JPH10192713A - Exhaust gas purifying catalyst and its use - Google Patents

Exhaust gas purifying catalyst and its use

Info

Publication number
JPH10192713A
JPH10192713A JP8350430A JP35043096A JPH10192713A JP H10192713 A JPH10192713 A JP H10192713A JP 8350430 A JP8350430 A JP 8350430A JP 35043096 A JP35043096 A JP 35043096A JP H10192713 A JPH10192713 A JP H10192713A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
gas purifying
powder
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8350430A
Other languages
Japanese (ja)
Inventor
Naoki Kachi
直樹 可知
Hiroaki Kaneko
浩昭 金子
Katsuo Suga
克雄 菅
Akihide Okada
晃英 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP8350430A priority Critical patent/JPH10192713A/en
Publication of JPH10192713A publication Critical patent/JPH10192713A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the NOx purifying performance in a lean atmosphere for which a sufficient activity is not exhibited by the conventional catalyst and to allow the catalyst to function sufficiently as a ternary catalyst. SOLUTION: A platinum-on-zeolite first catalyst is arranged in the preceding stage with respect to the exhaust gas flow in this exhaust gas purifying catalyst. A second catalyst contg. alumina carrying each of at least one kind selected from a group consisting of platinum. palladium, rhodium and iridium and a multiple oxide shown by (La1-x Ax )1-α BO1-δ (0<x<1, 0<α<0.2, 0<=δ<=1, A is barium and/or potassium, and B is at least one kind selected from a group consisting of iron, cobalt, nickel and manganese) is arranged in the subsequent stage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車等の内燃機
関から排出される排気ガス中の炭化水素(HC)、一酸
化炭素(CO)および窒素酸化物(NOx)を浄化する
排気ガス浄化用触媒及びその使用方法に関し、特に酸素
過剰雰囲気下でのNOxの浄化性能に優れる排気ガス浄
化用触媒及びその使用方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification system for purifying hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx) in exhaust gas discharged from an internal combustion engine of an automobile or the like. The present invention relates to a catalyst and a method of using the same, and more particularly to an exhaust gas purifying catalyst having excellent NOx purification performance in an oxygen-excess atmosphere and a method of using the same.

【0002】[0002]

【従来の技術】近年、石油資源の枯渇問題および地球温
暖化問題の関点から、低燃費自動車の実現が期待されて
おり、特にガソリン自動車に対しては希薄燃焼自動車の
開発が望まれている。希薄燃焼自動車においては、希薄
燃焼走行時の排気ガス雰囲気は、理論空燃状態(以下、
「ストイキ状態」と称す)に比べて酸素過剰雰囲気(以
下、「リーン雰囲気」と称す)となる。リーン雰囲気に
おいて、従来の三元触媒を適応させた場合には、過剰な
酸素の影響からNOx浄化作用が不十分となるという問
題があった。このためリーン雰囲気下においてもNOx
を浄化できる触媒の開発が望まれていた。
2. Description of the Related Art In recent years, in view of the problem of depletion of petroleum resources and the problem of global warming, realization of low fuel consumption vehicles is expected, and development of lean burn vehicles is particularly desired for gasoline vehicles. . In lean-burn vehicles, the exhaust gas atmosphere during lean-burn operation is based on the theoretical air-fuel condition
An oxygen-excess atmosphere (hereinafter, referred to as a “lean atmosphere”) as compared to “stoichiometric state”. When a conventional three-way catalyst is applied in a lean atmosphere, there has been a problem that the effect of excessive oxygen makes the NOx purification action insufficient. For this reason, NOx
There has been a demand for the development of a catalyst that can purify methane.

【0003】従来より、リーン雰囲気下におけるNOx
浄化性能を向上させる触媒は種々提案されており、大別
して2種類ある。一つは排気ガス中のHCを還元剤とし
てNOxを酸化して浄化するものであり、もう一つはリ
ーン雰囲気下でNOxを吸収し、ストイキ状態あるいは
燃料過剰(リッチ)雰囲気下でNOxを放出浄化するも
のである。
Conventionally, NOx in a lean atmosphere has been
Various catalysts for improving the purification performance have been proposed, and are roughly classified into two types. One is to oxidize and purify NOx using HC in the exhaust gas as a reducing agent, and the other is to absorb NOx in a lean atmosphere and emit NOx in a stoichiometric or fuel-rich (rich) atmosphere. It purifies.

【0004】前者の代表的なものとしては、例えば特開
昭63−100919号公報に、銅(Cu)をゼオライ
トに担持させた触媒が開示されている。
[0004] As a representative of the former, for example, JP-A-63-100919 discloses a catalyst in which copper (Cu) is supported on zeolite.

【0005】一方、後者の代表的なものとしては、例え
ば特開平5−168860号公報に、ランタン等を白金
(Pt)に担持させてランタンをNOx吸収材として用
いる触媒が開示されている。
On the other hand, as a representative of the latter, for example, JP-A-5-168860 discloses a catalyst in which lanthanum or the like is supported on platinum (Pt) and lanthanum is used as a NOx absorbent.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来のNOx浄化触媒(例えばCu担持ゼオライト触媒)
や、NOx吸収触媒(例えばPt−ランタン触媒)は、
その特性上、前者は排気ガス中のHC/NOx比が小さ
いと浄化作用が十分に得られず、また後者ではリーン雰
囲気で定常走行を行うとNOx吸収量が飽和に達してや
がて吸収作用が消失するという問題があり、NOx浄化
性能が不足し、耐久後の性能も十分でなく、幅広い運転
条件下でNOxを浄化することができない。
However, the above-mentioned conventional NOx purification catalyst (for example, a Cu-supported zeolite catalyst)
And NOx absorption catalyst (for example, Pt-lanthanum catalyst)
Due to its characteristics, the former cannot achieve a sufficient purifying action if the HC / NOx ratio in the exhaust gas is small, and the latter does not reach the saturation when the steady running in a lean atmosphere causes the NOx absorption amount to reach saturation. NOx purification performance is insufficient, the performance after durability is not sufficient, and NOx cannot be purified under a wide range of operating conditions.

【0007】従って、請求項1〜6記載の発明の目的
は、従来の触媒では十分な活性を示さなかったリーン雰
囲気下におけるNOx浄化性能を向上させることがで
き、かつ三元触媒としての機能を十分に発現することが
できる排気ガス浄化用触媒を提供するにある。
Accordingly, an object of the present invention is to improve the NOx purifying performance under a lean atmosphere, which has not exhibited sufficient activity with a conventional catalyst, and to function as a three-way catalyst. It is an object of the present invention to provide an exhaust gas purifying catalyst which can be sufficiently developed.

【0008】また、請求項7記載の発明の目的は、本発
明の排気ガス浄化用触媒のそのNOx浄化作用が特に有
効に発現できる排気ガス浄化用触媒の使用方法を提供す
るにある。
It is another object of the present invention to provide a method of using an exhaust gas purifying catalyst in which the NOx purifying action of the exhaust gas purifying catalyst of the present invention can be exhibited particularly effectively.

【0009】[0009]

【課題を解決するための手段】請求項1記載の排気ガス
浄化用触媒は、白金担持ゼオライトを含む第一触媒を排
気流れに対して前段に配置し、白金、パラジウム、ロジ
ウム及びイリジウムから成る群より選ばれた少なくとも
一種の貴金属を、該選択された貴金属元素毎に担持した
アルミナと、次の一般式
According to a first aspect of the present invention, there is provided a catalyst for purifying exhaust gas, wherein a first catalyst including a platinum-supported zeolite is disposed in front of an exhaust stream, and is formed of a group consisting of platinum, palladium, rhodium and iridium. Alumina supporting at least one noble metal selected from the above for each selected noble metal element, and the following general formula

【数2】 で表される複合酸化物とを含む第二触媒を排気流れに対
して後段に配置して成ることを特徴とする。
(Equation 2) And a second catalyst comprising the composite oxide represented by

【0010】また、前記触媒中の白金によるHC吸着被
毒を抑制するために、請求項2記載の排気ガス浄化用触
媒は、第一触媒に、更にロジウム及び/又はイリジウム
を含むことを特徴とする。
Further, in order to suppress HC adsorption and poisoning by platinum in the catalyst, the exhaust gas purifying catalyst according to claim 2 is characterized in that the first catalyst further contains rhodium and / or iridium. I do.

【0011】また、請求項2記載の排気ガス浄化用触媒
の上記作用を更に高めるために、請求項3記載の排気ガ
ス浄化用触媒は、第一触媒が少なくとも2層から成り、
下層に白金担持ゼオライトを含み、上層にロジウム及び
/又はイリジウムを含むことを特徴とする。
Further, in order to further enhance the above-mentioned effect of the exhaust gas purifying catalyst according to the second aspect, the exhaust gas purifying catalyst according to the third aspect has a first catalyst comprising at least two layers.
It is characterized in that the lower layer contains platinum-supported zeolite and the upper layer contains rhodium and / or iridium.

【0012】また、請求項2又は3記載の排気ガス浄化
用触媒の上記作用を更に効率よく高め、貴金属同士の合
金化を抑制して高い熱耐久性を得るために、請求項4記
載の排気ガス浄化用触媒は、ロジウム及び/又はイリジ
ウムをアルミナに担持することを特徴とする。
The exhaust gas purifying catalyst according to claim 2 or 3 further enhances the above-mentioned action more efficiently, suppresses alloying of noble metals, and obtains high thermal durability. The gas purification catalyst is characterized by supporting rhodium and / or iridium on alumina.

【0013】また、請求項1〜4いずれかの項記載の排
気ガス浄化用触媒のNOx吸収作用と浄化作用を効率良
く成立させるために、請求項5記載の排気ガス浄化用触
媒は、第二触媒が少なくとも2層から成り、下層に上記
複合酸化物を含むことを特徴とする。
In order to efficiently realize the NOx absorbing action and the purifying action of the exhaust gas purifying catalyst according to any one of claims 1 to 4, the exhaust gas purifying catalyst according to claim 5 comprises The catalyst comprises at least two layers, and the lower layer contains the composite oxide.

【0014】また、請求項1〜5いずれかの項記載の排
気ガス浄化用触媒のNOx浄化作用を更に高めるため
に、請求項6記載の排気ガス浄化用触媒は、第二触媒の
上層にロジウム及び/又はイリジウムを含むことを特徴
とする。
Further, in order to further enhance the NOx purifying action of the exhaust gas purifying catalyst according to any one of the first to fifth aspects, the exhaust gas purifying catalyst according to the sixth aspect is characterized in that the upper layer of the second catalyst has rhodium. And / or iridium.

【0015】また、上記本発明の排気ガス浄化用触媒の
有効なNOx吸収、放出サイクルを発現させるために、
請求項7記載の排気ガス浄化用触媒の使用方法は、本発
明の排気ガス浄化用触媒を、空燃比がストイキオメトリ
ーと、15〜50の範囲とを繰り返すリーンバーンエン
ジン車に使用することを特徴とする。
Further, in order to exhibit an effective NOx absorption / release cycle of the exhaust gas purifying catalyst of the present invention,
The method for using an exhaust gas purifying catalyst according to claim 7 is to use the exhaust gas purifying catalyst of the present invention in a lean burn engine vehicle in which an air-fuel ratio repeats stoichiometry and a range of 15 to 50. Features.

【0016】本発明の排気ガス浄化用触媒中の第一触媒
は、排気ガス流れに対して前段に設けられる。当該第一
触媒中の白金担持ゼオライト触媒の白金の担持量は、N
Ox浄化性能と三元触媒性能が十分に得られれば特に限
定されないが0.1gより少ないと十分なNOx浄化性
能がなく、10gを超えても有意な特性向上が見られな
い点から、本発明の排気ガス浄化用触媒1Lあたり0.
1〜10gが好ましい。
[0016] The first catalyst in the exhaust gas purifying catalyst of the present invention is provided upstream of the exhaust gas flow. The amount of platinum supported on the platinum-supported zeolite catalyst in the first catalyst was N
The present invention is not particularly limited as long as the Ox purification performance and the three-way catalyst performance can be sufficiently obtained. However, if it is less than 0.1 g, there is no sufficient NOx purification performance, and even if it exceeds 10 g, no significant improvement in characteristics is observed. 0.1 L / L of exhaust gas purification catalyst.
1 to 10 g is preferred.

【0017】白金担持基材としてのゼオライトは、触媒
活性成分の分散性を確保するために比表面積が高くかつ
耐熱性に優れるものが好ましく使用され、例えば、ペン
タシル型ゼオライト、Y型ゼオライト、モルデナイト、
フェリエライト等がある。ゼオライトの使用量は、50
gより少ないと十分なNOx浄化性能がなく、300g
より多く使用しても有意な特性向上が見られない点から
本発明の排気ガス浄化用触媒1Lあたり50〜300g
が好ましい。更に耐熱比表面積を向上させるために、例
えば希土類元素やジルコニウム等を添加してもよい。
As the zeolite as the platinum-carrying substrate, those having a high specific surface area and excellent heat resistance are preferably used in order to secure the dispersibility of the catalytically active component.
Ferrierite and the like. The amount of zeolite used is 50
g, there is no sufficient NOx purification performance.
From the point that no significant improvement in characteristics is observed even when used more, 50 to 300 g per liter of the exhaust gas purifying catalyst of the present invention is used.
Is preferred. In order to further improve the heat resistant specific surface area, for example, a rare earth element, zirconium, or the like may be added.

【0018】次いで、本発明の排気ガス浄化用触媒中に
第二触媒は、排気ガス流れに対して後段に設けられる。
本発明の排気ガス浄化用触媒中の第二触媒には、白金、
ロジウム、パラジウム及びイリジウムから成る群より選
ばれる少なくとも1種が用いられる。例えばPtとR
h、PdとRh、Pdのみ等の種々の組み合わせが可能
である。
Next, in the exhaust gas purifying catalyst of the present invention, the second catalyst is provided at a stage subsequent to the exhaust gas flow.
The second catalyst in the exhaust gas purifying catalyst of the present invention includes platinum,
At least one selected from the group consisting of rhodium, palladium and iridium is used. For example, Pt and R
Various combinations of h, Pd and Rh, only Pd, etc. are possible.

【0019】前記貴金属の含有量は、NOx吸収能と三
元触媒性能が十分に得られれば特に限定されないが、
0.1gより少ないと十分な三元性能が得られず、10
gより多く使用しても有意な特性向上はみられない点か
ら、本発明の排気ガス浄化用触媒1Lあたり0.1〜1
0gが好ましい。
The content of the noble metal is not particularly limited as long as the NOx absorption capacity and the three-way catalyst performance are sufficiently obtained.
If the amount is less than 0.1 g, sufficient ternary performance cannot be obtained, and
g of the exhaust gas purifying catalyst of the present invention.
0 g is preferred.

【0020】上記貴金属を担持するための基材には貴金
属の分散性、特に耐久後の貴金属の分散性を確保するた
め、比表面積の大きい耐熱性無機材料が適し、特にアル
ミナ、好ましくは活性アルミナが望ましい。耐熱比表面
積を高めるために希土類元素やジルコニア等を添加した
アルミナを使用しても良い。アルミナの使用量は本発明
の触媒1L当たり、50gより少ないと十分な貴金属の
分散性が得られず、300gより多く使用すると性能低
下がみられる点から50〜300gであることが好まし
い。
A heat-resistant inorganic material having a large specific surface area is suitable for the base material for supporting the noble metal, in order to secure the dispersibility of the noble metal, particularly, the dispersibility of the noble metal after durability. Is desirable. Alumina to which a rare earth element, zirconia, or the like is added to increase the heat resistant specific surface area may be used. If the amount of the alumina used is less than 50 g per 1 L of the catalyst of the present invention, sufficient dispersibility of the noble metal cannot be obtained, and if it is used more than 300 g, the performance is deteriorated.

【0021】また第二触媒中に含まれる複合酸化物は、
次の一般式
The composite oxide contained in the second catalyst is
The following general formula

【数3】 で表される。(Equation 3) It is represented by

【0022】本発明の排気ガス浄化用触媒に用いられる
複合酸化物には、希土類金属と、アルカリ金属及び/又
はアルカリ土類金属と、少なくとも1種の遷移金属とが
含まれる。希土類金属としては、ランタンが、アルカリ
金属としてはカリウムが、アルカリ土類金属としてはバ
リウムが、また遷移金属としては、鉄、コバルト、ニッ
ケル及びマンガンが好適に使用できる。
The composite oxide used in the exhaust gas purifying catalyst of the present invention contains a rare earth metal, an alkali metal and / or an alkaline earth metal, and at least one transition metal. Lanthanum is preferably used as the rare earth metal, potassium is used as the alkali metal, barium is used as the alkaline earth metal, and iron, cobalt, nickel and manganese can be suitably used as the transition metal.

【0023】このような上記ペロブスカイト型酸化物の
ような複合酸化物は、酸素欠損を生じ、この生成した酸
素欠損を介してNOxの吸着が容易になり、リーン雰囲
気においてNOxを吸収するという特性を利用すること
により、NOxの浄化性能を向上させることが可能とな
っている。
A composite oxide such as the above-described perovskite-type oxide has characteristics of causing oxygen deficiency, easily adsorbing NOx via the generated oxygen deficiency, and absorbing NOx in a lean atmosphere. Utilization makes it possible to improve NOx purification performance.

【0024】また、上記ペロブスカイト型酸化物は触媒
組成物中のアルミナ系酸化物と固相反応を起こして活性
が失活する場合がある。これを抑制するために、アルミ
ナ系酸化物にランタン等をプリコートする方法や、ジル
コニアのようにペロブスカイトとの反応性が小さい材料
を用いる方法がある。これに対して本発明のようにペロ
ブスカイト型酸化物のAサイトを量論比から僅かに欠損
させることにより、ペロブスカイト型酸化物と接する他
の酸化物(アルミナ等)との間での固相反応を抑制し、
熱的安定性を向上させることが可能となった。
Further, the perovskite-type oxide may cause a solid-phase reaction with the alumina-based oxide in the catalyst composition to deactivate the activity. In order to suppress this, there are a method of pre-coating lanthanum or the like on the alumina-based oxide and a method of using a material having low reactivity with perovskite such as zirconia. On the other hand, by slightly losing the A site of the perovskite-type oxide from the stoichiometric ratio as in the present invention, the solid-phase reaction between the perovskite-type oxide and another oxide (alumina or the like) in contact therewith To suppress
It has become possible to improve the thermal stability.

【0025】Aサイトの置換量は、0<X<1であり特
に限定されないが、NOx吸収能力を十分に得るために
は、特に、0.2≦X<1であることが好ましい。
The substitution amount of the A site is 0 <X <1 and is not particularly limited. However, in order to obtain a sufficient NOx absorption capacity, it is particularly preferable that 0.2 ≦ X <1.

【0026】αの値は、0.2を超えると単相のペロブ
スカイト構造を構成しなくなるので0<α<0.2であ
ることが好ましい。δの値は0≦Y≦1であるが、結晶
構造の安定性から、特に0≦Y≦0.5であることが好
ましい。
If the value of α exceeds 0.2, a single-phase perovskite structure is not formed, so that 0 <α <0.2 is preferable. The value of δ is 0 ≦ Y ≦ 1, but from the viewpoint of stability of the crystal structure, it is particularly preferable that 0 ≦ Y ≦ 0.5.

【0027】また、NOx吸収材として機能する当該複
合酸化物の量は、NOx吸収作用を示す量であれば特に
限定されないが、30gより少ないと十分なNOx吸収
能力が得られず、200gより多く使用しても有意な特
性向上はみられない点から本発明の触媒1Lあたり30
〜200gが好ましい。
The amount of the composite oxide functioning as a NOx absorbing material is not particularly limited as long as it exhibits an NOx absorbing effect. However, if it is less than 30 g, a sufficient NOx absorbing ability cannot be obtained, and if it is more than 200 g, Since no significant improvement in characteristics is observed even when used, 30 liters per liter of the catalyst of the present invention is used.
~ 200 g is preferred.

【0028】また、本発明で用いられる複合酸化物、特
に部分置換ペロブスカイト酸化物は、その部分置換量と
ともにリーン雰囲気下でNOxを吸収する性能を発現さ
せるが、その吸収機構は、気相中のNOxが複合酸化物
上でNO2 に酸化され、複合酸化物表面のバリウム及び
/又はカリウムの近傍に硝酸基あるいはそれに近い状態
で吸収されるものと考えられる。従ってリーン雰囲気下
でNOxを有効に吸収するための複合酸化物の組成は、
硝酸塩を容易に製造し得るバリウム及び/又はカリウム
を含有し、更に、NOxをNO2 に酸化することができ
る遷移金属元素を含有することが重要である。
The composite oxide used in the present invention, particularly the partially substituted perovskite oxide, exhibits the ability to absorb NOx in a lean atmosphere together with the partially substituted amount thereof. It is considered that NOx is oxidized to NO 2 on the composite oxide and is absorbed in the vicinity of barium and / or potassium on the surface of the composite oxide in the form of a nitric acid group or a state close thereto. Therefore, the composition of the composite oxide for effectively absorbing NOx under a lean atmosphere is as follows:
Nitrate containing barium and / or potassium may be easily manufactured, and further, it is important to contain a transition metal element capable of oxidizing NOx to NO 2.

【0029】当該第一触媒と、第二触媒の排気系への設
置方法は、第一触媒を排気ガス流れに対して前段に、ま
た第二触媒を排気ガス流れに対して後段に設置すること
が重要であり、例えば1個の触媒コンバータ内に2種の
触媒を装着して配置する方法や、前記2種の触媒を別々
のコンバータに入れて設置する方法等の公知の方法を用
いることができる。触媒の設置位置は特に限定されず、
例えばマニホールド直下位置や床下位置等があげられ
る。この触媒系の前段、後段それぞれ1個ずつの触媒で
浄化性能が十分でない場合には、さらに前段、後段の何
れかあるいは両方を複数個としたり、多種触媒を追加し
ても良い。
The method for installing the first catalyst and the second catalyst in the exhaust system is as follows: the first catalyst is installed in a stage preceding the exhaust gas flow, and the second catalyst is installed in a stage subsequent to the exhaust gas flow. It is important to use a known method such as a method in which two types of catalysts are mounted and arranged in one catalytic converter or a method in which the two types of catalysts are installed in separate converters. it can. The installation position of the catalyst is not particularly limited,
For example, a position immediately below the manifold, a position under the floor, and the like can be given. If the purification performance is not sufficient with one catalyst in each of the first and second stages of the catalyst system, one or both of the first and second stages may be further provided, or multiple catalysts may be added.

【0030】このように、当該第一触媒を前段に、当該
第二触媒を後段に配置することで、排気ガス雰囲気がリ
ーンとなった場合には、第一触媒中の白金担持ゼオライ
トによる酸素過剰雰囲気でのNOx還元作用と、第二触
媒中の複合酸化物によるNOx吸収作用が相まって、高
いNOx浄化性能が得られるという、それぞれ単独を単
に混合しただけでは得られない優れたNOx浄化性能を
得ることが可能となっている。
Thus, by arranging the first catalyst in the first stage and the second catalyst in the second stage, when the exhaust gas atmosphere becomes lean, the oxygen excess due to the platinum-supported zeolite in the first catalyst is reduced. The combination of the NOx reduction action in the atmosphere and the NOx absorption action by the composite oxide in the second catalyst provides high NOx purification performance, and provides excellent NOx purification performance that cannot be obtained by simply mixing each alone. It has become possible.

【0031】即ち、NOx還元反応はHCを必要とする
ためにHC濃度が高い方が好ましいが、本発明によると
HCを吸着するゼオライトに白金を担持した粉末が排気
流れに対して前段に配置されるため、第一触媒中の白金
にはHCが多く供給されることとなり、高いNOx還元
作用が得られる。
That is, since the NOx reduction reaction requires HC, it is preferable that the concentration of HC be high. However, according to the present invention, a powder in which platinum is loaded on zeolite that adsorbs HC is disposed upstream of the exhaust flow. Therefore, a large amount of HC is supplied to the platinum in the first catalyst, and a high NOx reducing action is obtained.

【0032】またNOx吸収反応は逆にHCが少ない方
が好適であるが、本発明によると前段の第一触媒によっ
てHCが吸着あるいは浄化されるため、後段の複合酸化
物にはHCの少ないガスが供給されることとなり、高い
NOx吸収作用が得られる。このような複合酸化物のN
Ox吸収作用は、該複合酸化物を構成する各成分の単独
物を単に混合しただけでは得られないものであり、これ
は該複合酸化物の構成成分が複合化した効果による。
In the NOx absorption reaction, on the contrary, it is preferable that the amount of HC is small. However, according to the present invention, since HC is adsorbed or purified by the first catalyst of the preceding stage, the mixed oxide of the succeeding stage has a gas containing less HC. Is supplied, and a high NOx absorbing action is obtained. The N of such a composite oxide
The Ox absorption effect cannot be obtained by simply mixing the individual components of the composite oxide alone, and this is due to the effect of the composite components of the composite oxide being composited.

【0033】該複合酸化物の各構成元素は、触媒に含ま
れるこれらの全てが複合化している場合に、その上記し
た作用は最大限に発揮されるが、少なくとも一部が複合
体を形成しうる場合でも十分に上記作用を得ることがで
きる。該複合酸化物の各構成元素は、熱耐久後でも別々
の酸化物として分離することなく複合酸化物として存在
することができ、これは例えばX線回折測定により確認
することができる。
Each of the constituent elements of the composite oxide exerts the above-mentioned effects to the maximum when all of them contained in the catalyst are complexed, but at least a part of the complex oxide forms a complex. Even if it is possible, the above effect can be sufficiently obtained. Each constituent element of the composite oxide can exist as a composite oxide without being separated as a separate oxide even after thermal endurance, and this can be confirmed by, for example, X-ray diffraction measurement.

【0034】また排気ガス雰囲気がリーンからストイキ
に変化すると該複合酸化物からNOxが放出されるが、
これを本発明の第二触媒に含まれる貴金属担持アルミナ
粉末によって浄化するサイクルを繰り返すことによっ
て、NOx浄化を有効に実施することができる。また本
発明の触媒は熱耐久後においても高いNOx吸収作用を
有し、これは該複合酸化物がAサイト割合の少ないペロ
ブスカイト型構造をとっており、他成分(例えばアルミ
ナ)との固相反応が回避されたためである。
When the exhaust gas atmosphere changes from lean to stoichiometric, NOx is released from the composite oxide.
NOx purification can be effectively performed by repeating a cycle of purifying this with the noble metal-supported alumina powder contained in the second catalyst of the present invention. In addition, the catalyst of the present invention has a high NOx absorption function even after heat endurance. This is because the composite oxide has a perovskite structure with a small proportion of A site, and a solid phase reaction with another component (for example, alumina). Was avoided.

【0035】好適には、第一触媒中に、更にロジウム及
び/又はイリジウムを含有することにより請求項2記載
の排気ガス浄化用触媒が得られる。ロジウム及び/又は
イリジウムの含有量は、NOx浄化性能と三元触媒性能
が得られれば特に限定されないが、0.1gより少ない
と十分な上記性能がなく、10gより多くても有意な特
性向上が見られないため、本発明の排気ガス浄化用触媒
1Lあたり0.1〜10gが好ましい。
Preferably, the first catalyst further contains rhodium and / or iridium to obtain the exhaust gas purifying catalyst according to claim 2. The content of rhodium and / or iridium is not particularly limited as long as the NOx purification performance and the three-way catalyst performance can be obtained. Since it is not observed, the amount is preferably 0.1 to 10 g per liter of the exhaust gas purifying catalyst of the present invention.

【0036】第一触媒中の白金はHCを吸着する力が強
く、場合によってはHCの吸着被毒によるNOx浄化性
能の低下が起こるが、更にロジウム及び/又はイリジウ
ムを含有する組成とすることで白金のHC吸着被毒が抑
制され、NOxを効率良く浄化できることとなる。
The platinum in the first catalyst has a strong ability to adsorb HC, and in some cases, the NOx purification performance is reduced due to poisoning of HC. However, when the composition further contains rhodium and / or iridium, HC adsorption poisoning of platinum is suppressed, and NOx can be efficiently purified.

【0037】また、好ましくは第一触媒は少なくとも2
層から成り、下層に上記白金担持ゼオライトを、上層に
は上記ロジウム及び/又はイリジウムを含む構造とする
ことにより請求項3記載の排気ガス浄化用触媒が得られ
る。
Preferably, the first catalyst has at least 2
A catalyst for purifying exhaust gas according to claim 3 is obtained by comprising a layer comprising the above-mentioned platinum-supported zeolite in a lower layer and the above-mentioned rhodium and / or iridium in an upper layer.

【0038】上記HCの吸着被毒を抑制する効果を十分
に発揮させる為には、排気ガスが白金担持ゼオライト到
達前にロジウム及び/又はイリジウムと接触することが
望ましく、従って排気ガスとの接触が先に起こると考え
られる上層部分にロジウム及び/又はイリジウムを含む
ことが重要である。
In order to sufficiently exert the effect of suppressing the adsorption and poisoning of HC, it is desirable that the exhaust gas contacts rhodium and / or iridium before reaching the platinum-supported zeolite. It is important to include rhodium and / or iridium in the upper layer portion that is believed to occur earlier.

【0039】前記ロジウム及び/又はイリジウムを好ま
しくはアルミナに担持する。これにより請求項4記載の
排気ガス浄化用触媒が得られる。ロジウム及び/又はイ
リジウムを担持するための基材には該貴金属の分散性、
特に耐久後の該貴金属の分散性を確保するため、比表面
積の大きい耐熱性無機材料が適し、特にアルミナが好ま
しい。耐熱比表面積を高めるために希土類元素やジルコ
ニア等を添加した活性アルミナを使用しても良い。活性
アルミナの使用量は本発明の触媒1L当たり、50gよ
り少ないと十分な貴金属の分散性が得られず、300g
より多く使用すると性能低下がみられる点から50〜3
00gであることが好ましい。白金と、ロジウムやイリ
ジウムを別々の基材に担持することで貴金属同士の合金
化が抑制でき、高い熱耐久後性能を得ることが可能とな
る。
The rhodium and / or iridium is preferably supported on alumina. Thus, the exhaust gas purifying catalyst according to the fourth aspect is obtained. The substrate for supporting rhodium and / or iridium has a dispersibility of the noble metal,
In particular, in order to ensure the dispersibility of the noble metal after durability, a heat-resistant inorganic material having a large specific surface area is suitable, and alumina is particularly preferable. Activated alumina to which a rare earth element, zirconia, or the like is added to increase the heat resistant specific surface area may be used. If the amount of activated alumina used is less than 50 g per liter of the catalyst of the present invention, sufficient dispersibility of noble metal cannot be obtained, and 300 g
50 to 3 from the point that performance decreases when more is used
It is preferably 00 g. By supporting platinum, rhodium and iridium on separate substrates, alloying of noble metals can be suppressed, and high post-heat durability performance can be obtained.

【0040】また好適には、第二触媒は少なくとも2層
から成り、下層に上記複合酸化物を含有させることによ
り請求項5記載の排気ガス浄化用触媒が得られ、更に上
層にロジウム及び/又はイリジウムを含有させることに
より請求項6記載の排気ガス浄化用触媒が得られる。
Preferably, the second catalyst comprises at least two layers, and the lower layer contains the composite oxide to obtain the exhaust gas purifying catalyst according to claim 5, and the upper layer further comprises rhodium and / or rhodium. By including iridium, the exhaust gas purifying catalyst according to claim 6 can be obtained.

【0041】このような構成とすることより、NOx吸
収作用と、吸収材から放出されるNOxの浄化作用が両
立できる。これは、上層で一旦HCが浄化されるために
下層にはHCの少ない排気ガスが到達し、その結果NO
x吸収作用が高まること、また上層ではHC濃度の高い
排気ガスと接触できるため、吸収材からの放出NOxの
浄化が効率よく実施できることによる。
With such a configuration, both the NOx absorbing action and the purifying action of NOx released from the absorbent can be achieved. This is because HC is once purified in the upper layer, so that exhaust gas with less HC reaches the lower layer, and as a result, NO
This is because the x-absorbing action is enhanced, and the upper layer can contact exhaust gas with a high HC concentration, so that the NOx released from the absorbent can be efficiently purified.

【0042】上記本発明の排気ガス浄化用触媒は、特
に、空燃比がストイキオメトリーと、15〜50の範囲
とを繰り返すリーンバーンエンジン車に使用することが
できる。このような使用方法とすることにより、NOx
吸収・放出のサイクルが極めて有効に成立し、特に効率
の良いNOx浄化が可能となる。
The exhaust gas purifying catalyst of the present invention can be used particularly for a lean burn engine vehicle in which the air-fuel ratio repeats stoichiometry and a range of 15 to 50. With such a usage method, NOx
The absorption / release cycle is established very effectively, and particularly efficient NOx purification becomes possible.

【0043】本発明に用いる触媒調製用貴金属原料化合
物としては、硝酸塩、炭酸塩、アンモニウム塩、酢酸
塩、ハロゲン化物、酸化物等を組み合わせて使用するこ
とができるが、特に水溶性の塩を使用することが触媒性
能を向上させる観点から好ましい。貴金属の担持法とし
ては特殊な方法に限定されず、成分の著しい偏在を伴わ
ない限り、公知の蒸発乾固法、沈殿法、含浸法、イオン
交換法等の種々の方法を用いることができる。特にゼオ
ライトへの担持には、活性点に十分な量の貴金属を担持
できる点からイオン交換法が望ましい。
As the noble metal raw material compound for preparing the catalyst used in the present invention, nitrates, carbonates, ammonium salts, acetates, halides, oxides and the like can be used in combination. Is preferable from the viewpoint of improving the catalyst performance. The method for supporting the noble metal is not limited to a special method, and various methods such as a known evaporation and drying method, a precipitation method, an impregnation method, and an ion exchange method can be used as long as there is no significant uneven distribution of components. In particular, the ion-exchange method is preferably used for loading on zeolite, since a sufficient amount of noble metal can be loaded on the active site.

【0044】本発明に用いる複合酸化物は、複合酸化物
の各構成元素の硝酸塩、酢酸塩又は炭酸塩等を、所望す
る複合酸化物の組成比に混合し、仮焼成した後粉砕し
て、熱処理焼成する固相反応や、複合酸化物の各構成元
素の硝酸塩、酢酸塩又は炭酸塩、塩酸塩、クエン酸塩等
を、所望する複合酸化物の組成比に混合し、水に溶解し
た後、必要に応じてNH4 OHやNH3 CO3 等のアル
カリ溶液を滴下して沈殿物を生成し、ろ過した後乾燥さ
せて焼成する共沈法等の公知の方法により調製すること
ができる。かかる方法により、複合酸化物を構成する各
成分の少なくとも一部を複合化することができる。
The composite oxide used in the present invention is prepared by mixing nitrates, acetates or carbonates of the respective constituent elements of the composite oxide in a desired composition ratio of the composite oxide, calcining the mixture, and pulverizing the mixture. After the solid-phase reaction to be subjected to heat treatment and firing, nitrate, acetate or carbonate, hydrochloride, citrate, etc. of each constituent element of the composite oxide are mixed in a desired composition ratio of the composite oxide, and then dissolved in water. If necessary, an alkaline solution such as NH 4 OH or NH 3 CO 3 may be added dropwise to form a precipitate, which can be prepared by a known method such as a coprecipitation method in which the precipitate is filtered, dried, and fired. By such a method, at least a part of each component constituting the composite oxide can be composited.

【0045】本発明で用いる触媒調製用原料には、その
上記作用を妨げる量でなければ微量の不純物を含んでも
構わず、例えばバリウム中に含まれるストロンチウム
や、セリウム中に含まれるランタン、ネオジウム、サマ
リウム等である。
The raw material for preparing a catalyst used in the present invention may contain a trace amount of impurities as long as the above-mentioned action is not impaired. For example, strontium contained in barium, lanthanum, neodymium contained in cerium, And samarium.

【0046】このようにして得られる本発明に用いる、
白金担持ゼオライトと、複合酸化物及び貴金属担持アル
ミナを各々粉砕してスラリーとし、触媒担体にコートし
て、400〜900℃の温度で焼成することにより、第
一触媒及び第二触媒を得ることができる。
For use in the present invention thus obtained,
The first catalyst and the second catalyst can be obtained by pulverizing the platinum-supported zeolite, the composite oxide and the noble metal-supported alumina to form a slurry, coating the catalyst support, and calcining at a temperature of 400 to 900 ° C. it can.

【0047】触媒担体としては、公知の触媒担体の中か
ら適宜選択して使用することができ、例えば耐火性材料
からなるモノリス構造を有するハニカム担体やメタル担
体等が挙げられる。この触媒担体の形状は、特に制限さ
れないが、通常はハニカム形状で使用することが好まし
く、このハニカム材料としては、一般に例えばセラミッ
クス等のコージェライト質のものが多く用いられるが、
フェライト系ステンレス等の金属材料からなるハニカム
を用いることも可能であり、更には触媒粉末そのものを
ハニカム形状に成形しても良い。触媒の形状をハニカム
状とすることにより、触媒と排気ガスの触媒面積が大き
くなり、圧力損失も抑えられるため自動車用等として用
いる場合に極めて有利である。
The catalyst carrier can be appropriately selected from known catalyst carriers, and includes, for example, a honeycomb carrier and a metal carrier having a monolith structure made of a refractory material. Although the shape of the catalyst carrier is not particularly limited, it is usually preferable to use a honeycomb shape. As the honeycomb material, cordierite materials such as ceramics are generally used,
It is also possible to use a honeycomb made of a metal material such as a ferritic stainless steel, and further, the catalyst powder itself may be formed into a honeycomb shape. By making the shape of the catalyst into a honeycomb shape, the area of the catalyst and the exhaust gas becomes large, and the pressure loss is suppressed, which is extremely advantageous when the catalyst is used for an automobile or the like.

【0048】本発明で用いる触媒は、ストイキ時の三元
触媒としての機能も必要であるため、従来から三元触媒
で用いられている添加物を更に加えても良く、例えば酸
素ストレージ機能を有するセリアや、貴金属へのHC吸
着被毒を緩和するバリウムや、Rhの耐熱性向上に寄与
するジルコニア等である。
Since the catalyst used in the present invention also needs to function as a three-way catalyst at the time of stoichiometry, additives conventionally used in three-way catalysts may be further added. Ceria and barium, which alleviates HC adsorption and poisoning to noble metals, and zirconia, which contributes to improving the heat resistance of Rh.

【0049】本発明の排気ガス浄化用触媒の使用は、特
に制限されないが、好適には、空燃比がストイキメトリ
ーと、15〜50の範囲とを繰り返すリーンバーンエン
ジン車に使用することにより、特に有効に本発明の排気
ガス浄化用触媒の効果を発現することができる。D/F
=15未満の領域では、NOx還元性能及びNOx吸収
性能とも小さくその複合効果はわずかであり、D/F=
50を超える雰囲気下において性能が悪化することはな
いが、それ以上の領域では有意な性能向上は見られなく
なる。
Although the use of the exhaust gas purifying catalyst of the present invention is not particularly limited, it is particularly preferable to use the catalyst for lean burn engine vehicles in which the air-fuel ratio repeats stoichiometry and a range of 15 to 50. The effect of the exhaust gas purifying catalyst of the present invention can be effectively exhibited. D / F
= 15, both the NOx reduction performance and the NOx absorption performance are small and the combined effect is slight, and D / F =
The performance does not deteriorate in an atmosphere exceeding 50, but no significant improvement in performance is observed in a higher region.

【0050】[0050]

【実施例】以下、本発明を次の実施例及び比較例により
説明する。実施例1 ゼオライト粉末に、ジニトロジアンミン白金水溶液を含
浸し、乾燥後400℃で1時間焼成して、白金担持ゼオ
ライト粉末(粉末A)を得た。この粉末Aの白金濃度は
1.0重量%であった。活性アルミナ粉末に硝酸ロジウ
ム溶液及び硝酸イリジウム溶液を含浸し、乾燥後400
℃で1時間焼成して、ロジウム及びイリジウム担持活性
アルミナ粉末(粉末B)を得た。この粉末Bのロジウム
及びイリジウム濃度は各々0.3重量%、0.6重量%
であった。
The present invention will be described below with reference to the following examples and comparative examples. Example 1 A zeolite powder was impregnated with a dinitrodiammine platinum aqueous solution, dried and calcined at 400 ° C. for 1 hour to obtain a platinum-supported zeolite powder (powder A). The platinum concentration of this powder A was 1.0% by weight. Activated alumina powder is impregnated with rhodium nitrate solution and iridium nitrate solution,
Calcination was carried out at a temperature of 1 hour for 1 hour to obtain rhodium and iridium-supported activated alumina powder (powder B). The rhodium and iridium concentrations of this powder B were 0.3% by weight and 0.6% by weight, respectively.
Met.

【0051】上記粉末Aを852g、活性アルミナを4
8g、水900gを磁性ボールミルに投入し、混合粉砕
してスラリー液を得た。このスラリー液をコーディエラ
イト質モノリス担体(1.0L、400セル)に付着さ
せ、空気流にてセル内の余剰のスラリーを取り除いて1
30℃で乾燥した後、400℃で1時間焼成した。この
作業を2回行い、コート層重量150g/Lの担体アを
得た。
852 g of powder A and 4 parts of activated alumina
8 g and water 900 g were put into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was adhered to a cordierite-based monolithic carrier (1.0 L, 400 cells), and the excess slurry in the cells was removed by an air flow to remove the excess slurry.
After drying at 30 ° C., it was baked at 400 ° C. for 1 hour. This operation was performed twice to obtain a carrier a having a coat layer weight of 150 g / L.

【0052】上記粉末Bを720g、活性アルミナを1
80g、水900gを磁性ボールミルに投入し、混合粉
砕してスラリー液を得た。このスラリー液を上記担体ア
に付着させ、空気流にてセル内の余剰のスラリーを取り
除いて130℃で乾燥した後、400℃で1時間焼成
し、コート層重量200g/Lの触媒−1を第一触媒と
して得た。
720 g of the above powder B and 1 part of activated alumina
80 g and water 900 g were put into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was adhered to the carrier, and the excess slurry in the cell was removed by an air stream, dried at 130 ° C., and calcined at 400 ° C. for 1 hour to obtain a catalyst-1 having a coat layer weight of 200 g / L. Obtained as the first catalyst.

【0053】また、活性アルミナ粉末に硝酸パラジウム
溶液を含浸し、乾燥後400℃で1時間焼成して、パラ
ジウム担持活性アルミナ粉末(粉末C)を得た。この粉
末CのPd濃度は3.0重量%であった。
The activated alumina powder was impregnated with a palladium nitrate solution, dried and calcined at 400 ° C. for 1 hour to obtain a palladium-supported activated alumina powder (powder C). The Pd concentration of this powder C was 3.0% by weight.

【0054】炭酸ランタンと炭酸バリウムと炭酸コバル
トとの混合物にクエン酸を加え、乾燥後700℃で焼成
し、粉末Dを得た。この粉末Dは金属原子比でランタン
/バリウム/コバルト=2/2/5であった。
Citric acid was added to a mixture of lanthanum carbonate, barium carbonate and cobalt carbonate, dried and calcined at 700 ° C. to obtain powder D. This powder D had a metal atom ratio of lanthanum / barium / cobalt = 2/2/5.

【0055】活性アルミナ粉末に硝酸ロジウム溶液を含
浸し、乾燥後400℃で1時間焼成して、ロジウム担持
活性アルミナ粉末(粉末E)を得た。この粉末EのRh
濃度は2.0重量%であった。
The activated alumina powder was impregnated with a rhodium nitrate solution, dried and calcined at 400 ° C. for 1 hour to obtain a rhodium-supported activated alumina powder (powder E). Rh of this powder E
The concentration was 2.0% by weight.

【0056】上記粉末Cを450g、上記粉末Dを36
0g、活性アルミナを90g、水900gを磁性ボール
ミルに投入し、混合粉砕してスラリー液を得た。このス
ラリー液をコーディエライト質モノリス担体(1.0
L,400セル)に付着させ、空気流にてセル内の余剰
のスラリーを取り除いて130℃で乾燥した後、400
℃で1時間焼成して、コート層重量100g/Lの担体
イとした。
450 g of the powder C and 36 g of the powder D
0 g, activated alumina 90 g, and water 900 g were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was added to a cordierite monolithic carrier (1.0
L, 400 cells), and the excess slurry in the cells was removed by an air stream and dried at 130 ° C.
Calcination was carried out at 1 ° C. for 1 hour to obtain a carrier (a) having a coat layer weight of 100 g / L.

【0057】上記粉末Eを90g、上記粉末Cを360
g、活性アルミナを450g、水900gを磁性ボール
ミルに投入し、混合粉砕してスラリー液を得た。このス
ラリー液を上記担体イに付着させ、空気流にてセル内の
余剰のスラリーを取り除いて130℃で乾燥した後、4
00℃で1時間焼成し、コート層重量200g/Lの触
媒−2を第二触媒として得た。
90 g of the powder E and 360 g of the powder C
g, activated alumina 450 g and water 900 g were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid is adhered to the carrier a, excess slurry in the cell is removed by an air stream and dried at 130 ° C.
It was baked at 00 ° C. for 1 hour to obtain a catalyst-2 having a coat layer weight of 200 g / L as a second catalyst.

【0058】排気流れに対して、上記触媒−1を前段
に、上記触媒−2を後段に配置して、本発明の排気ガス
浄化用触媒を得た。
With respect to the exhaust gas flow, the above-mentioned catalyst-1 was arranged at the former stage and the above-mentioned catalyst-2 was arranged at the latter stage to obtain the exhaust gas purifying catalyst of the present invention.

【0059】実施例2 粉末Dの調製における炭酸バリウムの代わりに炭酸カリ
ウムを用いて粉末Fを得、触媒−2の調製において粉末
Dの代わりに粉末Fを用いる以外は、実施例1と同様に
して触媒−3を得た。排気流れに対して、実施例1で得
られた触媒−1を前段に、上記触媒−3を後段に配置し
て、本発明の排気ガス浄化用触媒を得た。
Example 2 A powder F was obtained by using potassium carbonate instead of barium carbonate in the preparation of powder D, and was prepared in the same manner as in Example 1 except that powder F was used instead of powder D in preparing catalyst-2. As a result, catalyst-3 was obtained. With respect to the exhaust gas flow, the catalyst-1 obtained in Example 1 was arranged at the front stage, and the catalyst-3 was arranged at the rear stage to obtain the exhaust gas purifying catalyst of the present invention.

【0060】実施例3 粉末Aの調製における白金担持濃度を2.0重量%とし
て粉末Gを得、触媒−1の調製において粉末Aの代わり
に粉末Gを用いる以外は、実施例1と同様にして触媒−
4を得た。排気流れに対して上記触媒−4を前段に、実
施例1で得られた触媒−2を後段に配置して、本発明の
排気ガス浄化用触媒を得た。
Example 3 The procedure of Example 1 was repeated except that powder G was prepared at a platinum loading of 2.0% by weight in the preparation of powder A, and powder G was used instead of powder A in the preparation of catalyst-1. Catalyst
4 was obtained. The catalyst-4 for the exhaust gas purification of the present invention was obtained by arranging the above catalyst-4 at the preceding stage and the catalyst-2 obtained in Example 1 at the latter stage with respect to the exhaust gas flow.

【0061】実施例4 粉末Eの調製における硝酸ロジウム溶液の代わりに、硝
酸ロジウム溶液と硝酸イリジウム溶液とを用いる以外
は、実施例1と同様の方法で粉末Hを得た。この粉末H
のRh及びIr濃度は各々1.0重量%、1.0重量%
であった。触媒−2の調製において粉末Eの代わりに粉
末Hを用いる以外は、実施例1と同様にして触媒−5を
得た。排気流れに対して、実施例1で得られた触媒−1
を前段に、上記触媒−5を後段に配置して、本発明の排
気ガス浄化用触媒を得た。
Example 4 A powder H was obtained in the same manner as in Example 1 except that a rhodium nitrate solution and an iridium nitrate solution were used instead of the rhodium nitrate solution in the preparation of the powder E. This powder H
Have a Rh and Ir concentration of 1.0% by weight and 1.0% by weight, respectively.
Met. Catalyst-5 was obtained in the same manner as in Example 1, except that Powder H was used instead of Powder E in the preparation of Catalyst-2. For the exhaust gas flow, the catalyst-1 obtained in Example 1
Was disposed in the first stage, and the above-mentioned catalyst-5 was disposed in the second stage to obtain the exhaust gas purifying catalyst of the present invention.

【0062】実施例5 排気流れに対して、実施例3で得られた触媒−4を前段
に、実施例4で得られた触媒−5を後段に配置して、本
発明の排気ガス浄化用触媒を得た。
Example 5 The catalyst-4 obtained in Example 3 was arranged at the front stage and the catalyst 5 obtained in Example 4 was arranged at the latter stage with respect to the exhaust gas flow. A catalyst was obtained.

【0063】実施例6 実施例1で得られた粉末Aを189gと、粉末Bを18
0g、活性アルミナを81g、水900gを磁性ボール
ミルに投入し、混合粉砕してスラリー液を得た。このス
ラリー液をコーディエライト質モノリス担体(1.0
L、400セル)に付着させ、空気流にてセル内の余剰
のスラリーを取り除いて130℃で乾燥した後、400
℃で1時間焼成した。この作業を2回行い、コート層重
量200g/Lの触媒−6を得た。排気流れに対して、
上記触媒−6を前段に、実施例1で得られた触媒−2を
後段に配置して、本発明の排気ガス浄化用触媒を得た。
Example 6 189 g of the powder A obtained in Example 1 and 18
0 g, 81 g of activated alumina, and 900 g of water were charged into a magnetic ball mill, mixed and pulverized to obtain a slurry liquid. This slurry liquid was added to a cordierite monolithic carrier (1.0
L, 400 cells), and the excess slurry in the cells was removed by an air stream and dried at 130 ° C.
Calcination was carried out at ℃ for 1 hour. This operation was performed twice to obtain Catalyst-6 having a coat layer weight of 200 g / L. For the exhaust flow,
By arranging the above-mentioned catalyst-6 in the first stage and the catalyst-2 obtained in Example 1 in the second stage, an exhaust gas purifying catalyst of the present invention was obtained.

【0064】実施例7 実施例1で得られた粉末Cを405gと粉末Eを45g
と粉末Dを180g、活性アルミナを270g、水90
0gを磁性ボールミルに投入し、混合粉砕してスラリー
液を得た。このスラリー液をコーディエライト質モノリ
ス担体(1.0L、400セル)に付着させ、空気流に
てセル内の余剰のスラリーを取り除いて130℃で乾燥
した後、400℃で1時間焼成した。この作業を2回行
い、コート層重量200g/Lの触媒−7を得た。排気
流れに対して、実施例1で得られた触媒−1を前段に、
上記触媒−7を後段に配置して、本発明の排気ガス浄化
用触媒を得た。
Example 7 405 g of powder C and 45 g of powder E obtained in Example 1
Powder D, 180 g, activated alumina 270 g, water 90
0 g was charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was adhered to a cordierite-based monolithic carrier (1.0 L, 400 cells), excess slurry in the cells was removed by an air stream, dried at 130 ° C., and fired at 400 ° C. for 1 hour. This operation was performed twice to obtain Catalyst-7 having a coat layer weight of 200 g / L. With respect to the exhaust gas flow, the catalyst-1 obtained in Example 1
The catalyst 7 was arranged at the subsequent stage to obtain an exhaust gas purifying catalyst of the present invention.

【0065】実施例8 排気流れに対して、実施例6で得られた触媒−6を前段
に、実施例7で得られた触媒−7を後段に配置して、本
発明の排気ガス浄化用触媒を得た。
Example 8 The catalyst for purification of exhaust gas of the present invention was arranged in such a manner that the catalyst-6 obtained in Example 6 was arranged in the front stage and the catalyst 7 obtained in Example 7 was arranged in the latter stage. A catalyst was obtained.

【0066】実施例9 0.2モル/Lの硝酸銅水溶液5.2kgとゼオライト
粉末2kgとを混合し、攪拌して濾過する作業を3回繰
り返し、その後乾燥して焼成し、Cu担持ゼオライト粉
末(粉末I)を得た。この粉末IのCu濃度は4%であ
った。上記粉末Iを810g、シリカゾル(固形分20
%)450g、水540gを磁性ボールミルに投入し、
混合粉砕してスラリー液を得た。このスラリー液をコー
ディエライト質モノリス担体(1.0L、400セル)
に付着させ、空気流にてセル内の余剰のスラリーを取り
除いて130℃で乾燥した後、400℃で1時間焼成
し、コート層重量200g/Lの触媒−8を得た。排気
流れに対して、上記触媒−8を前段に、実施例1で得ら
れた触媒−2を後段に配置して、本発明の排気ガス浄化
用触媒を得た。
Example 9 The operation of mixing 5.2 kg of a 0.2 mol / L aqueous copper nitrate solution and 2 kg of zeolite powder, stirring and filtering was repeated three times, then dried and calcined to obtain a Cu-supported zeolite powder. (Powder I) was obtained. The Cu concentration of this powder I was 4%. 810 g of the above powder I, silica sol (solid content: 20
%) 450 g and 540 g of water are put into a magnetic ball mill,
The mixture was pulverized to obtain a slurry liquid. This slurry liquid is used as a cordierite monolithic carrier (1.0 L, 400 cells)
After drying at 130 ° C. and baking at 400 ° C. for 1 hour, catalyst-8 having a coat layer weight of 200 g / L was obtained. With respect to the exhaust gas flow, the above-mentioned catalyst-8 was arranged at the preceding stage, and the catalyst-2 obtained in Example 1 was arranged at the later stage to obtain the exhaust gas purifying catalyst of the present invention.

【0067】実施例10 排気流れに対し、実施例触媒−2を前段に、実施例9で
得られた触媒−8を後段に配置して、本発明の排気ガス
浄化用触媒を得た。
Example 10 The catalyst for purification of exhaust gas of the present invention was obtained by arranging the catalyst of Example 2 in the preceding stage and the catalyst 8 of Example 9 in the latter stage with respect to the exhaust gas flow.

【0068】実施例11 活性アルミナ粉末に硝酸パラジウム溶液を含浸し、乾燥
後400℃で1時間焼成して、パラジウム担持活性アル
ミナ粉末(粉末J)を得た。この粉末JのPd濃度は
1.5重量%であった。触媒−2の調製において粉末C
の代わりに粉末Jを用いる以外は、実施例1と同様にし
て触媒−9を得た。排気流れに対して、実施例1で得ら
れた触媒−1を前段に、上記触媒−9を後段に配置し
て、本発明の排気ガス浄化用触媒を得た。
Example 11 Activated alumina powder was impregnated with a palladium nitrate solution, dried and calcined at 400 ° C. for 1 hour to obtain palladium-supported activated alumina powder (powder J). The Pd concentration of this powder J was 1.5% by weight. Powder C in the preparation of catalyst-2
Catalyst-9 was obtained in the same manner as in Example 1 except that powder J was used instead of. The catalyst for exhaust gas purification of the present invention was obtained by arranging the catalyst-1 obtained in Example 1 at the front stage and the catalyst -9 at the rear stage with respect to the exhaust gas flow.

【0069】実施例12 触媒−1の調製において、粉末Bを720g、活性アル
ミナ粉末を180gと水を900g混合粉砕して得られ
たスラリーをコーディエライト質モノリス担体に50g
/L分だけ予め付着させる工程を、Pt/ゼオライト層
を付着させる工程の前に行う以外は、実施例1と同様に
して、コート層重量200g/Lの触媒−10を得た。
排気流れに対して、上記触媒−10を前段に、実施例1
で得られた触媒−2を後段に配置して、本発明の排気ガ
ス浄化用触媒を得た。
Example 12 In the preparation of Catalyst-1, 720 g of powder B, 180 g of activated alumina powder and 900 g of water were mixed and pulverized, and 50 g of a slurry obtained on a cordierite-based monolith carrier was added to a cordierite monolith carrier.
/ L was obtained in the same manner as in Example 1 except that the step of preliminarily adhering the Pt / zeolite layer was performed before the step of adhering the Pt / zeolite layer.
In the exhaust gas flow, Example 1
Was placed in the subsequent stage to obtain an exhaust gas purifying catalyst of the present invention.

【0070】実施例13 触媒−2の調製において、粉末Eを90g、粉末Cを3
60g、活性アルミナを450gと水を900g混合粉
砕して得られたスラリーを100g/L分だけコーディ
エライト質モノリス担体に予め付着させる工程を、粉末
Cを450g、粉末Dを360g、活性アルミナを90
gと水900gを混合粉砕して得られたスラリーを10
0g/L付着させる工程の前に行う以外は、実施例1と
同様にして、コート層重量200g/Lの触媒−11を
得た。排気流れに対して、実施例1で得られた触媒−1
を前段に、上記触媒−11を後段に配置して、本発明の
排気ガス浄化用触媒を得た。
Example 13 In the preparation of Catalyst-2, 90 g of powder E and 3 g of powder C were used.
The step of previously adhering a slurry obtained by mixing and crushing 60 g of 450 g of activated alumina and 900 g of water to 900 g of water to the cordierite-based monolith carrier in an amount of 100 g / L is performed by 450 g of powder C, 360 g of powder D, and activated alumina. 90
g and 900 g of water were mixed and pulverized to obtain a slurry of 10 g.
Catalyst-11 having a coat layer weight of 200 g / L was obtained in the same manner as in Example 1 except that it was performed before the step of attaching 0 g / L. For the exhaust gas flow, the catalyst-1 obtained in Example 1
Was disposed at the front stage and the catalyst-11 was disposed at the rear stage to obtain the exhaust gas purifying catalyst of the present invention.

【0071】実施例14 炭酸ランタンと炭酸バリウムと炭酸マンガンと炭酸コバ
ルトとの混合物にクエン酸を加え、乾燥後700℃で焼
成し、金属原子比でランタン/バリウム/マンガン/コ
バルト=1/2/1/5の粉末Kを得た。触媒−2の調
製において、粉末Dの代わりに粉末Kを用いる以外は、
実施例1と同様にして触媒−12を得た。排気流れに対
して、実施例1で得られた触媒−1を前段に、上記触媒
−12を後段に配置して、本発明の排気ガス浄化用触媒
を得た。
Example 14 Citric acid was added to a mixture of lanthanum carbonate, barium carbonate, manganese carbonate and cobalt carbonate, dried and calcined at 700 ° C., and lanthanum / barium / manganese / cobalt = 1/2 / metal atomic ratio. 1/5 powder K was obtained. In preparing catalyst-2, except that powder K was used instead of powder D,
Catalyst 12 was obtained in the same manner as in Example 1. With respect to the exhaust gas flow, the catalyst-1 obtained in Example 1 was arranged at the front stage, and the catalyst-12 was arranged at the latter stage, to obtain the exhaust gas purifying catalyst of the present invention.

【0072】比較例1 粉末D中のランタンを除く以外は、実施例1の触媒−2
と同様にして触媒−13を得た。排気流れに対して、実
施例1で得られた触媒−1を前段に、上記触媒−13を
後段に配置して、排気ガス浄化用触媒を得た。
Comparative Example 1 Catalyst 2 of Example 1 except that lanthanum in powder D was omitted
In the same manner as in the above, catalyst-13 was obtained. The catalyst for exhaust gas purification was obtained by disposing the catalyst-1 obtained in Example 1 at the front stage and the catalyst-13 at the rear stage with respect to the exhaust gas flow.

【0073】比較例2 粉末D中のバリウムを除く以外は、実施例1の触媒−2
と同様にして触媒−14を得た。排気流れに対して、実
施例1で得られた触媒−1を前段に、上記触媒−14を
後段に配置して、排気ガス浄化用触媒を得た。
Comparative Example 2 Catalyst 2 of Example 1 except that barium in Powder D was omitted.
In the same manner as in the above, catalyst-14 was obtained. With respect to the exhaust gas flow, the catalyst-1 obtained in Example 1 was disposed at the front stage and the catalyst-14 was disposed at the rear stage to obtain an exhaust gas purifying catalyst.

【0074】比較例3 粉末B中のロジウムを除く以外は、実施例1の触媒−1
と同様にして触媒−15を得た。排気流れに対して、上
記触媒−15を前段に、実施例1で得られた触媒−2を
後段に配置して、排気ガス浄化用触媒を得た。
Comparative Example 3 Catalyst 1 of Example 1 except that rhodium in powder B was not used
Catalyst 15 was obtained in the same manner as described above. The catalyst for exhaust gas purification was obtained by arranging the catalyst 15 in the preceding stage and the catalyst-2 obtained in Example 1 in the subsequent stage with respect to the exhaust gas flow.

【0075】比較例4 粉末B中のイリジウムを除く以外は、実施例1の触媒−
1と同様にして触媒−16を得た。排気流れに対して、
上記触媒−16を前段に、実施例1で得られた触媒−2
を後段に配置して、排気ガス浄化用触媒を得た。
Comparative Example 4 The catalyst of Example 1 was used except that iridium in the powder B was not used.
In the same manner as in Example 1, catalyst 16 was obtained. For the exhaust flow,
The catalyst-2 obtained in Example 1 was placed in the preceding stage of the catalyst-16.
Was disposed at the subsequent stage to obtain an exhaust gas purifying catalyst.

【0076】比較例5 排気流れに対して、比較例3で得られた触媒−15を前
段に、比較例2で得られた、触媒−14を後段に配置し
て、排気ガス浄化用触媒を得た。
COMPARATIVE EXAMPLE 5 With respect to the exhaust gas flow, the catalyst 15 obtained in Comparative Example 3 was disposed in the front stage, and the catalyst 14 obtained in Comparative Example 2 was disposed in the subsequent stage, and an exhaust gas purifying catalyst was prepared. Obtained.

【0077】比較例6 排気流れに対して、実施例1で得られた触媒−2を前段
に、触媒−1を後段に配置して、排気ガス浄化用触媒を
得た。
Comparative Example 6 The catalyst for exhaust gas purification was obtained by arranging the catalyst-2 obtained in Example 1 at the front stage and the catalyst-1 at the rear stage with respect to the exhaust gas flow.

【0078】比較例7 粉末Aの代わりに活性アルミナ粉末を用いる以外は、実
施例1の触媒−1と同様にして触媒−17を得た。粉末
Dの代わりに活性アルミナ粉末を用いる以外は、実施例
1の触媒−2と同様にして触媒−18を得た。排気流れ
に対して、上記触媒−17を前段に、上記触媒−18を
後段に配置して、排気ガス浄化用触媒を得た。
Comparative Example 7 Catalyst 17 was obtained in the same manner as in Catalyst 1 of Example 1, except that activated alumina powder was used instead of powder A. Catalyst-18 was obtained in the same manner as in Catalyst-2 of Example 1, except that activated alumina powder was used instead of powder D. The catalyst 17 was arranged at the front stage and the catalyst 18 was arranged at the rear stage with respect to the exhaust gas flow to obtain an exhaust gas purifying catalyst.

【0079】比較例8 粉末Bの調製において、基材を活性アルミナではなくS
iO2 粉末とする以外は、実施例1の触媒−1と同様に
して触媒−19を得た。粉末C及び粉末Eの調製におい
て、基材を活性アルミナではなくSiO2 粉末とする以
外は、実施例1の触媒−2と同様にして触媒−20を得
た。排気流れに対して、上記触媒19を前段に、上記触
媒20を後段に配置して排気ガス浄化用触媒を得た。
Comparative Example 8 In the preparation of powder B, the base material was not S
except that the iO 2 powder, to obtain a catalyst -19 in the same manner as the catalyst -1 in Example 1. Catalyst 20 was obtained in the same manner as in Catalyst 2 of Example 1, except that in preparing powders C and E, the substrate was changed to SiO 2 powder instead of activated alumina. The catalyst 19 was disposed at the front stage and the catalyst 20 was disposed at the rear stage with respect to the exhaust gas flow to obtain an exhaust gas purifying catalyst.

【0080】前記実施例1〜14及び比較例1〜8で用
いる触媒1〜20の組成を表1に示す。
The compositions of catalysts 1 to 20 used in Examples 1 to 14 and Comparative Examples 1 to 8 are shown in Table 1.

【表1】 [Table 1]

【0081】試験例 前記実施例1〜14及び比較例1〜8で得られた排気ガ
ス浄化用触媒について、以下の条件で初期及び耐久後の
触媒活性評価を行った。活性評価には、自動車の排気ガ
スを模したモデルガスを用いる自動評価装置を用いた。
Test Examples The exhaust gas purifying catalysts obtained in Examples 1 to 14 and Comparative Examples 1 to 8 were evaluated for initial and endurance catalytic activities under the following conditions. For the activity evaluation, an automatic evaluation device using a model gas simulating the exhaust gas of an automobile was used.

【0082】耐久条件 エンジン4400ccの排気系に触媒を装着し、触媒入
口温度600℃で、50時間運転して耐久を行った。
Endurance conditions A catalyst was mounted on an exhaust system of 4400 cc engine, and the operation was performed at a catalyst inlet temperature of 600 ° C. for 50 hours to endurance.

【0083】評価条件 触媒活性評価は、排気量1800ccのエンジンの排気
系に各触媒を装着し、A/F=14.6(ストイキ状
態)で30秒間、その後A/F=22(リーン雰囲気)
で30秒間の運転を1サイクル行ない、各々平均転化率
を測定し、このA/F=14.6(ストイキ状態)の場
合の平均転化率とA/F=22(リーン雰囲気)の場合
の平均転化率とを平均してトータル転化率とした。この
評価を初期及び耐久後に各々行ない、触媒活性評価値を
以下の式により決定した。
Evaluation Conditions The catalyst activity was evaluated by mounting each catalyst on the exhaust system of an engine with a displacement of 1800 cc, A / F = 14.6 (stoichiometric state) for 30 seconds, and then A / F = 22 (lean atmosphere).
The operation was performed for one cycle for 30 seconds, and the average conversion was measured. The average conversion when A / F = 14.6 (stoichiometric state) and the average when A / F = 22 (lean atmosphere) The conversion rate was averaged to obtain a total conversion rate. This evaluation was performed at the initial stage and after the endurance test, and the catalytic activity evaluation value was determined by the following equation.

【数4】 (Equation 4)

【0084】トータル転化率として得られた触媒活性評
価結果を表2に示す。比較例に比べて実施例は、触媒活
性が高く、後述する本発明の効果を確認することができ
た。
Table 2 shows the results of the catalyst activity evaluation obtained as the total conversion. The catalytic activity of the example was higher than that of the comparative example, and the effect of the present invention described later could be confirmed.

【0085】[0085]

【表2】 [Table 2]

【0086】[0086]

【発明の効果】請求項1記載の排気ガス浄化用触媒は、
従来の触媒では十分な活性を示さなかったリーン雰囲気
下におけるNOx浄化性能を向上させ、かつ三元触媒と
しての機能を十分に発現することができ、更に熱耐久後
においても優れたNOx浄化性能を示すことができる。
The exhaust gas purifying catalyst according to claim 1 is
The conventional catalyst can improve the NOx purification performance under a lean atmosphere, which did not show sufficient activity, and can sufficiently exhibit the function as a three-way catalyst. Can be shown.

【0087】請求項2記載の排気ガス浄化用触媒は、上
記効果に加えて、白金によるHC吸着被毒を抑制するこ
とができ、更にNOxを効率良く浄化することができ
る。
The exhaust gas purifying catalyst according to claim 2 can suppress HC adsorption and poisoning by platinum, and can purify NOx efficiently, in addition to the above effects.

【0088】請求項3記載の排気ガス浄化用触媒は、上
記効果であるHC吸着被毒抑制効果をより向上させるこ
とができ、更にNOxを効率良く浄化することができ
る。
The exhaust gas purifying catalyst according to the third aspect can further improve the above-mentioned effect of suppressing HC adsorption and poisoning, and can further purify NOx efficiently.

【0089】請求項4記載の排気ガス浄化用触媒は、上
記効果に加えて更に、十分な貴金属の分散性を確保し、
貴金属同士の合金化を抑制して高い熱耐久性を得ること
ができる。
The exhaust gas purifying catalyst according to claim 4 further ensures a sufficient noble metal dispersibility in addition to the above effects,
High heat durability can be obtained by suppressing alloying of noble metals.

【0090】請求項5記載の排気ガス浄化用触媒は、上
記効果に加えてNOx吸収作用とNOx浄化作用を有効
に成立させ、NOxの浄化を更に効率良くすることがで
きる。
In the exhaust gas purifying catalyst according to the fifth aspect, in addition to the above-mentioned effects, the NOx absorbing function and the NOx purifying function can be effectively realized, so that the NOx purifying can be made more efficient.

【0091】請求項6記載の排気ガス浄化用触媒は、上
記効果に加えて、NOx浄化作用を更に高めることがで
きる。
The exhaust gas purifying catalyst according to claim 6 can further enhance the NOx purifying action in addition to the above effects.

【0092】請求項7記載の排気ガス浄化用触媒は、上
記本発明の排気ガス浄化用触媒の有効なNOx吸収、放
出サイクルを特に効率良く発現させることができる。
The exhaust gas purifying catalyst according to the seventh aspect can exhibit the effective NOx absorption / release cycle of the exhaust gas purifying catalyst of the present invention particularly efficiently.

フロントページの続き (51)Int.Cl.6 識別記号 FI F01N 3/08 F01N 3/28 ZAB 3/10 301B 3/28 ZAB B01D 53/36 102H 301 104A B01J 23/64 104A (72)発明者 岡田 晃英 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内Continued on the front page (51) Int.Cl. 6 Identification symbol FI F01N 3/08 F01N 3/28 ZAB 3/10 301B 3/28 ZAB B01D 53/36 102H 301 104A B01J 23/64 104A (72) Inventor Okada Akihide Nissan Motor Co., Ltd., 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 白金担持ゼオライトを含む第一触媒を排
気流れに対して前段に配置し、白金、パラジウム、ロジ
ウム及びイリジウムから成る群より選ばれた少なくとも
一種の貴金属を、該選択された貴金属元素毎に担持した
アルミナと、次の一般式 【数1】 で表される複合酸化物とを含む第二触媒を排気流れに対
して後段に配置して成ることを特徴とする排気ガス浄化
用触媒。
1. A first catalyst comprising a platinum-supported zeolite is disposed upstream of an exhaust stream to convert at least one noble metal selected from the group consisting of platinum, palladium, rhodium and iridium into the selected noble metal element. Alumina supported for each and the following general formula: An exhaust gas purifying catalyst comprising: a second catalyst containing a composite oxide represented by the formula:
【請求項2】 第一触媒に、更にロジウム及び/又はイ
リジウムが含まれることを特徴とする請求項1記載の排
気ガス浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the first catalyst further contains rhodium and / or iridium.
【請求項3】 第一触媒は少なくとも2層から成り、下
層に白金担持ゼオライトを含み、上層にロジウム及び/
又はイリジウムを含むことを特徴とする請求項2記載の
排気ガス浄化用触媒。
3. The first catalyst comprises at least two layers, a lower layer containing a platinum-supported zeolite, and an upper layer containing rhodium and / or rhodium.
3. The exhaust gas purifying catalyst according to claim 2, further comprising iridium.
【請求項4】 ロジウム及び/又はイリジウムは、アル
ミナに担持されることを特徴とする請求項2又は3記載
の排気ガス浄化用触媒。
4. The exhaust gas purifying catalyst according to claim 2, wherein rhodium and / or iridium is supported on alumina.
【請求項5】 第二触媒は少なくとも2層から成り、下
層に上記複合酸化物を含むことを特徴とする請求項1〜
4記載の排気ガス浄化用触媒。
5. The method according to claim 1, wherein the second catalyst comprises at least two layers, and the lower layer contains the composite oxide.
4. The exhaust gas purifying catalyst according to 4.
【請求項6】 第二触媒の上層にロジウム及び/又はイ
リジウムを含むことを特徴とする請求項5記載の排気ガ
ス浄化用触媒。
6. The exhaust gas purifying catalyst according to claim 5, wherein the upper layer of the second catalyst contains rhodium and / or iridium.
【請求項7】 請求項1〜6いずれかの項記載の排気ガ
ス浄化用触媒を、空燃比がストイキオメトリーと、15
〜50の範囲とを繰り返すリーンバーンエンジン車に使
用することを特徴とする排気ガス浄化用触媒の使用方
法。
7. The exhaust gas purifying catalyst according to claim 1, wherein the air-fuel ratio is 15% or less.
A method for using an exhaust gas purifying catalyst, wherein the method is used for a lean burn engine vehicle that repeats a range from 50 to 50.
JP8350430A 1996-12-27 1996-12-27 Exhaust gas purifying catalyst and its use Pending JPH10192713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8350430A JPH10192713A (en) 1996-12-27 1996-12-27 Exhaust gas purifying catalyst and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8350430A JPH10192713A (en) 1996-12-27 1996-12-27 Exhaust gas purifying catalyst and its use

Publications (1)

Publication Number Publication Date
JPH10192713A true JPH10192713A (en) 1998-07-28

Family

ID=18410448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8350430A Pending JPH10192713A (en) 1996-12-27 1996-12-27 Exhaust gas purifying catalyst and its use

Country Status (1)

Country Link
JP (1) JPH10192713A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455463B1 (en) 2001-03-13 2002-09-24 Delphi Technologies, Inc. Alkaline earth/transition metal lean NOx catalyst
US6576587B2 (en) 2001-03-13 2003-06-10 Delphi Technologies, Inc. High surface area lean NOx catalyst
US6624113B2 (en) 2001-03-13 2003-09-23 Delphi Technologies, Inc. Alkali metal/alkaline earth lean NOx catalyst
US6670296B2 (en) 2001-01-11 2003-12-30 Delphi Technologies, Inc. Alumina/zeolite lean NOx catalyst
US6864213B2 (en) 2001-03-13 2005-03-08 Delphi Technologies, Inc. Alkaline earth / rare earth lean NOx catalyst
JP2006291812A (en) * 2005-04-08 2006-10-26 Mitsubishi Motors Corp Exhaust emission control device
WO2008093471A1 (en) 2007-02-01 2008-08-07 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Catalyst system for use in exhaust gas purification apparatus for automobiles, exhaust gas purification apparatus using the catalyst system, and exhaust gas purification method
US8057745B2 (en) 2006-09-15 2011-11-15 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Catalyst system for vehicle exhaust gas purification devices, exhaust gas purification device using the same, and method for purification of exhaust gases
JP2022500240A (en) * 2018-09-13 2022-01-04 ビーエーエスエフ コーポレーション Three-way conversion catalyst for gasoline and natural gas applications

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670296B2 (en) 2001-01-11 2003-12-30 Delphi Technologies, Inc. Alumina/zeolite lean NOx catalyst
US6455463B1 (en) 2001-03-13 2002-09-24 Delphi Technologies, Inc. Alkaline earth/transition metal lean NOx catalyst
US6576587B2 (en) 2001-03-13 2003-06-10 Delphi Technologies, Inc. High surface area lean NOx catalyst
US6624113B2 (en) 2001-03-13 2003-09-23 Delphi Technologies, Inc. Alkali metal/alkaline earth lean NOx catalyst
US6864213B2 (en) 2001-03-13 2005-03-08 Delphi Technologies, Inc. Alkaline earth / rare earth lean NOx catalyst
JP2006291812A (en) * 2005-04-08 2006-10-26 Mitsubishi Motors Corp Exhaust emission control device
JP4639919B2 (en) * 2005-04-08 2011-02-23 三菱自動車工業株式会社 Exhaust gas purification device
US8057745B2 (en) 2006-09-15 2011-11-15 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Catalyst system for vehicle exhaust gas purification devices, exhaust gas purification device using the same, and method for purification of exhaust gases
WO2008093471A1 (en) 2007-02-01 2008-08-07 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Catalyst system for use in exhaust gas purification apparatus for automobiles, exhaust gas purification apparatus using the catalyst system, and exhaust gas purification method
US8202819B2 (en) 2007-02-01 2012-06-19 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Catalyst system to be used in automobile exhaust gas purification apparatus, exhaust gas purification apparatus using the same and exhaust gas purification method
JP2022500240A (en) * 2018-09-13 2022-01-04 ビーエーエスエフ コーポレーション Three-way conversion catalyst for gasoline and natural gas applications
US12005426B2 (en) 2018-09-13 2024-06-11 Basf Corporation Three-way conversion catalyst in gasoline-natural gas applications

Similar Documents

Publication Publication Date Title
JP4092441B2 (en) Exhaust gas purification catalyst
EP0931590B1 (en) Catalyst for purifying exhaust gas and manufacturing method thereof
EP0935055A2 (en) Device for purifying oxygen rich exhaust gas
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
JP3788141B2 (en) Exhaust gas purification system
JPH11104493A (en) Catalyst for purifying exhaust gas and its use
JP3493792B2 (en) Exhaust gas purification catalyst
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
JPH10192713A (en) Exhaust gas purifying catalyst and its use
JPH11221466A (en) Catalyst for purifying exhaust gas and purification of exhaust gas
JP3493879B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JPH08281110A (en) Catalyst for purifying exhaust gas and its production
JPH09220470A (en) Catalyst for purification of exhaust gas
JPH1157477A (en) Exhaust gas cleaning catalyst and method of using the same
JPH1147596A (en) Catalyst for purifying exhaust gas
JPH09103652A (en) Method for purifying exhaust gas
JPH11123331A (en) Catalyst for cleaning exhaust gas
JPH09225264A (en) Catalyst for purifying exhaust gas
JPH08281111A (en) Catalyst for purifying exhaust gas and its production
JP3477982B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3477974B2 (en) Exhaust gas purification catalyst
JP3885376B2 (en) Exhaust gas purification catalyst and method of using the same
JP2000042370A (en) Catalyst device for purifying exhaust gas and its using method
JP3896706B2 (en) Exhaust gas purification catalyst and method for producing the same