JPH05237390A - Catalyst for purification of exhaust gas - Google Patents

Catalyst for purification of exhaust gas

Info

Publication number
JPH05237390A
JPH05237390A JP4042921A JP4292192A JPH05237390A JP H05237390 A JPH05237390 A JP H05237390A JP 4042921 A JP4042921 A JP 4042921A JP 4292192 A JP4292192 A JP 4292192A JP H05237390 A JPH05237390 A JP H05237390A
Authority
JP
Japan
Prior art keywords
catalyst
barium
inorganic oxide
refractory inorganic
group metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4042921A
Other languages
Japanese (ja)
Other versions
JP3272019B2 (en
Inventor
Shinya Kitaguchi
真也 北口
Shigeyoshi Taniguchi
茂良 谷口
Kazuo Tsuchiya
一雄 土谷
Tomohisa Ohata
知久 大幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP04292192A priority Critical patent/JP3272019B2/en
Publication of JPH05237390A publication Critical patent/JPH05237390A/en
Application granted granted Critical
Publication of JP3272019B2 publication Critical patent/JP3272019B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a production method of catalyst for purification of exhaust gas which can simultaneously remove hydrocarbons, carbon monoxide and nitrogen oxides exhausted from an internal combustion engine such as an automobile even at a low temp. and has excellent durability even when used under severe conditions such as an oxidizing, atmosphere at high temp. CONSTITUTION:This catalyst for purification of exhaust gas consists of a one- body structure coated with a catalyst component. This catalyst component contains a refractory inorg. oxide to which barium is fixed, platinum metals, and cerium compds. The inorg. oxide with barium fixed is obtd. by impregnating a refractory inorg. oxide with a barium salt soln. and treating the impregnated material with sulfuric acid. Or, the refractory inorg. oxide may be added.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排気ガス浄化用触媒に
関するものである。詳しく述べると本発明は、自動車等
の内燃機関から排出される有害成分である炭化水素(H
C)、一酸化炭素(CO)及び窒素酸化物(NOx)を
同時に除去する排気ガス浄化用触媒において、特に高温
酸化雰囲気のような厳しい条件下で使用されても優れた
耐久性を有し、かつ上記有害成分に対し低温での高い浄
化性能を有する排気ガス浄化用触媒に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst. More specifically, the present invention relates to hydrocarbons (H 2) which are harmful components emitted from internal combustion engines such as automobiles.
C), an exhaust gas purifying catalyst that simultaneously removes carbon monoxide (CO) and nitrogen oxides (NOx) has excellent durability even when used under severe conditions such as a high temperature oxidizing atmosphere, In addition, the present invention relates to an exhaust gas purifying catalyst having a high purification performance at low temperatures against the above-mentioned harmful components.

【0002】[0002]

【従来の技術】従来、自動車等の内燃機関から排出され
る排気ガス浄化用触媒において白金族金属は活性アルミ
ナ等の高表面積の耐火性無機酸化物上に高分散に担持さ
れていたため、初期活性は高いものの高温酸化雰囲気の
ような厳しい条件にさらされると白金族金属が粒子成長
したり、アルミナ等の担体物質やセリア等の助触媒成分
と好ましくない相互作用により大きな性能低下が見られ
た。特に白金族金属の担体物質として活性アルミナを使
用する場合は900℃以上の高温において、一部がαア
ルミナへの相転移があり、触媒性能の低下は避けられな
いものであった。上記問題点に対して、特開昭61−2
34931号や特開昭62−149343においては白
金族金属の担体物質である活性アルミナにランタン,ネ
オジウム等の希土類元素やバリウム,ストロンチウム等
のアルカリ土類金属元素を添加してαアルミナへの相転
移を抑制する方法が開示されている。しかしながら上記
添加剤は触媒製造において酸性スラリーを調製する際に
容易に溶出しスラリー性状を悪化させたり、モノリス担
体に被覆せしめてから乾燥時に添加成分出あるランタ
ン,バリウム等が触媒層内にて偏在をおこし所望の効果
が得られなかった。特にバリウムに関しては活性アルミ
ナを安定化する効果はあるものの助触媒成分であるセリ
ウムと好ましくない相互作用を起こすことが本発明者等
によって知見され使用条件下で逆に触媒性能を低下させ
るという問題点があった。
2. Description of the Related Art Conventionally, in a catalyst for purifying exhaust gas emitted from an internal combustion engine of an automobile or the like, a platinum group metal is supported on a high surface area refractory inorganic oxide such as activated alumina in a highly dispersed manner, so that the initial activation However, when exposed to harsh conditions such as a high temperature oxidizing atmosphere, the platinum group metal particles grow, and a large decrease in performance is observed due to unfavorable interactions with carrier materials such as alumina and cocatalyst components such as ceria. In particular, when activated alumina is used as a carrier material for platinum group metals, at a high temperature of 900 ° C. or higher, a part of it undergoes a phase transition to α-alumina, and a decrease in catalytic performance is unavoidable. To solve the above problems, Japanese Patent Laid-Open No. 61-2
No. 34931 and JP-A-62-149343, a phase transition to α-alumina by adding a rare earth element such as lanthanum and neodymium or an alkaline earth metal element such as barium and strontium to activated alumina which is a carrier material of a platinum group metal. A method of suppressing is disclosed. However, the above-mentioned additives are easily eluted when preparing an acidic slurry in the catalyst production to deteriorate the slurry property, or lanthanum, barium, etc., which are additional components when dried after being coated on a monolith carrier, are unevenly distributed in the catalyst layer. The desired effect was not obtained. Particularly for barium, it has been found by the present inventors that although barium has an effect of stabilizing activated alumina, it unfavorably interacts with cerium which is a co-catalyst component. was there.

【0003】[0003]

【発明が解決しようとする課題】従って、本発明の目的
は白金族金属を有効的に利用し、かつエンジン排ガス等
の高温条件下で使用されても触媒性能の低下が少ない新
規な排気ガス浄化用触媒を提供することにある。
Therefore, an object of the present invention is to utilize a platinum group metal effectively and to purify a novel exhaust gas which does not deteriorate the catalytic performance even when used under high temperature conditions such as engine exhaust gas. It is to provide a catalyst for use.

【0004】[0004]

【問題点を解決するための手段】本発明者らは、鋭意努
力の結果、触媒組成物として、耐火性無機酸化物上にバ
リウムを硫酸で固定化することにより得られる耐火性無
機酸化物を用いることにより、上記課題を解決できるこ
とを見出し、本発明を完成するに到った。以下に、詳し
く述べる。
As a result of earnest efforts, the present inventors have made a catalyst composition a refractory inorganic oxide obtained by immobilizing barium with sulfuric acid on a refractory inorganic oxide. The inventors have found that the above problems can be solved by using them, and have completed the present invention. The details will be described below.

【0005】第一の発明としては、耐火性無機酸化物に
バリウム塩水溶液を含浸し、次いで硫酸処理により得ら
れるバリウムを固定された耐火性無機酸化物(イ)、白
金族金属及びセリウム化合物を含有する触媒組成物を一
体構造体に被覆されてなる排気ガス浄化用触媒である。
In a first aspect of the present invention, a refractory inorganic oxide (a), a platinum group metal and a cerium compound having a fixed barium obtained by impregnating a refractory inorganic oxide with an aqueous barium salt solution and then treating with sulfuric acid is provided. An exhaust gas purifying catalyst, which is obtained by coating the contained catalyst composition on an integral structure.

【0006】また、白金族金属が、バリウムが固定化さ
れた耐火性無機酸化物(イ)に対し0.5〜30重量%
の濃度で、該耐火性無機酸化物に担持されてなることが
好ましい。
The platinum group metal is contained in an amount of 0.5 to 30% by weight based on the refractory inorganic oxide (a) on which barium is fixed.
It is preferable that the refractory inorganic oxide is supported at a concentration of.

【0007】第二の発明としては、耐火性無機酸化物に
バリウム塩水溶液を含浸し、次いで硫酸処理により得ら
れるバリウムを固定された耐火性無機酸化物(イ)、白
金族金属、セリウム化合物及び耐火性無機酸化物(ロ)
を含有する触媒組成物を一体構造体に被覆されてなる排
気ガス浄化用触媒である。
As a second invention, a refractory inorganic oxide (a) fixed with barium obtained by impregnating a refractory inorganic oxide with a barium salt aqueous solution and then treating with sulfuric acid, a platinum group metal, a cerium compound, and Refractory inorganic oxide (b)
An exhaust gas purifying catalyst, which is obtained by coating a catalyst composition containing C on an integral structure.

【0008】また、白金族金属が、バリウムが固定化さ
れた耐火性無機酸化物(イ)に対し0.5〜30重量%
の濃度で、該耐火性無機酸化物に担持されてなることが
好ましい。
The platinum group metal is contained in an amount of 0.5 to 30% by weight based on the refractory inorganic oxide (a) on which barium is fixed.
It is preferable that the refractory inorganic oxide is supported at a concentration of.

【0009】使用される耐火性無機酸化物(イ)又は
(ロ)の源となる耐火性無機酸化物しては、アルミナ、
シリカ、チタニア、ジルコニア等、またはこれらの複合
酸化物もしくは混合物が使用可能であり、好ましくは、
活性アルミナである。この耐火性無機酸化物(イ)の使
用量は、触媒1リットル当たり、30g〜300g、好
ましくは80g〜200gである。
The refractory inorganic oxide used as the source of the refractory inorganic oxide (a) or (b) used is alumina,
Silica, titania, zirconia, etc., or a complex oxide or mixture thereof can be used, and preferably,
It is activated alumina. The amount of the refractory inorganic oxide (a) used is 30 g to 300 g, preferably 80 g to 200 g, per liter of the catalyst.

【0010】バリウム源としては、水溶性の塩が用いら
れ、例えば、硝酸バリウム、酢酸バリウム、塩化バリウ
ム、及び水酸化バリウム等である。使用に際し、該塩を
純水あるいは硝酸等の酸性水溶液に溶解したものが使用
され、使用量としては、耐火性無機酸化物(イ)に対し
0.1〜30モル%、好ましくは0.5〜20モル%で
ある。0.1モル%未満である場合は、バリウムの添加
効果は少なく、30モル%を越えるときは添加に見合う
性能向上は見られない。
A water-soluble salt is used as the barium source, and examples thereof include barium nitrate, barium acetate, barium chloride, and barium hydroxide. Upon use, a salt obtained by dissolving the salt in pure water or an acidic aqueous solution such as nitric acid is used, and the amount used is 0.1 to 30 mol%, preferably 0.5 to the refractory inorganic oxide (a). Is about 20 mol%. If it is less than 0.1 mol%, the effect of addition of barium is small, and if it exceeds 30 mol%, no performance improvement commensurate with the addition is observed.

【0011】本発明に係るバリウムの耐火性無機酸化物
(イ)への固定方法としては、上記のバリウム塩水溶液
を耐火性無機酸化物(イ)に含浸して得られたスラリー
状組成物を充分に撹拌しながら濃硫酸もしくは純水にて
希釈した硫酸水をバリウム塩の1〜1.2倍モル量とな
るように少量づつ滴下することによってバリウム塩は耐
火性無機酸化物(イ)上で硫酸バリウムを形成し固定さ
れるものである。
As a method for fixing barium to the refractory inorganic oxide (a) according to the present invention, a slurry composition obtained by impregnating the refractory inorganic oxide (a) with the above barium salt aqueous solution is used. Barium salt is added to the refractory inorganic oxide (a) by adding dropwise sulfuric acid water diluted with concentrated sulfuric acid or pure water little by little with sufficient stirring so as to be 1 to 1.2 times the molar amount of barium salt. It forms and fixes barium sulfate.

【0012】1モル倍未満であるときは、バリウムの固
定が不十分となったり、スラリー性状を悪化したり、セ
リウムに悪影響を及ぼすものとなり、1.2モル倍を越
えるときは、過剰の硫酸根が存在し、耐火性無機酸化物
(イ)の溶出や触媒製造時において製造装置の腐食等の
問題が生じることになる。
When the amount is less than 1 mol times, the fixation of barium becomes insufficient, the slurry properties are deteriorated, and the cerium is adversely affected. When it exceeds 1.2 mol times, excess sulfuric acid is used. The presence of the roots causes problems such as elution of the refractory inorganic oxide (a) and corrosion of the production equipment during catalyst production.

【0013】バリウム塩を含浸した耐火性無機酸化物
(イ)に硫酸処理を施すことにより、バリウムは、耐火
性無機酸化物(イ)上で硫酸バリウムを形成し固定され
るため、そのままボールミル等で湿式粉砕し、スラリー
組成物として使用することができる。また触媒製造条件
によっては、バリウムを硫酸処理した後に、必要によ
り、乾燥、または焼成してから使用しても良い。この焼
成温度は、特に制限されることはないが300〜800
℃が好ましい。
By subjecting the refractory inorganic oxide (a) impregnated with barium salt to sulfuric acid treatment, barium forms and fixes barium sulfate on the refractory inorganic oxide (a), and thus the ball mill etc. Can be used as a slurry composition. Depending on the catalyst production conditions, barium may be used after being treated with sulfuric acid and, if necessary, dried or calcined. The firing temperature is not particularly limited, but is 300 to 800.
C is preferred.

【0014】なお、バリウムの耐火性無機酸化物(イ)
に担持する場合上記のように、バリウムを単独に耐火性
無機酸化物(イ)に担持することもできるが、白金族金
属とバリウムとを耐火性無機酸化物(イ)に担持する場
合、以下に述べる手順を用いることができる。即ち、
(1)耐火性無機酸化物に直接担持し、その後白金族金
属を担持する方法、(2)白金族金属を予め耐火性無機
酸化物に担持した後、バリウムを固定する方法、(3)
耐火性無機酸化物に白金族金属の水溶液とバリウム塩の
水溶液との混合溶液を含浸し、次いで硫酸処理する方法
等があるが、好ましくは、(2)の方法である。
The refractory inorganic oxide of barium (a)
In the case of supporting barium alone on the refractory inorganic oxide (a) as described above, but when supporting a platinum group metal and barium on the refractory inorganic oxide (a), The procedure described in can be used. That is,
(1) A method of directly supporting a refractory inorganic oxide and then a platinum group metal, (2) A method of previously supporting a platinum group metal on a refractory inorganic oxide, and then fixing barium, (3)
There is a method of impregnating a refractory inorganic oxide with a mixed solution of an aqueous solution of a platinum group metal and an aqueous solution of barium salt, and then treating with sulfuric acid. The method (2) is preferable.

【0015】耐火性無機酸化物(イ)に担持される白金
族金属としては白金、パラジウムおよびロジウムよりな
る群から少なくとも一種の白金族金属が選択されるが、
好ましくは、触媒組成物に対して0.1〜10重量%の
濃度の白金、パラジウム、若しくは白金とパラジウムの
組合せ、及び/又は0.02〜2.0重量%の濃度のロ
ジウム等が使用される。
As the platinum group metal supported on the refractory inorganic oxide (a), at least one platinum group metal is selected from the group consisting of platinum, palladium and rhodium.
Preferably, platinum, palladium, or a combination of platinum and palladium in a concentration of 0.1 to 10% by weight, and / or rhodium in a concentration of 0.02 to 2.0% by weight, etc. are used with respect to the catalyst composition. It

【0016】白金族金属の担持手法として、担持される
耐火性無機酸化物(イ)に対し、0.5〜30重量%、
好ましくは1〜20重量%の高い濃度で耐火性無機酸化
物(イ)に担持することにより、白金族金属と耐火性無
機酸化物(イ)との相互作用が抑制されて触媒の耐久性
および浄化能の向上が可能となるものである。
As a method of supporting the platinum group metal, 0.5 to 30% by weight based on the refractory inorganic oxide (a) to be supported,
By supporting the refractory inorganic oxide (a) at a high concentration of preferably 1 to 20% by weight, the interaction between the platinum group metal and the refractory inorganic oxide (a) is suppressed and the durability of the catalyst and The purification ability can be improved.

【0017】セリウム源としては、酸化物、または炭酸
化物、水酸化物等の焼成時あるいは使用時にセリウムの
酸化物の形態になるものを用いることができる。また、
水溶性の塩を用いる場合、耐火性無機酸化物(イ)、貴
金族が担持された耐火性無機酸化物(イ)又は耐火性無
機酸化物(ロ)に、該塩を含浸、焼成し、耐火性無機酸
化物(イ)又は耐火性無機酸化物(ロ)に担持して用い
ることもできる。
As the cerium source, it is possible to use an oxide, a carbonate, a hydroxide or the like in the form of an oxide of cerium at the time of firing or during use. Also,
When a water-soluble salt is used, the refractory inorganic oxide (a), the noble metal-supported refractory inorganic oxide (a) or the refractory inorganic oxide (b) is impregnated with the salt and baked. It can also be used by supporting it on the refractory inorganic oxide (a) or the refractory inorganic oxide (b).

【0018】セリウムの使用量としては酸化物換算で、
触媒1リットル当たり5〜100g使用することができ
る。また、耐火性無機酸化物(イ)に担持して用いる場
合、セリウムの酸化物換算で0.1〜50重量%の範囲
で含浸担持する方法も考えられる。
The amount of cerium used is calculated as oxide.
5 to 100 g can be used per liter of catalyst. Further, in the case where the refractory inorganic oxide (a) is supported and used, a method in which it is impregnated and supported in the range of 0.1 to 50% by weight in terms of cerium oxide is also considered.

【0019】本発明に係る一体構造体としては、コージ
ェライト、ムライト等のセラミック製、またはステンレ
ス、Fe−Cr−Al合金等のメタルモノリス製で、そ
の型状はいわゆるハニカム型、コルゲート型等のものが
挙げられる。
The integral structure according to the present invention is made of a ceramic such as cordierite or mullite, or a metal monolith such as stainless steel or Fe--Cr--Al alloy, and its shape is a so-called honeycomb type or corrugated type. There are things.

【0020】次に、第二の発明は、上記第一の発明に、
さらに耐火性無機酸化物(ロ)を別途添加した触媒であ
る。この場合の耐火性無機酸化物(ロ)の使用量は、触
媒1リットル当たり、45g〜359g、好ましくは9
5g〜295gである。この場合の耐火性無機酸化物
(イ)と(ロ)の合計は、50g〜400g、好ましく
は100g〜300gである。50g未満である場合
は、良好な触媒性能が得られないものであり、400g
を越えるときは、一体構造体に触媒組成物を被覆するこ
とが困難となるものであり、さらには、触媒自体の背圧
が高くなり好ましく、また増加量に見合う触媒性能も見
られないものである。なお、第一の発明に係る触媒に、
この耐火性無機酸化物(ロ)を添加することにより得ら
れる第二の発明に係る触媒は、第一の触媒に比べ耐熱性
の向上という効果がある。
Next, a second invention is the same as the first invention.
Further, it is a catalyst to which a refractory inorganic oxide (B) is added separately. In this case, the amount of the refractory inorganic oxide (b) used is 45 g to 359 g, preferably 9 g per liter of the catalyst.
It is 5 g to 295 g. In this case, the total of the refractory inorganic oxides (a) and (b) is 50 g to 400 g, preferably 100 g to 300 g. If it is less than 50 g, good catalyst performance cannot be obtained, and 400 g
If it exceeds, it becomes difficult to coat the catalyst composition on the monolithic structure, and further, the back pressure of the catalyst itself becomes high, which is not preferable, and the catalyst performance commensurate with the increased amount is not observed. is there. The catalyst according to the first invention,
The catalyst according to the second invention obtained by adding the refractory inorganic oxide (b) has an effect of improving heat resistance as compared with the first catalyst.

【0021】[0021]

【効果】(1)本願発明に係る触媒を用いることにより
得られる固定されたバリウムは、白金族金属の担持基材
である耐火性無機酸化物等の熱安定性を向上すると共に
白金族金属の助触媒として作用しNOx性能の向上を図
ることができる。(2)またバリウムを触媒組成物中に
添加する従来技術の製法においてはバリウムのセリウム
に対する悪影響は避けられないものであったが本発明に
係る触媒においては、バリウムが水不溶性でありスラリ
ー作成時に溶出がなく、スラリー性状およびセリウムへ
の悪影響の心配がない。(3)この結果、900℃以上
の高温条件にさらされても触媒性能の大きな低下がなく
白金族金属を有効的に利用することができる。
(Effects) (1) Immobilized barium obtained by using the catalyst according to the present invention improves the thermal stability of the refractory inorganic oxide or the like that is a platinum-group metal supporting substrate, and at the same time improves the platinum group metal content. It acts as a co-catalyst and can improve NOx performance. (2) In addition, in the conventional production method of adding barium to the catalyst composition, the adverse effect of barium on cerium was unavoidable, but in the catalyst according to the present invention, barium is water-insoluble and is not produced during slurry preparation. There is no elution, and there is no concern about adverse effects on the slurry properties and cerium. (3) As a result, even if exposed to a high temperature condition of 900 ° C. or higher, the catalytic performance is not significantly reduced, and the platinum group metal can be effectively used.

【0022】以下実施例にて具体的に説明するが、本発
明の趣旨に反しない限り、これら実施例に限定されるこ
とはない。
Specific examples will be described below, but the examples are not limited to these examples as long as the object of the present invention is not impaired.

【0023】[0023]

【実施例】【Example】

(実施例1)白金2.0gを含有するジニトロジアミノ
白金及びロジウム0.4gを含有する硝酸ロジウムの混
合水溶液を比表面積150m2/gの活性アルミナ20
0gに含浸し150℃にて乾燥した後500℃1時間焼
成して白金族金属を活性アルミナに担持した。次に酢酸
バリウム22gを純水200gに溶解した水溶液を白金
族金属担持アルミナに含浸し、充分に撹拌しながら希硫
酸(2N)100ccを滴下ロートにて少量づつ添加し
て得られたスラリー状組成物を乾燥し500℃で1時間
焼成してバリウムが固定された白金族金属担持アルミナ
を得た。このようにして得られた触媒組成物と市販の酸
化セリウム80gを硝酸水と共にボールミルにて15時
間粉砕し得られた水性スラリーにコージェライト製モノ
リス担体(400セル/平方インチ)を浸漬し、余剰ス
ラリーを圧縮空気にて吹き飛ばした後150℃にて2時
間乾燥し完成触媒(1)を得た。
Example 1 A mixed aqueous solution of dinitrodiaminoplatinum containing 2.0 g of platinum and rhodium nitrate containing 0.4 g of rhodium was treated with activated alumina 20 having a specific surface area of 150 m 2 / g.
After impregnating it with 0 g and drying it at 150 ° C., it was baked at 500 ° C. for 1 hour to support the platinum group metal on the activated alumina. Next, an aqueous solution of 22 g of barium acetate dissolved in 200 g of pure water was impregnated into a platinum group metal-supported alumina, and 100 cc of dilute sulfuric acid (2N) was added little by little with a dropping funnel with sufficient stirring to obtain a slurry composition. The product was dried and calcined at 500 ° C. for 1 hour to obtain a platinum group metal-supported alumina having barium immobilized thereon. The catalyst composition thus obtained and 80 g of commercially available cerium oxide were pulverized with nitric acid water in a ball mill for 15 hours, and a monolithic carrier made of cordierite (400 cells / square inch) was dipped in the resulting aqueous slurry to obtain an excess. The slurry was blown off with compressed air and then dried at 150 ° C. for 2 hours to obtain a finished catalyst (1).

【0024】(比較例1)白金2.0gを含有するジニ
トロジアミノ白金及びロジウム0.4gを含有する硝酸
ロジウムの混合水溶液を活性アルミナ220gに含浸し
150℃にて乾燥した後500℃1時間焼成して白金族
金属担持アルミナを調製した。このようにして得られた
白金族金属担持アルミナと市販の酸化セリウム80gを
ボールミルにて粉砕し水性スラリーを調製し、以下実施
例1と同様にして比較触媒(A)を得た。
Comparative Example 1 220 g of activated alumina was impregnated with a mixed aqueous solution of dinitrodiaminoplatinum containing 2.0 g of platinum and rhodium nitrate containing 0.4 g of rhodium, dried at 150 ° C., and then calcined at 500 ° C. for 1 hour. Then, a platinum group metal-supported alumina was prepared. The platinum group metal-supported alumina thus obtained and 80 g of commercially available cerium oxide were pulverized with a ball mill to prepare an aqueous slurry, and Comparative catalyst (A) was obtained in the same manner as in Example 1 below.

【0025】(比較例2)実施例1において硫酸処理に
てバリウムを固定する工程を施さなかった以外は実施例
1と同様にして比較触媒(B)を得た。
Comparative Example 2 A comparative catalyst (B) was obtained in the same manner as in Example 1 except that the step of fixing barium by sulfuric acid treatment was not carried out.

【0026】(比較例3)白金2.0gを含有するジニ
トロジアミノ白金及びロジウム0.4gを含有する硝酸
ロジウムの混合水溶液を活性アルミナ200gに含浸し
150℃にて乾燥した後500℃1時間焼成して白金族
金属担持アルミナを調製した。このようにして得られた
白金族金属担持アルミナと市販の酸化セリウム80gお
よび硫酸バリウム20gをボールミルにて粉砕し水性ス
ラリーを調製し、以下実施例1と同様にして比較触媒
(C)を得た。
Comparative Example 3 200 g of activated alumina was impregnated with a mixed aqueous solution of dinitrodiaminoplatinum containing 2.0 g of platinum and rhodium nitrate containing 0.4 g of rhodium, dried at 150 ° C., and then calcined at 500 ° C. for 1 hour. Then, a platinum group metal-supported alumina was prepared. The platinum group metal-supported alumina thus obtained, and 80 g of commercially available cerium oxide and 20 g of barium sulfate were pulverized with a ball mill to prepare an aqueous slurry, and Comparative catalyst (C) was obtained in the same manner as in Example 1 below. ..

【0027】(実施例2)白金2.0gを含有するジニ
トロジアミノ白金及びロジウム0.4gを含有する硝酸
ロジウムの混合水溶液を比表面積150m2/gの活性
アルミナ20gに含浸し150℃にて乾燥した後500
℃1時間焼成して白金族金属を活性アルミナに担持し
た。次に酢酸バリウム6.6gを純水30gに溶解した
水溶液を白金族金属担持アルミナに含浸し、充分に撹拌
しながら濃硫酸1.5gを少量づつ滴下してスラリー状
組成物を得た。このようにして得られたスラリー状組成
物と市販の酸化セリウム80gおよび活性アルミナ20
0gをボールミルにて粉砕し、以下実施例1と同様にし
て完成触媒(2)を得た。
Example 2 A mixed aqueous solution of dinitrodiamino platinum containing 2.0 g of platinum and rhodium nitrate containing 0.4 g of rhodium was impregnated in 20 g of activated alumina having a specific surface area of 150 m 2 / g and dried at 150 ° C. After doing 500
The platinum group metal was supported on activated alumina by firing at 1 ° C. for 1 hour. Next, an aqueous solution prepared by dissolving 6.6 g of barium acetate in 30 g of pure water was impregnated into the platinum group metal-supported alumina, and 1.5 g of concentrated sulfuric acid was dropped little by little with sufficient stirring to obtain a slurry composition. The slurry composition thus obtained, 80 g of commercially available cerium oxide, and activated alumina 20
0 g was crushed with a ball mill, and a completed catalyst (2) was obtained in the same manner as in Example 1 below.

【0028】(実施例3)白金2.0gを含有するジニ
トロジアミノ白金とロジウム0.4gを含有する硝酸ロ
ジウムおよび硝酸バリウム6.7gを含有する混合水溶
液を比表面積90m2/gのジルコニア20gに含浸し
得られたスラリー状組成物を充分に撹拌しながら濃硫酸
1.5gを少量づつ添加し、その後150℃にて乾燥し
500℃1時間焼成してバリウムが固定された白金族金
属担持ジルコニアを得た。このようにして得られた触媒
組成物と市販の酸化セリウム80gおよび活性アルミナ
200gをボールミルにて粉砕し、以下実施例1と同様
にして完成触媒(3)を得た。(実施例4)パラジウム
2.0gを含有する硝酸パラジウムとロジウム0.4g
を含有する硝酸ロジウムの混合水溶液を比表面積150
2/gの活性アルミナ20gに含浸し150℃にて乾
燥した後500℃1時間焼成して白金族金属を活性アル
ミナに担持した。次に酢酸バリウム10.9gを純水3
0gに溶解した水溶液を白金族金属担持アルミナに含浸
し、充分に撹拌しながら濃硫酸2.5gを少量づつ滴下
して得られたスラリー状組成物を乾燥し500℃で1時
間焼成してバリウムが固定された白金族金属担持アルミ
ナを得た。次に硝酸セリウム水溶液(25重量%)32
0gを活性アルミナ200gに含浸し150℃にて乾燥
した後500℃1時間焼成して酸化セリウム担持アルミ
ナを調製した。このようにして得られた2種の触媒組成
物をボールミルにて粉砕し、以下実施例1と同様にして
完成触媒(4)を得た。
Example 3 A mixed aqueous solution containing dinitrodiamino platinum containing 2.0 g of platinum, rhodium nitrate containing 0.4 g of rhodium and 6.7 g of barium nitrate was added to 20 g of zirconia having a specific surface area of 90 m 2 / g. 1.5 g of concentrated sulfuric acid was added little by little with sufficient stirring of the slurry composition obtained by impregnation, then dried at 150 ° C. and calcined at 500 ° C. for 1 hour to carry out barium-fixed platinum group metal-supported zirconia. Got The catalyst composition thus obtained, and 80 g of commercially available cerium oxide and 200 g of activated alumina were pulverized with a ball mill, and a completed catalyst (3) was obtained in the same manner as in Example 1. Example 4 Palladium nitrate containing 2.0 g of palladium and 0.4 g of rhodium
Rhodium nitrate containing aqueous solution containing a specific surface area of 150
It was impregnated with 20 g of m 2 / g of activated alumina, dried at 150 ° C., and calcined at 500 ° C. for 1 hour to support the platinum group metal on the activated alumina. Next, 10.9 g of barium acetate was added to pure water 3
A platinum group metal-supported alumina was impregnated with an aqueous solution dissolved in 0 g, and 2.5 g of concentrated sulfuric acid was dropped little by little with sufficient stirring to obtain a slurry composition, which was dried and calcined at 500 ° C. for 1 hour to obtain barium. Thus, a platinum group metal-supported alumina in which was fixed was obtained. Next, cerium nitrate aqueous solution (25% by weight) 32
200 g of activated alumina was impregnated with 0 g of the alumina, dried at 150 ° C., and calcined at 500 ° C. for 1 hour to prepare cerium oxide-supported alumina. The two types of catalyst compositions thus obtained were pulverized with a ball mill, and the completed catalyst (4) was obtained in the same manner as in Example 1 below.

【0029】(比較例4)比表面積150m2/gの活
性アルミナをボールミルにて粉砕し水性スラリーを調製
し、モノリス担体にアルミナをコートした。該モノリス
担体を硝酸セリウム水溶液に浸漬し乾燥後に500℃で
1時間焼成してセリウムを担持し、その後硝酸パラジウ
ムおよび硝酸ロジウムの水溶液に浸漬し乾燥後に500
℃1時間焼成して白金族金属を担持した。このようにし
て得られた触媒を酢酸バリウム水溶液に浸漬し乾燥後、
500℃で1時間焼成して比較触媒(D)を得た。
Comparative Example 4 Activated alumina having a specific surface area of 150 m 2 / g was crushed with a ball mill to prepare an aqueous slurry, and the monolith carrier was coated with alumina. The monolith carrier is immersed in an aqueous cerium nitrate solution, dried and then calcined at 500 ° C. for 1 hour to carry cerium, and then immersed in an aqueous solution of palladium nitrate and rhodium nitrate and dried to 500
The platinum group metal was supported by firing at ℃ for 1 hour. The catalyst thus obtained was immersed in an aqueous barium acetate solution and dried,
Comparative catalyst (D) was obtained by calcining at 500 ° C. for 1 hour.

【0030】(試験例)実施例より得られた触媒1〜4
及び比較例より得られた触媒A〜Dについてエンジン耐
久走行後の触媒性能を試験した。耐久エンジンは電子制
御エンジン(8気筒4400cc)を使用し定常運転6
0秒、減速6秒(減速時には燃料がカットされ触媒は高
温酸化雰囲気にさらされる)というモード運転を実施し
定常運転で触媒温度が1000℃となる条件で50時間
触媒をエージングした。触媒の評価は1800cc電子
制御エンジンを用いて行ない触媒入口温度450℃にお
けるCO,HCおよびNOxの浄化率を測定した結果を
表1に示した。
(Test Example) Catalysts 1 to 4 obtained from the examples
Also, the catalyst performance of the catalysts A to D obtained from the comparative examples was tested after running the engine for a long time. The endurance engine uses an electronically controlled engine (8 cylinders, 4400 cc), and the steady operation 6
The catalyst was aged for 50 hours under the condition that the catalyst temperature was 1000 ° C. in the steady operation by carrying out a mode operation of 0 seconds and 6 seconds of deceleration (fuel is cut during deceleration and the catalyst is exposed to a high temperature oxidizing atmosphere). The catalyst was evaluated using an 1800 cc electronically controlled engine, and the results of measuring the purification rates of CO, HC and NOx at a catalyst inlet temperature of 450 ° C. are shown in Table 1.

【0031】[0031]

【表1】 [Table 1]

【0032】表1の結果より本発明に開示する製造方法
による排気ガス浄化用触媒は高温酸化雰囲気のような厳
しい条件下で使用されても性能の低下が少ない優れた触
媒であることは明らかである。
From the results shown in Table 1, it is clear that the exhaust gas purifying catalyst according to the manufacturing method disclosed in the present invention is an excellent catalyst that does not deteriorate in performance even when used under severe conditions such as a high temperature oxidizing atmosphere. is there.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大幡 知久 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒触媒研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomohisa Ohata 1 992 Nishikioki, Kamahama, Aboshi-ku, Himeji-shi, Hyogo 1

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 耐火性無機酸化物にバリウム塩水溶液を
含浸し、次いで硫酸処理により得られるバリウムを固定
された耐火性無機酸化物(イ)、白金族金属及びセリウ
ム化合物を含有する触媒組成物を一体構造体に被覆され
てなる排気ガス浄化用触媒。
1. A catalyst composition containing a barium-immobilized refractory inorganic oxide (a) obtained by impregnating a refractory inorganic oxide with a barium salt aqueous solution and then treating with sulfuric acid, a platinum group metal and a cerium compound. An exhaust gas purifying catalyst in which a monolithic structure is covered.
【請求項2】 白金族金属が、バリウムが固定化された
耐火性無機酸化物(イ)に対し0.5〜30重量%の濃
度で、耐火性無機酸化物(イ)に担持されてなる請求項
1記載の触媒。
2. A platinum group metal is supported on the refractory inorganic oxide (a) in a concentration of 0.5 to 30% by weight based on the refractory inorganic oxide (a) on which barium is immobilized. The catalyst according to claim 1.
【請求項3】 耐火性無機酸化物にバリウム塩水溶液を
含浸し、次いで硫酸処理により得られるバリウムを固定
された耐火性無機酸化物(イ)、白金族金属、セリウム
化合物及び耐火性無機酸化物(ロ)を含有する触媒組成
物を一体構造体に被覆されてなる排気ガス浄化用触媒。
3. A refractory inorganic oxide (a) fixed with barium, which is obtained by impregnating a refractory inorganic oxide with a barium salt aqueous solution and then treating with sulfuric acid, a platinum group metal, a cerium compound and a refractory inorganic oxide. An exhaust gas purifying catalyst comprising an integral structure coated with a catalyst composition containing (b).
【請求項4】 白金族金属が、バリウムが固定化された
耐火性無機酸化物(イ)に対し0.5〜30重量%の濃
度で、耐火性無機酸化物(イ)に担持されてなる請求項
3記載の触媒。
4. The refractory inorganic oxide (a) is supported by a platinum group metal at a concentration of 0.5 to 30% by weight based on the refractory inorganic oxide (a) on which barium is immobilized. The catalyst according to claim 3.
【請求項5】 耐火性無機酸化物(イ)が、耐火性無機
酸化物に白金族金属を担持した後、バリウム塩水溶液を
含浸し、次いで硫酸処理により得られるものである請求
項1又は3記載の触媒。
5. The refractory inorganic oxide (a) is obtained by supporting a platinum group metal on a refractory inorganic oxide, impregnating a barium salt aqueous solution, and then treating with sulfuric acid. The described catalyst.
JP04292192A 1992-02-28 1992-02-28 Exhaust gas purification catalyst Expired - Lifetime JP3272019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04292192A JP3272019B2 (en) 1992-02-28 1992-02-28 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04292192A JP3272019B2 (en) 1992-02-28 1992-02-28 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH05237390A true JPH05237390A (en) 1993-09-17
JP3272019B2 JP3272019B2 (en) 2002-04-08

Family

ID=12649488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04292192A Expired - Lifetime JP3272019B2 (en) 1992-02-28 1992-02-28 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3272019B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11151439A (en) * 1997-11-20 1999-06-08 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
JPH11207183A (en) * 1997-11-20 1999-08-03 Daihatsu Motor Co Ltd Catalyst for purification of exhaust gas
WO2010064497A1 (en) 2008-12-03 2010-06-10 第一稀元素化学工業株式会社 Exhaust gas purifying catalyst, exhaust gas purifying apparatus using same, and exhaust gas purifying method
WO2010103870A1 (en) 2009-03-09 2010-09-16 第一稀元素化学工業株式会社 Exhaust gas purifying catalyst, exhaust gas purifying apparatus using same, and method for purifying exhaust gas
JP2011235264A (en) * 2010-05-13 2011-11-24 Ict:Kk Catalyst for purifying exhaust gas
WO2013065421A1 (en) 2011-10-31 2013-05-10 エヌ・イー ケムキャット株式会社 Exhaust gas purifying catalyst
US8491847B2 (en) 2008-07-25 2013-07-23 N.E. Chemcat Corporation Apparatus of catalyst for purifying exhaust gas and method for purifying exhaust gas
WO2013111457A1 (en) 2012-01-23 2013-08-01 エヌ・イーケムキャット株式会社 Alumina material containing barium sulfate and exhaust gas purifying catalyst using same
WO2013136821A1 (en) 2012-03-14 2013-09-19 エヌ・イーケムキャット株式会社 Catalyst composition for exhaust gas cleaning and catalyst for automobile exhaust gas cleaning
EP2658650A2 (en) * 2010-12-27 2013-11-06 BASF Corporation Thermally stable catalyst carrier comprising barium sulfate
WO2014002667A1 (en) 2012-06-28 2014-01-03 エヌ・イーケムキャット株式会社 Catalyst composition for exhaust gas purification and exhaust gas purifying catalyst for automobiles
WO2018190300A1 (en) 2017-04-11 2018-10-18 株式会社キャタラー Catalyst for exhaust gas purification
CN110075932A (en) * 2012-07-27 2019-08-02 巴斯夫公司 Catalyst material
WO2020071059A1 (en) 2018-10-04 2020-04-09 株式会社キャタラー Exhaust gas purification catalyst
US10765998B2 (en) 2016-05-25 2020-09-08 N.E. Chemcat Corporation Three-way catalyst for purifying gasoline engine exhaust gas

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11207183A (en) * 1997-11-20 1999-08-03 Daihatsu Motor Co Ltd Catalyst for purification of exhaust gas
JPH11151439A (en) * 1997-11-20 1999-06-08 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
US8491847B2 (en) 2008-07-25 2013-07-23 N.E. Chemcat Corporation Apparatus of catalyst for purifying exhaust gas and method for purifying exhaust gas
WO2010064497A1 (en) 2008-12-03 2010-06-10 第一稀元素化学工業株式会社 Exhaust gas purifying catalyst, exhaust gas purifying apparatus using same, and exhaust gas purifying method
US8337791B2 (en) 2008-12-03 2012-12-25 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Exhaust gas purification catalyst, exhaust gas purification apparatus using the same and exhaust gas purification method
WO2010103870A1 (en) 2009-03-09 2010-09-16 第一稀元素化学工業株式会社 Exhaust gas purifying catalyst, exhaust gas purifying apparatus using same, and method for purifying exhaust gas
JP2011235264A (en) * 2010-05-13 2011-11-24 Ict:Kk Catalyst for purifying exhaust gas
EP2658650A2 (en) * 2010-12-27 2013-11-06 BASF Corporation Thermally stable catalyst carrier comprising barium sulfate
CN103415343A (en) * 2010-12-27 2013-11-27 巴斯夫公司 Thermally stable catalyst carrier comprising barium sulfate
JP2014505587A (en) * 2010-12-27 2014-03-06 ビーエーエスエフ コーポレーション Thermally stable catalyst support with barium sulfate
EP2658650A4 (en) * 2010-12-27 2014-06-25 Basf Corp Thermally stable catalyst carrier comprising barium sulfate
WO2013065421A1 (en) 2011-10-31 2013-05-10 エヌ・イー ケムキャット株式会社 Exhaust gas purifying catalyst
US9061266B2 (en) 2011-10-31 2015-06-23 N.E. Chemcat Corporation Exhaust gas purifying catalyst
WO2013111457A1 (en) 2012-01-23 2013-08-01 エヌ・イーケムキャット株式会社 Alumina material containing barium sulfate and exhaust gas purifying catalyst using same
JPWO2013111457A1 (en) * 2012-01-23 2015-05-11 エヌ・イーケムキャット株式会社 Alumina material containing barium sulfate and exhaust gas purification catalyst using the same
WO2013136821A1 (en) 2012-03-14 2013-09-19 エヌ・イーケムキャット株式会社 Catalyst composition for exhaust gas cleaning and catalyst for automobile exhaust gas cleaning
US9339793B2 (en) 2012-03-14 2016-05-17 N.E. Chemcat Corporation Catalyst composition for exhaust gas cleaning and catalyst for automobile exhaust gas cleaning
WO2014002667A1 (en) 2012-06-28 2014-01-03 エヌ・イーケムキャット株式会社 Catalyst composition for exhaust gas purification and exhaust gas purifying catalyst for automobiles
US9339794B2 (en) 2012-06-28 2016-05-17 N.E. Chemcat Corporation Catalyst composition for exhaust gas purification and exhaust gas purifying catalyst for automobiles
CN110075932A (en) * 2012-07-27 2019-08-02 巴斯夫公司 Catalyst material
US10765998B2 (en) 2016-05-25 2020-09-08 N.E. Chemcat Corporation Three-way catalyst for purifying gasoline engine exhaust gas
WO2018190300A1 (en) 2017-04-11 2018-10-18 株式会社キャタラー Catalyst for exhaust gas purification
WO2020071059A1 (en) 2018-10-04 2020-04-09 株式会社キャタラー Exhaust gas purification catalyst
US11821349B2 (en) 2018-10-04 2023-11-21 Cataler Corporation Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JP3272019B2 (en) 2002-04-08

Similar Documents

Publication Publication Date Title
KR910004071B1 (en) Catalyst for purifying exhaust gas
US4957896A (en) Catalyst for purification of exhaust gases
JPS63162043A (en) Catalyst for cleaning exhaust gas
JP3272019B2 (en) Exhaust gas purification catalyst
US5202300A (en) Catalyst for purification of exhaust gas
JP2578219B2 (en) Method for producing exhaust gas purifying catalyst
JPH0547263B2 (en)
JPH06114264A (en) Production of catalyst for purification of exhaust gas
JPH06378A (en) Catalyst for purification of exhaust gas
JP3299286B2 (en) Exhaust gas purification catalyst
JP2734808B2 (en) Exhaust gas purification catalyst
JPH10165817A (en) Catalyst for cleaning of exhaust gas
JP2755513B2 (en) Exhaust gas purification catalyst
JPH11123331A (en) Catalyst for cleaning exhaust gas
JP2786933B2 (en) Exhaust gas purification catalyst
JPH0523593A (en) Exhaust emission control system
JPH07155605A (en) Exhaust gas purifying catalyst and production thereof
JPH08155302A (en) Catalyst for purifying exhaust gas and its production
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst
JP3426792B2 (en) Exhaust gas purification catalyst
JPS6320036A (en) Production of catalyst for purifying exhaust gas
JPH06210174A (en) Catalyst for purification of exhaust gas and its production
KR20030095675A (en) Method for manufacturing low precious metal loaded pt-pd-rh three way catalyst
JP2000271443A (en) Production of exhaust gas cleaning catalyst
JPS63190643A (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11