
る。まず活性アルミナにカリウム,セシウム,ストロン
チウムおよびバリウムのうち少なくとも1種、コバルト
とマンガンのうち少なくとも1種を含む水溶液を含浸さ
せる。含浸処理に用いる塩は硝酸塩,塩化物,炭酸塩,
酢酸塩または水酸化物など水溶性のものであれば良い。
これを乾燥した後例えば 500℃で1時間、空気中で焼成
し、活性アルミナに対してこれら元素を1〜40重量%含
む粉末(イ)を得る。同時に活性アルミナにはジルコニ
ウム,セリウム,ランタンおよびネオジウムよりなる群
から選ばれた少なくとも1種が添加されていてよい。
Next, a method for producing the catalyst of the present invention will be described. First, activated alumina is impregnated with an aqueous solution containing at least one of potassium, cesium, strontium and barium and at least one of cobalt and manganese. Salts used for impregnation are nitrates, chlorides, carbonates,
Any water-soluble substance such as acetate or hydroxide may be used.
After this is dried, it is calcined in the air at, for example, 500 ° C. for 1 hour to obtain a powder (a) containing 1 to 40% by weight of these elements with respect to activated alumina. At the same time, at least one selected from the group consisting of zirconium, cerium, lanthanum and neodymium may be added to the activated alumina.

【0007】次いでこの粉末(イ)に白金とパラジウム
のうち少なくとも1種の塩を含む水溶液を含浸し、乾燥
した後、例えば 400℃で1時間、空気中で焼成し、活性
アルミナに対し上記白金族元素を 0.1〜10重量%含む粉
末(ロ)を得る。上記粉末(ロ)とアルミナゾル、必要
に応じて酸化セリウムなどを混合,粉砕して、スラリー
とし、触媒担体、例えばモノリス担体基材に付着させ、
例えば 400〜650 ℃の温度で焼成し、排気ガス浄化用触
媒を得る。成分の異なるスラリー数種を調製して担体基
材に層状に付着させてもよい。また、更に性能を向上さ
せるためにロジウムを含む触媒層を追加して設けてもよ
い。
Next, this powder (a) is impregnated with an aqueous solution containing at least one salt of platinum and palladium, dried, and then calcined in air at 400 ° C. for 1 hour, for example, and the above platinum is added to activated alumina. A powder (b) containing 0.1 to 10% by weight of a group element is obtained. The above powder (b), alumina sol, and cerium oxide, if necessary, are mixed and pulverized to form a slurry, which is attached to a catalyst carrier, for example, a monolith carrier substrate,
For example, it is fired at a temperature of 400 to 650 ° C to obtain an exhaust gas purifying catalyst. It is also possible to prepare several kinds of slurries having different components and attach them in layers to the carrier substrate. Further, in order to further improve the performance, a catalyst layer containing rhodium may be additionally provided.

【0008】[0008]

【作用】排気ガス浄化用触媒は酸化性から還元性まで幅
広く組成が変化する排気ガスを処理しなければならない
が、炭化水素濃度が高く、酸素濃度が低いような強い還
元性のガスでは浄化率が低下しやすい。これは炭化水素
の強い吸着が起こり、活性金属表面が炭化水素種で覆わ
れることにより、酸素など他のガスが吸着できず反応が
進行しないためと考えられる。本発明者らは鋭意研究の
結果カリウム,セシウム,ストロンチウムおよびバリウ
ム並びにコバルトおよびマンガンが、この還元性ガス雰
囲気における浄化率を向上するために有効であることを
確かめた。かくして、白金とパラジウムのうち少なくと
も一種類、活性アルミナと酸化セリウムに加えて、上記
カリウム,セシウム,ストロンチウムおよびバリウムの
うちの少なくとも一種に、更にコバルトとマンガンのう
ちの少なくとも一種を組合わせることにより炭化水素濃
度が高く、酸素濃度が低い排ガスに対しても高い浄化率
が得られる。
[Function] Exhaust gas purification catalysts must treat exhaust gas whose composition varies widely from oxidizing to reducing, but the purification rate is high for highly reducing gases with high hydrocarbon concentration and low oxygen concentration. Is easy to decrease. This is probably because strong adsorption of hydrocarbons occurs and the surface of the active metal is covered with hydrocarbon species, so that other gases such as oxygen cannot be adsorbed and the reaction does not proceed. As a result of diligent research, the present inventors have confirmed that potassium, cesium, strontium and barium, and cobalt and manganese are effective for improving the purification rate in this reducing gas atmosphere. Thus, in addition to at least one of platinum and palladium, activated alumina and cerium oxide, carbonization is achieved by combining at least one of the above potassium, cesium, strontium and barium with at least one of cobalt and manganese. A high purification rate can be obtained even for exhaust gas having a high hydrogen concentration and a low oxygen concentration.

【0009】[0009]

【実施例】この発明を次の実施例,比較例および試験例
により説明する。尚例中の「%」は「重量%」を示す。 実施例1 活性アルミナに硝酸セリウム水溶液と硝酸カリウム水溶
液と硝酸コバルト水溶液を含浸し、乾燥した後 500℃で
1時間焼成した。このときのセリウムの担持濃度は7重
量%,カリウムの担持濃度は5重量%,コバルトの担持
濃度は10重量%。こうして得られた粉末に硝酸パラジウ
ム水溶液を含浸し、乾燥した後 400℃で1時間焼成し
て、パラジウム担持活性アルミナ粉末を得た。パラジウ
ムの担持濃度は1.00重量%。この粉末 700g,酸化セリ
ウム粉末 300g,アルミナゾル1000gをボールミルで混
合,粉砕して得られたスラリをモノリス担体基材( 1.3
L,400 セル)に付着させ焼成(400 ℃1時間)した。
この時の付着量は 200g/Lに設定した。このようにし
て触媒(A)を得た。触媒(A)におけるパラジウム量
は 1.8g/個になっていた。
EXAMPLES The present invention will be described with reference to the following examples, comparative examples and test examples. In addition, "%" in an example shows "weight%." Example 1 Activated alumina was impregnated with a cerium nitrate aqueous solution, a potassium nitrate aqueous solution, and a cobalt nitrate aqueous solution, dried, and then calcined at 500 ° C. for 1 hour. The loading concentration of cerium was 7% by weight, the loading concentration of potassium was 5% by weight, and the loading concentration of cobalt was 10% by weight. The powder thus obtained was impregnated with an aqueous palladium nitrate solution, dried and then calcined at 400 ° C. for 1 hour to obtain a palladium-supported activated alumina powder. The supported concentration of palladium is 1.00% by weight. 700 g of this powder, 300 g of cerium oxide powder, and 1000 g of alumina sol were mixed in a ball mill and pulverized to obtain a slurry, which was used as a monolith carrier substrate (1.3
L, 400 cells) and baked (400 ° C. for 1 hour).
The adhesion amount at this time was set to 200 g / L. Thus, the catalyst (A) was obtained. The amount of palladium in the catalyst (A) was 1.8 g / piece.

【0010】実施例2 実施例1において硝酸カリウムを硝酸セシウムに変えセ
シウムの担持濃度を5%にした以外は同様にして触媒
(B)を得た。
Example 2 A catalyst (B) was obtained in the same manner as in Example 1 except that potassium nitrate was changed to cesium nitrate and the supported concentration of cesium was changed to 5%.

【0011】実施例3 実施例1において硝酸カリウムを酢酸ストロンチウムに
変え、ストロンチウムの担持濃度を5%にした以外は同
様にして触媒(C)を得た。
Example 3 A catalyst (C) was obtained in the same manner as in Example 1 except that potassium nitrate was changed to strontium acetate and the supported concentration of strontium was changed to 5%.

【0012】実施例4 実施例1において硝酸カリウムを酢酸バリウムに変え、
バリウムの担持濃度を5%にした以外は同様にして触媒
(D)を得た。
Example 4 In Example 1, potassium nitrate was changed to barium acetate,
A catalyst (D) was obtained in the same manner except that the supported concentration of barium was changed to 5%.

【0013】実施例5 実施例1において硝酸カリウムを硝酸カリウムと硝酸セ
シウムと酢酸バリウムに変え、カリウムの担持濃度を1
%,セシウムの担持濃度を2%,バリウムの担持濃度を
2%に、硝酸コバルトを硝酸コバルトと硝酸マンガンに
変え、コバルトの担持濃度を8%に、マンガンの担持濃
度を2%にした以外は同様にして触媒(E)を得た。
Example 5 In Example 1, potassium nitrate was changed to potassium nitrate, cesium nitrate and barium acetate, and the supported concentration of potassium was adjusted to 1
%, The supported concentration of cesium was 2%, the supported concentration of barium was 2%, cobalt nitrate was changed to cobalt nitrate and manganese nitrate, the supported concentration of cobalt was 8%, and the supported concentration of manganese was 2%. Similarly, a catalyst (E) was obtained.

【0014】実施例6 実施例1において硝酸カリウムを硝酸セシウムと硝酸ス
トロンチウムと酢酸バリウムに変え、セシウムの担持濃
度を1%,ストロンチウムの担持濃度を2%,バリウム
の担持濃度を2%に、硝酸コバルトを硝酸コバルトと硝
酸マンガンに変え、コバルトの担持濃度を9%に、マン
ガンの担持濃度を2%にした以外は同様にして触媒
(F)を得た。
Example 6 In Example 1, potassium nitrate was changed to cesium nitrate, strontium nitrate and barium acetate, and the supported concentration of cesium was 1%, the supported concentration of strontium was 2%, the supported concentration of barium was 2%, and cobalt nitrate was used. Was changed to cobalt nitrate and manganese nitrate, and the catalyst (F) was obtained in the same manner except that the cobalt concentration was 9% and the manganese concentration was 2%.

【0015】実施例7 実施例1において硝酸カリウムを硝酸セシウムと酢酸バ
リウムに変え、セシウムの担持濃度を2%,バリウムの
担持濃度を3%に、硝酸コバルトを硝酸コバルトと硝酸
マンガンに変え、コバルトの担持濃度を8%に、マンガ
ンの担持濃度を2%にした以外は同様にして触媒(G)
を得た。
Example 7 In Example 1, potassium nitrate was changed to cesium nitrate and barium acetate, the supported concentration of cesium was changed to 2%, the supported concentration of barium was changed to 3%, and cobalt nitrate was changed to cobalt nitrate and manganese nitrate. Catalyst (G) was carried out in the same manner except that the supported concentration was 8% and the supported concentration of manganese was 2%.
Got

【0016】実施例8 実施例1において硝酸パラジウム溶液の代わりにジニト
ロジアンミン白金溶液を用い白金の担持濃度を1%にし
た以外は同様にして触媒(H)を得た。触媒(H)にお
ける白金量は 1.8g/個になっていた。
Example 8 A catalyst (H) was obtained in the same manner as in Example 1 except that a dinitrodiammine platinum solution was used in place of the palladium nitrate solution and the supported concentration of platinum was set to 1%. The amount of platinum in the catalyst (H) was 1.8 g / piece.

【0017】実施例9 実施例8において硝酸カリウムを硝酸セシウムに変えセ
シウムの担持濃度を5%にした以外は同様にして触媒
(I)を得た。
Example 9 A catalyst (I) was obtained in the same manner as in Example 8 except that potassium nitrate was changed to cesium nitrate and the supported concentration of cesium was changed to 5%.

【0018】実施例10 実施例8において硝酸カリウムを酢酸ストロンチウムに
変え、ストロンチウムの担持濃度を5%にした以外は同
様にして触媒(J)を得た。
Example 10 A catalyst (J) was obtained in the same manner as in Example 8 except that potassium nitrate was changed to strontium acetate and the supported concentration of strontium was changed to 5%.

【0019】実施例11 実施例8において硝酸カリウムを酢酸バリウムに変え、
バリウムの担持濃度を5%にした以外は同様にして触媒
(K)を得た。
Example 11 In Example 8, potassium nitrate was changed to barium acetate,
A catalyst (K) was obtained in the same manner except that the supported concentration of barium was 5%.

【0020】実施例12 実施例5において硝酸パラジウム溶液の代わりにジニト
ロジアンミン白金溶液を用い白金の担持濃度を1%にし
た以外は同様にして触媒(L)を得た。
Example 12 A catalyst (L) was obtained in the same manner as in Example 5, except that a dinitrodiammine platinum solution was used instead of the palladium nitrate solution and the supported concentration of platinum was set to 1%.

【0021】実施例13 実施例6において硝酸パラジウム溶液の代わりにジニト
ロジアンミン白金溶液を用い白金の担持濃度を1%にし
た以外は同様にして触媒(M)を得た。
Example 13 A catalyst (M) was obtained in the same manner as in Example 6, except that the platinum nitrate solution was replaced by a dinitrodiammine platinum solution and the supported concentration of platinum was set to 1%.

【0022】実施例14 実施例7において硝酸パラジウム溶液の代わりにジニト
ロジアンミン白金溶液を用い白金の担持濃度を1%にし
た以外は同様にして触媒(N)を得た。
Example 14 A catalyst (N) was obtained in the same manner as in Example 7 except that a dinitrodiammine platinum solution was used instead of the palladium nitrate solution and the supported concentration of platinum was 1%.

【0023】実施例15 実施例1において、硝酸コバルトを硝酸マンガンに変え
マンガンの担持濃度を5%にした以外は同様にして触媒
(O)を得た。
Example 15 A catalyst (O) was obtained in the same manner as in Example 1 except that cobalt nitrate was changed to manganese nitrate and the supported concentration of manganese was changed to 5%.

【0024】実施例16 実施例15において硝酸カリウムを硝酸セシウムに変えセ
シウムの担持濃度を5%にした以外は同様にして触媒
(P)を得た。
Example 16 A catalyst (P) was obtained in the same manner as in Example 15 except that potassium nitrate was changed to cesium nitrate and the supported concentration of cesium was changed to 5%.

【0025】実施例17 実施例15において硝酸カリウムを酢酸ストロンチウムに
変え、ストロンチウムの担持濃度を5%にした以外は同
様にして触媒(Q)を得た。
Example 17 A catalyst (Q) was obtained in the same manner as in Example 15 except that potassium nitrate was changed to strontium acetate and the supported concentration of strontium was changed to 5%.

【0026】実施例18 実施例15において硝酸カリウムを酢酸バリウムに変え、
バリウムの担持濃度を5%にした以外は同様にして触媒
(R)を得た。
Example 18 In Example 15, potassium nitrate was changed to barium acetate,
A catalyst (R) was obtained in the same manner except that the supported concentration of barium was changed to 5%.

【0027】実施例19 実施例15において硝酸パラジウム溶液の代わりにジニト
ロジアンミン白金溶液を用い白金の担持濃度を1%にし
た以外は同様にして触媒(S)を得た。触媒(S)にお
ける白金量は 1.8g/個になっていた。
Example 19 A catalyst (S) was obtained in the same manner as in Example 15 except that a dinitrodiammine platinum solution was used instead of the palladium nitrate solution and the supported concentration of platinum was 1%. The amount of platinum in the catalyst (S) was 1.8 g / piece.

【0028】実施例20 実施例15において硝酸カリウムを硝酸セシウムに変えセ
シウムの担持濃度を5%にした以外は同様にして触媒
(T)を得た。
Example 20 A catalyst (T) was obtained in the same manner as in Example 15 except that potassium nitrate was changed to cesium nitrate and the supported concentration of cesium was changed to 5%.

【0029】実施例21 実施例15において硝酸カリウムを酢酸ストロンチウムに
変え、ストロンチウムの担持濃度を5%にした以外は同
様にして触媒(U)を得た。
Example 21 A catalyst (U) was obtained in the same manner as in Example 15 except that potassium nitrate was changed to strontium acetate and the supported concentration of strontium was changed to 5%.

【0030】実施例22 実施例15において硝酸カリウムを酢酸バリウムに変え、
バリウムの担持濃度を5%にした以外は同様にして触媒
(V)を得た。
Example 22 In Example 15, changing potassium nitrate to barium acetate,
A catalyst (V) was obtained in the same manner except that the supported concentration of barium was changed to 5%.

【0031】比較例1 実施例1において硝酸カリウムを用いない以外は同様に
して触媒(W)を得た。
Comparative Example 1 A catalyst (W) was obtained in the same manner as in Example 1 except that potassium nitrate was not used.

【0032】比較例2 実施例1において硝酸カリウムを用いず、硝酸パラジウ
ム溶液をジニトロジアンミン白金溶液に変え、白金担持
濃度を1%にした以外は同様にして触媒(X)を得た。
触媒(X)における白金量は 1.8g/個になっていた。
Comparative Example 2 A catalyst (X) was obtained in the same manner as in Example 1 except that potassium nitrate was not used, the palladium nitrate solution was changed to a dinitrodiammine platinum solution, and the platinum supported concentration was set to 1%.
The amount of platinum in the catalyst (X) was 1.8 g / piece.

【0033】比較例3 実施例1において硝酸コバルトを用いない以外は同様に
して触媒(Y)を得た。
Comparative Example 3 A catalyst (Y) was obtained in the same manner as in Example 1 except that cobalt nitrate was not used.

【0034】試験例 前記実施例1〜22および比較例1〜3の触媒について、
以下の条件で耐久後活性評価を行った。
Test Example Regarding the catalysts of Examples 1 to 22 and Comparative Examples 1 to 3,
The activity evaluation after endurance was performed under the following conditions.

【0035】耐久条件 触 媒 モノリス型貴金属触媒 エンジン排気量 2200cc 触媒入口ガス温度 550℃ 空間速度 50000H-1 耐久時間 100時間 入口ガス組成 CO 0.5±0.1% O2 0.5±0.1% HC 1100ppm NO 1300ppm CO2 15% 評価条件 車両10モード評価 排気量 2000cc 評価結果は表1に示した。比較例に比べて実施例は触媒
活性が高く本発明の効果が確認できた。
Durability conditions Catalyst Monolith type precious metal catalyst Engine displacement 2200 cc Catalyst inlet gas temperature 550 ° C. Space velocity 50000 H -1 Durability time 100 hours Inlet gas composition CO 0.5 ± 0.1% O 2 0.5 ± 0. 1% HC 1100 ppm NO 1300 ppm CO 2 15% Evaluation conditions Vehicle 10 mode evaluation Displacement 2000 cc Evaluation results are shown in Table 1. The catalytic activity of the example was higher than that of the comparative example, and the effect of the present invention was confirmed.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【発明の効果】以上説明してきたように本発明の触媒は
白金、パラジウムのうち少なくとも1種を含む触媒活性
成分担持層を有する触媒組成中に、カリウム,セシウ
ム,ストロンチウムおよびバリウムのうち少なくとも1
種、コバルトとマンガンのうち少なくとも1種を含むこ
とにより、従来の触媒では吸着被毒を受けて浄化性能が
低下するようなガス雰囲気においても、この吸着被毒効
果を緩和しかつ酸化活性を向上し高い性能を維持でき
る。このため大きく組成が変動するエンジン排ガス浄化
に対して従来の触媒よりも高い活性を示すため、触媒性
能の向上あるいは触媒コストの低減が図れるという効果
が得られる。
As described above, the catalyst of the present invention contains at least one of potassium, cesium, strontium and barium in a catalyst composition having a catalytically active component-supporting layer containing at least one of platinum and palladium.
The catalyst contains at least one of cobalt and manganese, so that even in a gas atmosphere where conventional catalysts are adsorbed and poisoned and the purification performance deteriorates, the adsorbed poisoning effect is mitigated and the oxidation activity is improved. And maintain high performance. Therefore, it exhibits higher activity than the conventional catalyst for purification of engine exhaust gas whose composition fluctuates greatly, so that it is possible to improve catalyst performance or reduce catalyst cost.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/64 ZAB 8017−4G 23/656 8017−4G B01J 23/64 104 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location B01J 23/64 ZAB 8017-4G 23/656 8017-4G B01J 23/64 104 A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 触媒成分担持層を有する一体構造型触媒
において、触媒成分として白金とパラジウムのうち少な
くとも一種類、活性アルミナと酸化セリウムを加えて、
カリウム,セシウム,ストロンチウムおよびバリウムの
うち少なくとも1種類と、コバルトとマンガンのうち少
なくとも1種類を含むことを特徴とする排ガス浄化用触
媒。
1. An integrated structure type catalyst having a catalyst component supporting layer, wherein at least one of platinum and palladium, activated alumina and cerium oxide are added as catalyst components,
An exhaust gas purification catalyst comprising at least one kind of potassium, cesium, strontium and barium and at least one kind of cobalt and manganese.
【請求項2】 触媒成分として白金とパラジウムのうち
少なくとも一種類が完成触媒1リットル当たり 0.1〜10
gであり、カリウム,セシウム,ストロンチウムおよび
バリウムのうち少なくとも1種類がそれぞれ酸化カリウ
ム,酸化セシウム,酸化ストロンチウムおよび酸化バリ
ウムに換算して完成触媒1リットル当たり1〜30gであ
り、かつコバルトとマンガンのうち少なくとも1種類を
酸化コバルトと酸化マンガンに換算して完成触媒1リッ
トル当たり1〜50g含むことを特徴とする請求項1記載
の排ガス浄化用触媒。
2. At least one of platinum and palladium as a catalyst component is 0.1 to 10 per liter of the finished catalyst.
g, at least one of potassium, cesium, strontium, and barium is 1 to 30 g per liter of the finished catalyst in terms of potassium oxide, cesium oxide, strontium oxide, and barium oxide, respectively, and among cobalt and manganese. The exhaust gas-purifying catalyst according to claim 1, wherein 1 to 50 g of at least one type is converted to cobalt oxide and manganese oxide per liter of the finished catalyst.
JP15060493A 1993-06-22 1993-06-22 Exhaust gas purification catalyst Expired - Fee Related JP3505739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15060493A JP3505739B2 (en) 1993-06-22 1993-06-22 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15060493A JP3505739B2 (en) 1993-06-22 1993-06-22 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH0716466A true JPH0716466A (en) 1995-01-20
JP3505739B2 JP3505739B2 (en) 2004-03-15

Family

ID=15500521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15060493A Expired - Fee Related JP3505739B2 (en) 1993-06-22 1993-06-22 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3505739B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6139808A (en) * 1996-12-20 2000-10-31 Ngk Insulators, Ltd. Catalyst for exhaust gas purification and system for exhaust gas purification
KR100368441B1 (en) * 2000-01-17 2003-01-24 희성엥겔하드주식회사 A catalyst composition for the removal of Volatile Organic Compounds(VOCs) and CO
FR2845932A1 (en) * 2002-10-17 2004-04-23 Rhodia Elect & Catalysis Catalyst useful for removing nitrogen oxides from automobile exhaust gases comprises rare-earth-doped alumina, manganese, alkali metal and platinum
US8735318B2 (en) 2010-08-11 2014-05-27 Hyundai Motor Company NOx storage and reduction catalyst, preparation method, and NOx removing system
JP2014240037A (en) * 2013-06-11 2014-12-25 ダイハツ工業株式会社 Exhaust gas purification catalyst
CN108906042A (en) * 2018-07-17 2018-11-30 无锡威孚环保催化剂有限公司 A kind of diesel vehicle particle supplementary set catalyst and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6139808A (en) * 1996-12-20 2000-10-31 Ngk Insulators, Ltd. Catalyst for exhaust gas purification and system for exhaust gas purification
KR100368441B1 (en) * 2000-01-17 2003-01-24 희성엥겔하드주식회사 A catalyst composition for the removal of Volatile Organic Compounds(VOCs) and CO
FR2845932A1 (en) * 2002-10-17 2004-04-23 Rhodia Elect & Catalysis Catalyst useful for removing nitrogen oxides from automobile exhaust gases comprises rare-earth-doped alumina, manganese, alkali metal and platinum
WO2004035203A1 (en) * 2002-10-17 2004-04-29 Centre National De La Recherche Scientifique Catalytic composition based on alumina, manganese, potassium, rubidium or cesium and platinum and use thereof as nox trap in gas treatment
US8735318B2 (en) 2010-08-11 2014-05-27 Hyundai Motor Company NOx storage and reduction catalyst, preparation method, and NOx removing system
US9180432B2 (en) 2010-08-11 2015-11-10 Hyundai Motor Company NOx storage and reduction catalyst, preparation method, and NOx removing system
JP2014240037A (en) * 2013-06-11 2014-12-25 ダイハツ工業株式会社 Exhaust gas purification catalyst
CN108906042A (en) * 2018-07-17 2018-11-30 无锡威孚环保催化剂有限公司 A kind of diesel vehicle particle supplementary set catalyst and preparation method thereof

Also Published As

Publication number Publication date
JP3505739B2 (en) 2004-03-15

Similar Documents

Publication Publication Date Title
JP2979809B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3185448B2 (en) Exhaust gas purification catalyst
JPH0626672B2 (en) Exhaust purification catalyst and method of manufacturing the same
JPH08281107A (en) Catalyst for purifying exhaust gas
JPH05237390A (en) Catalyst for purification of exhaust gas
JPH0699069A (en) Catalyst for purification of exhaust gas
JPH06378A (en) Catalyst for purification of exhaust gas
JPH05220395A (en) Production of ternary catalyst excellent in low-temperature activity
JP3505739B2 (en) Exhaust gas purification catalyst
JP3446915B2 (en) Exhaust gas purification catalyst
JPH09248462A (en) Exhaust gas-purifying catalyst
JP3299286B2 (en) Exhaust gas purification catalyst
JP2531677B2 (en) Exhaust gas purification catalyst
JPH10216514A (en) Catalyst for exhaust gas purification
JP2837864B2 (en) Exhaust gas purifying catalyst for purifying exhaust gas from internal combustion engines using alcohol as fuel
JP3189453B2 (en) Exhaust gas purification catalyst
JPS59162948A (en) Catalyst for purifying exhaust gas
JPH0857315A (en) Catalyst for purification of exhaust gas
JPH06296869A (en) Catalyst for exhaust gas purification
JP3338889B2 (en) Exhaust gas purification device
JPH0871424A (en) Catalyst for purification of exhaust gas
JP2672996B2 (en) Method for producing platinum-palladium-rhodium catalyst for exhaust gas purification
JPH06190246A (en) Exhaust gas purifying device for automobile
JPH09323040A (en) Exhaust gas purifying catalyst and its production
JPH069655B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031208

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees