JPH06210174A - Catalyst for purification of exhaust gas and its production - Google Patents

Catalyst for purification of exhaust gas and its production

Info

Publication number
JPH06210174A
JPH06210174A JP5026067A JP2606793A JPH06210174A JP H06210174 A JPH06210174 A JP H06210174A JP 5026067 A JP5026067 A JP 5026067A JP 2606793 A JP2606793 A JP 2606793A JP H06210174 A JPH06210174 A JP H06210174A
Authority
JP
Japan
Prior art keywords
noble metal
perovskite
exhaust gas
general formula
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5026067A
Other languages
Japanese (ja)
Inventor
Hirohisa Tanaka
裕久 田中
Ichiro Takahashi
一郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP5026067A priority Critical patent/JPH06210174A/en
Publication of JPH06210174A publication Critical patent/JPH06210174A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a catalyst having satisfactory purification activity even in the condition of a low temp. of exhaust gas and excellent in heat resistance, as well. CONSTITUTION:The objective catalyst has palladium allowed to coexist with a mixture of a perovskite type multiple oxide with a heat resistant oxide. A compsn. represented by a general formula Ce1-ySiyO2 (0<y<1) is used as the heat resistant oxide. When the catalyst is produced, an aq. palladium salt soln. of <=pH4 or >pH10 is carried on the above-mixture by impregnation or adsorption and the mixture is dried and fired.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は一酸化炭素(CO)、炭
化水素(HC)及び酸化窒素(NOx)の浄化能力に優
れた排ガス浄化用触媒、特に自動車用ガソリンエンジン
などにおいて、アイドリング時などの排ガス温度が低い
条件でも浄化活性を示す排ガス浄化用触媒と、その製造
方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to an exhaust gas purifying catalyst excellent in carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NOx) purifying ability, particularly in an automobile gasoline engine, etc. The present invention relates to an exhaust gas purifying catalyst that exhibits purifying activity even under low exhaust gas temperature, and a method for producing the same.

【0002】[0002]

【従来の技術】排気ガス浄化用三元触媒としてはアルミ
ナ担体にPt、Rh、Pdなどの貴金属を担持した貴金
属触媒が実用化されて広く使用されている。また、希土
類金属、アルカリ土類金属及び遷移金属から構成される
ペロブスカイト型構造を有する複合酸化物は、CO、H
C及びNOxを浄化する安価な排気ガス浄化用三元触媒
として実用化が期待されている(特開昭59−8704
6号公報、特開昭60−82138号公報参照)。この
ペロブスカイト型複合酸化物はCO、HCの浄化能力は
優れているが、NOxの浄化能力がやや劣っており、自
動車排ガス用の三元触媒として実用に供するには十分で
ない。そこで、ペロブスカイト型複合酸化物触媒のNO
x浄化能力を高めるために、貴金属を共存させることも
提案されている(特開平1−168343号公報参
照)。
2. Description of the Related Art As a three-way catalyst for purifying exhaust gas, a noble metal catalyst in which a noble metal such as Pt, Rh, or Pd is supported on an alumina carrier has been put into practical use and widely used. Further, a complex oxide having a perovskite structure composed of a rare earth metal, an alkaline earth metal and a transition metal is CO, H
Practical use is expected as an inexpensive three-way catalyst for purifying C and NOx for exhaust gas (Japanese Patent Laid-Open No. 59-8704).
No. 6, JP-A-60-82138). Although this perovskite type composite oxide has excellent CO and HC purification ability, it is slightly inferior in NOx purification ability and is not sufficient for practical use as a three-way catalyst for automobile exhaust gas. Therefore, NO of the perovskite type complex oxide catalyst
It has also been proposed that a noble metal coexists in order to enhance the x purification capacity (see Japanese Patent Laid-Open No. 1-168343).

【0003】[0003]

【発明が解決しようとする課題】これらの触媒は、自動
車の走行時のような排ガス温度が高い条件では優れた浄
化活性を示すが、アイドリング時などの排ガス温度が低
い条件では十分な浄化活性を示さない。排ガス規制強化
にともなってそのような排ガス温度が低い条件でも十分
な浄化活性を示す触媒が望まれている。本発明は排ガス
温度が低い条件でも十分な浄化活性を示し、かつ耐熱性
にも優れた排ガス浄化用触媒とその製造方法を提供する
ことを目的とするものである。
These catalysts show excellent purifying activity under conditions where the exhaust gas temperature is high, such as when a vehicle is running, but exhibit sufficient purifying activity under conditions where the exhaust gas temperature is low, such as during idling. Not shown. With the tightening of exhaust gas regulations, there is a demand for a catalyst that exhibits sufficient purification activity even under such low exhaust gas temperature conditions. It is an object of the present invention to provide an exhaust gas purifying catalyst that exhibits sufficient purifying activity even under conditions where the exhaust gas temperature is low and that has excellent heat resistance, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明の排ガス浄化用触
媒は、一般式Ln1-xxMO3(LnはCeを除く希土
類金属の1種又は2種以上、AはSrを除くアルカリ土
類金属及びCeのうちの1種又は2種以上、Mは遷移金
属及び貴金属のうちの1種又は2種以上、0<x<1)
で示されるペロブスカイト型複合酸化物と、一般式Ce
1-ySiy2(0<y<1)で示される耐熱性酸化物と
からなる複合酸化物又は固溶体に、貴金属を共存させた
ものである。
The exhaust gas-purifying catalyst of the present invention has a general formula Ln 1-x A x MO 3 (Ln is one or more rare earth metal except Ce, and A is an alkali except Sr. One or more kinds of earth metals and Ce, M is one or more kinds of transition metals and noble metals, 0 <x <1)
And a perovskite complex oxide represented by the general formula Ce
A noble metal is allowed to coexist in a composite oxide or solid solution composed of a heat resistant oxide represented by 1-y Si y O 2 (0 <y <1).

【0005】好ましい態様では、ペロブスカイト型複合
酸化物は、貴金属を含まないペロブスカイト型複合酸化
物を核としてその周囲に貴金属を固溶したペロブスカイ
ト型複合酸化物が形成された構造をしている。貴金属が
過剰に存在した場合、固溶しきれなかった貴金属は、金
属又は酸化物として微粒子状態で分散する。貴金属はP
d,Pt,Ru,Rh及びIrからなる群より選ばれた
1種又は2種以上の金属であり、特にPdは低温浄化活
性とNOx浄化活性を向上させるものであり好ましい。
In a preferred embodiment, the perovskite-type composite oxide has a structure in which a perovskite-type composite oxide containing noble metal as a core has a perovskite-type composite oxide formed around it as a solid solution. When the noble metal is present in excess, the noble metal which has not been dissolved completely is dispersed as a metal or an oxide in the form of fine particles. Precious metal is P
It is one or more metals selected from the group consisting of d, Pt, Ru, Rh and Ir, and Pd is particularly preferable because it improves low-temperature purification activity and NOx purification activity.

【0006】一般式Ce1-ySiy2(0<y<1)で
示される組成物は、高温でも比表面積が安定な酸化物で
あることが知られている(特開昭62−56322号公
報参照)。本発明ではこの組成物を耐熱性酸化物として
ペロブスカイト型複合酸化物の耐熱性を高めるために利
用している。
It is known that the composition represented by the general formula Ce 1-y Si y O 2 (0 <y <1) is an oxide having a stable specific surface area even at high temperature (Japanese Patent Laid-Open No. 62-62). See Japanese Patent No. 56322). In the present invention, this composition is used as a heat-resistant oxide in order to increase the heat resistance of the perovskite-type composite oxide.

【0007】本発明の製造方法の一態様では、一般式L
1-xxMO3(LnはCeを除く希土類金属の1種又
は2種以上、AはSrを除くアルカリ土類金属及びCe
のうちの1種又は2種以上、Mは遷移金属及び貴金属の
うちの1種又は2種以上、0<x<1)で示されるペロ
ブスカイト型複合酸化物と、一般式Ce1-ySiy
2(0<y<1)で示される耐熱性酸化物とからなる複
合酸化物又は固溶体に、pHが4以下に調製された貴金
属塩水溶液を用いて貴金属を含浸又は吸着させて担持さ
せ、乾燥後に焼成する。pHを4以下に調製して製造し
た場合には、ペロブスカイト型複合酸化物は、ペロブス
カイト型複合酸化物を核としてその周りを貴金属を固溶
したペロブスカイト型複合酸化物が取り囲んだ酸化物と
なる。
In one embodiment of the production method of the present invention, the general formula L
n 1-x A x MO 3 (Ln is one or more rare earth metals other than Ce, A is an alkaline earth metal other than Sr and Ce
1 or 2 or more of them, M is 1 or 2 or more of a transition metal and a noble metal, a perovskite complex oxide represented by 0 <x <1), and a general formula Ce 1-y Si y O
2 (0 <y <1) A complex oxide or a solid solution consisting of a heat-resistant oxide is impregnated or adsorbed with a noble metal salt aqueous solution adjusted to pH 4 or below, and dried. It is baked later. When prepared by adjusting the pH to 4 or less, the perovskite-type composite oxide is an oxide in which the perovskite-type composite oxide surrounds the perovskite-type composite oxide in which the noble metal is solid-soluted.

【0008】貴金属塩水溶液のpHを4以下とする製造
方法の場合は、水溶性貴金属塩としてはPdCl2、P
tCl2、RuCl3・3H2Oなどの塩化物、Pd(N
3)2、Ru(NO3)3、Rh(NO3)3などの硝酸塩、P
d(NO2)2(NH3)2、Pt(NO2)2(NH3)2などのジニ
トロジアミン塩など、水溶液が強酸性を示すものが好ま
しい。
In the case of the production method in which the pH of the aqueous solution of the noble metal salt is 4 or less, the water-soluble noble metal salt is PdCl 2 , P
Chlorides such as tCl 2 and RuCl 3 3H 2 O, Pd (N
O 3 ) 2 , Ru (NO 3 ) 3 , Rh (NO 3 ) 3 and other nitrates, P
A dinitrodiamine salt such as d (NO 2 ) 2 (NH 3 ) 2 or Pt (NO 2 ) 2 (NH 3 ) 2 is preferably one whose aqueous solution exhibits strong acidity.

【0009】本発明の製造方法の他の態様では、一般式
Ln1-xxMO3(この場合、AはSrを含む)で示さ
れるペロブスカイト型複合酸化物と一般式Ce1-ySiy
2で示される耐熱性酸化物とからなる複合酸化物又は
固溶体に、pHが10より大きくなるように調製された
貴金属塩水溶液を含浸又は吸着により担持させ、乾燥後
に焼成する。
In another embodiment of the production method of the present invention, a perovskite type complex oxide represented by the general formula Ln 1-x A x MO 3 (A in this case includes Sr) and the general formula Ce 1-y Si y
A complex oxide or solid solution consisting of a heat-resistant oxide represented by O 2 is impregnated or adsorbed with an aqueous solution of a noble metal salt prepared to have a pH of more than 10, dried and baked.

【0010】貴金属塩水溶液のpHを10より大きくす
る製造方法の場合は、テトラアミンパラジウムジクロラ
イドPd(NH3)4Cl2やテトラアミンパラジウム水酸
塩Pd(NH3)4(OH)2などの塩基性水溶液にアンモニ
ア水や酸を添加してpH>10になるように調製して用
いるか、PdCl2、PtCl2、RuCl3・3H2Oな
どの塩化物、Pd(NO3)2、Ru(NO3)3、Rh(N
3)3などの硝酸塩、又はPd(NO2)2(NH3)2、Pt
(NO2)2(NH3)2などのジニトロジアミン塩などの酸性
水溶液にアンモニア水を添加してpH>10になるよう
に調製して用いる。
In the case of the production method in which the pH of the aqueous solution of the noble metal salt is made higher than 10, tetraamine palladium dichloride Pd (NH 3 ) 4 Cl 2 and tetraamine palladium hydrochloride Pd (NH 3 ) 4 (OH) 2 are used. Ammonia water or acid is added to a basic aqueous solution so as to be adjusted to pH> 10, or a chloride such as PdCl 2 , PtCl 2 , RuCl 3 .3H 2 O, Pd (NO 3 ) 2 or Ru is used. (NO 3) 3, Rh ( N
Nitrate such as O 3 ) 3 or Pd (NO 2 ) 2 (NH 3 ) 2 , Pt
Ammonia water is added to an acidic aqueous solution of a dinitrodiamine salt such as (NO 2 ) 2 (NH 3 ) 2 to prepare a pH> 10 for use.

【0011】[0011]

【発明の効果】本発明の触媒はアイドリング時などの排
ガス温度が100〜200℃程度の低い条件においても
HC,CO,NOxに対して優れた浄化活性を示す。ま
た、耐熱性酸化物として一般式Ce1-ySiy2(0<
y<1)で示される組成物を含んでいるので、900℃
以上の高温でも使用できる高耐熱性のある触媒となる。
The catalyst of the present invention exhibits excellent purifying activity against HC, CO, and NOx even under a low exhaust gas temperature of about 100 to 200 ° C. during idling. Further, as a heat-resistant oxide, a general formula Ce 1-y Si y O 2 (0 <
Since it contains the composition represented by y <1), 900 ° C.
The catalyst has high heat resistance and can be used even at the above high temperatures.

【0012】[0012]

【実施例】【Example】

(実施例1)手順A : ペロブスカイト型複合酸化物結晶粉末の製
造方法 ペロブスカイト型複合酸化物(La0.8Ce0.2)(Co0.4
Fe0.6)O3粉末の調製方法を説明する。硝酸ランタン
103.9g、硝酸セリウム26.1g、硝酸コバルト3
4.9g、硝酸鉄72.7gを純水に溶解した水溶液0.
3リットルを用意した。次に、中和共沈剤として炭酸ナ
トリウム50gを溶解した水溶液0.5リットルを用意
した。中和共沈剤を先の水溶液に滴下し、共沈物を得
た。その共沈物を十分水洗し、濾過した後、真空乾燥し
た。これを600℃で3時間大気中で焼成後、粉砕し、
その後、800℃で3時間大気中で焼成を行ない、さら
に粉砕し、(La0.8Ce0.2)(Co0.4Fe0.6)O3の粉
末を作製した。
(Example 1) Step A:. Perovskite-type composite oxide crystalline powder manufacturing method perovskite-type composite oxide (.. La 0 8 Ce 0 2) (Co 0 4
Fe 0. 6) the O 3 powder preparation methods will be described. Lanthanum nitrate 103.9g, cerium nitrate 26.1g, cobalt nitrate 3
An aqueous solution prepared by dissolving 4.9 g and iron nitrate 72.7 g in pure water.
I prepared 3 liters. Next, 0.5 liter of an aqueous solution in which 50 g of sodium carbonate was dissolved was prepared as a neutralizing coprecipitant. The neutralizing coprecipitant was added dropwise to the above aqueous solution to obtain a coprecipitate. The coprecipitate was thoroughly washed with water, filtered, and dried under vacuum. This is baked at 600 ° C for 3 hours in the air and then crushed,
Thereafter, subjected to calcination for 3 hours in air at 800 ° C., it was further pulverized to prepare a (La 0. 8 Ce 0. 2) (Co 0. 4 Fe 0. 6) O 3 powder.

【0013】手順B : 耐熱性酸化物の製造 酸化第二セリウムCeO297.5重量部に純水20重
量部を加え、ケイ酸テトラエチルアンモニウム水溶液
(SiO2/(C254N+のモル比が1に等しく、か
つSiO2濃度が116g/リットル)をSiO2分で
2.5重量部となるように計量し、十分に撹拌した。そ
の後、120℃で12時間乾燥させ、350℃で3時間
焼成した後、めのう乳鉢により粉砕し、180μmのメ
ッシュを通過させ、SiO2を2.5wt%含有するC
eO2粉末を得た。
Procedure B : Preparation of heat-resistant oxide 20 parts by weight of pure water was added to 97.5 parts by weight of ceric oxide CeO 2 to prepare an aqueous solution of tetraethylammonium silicate (SiO 2 / (C 2 O 5 ) 4 N +). A molar ratio equal to 1 and a SiO 2 concentration of 116 g / liter) were weighed out to 2.5 parts by weight of SiO 2 and stirred thoroughly. After that, it was dried at 120 ° C. for 12 hours, calcined at 350 ° C. for 3 hours, crushed with an agate mortar, passed through a 180 μm mesh, and C containing 2.5 wt% of SiO 2 was added.
An eO 2 powder was obtained.

【0014】手順C : スラリーコート(担持) (La0.8Ce0.2)(Co0.4Fe0.6)O3ペロブスカイト
型複合酸化物粉末50重量部、手順Bで製造したSiO
2含有CeO2粉末50重量部、セリアゾル(固形分10
wt%)を50重量部(固形分で5重量部)、ジルコニ
アゾル(固形分30wt%)を3.3重量部(固形分で
1重量部)を、全固形分が50wt%となるように純水
58.7重量部を加えてボールミルで12時間粉砕しな
がら混合してスラリーを得た。スラリーをコージェライ
トハニカムに流入させた後、余剰のスラリーを空気流で
吹き払い、均一にコーティングした。スラリーコート後
のハニカムを120℃で12時間乾燥させ、空気中にて
600℃で3時間焼成してハニカム状サンプルを得た。
[0014] Step C: slurry coating (carrying) (.. La 0 8 Ce 0 2) (.. Co 0 4 Fe 0 6) O 3 perovskite-type composite oxide powder 50 parts by weight, prepared in Step B SiO
50 parts by weight of 2- containing CeO 2 powder, ceria sol (solid content 10
50% by weight (solid content: 5 parts by weight), zirconia sol (solid content: 30% by weight): 3.3 parts by weight (solid content: 1 part by weight), so that the total solid content becomes 50% by weight. 58.7 parts by weight of pure water was added and pulverized with a ball mill for 12 hours while mixing to obtain a slurry. After allowing the slurry to flow into the cordierite honeycomb, the excess slurry was blown off with an air stream to coat it uniformly. The slurry-coated honeycomb was dried at 120 ° C. for 12 hours and fired in air at 600 ° C. for 3 hours to obtain a honeycomb sample.

【0015】手順D : Pdの添加 Pd分で1.1重量部となるように硝酸パラジウム溶液
(Pd濃度4.4wt%)25重量部と純水1000重
量部とを混合し、液のpHを1.8に調製した。この調
製された硝酸パラジウム溶液に手順Cで作成したハニカ
ム状サンプルを浸漬し、40℃で2時間保持してPdを
吸着させた後、120℃で12時間乾燥し、空気中にて
600℃で3時間焼成して実施例1の触媒試料を得た。
Procedure D : Addition of Pd 25 parts by weight of a palladium nitrate solution (Pd concentration: 4.4 wt%) and 1000 parts by weight of pure water were mixed so that the Pd content was 1.1 parts by weight, and the pH of the solution was adjusted. Prepared to 1.8. The honeycomb-shaped sample prepared in procedure C was dipped in the prepared palladium nitrate solution, kept at 40 ° C. for 2 hours to adsorb Pd, and then dried at 120 ° C. for 12 hours, and at 600 ° C. in air. The catalyst sample of Example 1 was obtained by firing for 3 hours.

【0016】(実施例2)実施例1の手順Bで使用した
珪酸テトラエチルアンモニウム水溶液をCeO299.
5重量部に対してSiO2分で0.5重量部になるよう
に計量し、その他は実施例1と同様の操作によりSiO
2を0.5wt%含有したCeO2粉末を得た。得られた
CeO2粉末を使用して実施例1と同様の操作により実
施例2の触媒試料を得た。
Example 2 The tetraethylammonium silicate aqueous solution used in the procedure B of Example 1 was converted into CeO 2 99.
5 parts by weight of SiO 2 was weighed to be 0.5 parts by weight, and otherwise the same operation as in Example 1 was performed.
2 to obtain a CeO 2 powder containing 0.5 wt%. Using the obtained CeO 2 powder, a catalyst sample of Example 2 was obtained in the same manner as in Example 1.

【0017】(比較例)既に実用化されている自動車用
触媒であるPt−Rh/Al23触媒を比較例の触媒試
料とした。Pt−Rh含有量は0.43重量部であっ
た。実施例及び比較例の組成を表1に示し、それぞれの
触媒活性の測定結果を表2に示す。
Comparative Example A Pt—Rh / Al 2 O 3 catalyst, which is a catalyst for automobiles that has already been put into practical use, was used as a catalyst sample of a comparative example. The Pt-Rh content was 0.43 parts by weight. The compositions of Examples and Comparative Examples are shown in Table 1, and the measurement results of the respective catalytic activities are shown in Table 2.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】触媒活性の測定と耐久試験は以下のように
行なった。触媒活性の測定 ハニカム状(セル数400/inch2)コージェライト担
体(直径30mm、長さ50mm)に担持されたそれぞ
れの試料を下記のモデルガスにて活性を測定した。ガス
温度は触媒への入口ガス温度で示し、室温から昇温し、
NO、CO、HC(C36+C38)のそれぞれが初期
濃度の50%に低下した温度を50%浄化温度とする。
The measurement of the catalytic activity and the durability test were carried out as follows. Measurement of catalytic activity Each sample supported on a honeycomb-shaped (cell number 400 / inch 2 ) cordierite carrier (diameter 30 mm, length 50 mm) was measured for activity with the following model gas. The gas temperature is indicated by the gas temperature at the entrance to the catalyst, and the temperature is raised from room temperature,
The temperature at which each of NO, CO, and HC (C 3 H 6 + C 3 H 8 ) has dropped to 50% of the initial concentration is defined as the 50% purification temperature.

【0021】また、リッチガスとリーンガスはそれぞれ
1秒毎に切り換えた。触媒を通るガス流の空間速度(S
V)は30,000/時間とした。
Further, the rich gas and the lean gas are switched every one second. Space velocity of the gas flow through the catalyst (S
V) was set at 30,000 / hour.

【0022】 リッチガス リーンガス CO 2.6 % 0.7 % HC(C1換算濃度) 0.19% 0.19% H2 0.87% 0.23% CO2 8 % 8 % NO 0.17% 0.17% O2 0.65% 1.8 % H2O 10 % 10 % N2 残部 残部 Rich gas Lean gas CO 2.6% 0.7% HC (concentration as C 1 ) 0.19% 0.19% H 2 0.87% 0.23% CO 2 8% 8% NO 0.17% 0.17% O 2 0.65% 1.8% H 2 O 10% 10% N 2 balance balance

【0023】耐久試験 上記のリッチガスとリーンガスを5秒毎に切り換えて9
00℃で30分、750℃で30分のサイクルを15回
繰り返して耐久試験を行なった。耐久試験後にも前記の
方法で触媒活性を測定した。表2の結果から明らかなよ
うに、各実施例では初期においても耐久後においても5
0%浄化温度が低く、比較例では高い。
Durability test 9 times by switching the rich gas and the lean gas every 5 seconds.
A cycle of 30 minutes at 00 ° C. and 30 minutes at 750 ° C. was repeated 15 times to perform a durability test. After the durability test, the catalyst activity was measured by the above method. As is clear from the results in Table 2, in each of the examples, 5 was obtained at the initial stage and after the endurance.
The 0% purification temperature is low and is high in the comparative example.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一般式Ln1-xxMO3(LnはCeを
除く希土類金属の1種又は2種以上、AはSrを除くア
ルカリ土類金属及びCeのうちの1種又は2種以上、M
は遷移金属及び貴金属のうちの1種又は2種以上、0<
x<1)で示されるペロブスカイト型複合酸化物と、一
般式Ce1-ySiy2(0<y<1)で示される耐熱性
酸化物とからなる複合酸化物又は固溶体に貴金属を共存
させたことを特徴とする排ガス浄化用触媒。
1. A general formula Ln 1-x A x MO 3 (Ln is one or more rare earth metals except Ce, and A is one or two alkaline earth metals except Sr and Ce. Above, M
Is one or more of transition metals and noble metals, 0 <
A noble metal coexists in a complex oxide or solid solution composed of a perovskite-type complex oxide represented by x <1) and a heat-resistant oxide represented by the general formula Ce 1-y Si y O 2 (0 <y <1). An exhaust gas purifying catalyst characterized by
【請求項2】 前記ペロブスカイト型複合酸化物はペロ
ブスカイト型複合酸化物を核としてその周囲に貴金属を
固溶したペロブスカイト型複合酸化物が形成されたもの
である請求項1に記載の排ガス浄化用触媒。
2. The exhaust gas-purifying catalyst according to claim 1, wherein the perovskite-type composite oxide has a perovskite-type composite oxide as a nucleus and a perovskite-type composite oxide in which a noble metal is formed as a solid solution is formed around the nucleus. .
【請求項3】 一般式Ln1-xxMO3(LnはCeを
除く希土類金属の1種又は2種以上、AはSrを除くア
ルカリ土類金属及びCeのうちの1種又は2種以上、M
は遷移金属及び貴金属のうちの1種又は2種以上、0<
x<1)で示されるペロブスカイト型複合酸化物と、一
般式Ce1-ySiy2(0<y<1)で示される耐熱性
酸化物とからなる複合酸化物又は固溶体に、pHが4以
下に調整された貴金属塩水溶液を用いて貴金属を含浸又
は吸着させて担持させ、乾燥後に焼成することを特徴と
する排ガス浄化用触媒の製造方法。
3. The general formula Ln 1-x A x MO 3 (Ln is one or more rare earth metals except Ce, and A is one or two alkaline earth metals except Sr and Ce. Above, M
Is one or more of transition metals and noble metals, 0 <
x has a pH of a complex oxide or solid solution composed of a perovskite-type complex oxide represented by x <1) and a heat-resistant oxide represented by the general formula Ce 1-y Si y O 2 (0 <y <1). A method for producing an exhaust gas-purifying catalyst, comprising impregnating or adsorbing a noble metal using an aqueous solution of a noble metal salt adjusted to 4 or less, supporting the noble metal thereon, and calcining after drying.
【請求項4】 一般式Ln1-xxMO3(LnはCeを
除く希土類金属の1種又は2種以上、AはSrを除くア
ルカリ土類金属及びCeのうちの1種又は2種以上、M
は遷移金属及び貴金属のうちの1種又は2種以上、0<
x<1)で示されるペロブスカイト型複合酸化物と、一
般式Ce1-ySiy2(0<y<1)で示される耐熱性
酸化物とからなる複合酸化物又は固溶体に、pHが10
より大きく調整された貴金属塩水溶液を用いて貴金属を
含浸又は吸着させて担持させ、乾燥後に焼成することを
特徴とする排ガス浄化用触媒の製造方法。
4. A compound represented by the general formula Ln 1-x A x MO 3 (Ln is one or more kinds of rare earth metals except Ce, and A is one or two kinds of alkaline earth metals except Sr and Ce. Above, M
Is one or more of transition metals and noble metals, 0 <
x has a pH of a complex oxide or solid solution composed of a perovskite-type complex oxide represented by x <1) and a heat-resistant oxide represented by the general formula Ce 1-y Si y O 2 (0 <y <1). 10
A method for producing an exhaust gas-purifying catalyst, which comprises impregnating or adsorbing a noble metal using an aqueous solution of a noble metal salt adjusted to a larger degree, supporting the noble metal, and calcining after drying.
JP5026067A 1993-01-20 1993-01-20 Catalyst for purification of exhaust gas and its production Pending JPH06210174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5026067A JPH06210174A (en) 1993-01-20 1993-01-20 Catalyst for purification of exhaust gas and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5026067A JPH06210174A (en) 1993-01-20 1993-01-20 Catalyst for purification of exhaust gas and its production

Publications (1)

Publication Number Publication Date
JPH06210174A true JPH06210174A (en) 1994-08-02

Family

ID=12183343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5026067A Pending JPH06210174A (en) 1993-01-20 1993-01-20 Catalyst for purification of exhaust gas and its production

Country Status (1)

Country Link
JP (1) JPH06210174A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0695580A3 (en) * 1994-08-03 1997-07-09 Toyota Motor Co Ltd Process for producing exhaust-gas-purifying catalyst
JP2007144412A (en) * 2005-10-26 2007-06-14 Mitsui Mining & Smelting Co Ltd Catalyst for cleaning exhaust gas
WO2012165363A1 (en) * 2011-06-01 2012-12-06 ロディア・オペラシヨン Complex oxide, method for producing same, and exhaust gas purification catalyst
WO2012165362A1 (en) * 2011-06-01 2012-12-06 ロディア・オペラシヨン Complex oxide, method for producing same, and exhaust gas purification catalyst
CN114425410A (en) * 2020-09-21 2022-05-03 中国石油化工股份有限公司 Catalyst for treating ammonia leaked from selective catalytic reduction device and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0695580A3 (en) * 1994-08-03 1997-07-09 Toyota Motor Co Ltd Process for producing exhaust-gas-purifying catalyst
US5866500A (en) * 1994-08-03 1999-02-02 Toyota Jidosha Kabushiki Kaisha Process for producing exhaust-gas-purifying catalyst
JP2007144412A (en) * 2005-10-26 2007-06-14 Mitsui Mining & Smelting Co Ltd Catalyst for cleaning exhaust gas
WO2012165363A1 (en) * 2011-06-01 2012-12-06 ロディア・オペラシヨン Complex oxide, method for producing same, and exhaust gas purification catalyst
WO2012165362A1 (en) * 2011-06-01 2012-12-06 ロディア・オペラシヨン Complex oxide, method for producing same, and exhaust gas purification catalyst
JPWO2012165363A1 (en) * 2011-06-01 2015-02-23 ロデイア・オペラシヨン Composite oxide, method for producing the same and exhaust gas purification catalyst
JPWO2012165362A1 (en) * 2011-06-01 2015-02-23 ロデイア・オペラシヨン Composite oxide, method for producing the same and exhaust gas purification catalyst
US10610852B2 (en) 2011-06-01 2020-04-07 Rhodia Operations Complex oxide, method for producing same, and exhaust gas purification catalyst
US11040332B2 (en) 2011-06-01 2021-06-22 Rhodia Operations Complex oxide, method for producing same, and exhaust gas purification catalyst
CN114425410A (en) * 2020-09-21 2022-05-03 中国石油化工股份有限公司 Catalyst for treating ammonia leaked from selective catalytic reduction device and preparation method thereof
CN114425410B (en) * 2020-09-21 2023-09-05 中国石油化工股份有限公司 Catalyst for treating ammonia leakage of selective catalytic reduction device and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4092441B2 (en) Exhaust gas purification catalyst
US6214307B1 (en) Exhaust gas purifying catalyst and exhaust gas purifying method
JPH08281107A (en) Catalyst for purifying exhaust gas
JP2003071250A (en) Exhaust gas cleaning system
JP3144880B2 (en) Method for producing three-way catalyst with excellent low-temperature activity
JPH05237390A (en) Catalyst for purification of exhaust gas
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
EP0963781A2 (en) Catalyst for purifying exhaust gas and process for producing the same
JPH0780311A (en) Catalyst for purification of exhaust gas
JPH0312936B2 (en)
JPH06210174A (en) Catalyst for purification of exhaust gas and its production
JPH08281110A (en) Catalyst for purifying exhaust gas and its production
JPH05253484A (en) Catalyst for cleaning exhaust gas and depositing method therefor
JP3222184B2 (en) Method for producing exhaust gas purifying catalyst
JPH10192713A (en) Exhaust gas purifying catalyst and its use
JP3229054B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JPH09253496A (en) Catalyst for clarification of exhaust gas and method for clarification of exhaust gas
JPH0768175A (en) Catalyst for purification of exhaust gas
JPH0640964B2 (en) Exhaust gas purification catalyst manufacturing method
JPH11123331A (en) Catalyst for cleaning exhaust gas
JPH07308578A (en) Exhaust gas purifying catalyst
JPH07155605A (en) Exhaust gas purifying catalyst and production thereof
JPH10156183A (en) Catalyst for purification of exhaust gas and method for purifying exhaust gas