JPH06114264A - Production of catalyst for purification of exhaust gas - Google Patents
Production of catalyst for purification of exhaust gasInfo
- Publication number
- JPH06114264A JPH06114264A JP4266036A JP26603692A JPH06114264A JP H06114264 A JPH06114264 A JP H06114264A JP 4266036 A JP4266036 A JP 4266036A JP 26603692 A JP26603692 A JP 26603692A JP H06114264 A JPH06114264 A JP H06114264A
- Authority
- JP
- Japan
- Prior art keywords
- cerium
- zirconium
- catalyst
- alumina powder
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は自動車等の内燃機関より
排出される排ガス浄化用触媒に関する。更に詳しくは、
大気汚染の防止を目的として自動車等の内燃機関から排
出される排ガス中の有害成分である炭化水素(HC)、
一酸化炭素(CO)、一酸化窒素(NOX)を同時に浄
化する排ガス浄化用触媒の製造方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for purifying exhaust gas discharged from an internal combustion engine such as an automobile. For more details,
Hydrocarbon (HC) which is a harmful component in exhaust gas discharged from internal combustion engines such as automobiles for the purpose of preventing air pollution,
The present invention relates to a method for producing an exhaust gas purifying catalyst that purifies carbon monoxide (CO) and nitrogen monoxide (NO x ) simultaneously.
【0002】[0002]
【従来の技術】従来、内燃機関から排出される排ガス中
の有害成分を浄化する排ガス浄化用触媒は種々提案され
ている。例えば、特開昭63−162043号に開示さ
れているように、モノリス担体に活性アルミナ層を形成
させた後、セリウムおよびジルコニウムを硝酸塩水溶液
等により含浸担持させた触媒や、特開昭57−8783
9号,特開昭61−157347号および特開平1−1
23636号に開示されているように、セリウム、ジル
コニウムそれぞれの酸化物または炭酸塩粉末をアルミナ
或いは活性アルミナと混合し、スラリーとしてモノリス
担体に塗布した触媒が提案されている。2. Description of the Related Art Conventionally, various exhaust gas purifying catalysts for purifying harmful components in exhaust gas discharged from an internal combustion engine have been proposed. For example, as disclosed in JP-A-63-162043, a catalyst obtained by forming an activated alumina layer on a monolith carrier and then impregnating and supporting cerium and zirconium with an aqueous nitrate solution or the like, or JP-A-57-8783.
No. 9, JP-A-61-157347 and JP-A-1-1.
As disclosed in No. 23636, there has been proposed a catalyst in which oxides or carbonates of cerium and zirconium are mixed with alumina or activated alumina and applied as a slurry to a monolith carrier.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、このよ
うな従来の排ガス浄化用触媒におけるアルミナへのセリ
ウムおよびジルコニウムの添加方法にあっては、セリウ
ム、ジルコニウムそれぞれの酸化物または炭酸塩粉末を
活性アルミナ粉末と混合添加して熱処理する方法では、
両酸化物は複合化されにくいため、ジルコニウム添加に
よるセリアの酸素ストレージ能向上効果が望めず、充分
な触媒性能の向上は認められないという問題があった。
また、活性アルミナ、或いは活性アルミナ層を形成させ
た後のモノリス担体にセリウムおよびジルコニウムを硝
酸塩水溶液等により含浸添加して熱処理する方法では、
セリウム、ジルコニウムが活性アルミナのミクロポアお
よびマイクロポアに担持されるため、添加量が多いとこ
れらの孔構造が閉塞され充分な触媒性能の向上は認めら
れないという問題もあった。However, in the conventional method for adding cerium and zirconium to alumina in such a catalyst for purification of exhaust gas, the oxide or carbonate powder of cerium or zirconium is activated alumina powder. In the method of heat treatment by mixing with
Since both oxides are difficult to form a composite, there is a problem that the effect of improving the oxygen storage capacity of ceria by adding zirconium cannot be expected and sufficient improvement of the catalytic performance cannot be recognized.
Further, in the method of heat treatment by impregnating and adding cerium and zirconium to an aqueous solution of nitrate such as activated alumina, or a monolith carrier after forming an activated alumina layer,
Since cerium and zirconium are supported on the micropores and micropores of activated alumina, there is also a problem that if the addition amount is large, the pore structure of these is blocked and sufficient improvement of catalyst performance cannot be observed.
【0004】従って、本発明の目的は、高温雰囲気のよ
うな厳しい条件下で耐久前の状態及び耐久後の状態にお
いても高い浄化性能を有する排ガス浄化用触媒の製造方
法を提供することにある。Accordingly, it is an object of the present invention to provide a method for producing an exhaust gas purifying catalyst which has a high purifying performance even before and after the endurance under severe conditions such as a high temperature atmosphere.
【0005】[0005]
【課題を解決するための手段】本発明は上記した従来の
問題点に着目してなされたもので、本発明者らは、触媒
コート層が活性アルミナ、セリウムおよびジルコニウム
を含み白金とロジウム或いはパラジウムからなるモノリ
ス型排ガス浄化用触媒において、水溶性セリウム塩と水
溶性ジルコニウム塩と活性アルミナ粉末とを含む懸濁液
から沈澱生成反応を経て得られるセリウムおよびジルコ
ニウム担持アルミナ粉末を含み、該セリウムおよびジル
コニウム担持アルミナ粉末を構成する金属原子が、アル
ミニウム100(金属原子比)に対し、セリウム5〜1
5、ジルコニウム1〜4という割合であり、かつ該セリ
ウムおよびジルコニウム担持アルミナ粉末に、白金また
はパラジウムを担持させた後に触媒コート層を形成させ
た排ガス浄化用触媒とすることにより上記目的が達成さ
れることを見いだした。The present invention has been made by paying attention to the above-mentioned conventional problems. The present inventors have found that the catalyst coating layer contains activated alumina, cerium and zirconium, and platinum and rhodium or palladium. A monolith-type exhaust gas purifying catalyst comprising a cerium- and zirconium-supporting alumina powder obtained through a precipitation-forming reaction from a suspension containing a water-soluble cerium salt, a water-soluble zirconium salt, and activated alumina powder, The metal atoms constituting the supported alumina powder are cerium 5 to 1 with respect to aluminum 100 (metal atom ratio).
The ratio of 5, zirconium 1 to 4, and the above object can be achieved by using the cerium and zirconium-supported alumina powder as a catalyst for exhaust gas purification in which platinum or palladium is supported and then a catalyst coat layer is formed. I found a thing.
【0006】[0006]
【作用】本発明の排ガス浄化用触媒の製造方法は、上記
の如く構成することによりアルミナに担持されたセリウ
ムおよびジルコニウムの両酸化物を充分に複合化し、ジ
ルコニウム添加によるセリアの酸素ストレージ能が向上
する効果が得られる。その結果、高温雰囲気のような厳
しい条件下で、耐久前の状態および耐久後の状態におい
ても高い浄化性能を有する排ガス浄化用触媒とすること
ができる。The method for producing a catalyst for purifying exhaust gas of the present invention is configured as described above to sufficiently combine both oxides of cerium and zirconium supported on alumina to improve the oxygen storage capacity of ceria by adding zirconium. The effect is obtained. As a result, under severe conditions such as a high temperature atmosphere, an exhaust gas purifying catalyst having high purifying performance even in a state before endurance and a state after endurance can be obtained.
【0007】[0007]
【実施例】以下、本発明の排ガス用浄化触媒の製造方法
を更に詳細に説明する。本発明で用いる該セリウムおよ
びジルコニウム担持アルミナ粉末は、例えば硝酸セリウ
ムと酢酸ジルコゾールの混合水溶液等セリウムおよびジ
ルコニウム両イオンを含む酸性溶液に活性アルミナ粉末
を混合し懸濁液とし、これにアンモニア水を添加し、必
要に応じて加熱、加圧し、ここで得られた沈澱物を乾
燥、焼成することによって調整することができる。EXAMPLES The method for producing an exhaust gas purifying catalyst of the present invention will be described in more detail below. The cerium- and zirconium-supported alumina powder used in the present invention is, for example, a suspension prepared by mixing activated alumina powder with an acidic solution containing both cerium and zirconium ions, such as a mixed aqueous solution of cerium nitrate and zircosol acetate, to which ammonia water is added. It can be adjusted by heating and pressurizing as required, and drying and calcining the precipitate obtained here.
【0008】本発明で用いられるセリウムおよびジルコ
ニウム担持アルミナ粉末の組成は、金属原子比がアルミ
ニウム100に対してセリウム5〜15、ジルコニウム
1〜4であることが好ましい。この範囲では、セリウム
およびジルコニウム両酸化物が複合化しているため、ジ
ルコニウム添加によるセリアの酸素ストレージ能向上効
果が現れ、充分な触媒性能の向上が認められる。しか
し、ジルコニウムのアルミニウムに対する金属原子比が
この範囲以下になると、セリウム酸化物の酸素ストレー
ジ能の向上が充分に得られなくなる。また、セリウムお
よびジルコニウムの原子比が上記範囲以上になると、活
性アルミナのミクロポアおよびマクロポア、さらには表
面にまで過剰に担持され、孔構造の閉塞、表面積の減少
により充分な触媒性能の向上が得られなくなる。The composition of the cerium- and zirconium-supported alumina powder used in the present invention is preferably such that the metal atomic ratio is cerium 5 to 15 and zirconium 1 to 4 with respect to 100 of aluminum. In this range, since both cerium and zirconium oxides are combined, the effect of improving the oxygen storage capacity of ceria by the addition of zirconium appears, and sufficient improvement of the catalytic performance is recognized. However, if the metal atom ratio of zirconium to aluminum is below this range, the oxygen storage capacity of the cerium oxide cannot be sufficiently improved. Further, when the atomic ratio of cerium and zirconium exceeds the above range, it is excessively supported on the micropores and macropores of the activated alumina, and even on the surface, and the pore structure is blocked, and the surface area is reduced, thereby sufficiently improving the catalytic performance. Disappear.
【0009】本発明の触媒の製法としては、一つの方法
は上記セリウムおよびジルコニウム担持アルミナ粉末
に、予め貴金属を担持させてスラリーを調製し、セラミ
ック製または金属製のモノリス担体に塗布する。該モノ
リス担体を乾燥、焼成後さらに白金、ロジウム、パラジ
ウム等の貴金属を含むスラリーを塗布し、乾燥、焼成を
行うことによって目的の触媒を得る方法がある。また別
の製造方法としては、予め貴金属を担持したアルミナ粉
末と、該セリウムおよびジルコニウム担持アルミナ粉末
とを湿式にて混合してスラリーを調整し、セラミック製
または金属製のモノリス担体に塗布し、乾燥、焼成する
方法がある。As a method for producing the catalyst of the present invention, one method is to prepare a slurry by preliminarily supporting a noble metal on the cerium- and zirconium-supporting alumina powder, and apply the slurry to a ceramic or metal monolith carrier. There is a method of obtaining the target catalyst by drying and firing the monolithic carrier and then applying a slurry containing a noble metal such as platinum, rhodium and palladium, and drying and firing. Further, as another manufacturing method, an alumina powder carrying a noble metal in advance and the alumina powder carrying cerium and zirconium are wet mixed to prepare a slurry, which is applied to a ceramic or metal monolith carrier and dried. , There is a method of firing.
【0010】これらいずれの触媒製造工程においても、
用いられるスラリー中に沈澱生成反応によって製造され
た該セリウムおよびジルコニウム担持アルミナ粉末を添
加する工程が含まれることによって、得られる触媒は従
来の混合添加あるいは含浸添加して製造された触媒より
も優れた排ガス浄化性能を有するものとなる。In any of these catalyst manufacturing processes,
By including the step of adding the cerium and zirconium-supported alumina powder produced by the precipitation reaction to the slurry used, the obtained catalyst is superior to the catalyst produced by the conventional mixed addition or impregnation addition. It has exhaust gas purification performance.
【0011】本発明で用いるセリウムおよびジルコニウ
ム担持アルミナ粉末は、その含有する金属種としてセリ
ウムおよびジルコニウムのみでも充分な触媒能改良効果
が得られるが、セリウム源としてセリウムを主成分と
し、他の希土類元素(例えばランタン、ネオジウム、プ
ラセオジウム、イットリウム)を同時に含む低純度のセ
リウム塩を用いても良い。また、該セリウムおよびジル
コニウム担持アルミナ粉末は、従来の含浸法により製造
したものに比べ高い表面積を有し、且つ活性アルミナと
セリウムとジルコニウムとが複合化して存在しているこ
とがX線回折で確認された。従って、該酸化物上に担持
された白金あるいはパラジウムは高分散状態で存在し、
且つ従来経験的に知られているセリウムとジルコニウム
の複合酸化物が及ぼす助触媒作用を充分に受けることが
できる。The cerium and zirconium-supported alumina powder used in the present invention can obtain a sufficient catalytic activity improving effect only with cerium and zirconium as the metal species contained therein. However, cerium is the main component of the cerium source, and other rare earth elements are used. A low-purity cerium salt containing simultaneously (for example, lanthanum, neodymium, praseodymium, yttrium) may be used. Further, it was confirmed by X-ray diffraction that the cerium and zirconium-supported alumina powder had a higher surface area than that produced by the conventional impregnation method, and that active alumina, cerium and zirconium were present in a composite form. Was done. Therefore, platinum or palladium supported on the oxide exists in a highly dispersed state,
Further, it is possible to sufficiently receive the cocatalyst effect exerted by the composite oxide of cerium and zirconium which has been conventionally known empirically.
【0012】本発明により製造される排ガス浄化用触媒
は、貴金属成分として白金またはパラジウムを含有する
ことを特徴とするが、さらに性能を向上させるためには
必要に応じてロジウム等の貴金属を添加しても良い。The exhaust gas-purifying catalyst produced by the present invention is characterized by containing platinum or palladium as a noble metal component, but in order to further improve the performance, a noble metal such as rhodium may be added if necessary. May be.
【0013】以下本発明を実施例、比較例により説明す
るが、本発明はこれら実施例のみに限定されるものでは
ない。 実施例1 本例は共沈法により、アルミナにセリウムとジルコニウ
ムを含んだ酸化物粉末を調整し、これに白金を担持して
触媒化したものである。硝酸セリウムと酢酸ジルコゾー
ルの混合水溶液(セリウム濃度1.3moL/L,ジル
コニウム濃度0.2moL/L)を調整し、室温にて攪
拌しながら市販の活性アルミナ粉末(BET比表面積1
80m2/g)750gを徐々に投入した後、1.0〜
3.0規定のアンモニア水溶液を徐々に加え、溶液のp
Hを9.0にし、約1時間攪拌を行った。その後、生成
した水酸化物の沈澱を吸引ろ過し、沈澱物を150℃で
約3時間乾燥後600℃で約1時間焼成してアルミナに
セリウムとジルコニウムを含む酸化物粉末(粉末−1)
を得た(セリウム7.98moL%,ジルコニウム1.
24moL%,BET比表面積=148m2/g)。こ
の得られた酸化物粉末を攪拌しながら、ジニトロジシア
ミン白金硝酸溶液(45.5g/kg)を噴霧し、15
0℃で約3時間乾燥後、400℃で約1時間焼成して白
金担持量1.0重量%の白金担持酸化粉末を得た。この
酸化粉末990gと10%酢酸水溶液810gとを磁性
ボールミルに投入し、混合粉砕してスラリーを調整し、
このスラリーをコージェライト質のモノリス担体に12
0g/L塗布し、乾燥した後400℃で約1時間焼成し
た。The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to these examples. Example 1 In this example, an oxide powder containing cerium and zirconium in alumina was prepared by a coprecipitation method, and platinum was supported on the powder to catalyze. A mixed aqueous solution of cerium nitrate and zirconol acetate (cerium concentration: 1.3 moL / L, zirconium concentration: 0.2 moL / L) was prepared, and commercially available activated alumina powder (BET specific surface area 1
80 m 2 / g) 750 g was gradually added, and then 1.0 to
A 3.0 N aqueous ammonia solution was gradually added to the solution,
H was adjusted to 9.0, and the mixture was stirred for about 1 hour. Then, the formed hydroxide precipitate is suction filtered, and the precipitate is dried at 150 ° C. for about 3 hours and calcined at 600 ° C. for about 1 hour to form an oxide powder containing cerium and zirconium in alumina (powder-1).
Was obtained (cerium 7.98 mol%, zirconium 1.
24 moL%, BET specific surface area = 148 m 2 / g). While stirring the obtained oxide powder, a dinitrodisiamine platinum nitric acid solution (45.5 g / kg) was sprayed,
After being dried at 0 ° C. for about 3 hours, it was baked at 400 ° C. for about 1 hour to obtain a platinum-supported oxidized powder having a platinum-supported amount of 1.0% by weight. 990 g of this oxidized powder and 810 g of a 10% aqueous acetic acid solution were put into a magnetic ball mill, mixed and pulverized to prepare a slurry,
This slurry is applied to a cordierite monolith carrier 12
0 g / L was applied, dried and then baked at 400 ° C. for about 1 hour.
【0014】また、セリウムを3重量%担持し、熱安定
化した活性アルミナ粉末(BET比表面積180m2/
g)を攪拌しながら硝酸ロジウム溶液(44.5g/k
g)を噴霧し、150℃で約3時間乾燥後400℃で約
1時間焼成してロジウム担持量1.0重量%のロジウム
担持アルミナ粉末を得た。Further, activated alumina powder having 3% by weight of cerium loaded thereon and thermally stabilized (BET specific surface area 180 m 2 /
g) with stirring, rhodium nitrate solution (44.5 g / k
g) was sprayed, dried at 150 ° C. for about 3 hours, and then calcined at 400 ° C. for about 1 hour to obtain a rhodium-supported alumina powder having a rhodium-supported amount of 1.0 wt%.
【0015】上記ロジウム担持アルミナ粉末285g、
市販の活性アルミナ粉末(BET比表面積180m2/
g)510g、および硝酸酸性アルミナゾル1005g
(ベーマイトアルミナ10重量%混濁液に10重量%の
硝酸を添加することによって得られたゾル)とを磁性ボ
ールミルに投入し、混合粉砕してスラリーを調整し、こ
のスラリーを前記コートの担体に60g/L塗布し乾燥
後、400℃で約1時間焼成し、触媒−1を得た。285 g of the above rhodium-supported alumina powder,
Commercially available activated alumina powder (BET specific surface area 180 m 2 /
g) 510 g, and nitric acid-acidified alumina sol 1005 g
(A sol obtained by adding 10% by weight nitric acid to a 10% by weight boehmite alumina turbid solution) was put into a magnetic ball mill, mixed and pulverized to prepare a slurry, and 60 g of the slurry was applied to the carrier of the coat. / L was applied, dried and then baked at 400 ° C. for about 1 hour to obtain a catalyst-1.
【0016】比較例1 本例は含浸法より調整したアルミナにセリウムとジルコ
ニウムを含んだ酸化粉末に、白金を担持させて触媒化し
たものである。実施例1と同様の硝酸セリウムと酢酸ジ
ルコゾールの混合水溶液を、室温にて攪拌しながら実施
例1と同様の活性アルミナ粉末を投入し、約1時間攪拌
を行った後、150℃で約3時間乾燥、600℃で約1
時間焼成してアルミナにセリウムとジルコニウムを含む
酸化物粉末(粉末−2)を得た(セリウムおよびジルコ
ニウム含有量は実施例1と同じ、BET比表面積142
m2/g)。上記の含浸法による酸化物粉末を用いるこ
と以外は実施例1と同様にして触媒−2を得た。Comparative Example 1 In this example, an oxide powder containing cerium and zirconium in alumina prepared by an impregnation method was supported by platinum to be catalyzed. While stirring the same mixed aqueous solution of cerium nitrate and zircosol acetate as in Example 1 at room temperature, the same activated alumina powder as in Example 1 was added, and the mixture was stirred for about 1 hour and then at 150 ° C. for about 3 hours. Dry, about 1 at 600 ℃
An oxide powder (powder-2) containing cerium and zirconium in alumina was obtained by firing for a time (the cerium and zirconium contents were the same as in Example 1, and the BET specific surface area 142).
m 2 / g). A catalyst-2 was obtained in the same manner as in Example 1 except that the oxide powder obtained by the above impregnation method was used.
【0017】比較例2 本例は噴霧法によりアルミナにセリウムとジルコニウム
を含んだ酸化物粉末を調整し、白金を担持して、触媒化
したものである。実施例1と同様の活性アルミナ粉末を
攪拌しながら、実施例1と同様の硝酸セリウムと酢酸ジ
ルコゾールの混合水溶液を噴霧、150℃で約3時間乾
燥後、600℃で約1時間焼成し、これを約4回繰り返
し行い、アルミナにセリウムとジルコニウムを含む酸化
物粉末(粉末−3)を得た(セリウムおよびジルコニウ
ム含有量は実施例 1と同じ、BET比表面積124m
2/g)。上記の噴霧法による酸化物粉末を用いること
以外は実施例1と同様にして触媒−3を得た。Comparative Example 2 In this example, an oxide powder containing cerium and zirconium in alumina was prepared by a spraying method, and platinum was supported on the powder to catalyze it. While stirring the same activated alumina powder as in Example 1, the same mixed aqueous solution of cerium nitrate and zircosol acetate as in Example 1 was sprayed, dried at 150 ° C. for about 3 hours, and then calcined at 600 ° C. for about 1 hour. Was repeated about 4 times to obtain an oxide powder (powder-3) containing cerium and zirconium in alumina (the cerium and zirconium contents are the same as in Example 1, BET specific surface area 124 m).
2 / g). A catalyst-3 was obtained in the same manner as in Example 1 except that the oxide powder prepared by the above spraying method was used.
【0018】比較例3 本例はアルミナにセリウムのみを含んだ酸化物粉末を調
整した以外は比較例2と同様にして得た触媒である。実
施例1と同様の活性アルミナ粉末を攪拌しながら硝酸セ
リウム水溶液(セリウム濃度1.4moL/L)を噴霧
した以外は比較例2と同様にして、アルミナにセリウム
のみを含んだ酸化物粉末(粉末−4)を得た(セリウム
含有量8.6moL%,BET比表面積119m2/
g)。上記の噴霧法による酸化物粉末を用いる以外は実
施例1と同様にして触媒−4を得た。実施例2 本例は白金とロジウムの代わりにパラジウムを担持させ
た以外は実施例1と同様にして得た触媒である。硝酸セ
リウムと酢酸ジルコゾールの混合水溶液のセリウム濃度
を1.6moL/Lおよびジルコニウム濃度を0.4m
oL/Lとし、その組成をセリウム10.4moL%、
ジルコニウム2.6moL%およびBET比表面積を1
80m2/gとした以外は実施例1と同様にしてアルミ
ナにセリウムとジルコニウムを含む酸化物粉末を得た。
この得られた酸化物粉末を攪拌しながら硝酸パラジウム
水溶液(75〜85g/kg)を噴霧し、150℃で約
3時間乾燥後、400℃で約1時間焼成してパラジウム
担持量1.0重量%のパラジウム担持酸化物粉末を得
た。上記パラジウム担持酸化物粉末990gを、実施例
1と同様にスラリーを調整、塗布し触媒−5を得た。Comparative Example 3 This example is a catalyst obtained in the same manner as Comparative Example 2 except that an oxide powder containing only cerium in alumina was prepared. An oxide powder containing only cerium in alumina (powder) was prepared in the same manner as in Comparative Example 2 except that an aqueous cerium nitrate solution (cerium concentration 1.4 moL / L) was sprayed while stirring the same activated alumina powder as in Example 1. -4) was obtained (cerium content 8.6 mol%, BET specific surface area 119 m 2 /
g). A catalyst-4 was obtained in the same manner as in Example 1 except that the oxide powder prepared by the above spraying method was used. Example 2 This example is a catalyst obtained in the same manner as in Example 1 except that palladium was supported instead of platinum and rhodium. The cerium concentration of the mixed aqueous solution of cerium nitrate and zircosol acetate was 1.6 moL / L and the zirconium concentration was 0.4 m.
oL / L, the composition of which is cerium 10.4 mol%,
Zirconium 2.6 mol% and BET specific surface area 1
An oxide powder containing cerium and zirconium in alumina was obtained in the same manner as in Example 1 except that the amount was 80 m 2 / g.
An aqueous palladium nitrate solution (75 to 85 g / kg) was sprayed on the obtained oxide powder while stirring, dried at 150 ° C. for about 3 hours, and then calcined at 400 ° C. for about 1 hour to carry a palladium loading of 1.0 wt. % Palladium-supported oxide powder was obtained. A slurry was prepared and coated with 990 g of the above palladium-supported oxide powder in the same manner as in Example 1 to obtain Catalyst-5.
【0019】比較例4 本例は、実施例2と同組成の硝酸セリウムと酢酸ジルコ
ゾールの混合水溶液を用いた以外は比較例1と同様にし
てアルミナにセリウムとジルコニウムを含んだ酸化物粉
末(組成は実施例 2と同じ、BET比表面積:156
m2/g)を調整し、この含浸法による酸化物粉末を用
いること以外は実施例2と同様にして触媒−6を得た。Comparative Example 4 In this example, an oxide powder containing cerium and zirconium in alumina (composition) was prepared in the same manner as in Comparative Example 1 except that a mixed aqueous solution of cerium nitrate and zircosol acetate having the same composition as in Example 2 was used. Is the same as in Example 2, BET specific surface area: 156
m 2 / g) was adjusted and a catalyst-6 was obtained in the same manner as in Example 2 except that the oxide powder obtained by this impregnation method was used.
【0020】比較例5 本例は、実施例2と同組成の硝酸セリウムと酢酸ジルコ
ゾールの混合水溶液を用いた以外は比較例2と同様にし
てアルミナにセリウムとジルコニウムを含んだ酸化物粉
末(組成は実施例2と同じ、BET比表面積:160m
2/g)を調整し、この噴霧法による酸化物粉末を用い
ること以外は実施例2と同様にして触媒−7を得た。Comparative Example 5 In this example, an oxide powder containing cerium and zirconium in alumina (composition) was prepared in the same manner as in Comparative Example 2 except that a mixed aqueous solution of cerium nitrate and zircosol acetate having the same composition as in Example 2 was used. Is the same as in Example 2, BET specific surface area: 160 m
2 / g) was adjusted and a catalyst-7 was obtained in the same manner as in Example 2 except that the oxide powder obtained by this spraying method was used.
【0021】試験例1 実施例1および比較例1〜3で得られた触媒1〜4を、
それぞれエンジンに装着し以下に示す触媒耐久条件でエ
ンジン耐久を行って劣化させ、触媒評価条件で性能評価
を行い、耐久劣化触媒のHC,CO,NOX浄化率を測
定した結果を第1図に示す。Test Example 1 Catalysts 1 to 4 obtained in Example 1 and Comparative Examples 1 to 3 were
Fig. 1 shows the results of measuring the HC, CO, and NO x purification rates of the endurance deteriorated catalyst by mounting them on an engine and subjecting them to deterioration under the catalyst endurance conditions shown below for performance evaluation under the catalyst evaluation conditions. Show.
【0022】エンジン耐久条件 (触媒耐久条件) 耐久用エンジン:日産自動車(株)製 Y44型 (排気量4000cc、V型8気筒) 運転条件:以下の条件になるように回転数を制御した。 触媒入口温度 850℃ 空間速度 約60000H-1 触媒入口ガス組成 HC 1100ppm CO 0.5% NO 1300ppm O2 約0.5% CO2 約15% 平均空燃比 14.6 耐久時間 50時間 (触媒評価条件) 評価用エンジン:日産自動車(株)製 RB20E型 (排気量2000cc、直列6気筒) 運転条件:以下の条件となるように回転数を制御した。 触媒入口温度 400℃ 空間速度 約60000H-1 触媒入口ガス組成 HC 2200ppm CO 1.68% NO 1600ppm O2 約1.3% CO2 13% 平均空燃比 14.6 空燃比振幅 ±1.0 試験例2 実施例2および比較例4〜5で得られた各触媒5〜7に
つき、耐久条件における触媒入口温度を750℃、評価
条件における触媒入口温度を480℃とした以外は試験
例1の場合と同じ条件でエンジン耐久を行った後の性能
評価を行い、耐久劣化触媒のHC,CO,NOX浄化率
を測定した触媒性能評価結果を第1図に示す。Engine Durability Conditions (Catalyst Durability Conditions) Durability engine: Model Y44 manufactured by Nissan Motor Co., Ltd. (displacement 4000 cc, V type 8 cylinders) Operating conditions: The rotation speed was controlled so as to satisfy the following conditions. Catalyst inlet temperature 850 ° C Space velocity About 60000H -1 Catalyst inlet gas composition HC 1100ppm CO 0.5% NO 1300ppm O 2 About 0.5% CO 2 Approximately 15% Average air-fuel ratio 14.6 Durability 50 hours (Catalyst evaluation conditions) Evaluation engine: Nissan Motor Co., Ltd. RB20E type (displacement 2000cc, in-line 6 cylinders) Operating conditions: Rotate to meet the following conditions Controlled the number. Catalyst inlet temperature 400 ° C Space velocity About 60000H -1 Catalyst inlet gas composition HC 2200ppm CO 1.68% NO 1600ppm O 2 About 1.3% CO 2 13% Average air-fuel ratio 14.6 Air-fuel ratio amplitude ± 1.0 Test example 2 For each of the catalysts 5 to 7 obtained in Example 2 and Comparative Examples 4 to 5, as in Test Example 1 except that the catalyst inlet temperature under durability conditions was 750 ° C and the catalyst inlet temperature under evaluation conditions was 480 ° C. FIG. 1 shows the results of the catalyst performance evaluation, in which the performance was evaluated after the engine was subjected to durability under the same conditions, and the HC, CO, and NO x purification rates of the durability deteriorated catalyst were measured.
【0023】試験例3 第2図に本発明の触媒1〜4の耐久前の状態および耐久
後(1000℃×4時間)の状態のBET比表面積の測
定結果を示す。前述のように、沈澱生成反応により製造
した該セリウムおよびジルコニウム担持アルミナ粉末の
表面積は、耐久前の状態では148〜186m2/g、
耐久後では94〜97m2/gとなり、従来製造方法と
比較して耐久前の状態、耐久後の状態共に明らかに高い
表面積を有していることが認められている。さらに、こ
の比表面積は、金属原子比がアルミニウム100に対し
てセリウムが5〜15、ジルコニウムが1〜4の範囲内
ではほぼ同値となることを確認している。この高比表面
積の該セリウムおよびジルコニウム担持アルミナ粉末に
貴金属を担持することにより、従来以上の触媒性能が得
られた。Test Example 3 FIG. 2 shows the measurement results of the BET specific surface area of the catalysts 1 to 4 of the present invention before and after the durability test (1000 ° C. × 4 hours). As described above, the surface area of the cerium- and zirconium-supported alumina powder produced by the precipitation formation reaction is 148 to 186 m 2 / g before the endurance.
It is 94 to 97 m 2 / g after endurance, and it is recognized that it has a clearly high surface area in both the state before endurance and the state after endurance as compared with the conventional manufacturing method. Further, it has been confirmed that the specific surface area is almost the same in the metal atomic ratio of 100 to 100 of cerium and 5 to 15 of zirconium. By supporting a noble metal on the cerium- and zirconium-supporting alumina powder having a high specific surface area, a catalyst performance higher than that of the conventional catalyst was obtained.
【0024】[0024]
【発明の効果】以上説明してきたように、この発明は、
触媒コート層が活性アルミナ、セリウムおよびジルコニ
ウムを含む白金とロジウム或いはパラジウムからなるモ
ノリス型排ガス浄化用触媒において、水溶性セリウム塩
と水溶性ジルコニウム塩および活性アルミナ粉末とを含
む懸濁液から、沈澱生成反応を経て得られるセリウムお
よびジルコニウム担持アルミナ粉末を含み、該セリウム
およびジルコニウム担持アルミナ粉末を構成する金属原
子がアルミニウム100に対しセリウム5〜15、ジル
コニウム1〜4であり、かつ該セリウムおよびジルコニ
ウム担持アルミナ粉末に、白金またはパラジウムを担持
させた後に、触媒コート層を形成することを特徴とする
排ガス用浄化触媒としたため、従来の製造方法すなわち
含浸法、噴霧法に比べて、高温耐久後の排ガス浄化性能
において明らかに優れる触媒が得られる。As described above, the present invention is
A monolith type exhaust gas purifying catalyst whose catalyst coat layer is composed of platinum containing active alumina, cerium and zirconium, and rhodium or palladium, and precipitates are produced from a suspension containing a water-soluble cerium salt, a water-soluble zirconium salt and active alumina powder. Alumina powder supporting cerium and zirconium obtained through the reaction is included, and the metal atoms constituting the alumina powder supporting cerium and zirconium are cerium 5 to 15 and zirconium 1 to 4 relative to aluminum 100, and the cerium and zirconium supporting alumina. Since the purification catalyst for exhaust gas is characterized by forming the catalyst coating layer after supporting platinum or palladium on the powder, the exhaust gas purification after high temperature endurance is higher than that of the conventional production method, that is, the impregnation method and the spray method. Clear in performance The catalyst is obtained.
【図1】触媒の担持層構成と耐久劣化触媒のHC,C
O,NOX 化率測定結果FIG. 1 Structure of catalyst supporting layer and HC and C of durability deterioration catalyst
O, NO x conversion rate measurement results
【図2】耐久前および耐久後のBET比表面積測定結果FIG. 2 Results of BET specific surface area measurement before and after endurance
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 順 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Jun Okada 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd.
Claims (1)
よびジルコニウムを含み白金とロジウム或いはパラジウ
ムからなるモノリス型排ガス浄化用触媒において、水溶
性セリウム塩と水溶性ジルコニウム塩および活性アルミ
ナ粉末とを含む懸濁液から、沈澱生成反応を経て得られ
るセリウムおよびジルコニウム担持アルミナ粉末を含
み、該セリウムおよびジルコニウム担持アルミナ粉末を
構成する金属原子がアルミニウム100に対しセリウム
5〜15、ジルコニウム1〜4であり、かつ該セリウム
およびジルコニウム担持アルミナ粉末に、白金またはパ
ラジウムを担持させた後に触媒コート層を形成すること
を特徴とした排ガス用浄化触媒の製造方法。1. A monolith-type exhaust gas purifying catalyst, wherein the catalyst coating layer contains activated alumina, cerium and zirconium, and is composed of platinum and rhodium or palladium. A suspension containing a water-soluble cerium salt, a water-soluble zirconium salt and activated alumina powder. A cerium- and zirconium-supporting alumina powder obtained from a liquid through a precipitation-forming reaction is contained, and the metal atoms constituting the cerium- and zirconium-supporting alumina powder are cerium 5-15 and zirconium 1-4 with respect to 100 aluminum, and A method for producing an exhaust gas purifying catalyst, comprising forming a catalyst coat layer after supporting platinum or palladium on cerium- and zirconium-supporting alumina powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4266036A JPH06114264A (en) | 1992-10-05 | 1992-10-05 | Production of catalyst for purification of exhaust gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4266036A JPH06114264A (en) | 1992-10-05 | 1992-10-05 | Production of catalyst for purification of exhaust gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06114264A true JPH06114264A (en) | 1994-04-26 |
Family
ID=17425501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4266036A Pending JPH06114264A (en) | 1992-10-05 | 1992-10-05 | Production of catalyst for purification of exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06114264A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5883037A (en) * | 1994-05-27 | 1999-03-16 | Rhone-Poulenc Chimie | Thermally stable/highly reducible catalyst compositions comprising alumina and the oxides of cerium and zirconium |
WO2000027508A1 (en) * | 1998-11-05 | 2000-05-18 | Toyota Jidosha Kabushiki Kaisha | Method and system for purifying exhaust gases and exhaust gas purification catalyst for use therein and method for preparation thereof |
JP2000176283A (en) * | 1998-12-11 | 2000-06-27 | Mitsui Mining & Smelting Co Ltd | Promoter for purification of exhaust gas of internal combustion engine and its production |
WO2001019510A1 (en) * | 1999-09-10 | 2001-03-22 | Mitsui Mining & Smelting Co., Ltd. | Auxiliary catalyst for purifying exhaust gas |
EP1172139A1 (en) * | 2000-07-14 | 2002-01-16 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Catalyst for purifying exhaust gas |
US7291577B2 (en) | 2002-06-12 | 2007-11-06 | Sulzer Metco (Canada) Inc. | Hydrometallurgical process for production of supported catalysts |
CN100427208C (en) * | 2006-01-19 | 2008-10-22 | 清华大学 | Method for preparing catalyst to purify automobile tail gas |
JP2009507750A (en) * | 2005-09-08 | 2009-02-26 | ハンファ ケミカル コーポレーション | Metal oxide excellent in heat resistance and method for producing the same |
JP2009233580A (en) * | 2008-03-27 | 2009-10-15 | Mazda Motor Corp | Catalyst for cleaning exhaust gas and its manufacturing method |
WO2013062842A1 (en) * | 2011-10-27 | 2013-05-02 | Johnson Matthey Public Limited Company | Process for producing ceria-zirconia-alumina composite oxides and applications thereof |
-
1992
- 1992-10-05 JP JP4266036A patent/JPH06114264A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5883037A (en) * | 1994-05-27 | 1999-03-16 | Rhone-Poulenc Chimie | Thermally stable/highly reducible catalyst compositions comprising alumina and the oxides of cerium and zirconium |
WO2000027508A1 (en) * | 1998-11-05 | 2000-05-18 | Toyota Jidosha Kabushiki Kaisha | Method and system for purifying exhaust gases and exhaust gas purification catalyst for use therein and method for preparation thereof |
JP2000176283A (en) * | 1998-12-11 | 2000-06-27 | Mitsui Mining & Smelting Co Ltd | Promoter for purification of exhaust gas of internal combustion engine and its production |
WO2001019510A1 (en) * | 1999-09-10 | 2001-03-22 | Mitsui Mining & Smelting Co., Ltd. | Auxiliary catalyst for purifying exhaust gas |
GB2358146A (en) * | 1999-09-10 | 2001-07-18 | Mitsui Mining & Smelting Co | Auxiliary catalyst for purifying exhaust gas |
GB2358146B (en) * | 1999-09-10 | 2004-03-31 | Mitsui Mining & Smelting Co | Co- catalyst for purifying exhaust gas |
EP1172139A1 (en) * | 2000-07-14 | 2002-01-16 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Catalyst for purifying exhaust gas |
US7291577B2 (en) | 2002-06-12 | 2007-11-06 | Sulzer Metco (Canada) Inc. | Hydrometallurgical process for production of supported catalysts |
JP2009507750A (en) * | 2005-09-08 | 2009-02-26 | ハンファ ケミカル コーポレーション | Metal oxide excellent in heat resistance and method for producing the same |
CN100427208C (en) * | 2006-01-19 | 2008-10-22 | 清华大学 | Method for preparing catalyst to purify automobile tail gas |
JP2009233580A (en) * | 2008-03-27 | 2009-10-15 | Mazda Motor Corp | Catalyst for cleaning exhaust gas and its manufacturing method |
WO2013062842A1 (en) * | 2011-10-27 | 2013-05-02 | Johnson Matthey Public Limited Company | Process for producing ceria-zirconia-alumina composite oxides and applications thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5147842A (en) | Exhaust gas-purifying catalyst and process for preparation thereof | |
EP1438135B1 (en) | Layered catalyst composite and use thereof | |
US20180071679A1 (en) | Automotive Catalysts With Palladium Supported In An Alumina-Free Layer | |
JP2003126694A (en) | Catalyst for cleaning exhaust gas | |
JP3272019B2 (en) | Exhaust gas purification catalyst | |
JPH01139144A (en) | Catalyst for controlling exhaust emission | |
JP2578219B2 (en) | Method for producing exhaust gas purifying catalyst | |
JPH06114264A (en) | Production of catalyst for purification of exhaust gas | |
JPH08131830A (en) | Catalyst for purification of exhaust gas | |
JPH06378A (en) | Catalyst for purification of exhaust gas | |
JP2734808B2 (en) | Exhaust gas purification catalyst | |
JPH0582258B2 (en) | ||
JP3247956B2 (en) | Exhaust gas purification catalyst | |
JPH10216514A (en) | Catalyst for exhaust gas purification | |
JP4380880B2 (en) | Exhaust gas purification catalyst | |
JP3488999B2 (en) | Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst | |
JP3878766B2 (en) | Catalyst carrier and exhaust gas purification catalyst | |
JPS6320036A (en) | Production of catalyst for purifying exhaust gas | |
JPH0573463B2 (en) | ||
JPH06190282A (en) | Catalyst for purification of exhaust gas | |
JP3330154B2 (en) | Exhaust gas purification catalyst | |
JPH09206599A (en) | Catalyst for purification of exhaust gas | |
JP2000271443A (en) | Production of exhaust gas cleaning catalyst | |
JPH02237643A (en) | Production of catalyst for cleaning exhaust gas | |
JPS63190643A (en) | Exhaust gas purification catalyst |