JP3493879B2 - Exhaust gas purification catalyst and exhaust gas purification method - Google Patents

Exhaust gas purification catalyst and exhaust gas purification method

Info

Publication number
JP3493879B2
JP3493879B2 JP06648396A JP6648396A JP3493879B2 JP 3493879 B2 JP3493879 B2 JP 3493879B2 JP 06648396 A JP06648396 A JP 06648396A JP 6648396 A JP6648396 A JP 6648396A JP 3493879 B2 JP3493879 B2 JP 3493879B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
oxide
complex
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06648396A
Other languages
Japanese (ja)
Other versions
JPH09253496A (en
Inventor
浩昭 金子
克雄 菅
元久 上條
秀俊 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP06648396A priority Critical patent/JP3493879B2/en
Publication of JPH09253496A publication Critical patent/JPH09253496A/en
Application granted granted Critical
Publication of JP3493879B2 publication Critical patent/JP3493879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車(ガソリ
ン、ディーゼル)、ボイラーなどの内燃機関から排出さ
れる排ガス中の炭化水素(HC)、一酸化炭素(C
O)、および窒素酸化物(NOx)を浄化する排ガス浄
化用触媒システムに関するものであり、特に酸素過剰領
域でのNOx浄化方法に着目したものである。
TECHNICAL FIELD The present invention relates to hydrocarbons (HC) and carbon monoxide (C) in exhaust gas discharged from internal combustion engines such as automobiles (gasoline, diesel) and boilers.
The present invention relates to an exhaust gas purifying catalyst system for purifying O) and nitrogen oxides (NOx), and particularly to a NOx purifying method in an oxygen excess region.

【0002】[0002]

【従来の技術】近年、石油資源の枯渇問題、地球温暖化
問題から、低燃費自動車の要求が高まっており、ガソリ
ン自動車に対しては希薄燃焼自動車の開発が注目されて
いる。従来の希薄燃焼自動車においては、希薄燃焼走行
時、排ガス雰囲気が理論空燃状態に比べ酸素過剰雰囲気
(リーン)となるが、リーン域で通常の三元触媒を適応
させた場合、過剰な酸素の影響からNOx浄化作用が不
十分となるという問題があった。このため酸素が過剰と
なってもNOxを浄化する触媒の開発が望まれていた。
2. Description of the Related Art In recent years, the demand for fuel-efficient vehicles has been increasing due to the problem of exhaustion of petroleum resources and the problem of global warming, and the development of lean-burn vehicles has attracted attention for gasoline vehicles. In a conventional lean-burn vehicle, the exhaust gas atmosphere becomes leaner than the stoichiometric air-fuel state when running lean-burn, but when a normal three-way catalyst is applied in the lean range, the excess oxygen Due to the influence, there is a problem that the NOx purification action becomes insufficient. Therefore, it has been desired to develop a catalyst that purifies NOx even when oxygen becomes excessive.

【0003】従来からリーン域のNOxを浄化する触媒
は種々提案されており、例えば特開平5−168860
号公報に示すように、Ptにランタン等を担持した触媒
に代表されるように、リーン域でNOxを吸収し、スト
イキ時にNOxを放出させ浄化する触媒が提案されてい
る。さらにNOx吸収能力を向上させる目的で例えば特
開平5−261287号公報、特開平5−317652
号公報、特開平6−31139号公報、特開平6−28
5371号公報等に示すように、アルカリ金属、アルカ
リ土類金属を用いる技術や、あるいは特開平6−142
458号公報、特開平6−262040号公報に示すよ
うに、アルカリ金属、アルカリ土類金属に加え、希土類
金属や鉄属金属とを用いる技術などが開示されている。
Various catalysts for purifying NOx in the lean range have been proposed in the past, for example, Japanese Unexamined Patent Publication No. 5-168860.
As shown in the publication, there is proposed a catalyst that absorbs NOx in a lean region and releases NOx at the time of stoichiometry, as represented by a catalyst in which Pt carries lanthanum or the like. Further, for the purpose of further improving the NOx absorption capacity, for example, JP-A-5-261287 and JP-A-5-317652.
JP-A-6-31139, JP-A-6-28
As disclosed in Japanese Patent No. 5371, etc., a technique using an alkali metal or an alkaline earth metal, or JP-A-6-142.
As disclosed in Japanese Patent Application Laid-Open No. 458 and Japanese Patent Application Laid-Open No. 6-262040, a technique using a rare earth metal or an iron group metal in addition to an alkali metal and an alkaline earth metal is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながらこれら従
来技術においてもなおNOx吸収能が不足したり、ある
いは耐久後の性能が不足するという問題があった。
However, these conventional techniques still have a problem that the NOx absorption capacity is insufficient or the performance after endurance is insufficient.

【0005】またリーンバーンエンジン車では負荷の高
い加速時には理論空燃比で走行されるため、リーンバー
ン車においても三元機能が必要となるが、上記従来技術
に見られるようにアルカリ金属、アルカリ土類を用いる
場合には、これらの塩基性が影響して貴金属の酸化能が
弱まり、場合によっては三元機能のうちHC、COの転
化性能が不十分となるという問題があった。
Further, since lean-burn engine vehicles run at the stoichiometric air-fuel ratio at the time of acceleration with a high load, the ternary function is also required in lean-burn vehicles. In the case of using the compounds, there is a problem that the basicity of the compounds affects the oxidizing ability of the noble metal, and in some cases, the conversion performance of HC and CO among the ternary functions becomes insufficient.

【0006】また上記従来技術においては、リーン定常
走行を長い時間続けるとNOx吸収量が飽和し、やがて
吸収作用が無くなるという問題があった。
Further, in the above-mentioned prior art, if lean steady running is continued for a long time, the amount of NOx absorbed saturates, and eventually there is a problem that the absorbing action disappears.

【0007】本発明はこのような従来技術の問題点を解
消し、酸素が過剰になっても高いNOx吸収作用を有す
る排ガス浄化用触媒を提供することを目的とする。
An object of the present invention is to solve the problems of the prior art and to provide an exhaust gas purifying catalyst having a high NOx absorbing action even when oxygen is excessive.

【0008】[0008]

【課題を解決するための手段】発明者らは上記問題点に
鑑み鋭意研究した結果、以下に述べる新規の触媒および
排ガス浄化方法を発明するに至った。
As a result of intensive studies in view of the above problems, the inventors have invented the following novel catalyst and exhaust gas purification method.

【0009】すなわち本発明は、 一体構造型担体上
に、 a)白金、パラジウム、ロジウムから選ばれた少なくと
も一種と、 b)(La 1-x x 1- α B O 3- δ 0<x<1、 0<α<0.2、 0≦δ≦1 A=Ba、Kから選ばれた少なくとも一種 B=鉄、コバルト、ニッケル、マンガンから選ばれた少
なくとも一種で示される複合体(複合体−I)と、 c)Cey Zr1-y2 0<y<1 で示される複合体(複合体−II)とを含有してなり、
かつ貴金属の2〜8割が複合体−IIに担持された触媒
で、酸素過剰雰囲気下の窒素酸化物を浄化する。
That is, according to the present invention, a) at least one selected from platinum, palladium, and rhodium on a monolithic structure type carrier, and b) (La 1-x A x ) 1- α B O 3- δ 0 < x <1, 0 <α <0.2, 0 ≦ δ ≦ 1 A = Ba, at least one selected from K, B = complex represented by at least one selected from iron, cobalt, nickel, and manganese (composite Body-I), and c) a complex represented by Ce y Zr 1-y O 2 0 <y <1 (complex-II),
Further, 20 to 80% of the noble metal is a catalyst supported on the composite-II, and purifies nitrogen oxides in an oxygen excess atmosphere.

【0010】 鉄、コバルト、ニッケル、マンガンか
ら選ばれた少なくとも一種が酸化物換算で触媒1L当り
5〜50g、ランタンが酸化物換算で触媒1L当り5〜
50g、バリウムが酸化物換算で触媒1L当り5〜10
0g、カリウムが酸化物換算で触媒1L当り1〜20
g、セリウムが酸化物換算で触媒1L当り5〜100
g、ジルコニウムが酸化物換算で触媒1L当り5〜10
0g含有されてなる触媒で、酸素過剰雰囲気下の窒素酸
化物を浄化する。
At least one selected from iron, cobalt, nickel, and manganese is 5 to 50 g per 1 L of catalyst in terms of oxide, and lanthanum is 5 to 5 per 1 L of catalyst in terms of oxide.
50g, 5-10 barium per liter of catalyst in terms of oxide
0 to 20 g of potassium per liter of catalyst in terms of oxide
g, cerium is 5 to 100 per 1 L of catalyst in terms of oxide
g and zirconium are 5 to 10 per 1 L of catalyst in terms of oxide.
A catalyst containing 0 g of nitrogen oxide is used to purify nitrogen oxides in an oxygen excess atmosphere.

【0011】 複合体−Iを下層に、複合体−Iを含
まない層をその上層に設けて成る触媒で酸素過剰雰囲気
下の窒素酸化物を浄化する。
Nitrogen oxides in an oxygen-excess atmosphere are purified by a catalyst having a composite-I layer as a lower layer and a layer not containing the complex-I as an upper layer.

【0012】 エンジンの排気系に触媒を少なくとも
2個設け、前段にCuを担持してなるゼオライトを含む
触媒を配置し、後段に上記〜のいずれかの触媒を配
置して酸素過剰雰囲気下の窒素酸化物を浄化する。
At least two catalysts are provided in the exhaust system of the engine, a catalyst containing zeolite supporting Cu is disposed in the front stage, and any one of the above-mentioned catalysts is disposed in the rear stage, and nitrogen is provided in an oxygen excess atmosphere. Purifies oxides.

【0013】 空燃比がストイキオメトリーと15以
上とを繰り返し変動するリーンバーンエンジン車の排ガ
スを上記〜のいずれかの触媒により浄化する。
Exhaust gas of a lean-burn engine vehicle in which the air-fuel ratio repeatedly changes between stoichiometry and 15 or higher is purified by any one of the above catalysts.

【0014】[0014]

【発明の実施の形態】以下、本発明で用いる触媒の実施
の形態を詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the catalyst used in the present invention will be described in detail below.

【0015】本発明の実施の形態で用いる一体構造型担
体には、耐熱性材料からなるモノリス担体が好ましく、
例えばコーディライトなどのセラミックあるいはフェラ
イト系ステンレスなどの金属製のものが用いられる。
The monolithic carrier made of a heat resistant material is preferable as the monolithic carrier used in the embodiment of the present invention.
For example, a ceramic material such as cordierite or a metal material such as ferritic stainless steel is used.

【0016】本発明の実施の形態で用いる貴金属は耐熱
性無機担体に担持されて用いられることが好ましい。担
体には、触媒活性成分の分散性を確保するために比表面
積が高くかつ耐熱性に優れる材料が適し、中でも活性ア
ルミナが好ましい。さらに耐熱比表面積を高める目的
で、希土類元素やジルコニウムなどを添加してもよい。
活性アルミナの使用量は触媒1L当り50〜300gで
あることが好ましい。
The noble metal used in the embodiment of the present invention is preferably used by being supported on a heat resistant inorganic carrier. For the carrier, a material having a high specific surface area and excellent heat resistance is suitable for ensuring the dispersibility of the catalytically active component, and among them, activated alumina is preferable. Further, rare earth elements, zirconium or the like may be added for the purpose of increasing the heat resistant specific surface area.
The amount of activated alumina used is preferably 50 to 300 g per liter of catalyst.

【0017】本発明の実施の形態で用いる貴金属の量
は、NOx吸収機能と三元機能が十分に得られる限りい
かなる量でも良いが、一般の三元触媒で用いられている
ように触媒1L当り0.1〜10gであることが好まし
い。
The amount of the noble metal used in the embodiment of the present invention may be any amount as long as the NOx absorbing function and the three-way function are sufficiently obtained, but as used in a general three-way catalyst, it is per 1 L of the catalyst. It is preferably 0.1 to 10 g.

【0018】鉄、コバルト、ニッケル、マンガンから選
ばれた少なくとも一種と、ランタンとカリウムとバリウ
ムは、触媒に含まれるこれらの全てが複合化していると
その作用は最大限に発揮されるが、少なくとも一部が複
合体を形成している場合でも目的とする作用は得られ
る。またセリウムとジルコニウムも同様に、少なくとも
一部が複合体を形成していれば、その作用は得られる。
At least one selected from iron, cobalt, nickel, and manganese, and lanthanum, potassium, and barium exhibit their effects to the maximum when all of them contained in the catalyst are combined. Even if a part of the complex forms a desired effect. Similarly, cerium and zirconium can have the same effect if at least a part thereof forms a composite.

【0019】複合体−I、IIの構成元素は、熱耐久後で
も別々の酸化物として分離することなく複合酸化物とし
て存在する。これは例えばX線回折測定により確認する
ことができる。
The constituent elements of the composites-I and II exist as a composite oxide without being separated as separate oxides even after thermal endurance. This can be confirmed by, for example, X-ray diffraction measurement.

【0020】本発明の実施の形態で用いる触媒中には、
それらの原料に含まれる不純物を含んでも、その作用を
妨げる量でなければ構わない。例えばバリウム中に含ま
れるストロンチウムや、セリウム中に含まれるランタ
ン、ネオジウム、サマリウムや、ジルコニウム中に含ま
れるハフニウムなどが微量含まれても構わない。
In the catalyst used in the embodiment of the present invention,
Even if impurities contained in those raw materials are included, it does not matter if the amount does not hinder the action. For example, a small amount of strontium contained in barium, lanthanum contained in cerium, neodymium, samarium, or hafnium contained in zirconium may be contained.

【0021】本実施の形態で用いる鉄、コバルト、ニッ
ケル、マンガンから選ばれた少なくとも一種とランタン
とカリウムとバリウムとを含む複合体の製造方法として
は、例えば各成分の金属塩(硝酸塩、炭酸塩、酢酸塩、
クエン酸塩、塩酸塩など)の水溶液を調製し、場合によ
ってはこれに沈澱剤(アンモニア、炭酸アンモニウムな
ど)を添加して沈澱物を生成させ、これら溶液あるいは
沈澱物を乾燥、焼成して複合酸化物粉末を得る方法があ
る。このような方法により各成分の少なくとも一部が複
合化し、目的に合致したものとなる。ただし複合体の製
造方法は上記方法に必ずしも限定されるものではなく、
上記以外の方法でも複合体が形成されるのであればよ
い。また、本発明の実施の形態で用いるセリウムとジル
コニウムを含む複合体も同様の方法で得られる。
As a method for producing a complex containing at least one selected from iron, cobalt, nickel and manganese, lanthanum, potassium and barium used in the present embodiment, for example, metal salts of each component (nitrate, carbonate) , Acetate,
An aqueous solution of citrate, hydrochloride, etc.) is prepared, and if necessary, a precipitant (ammonia, ammonium carbonate, etc.) is added to form a precipitate, and the solution or precipitate is dried and calcined to form a composite. There is a method of obtaining oxide powder. By such a method, at least a part of each component is composited, and it is suitable for the purpose. However, the method for producing the composite is not necessarily limited to the above method,
Any method other than the above may be used as long as the complex is formed. Further, the composite containing cerium and zirconium used in the embodiment of the present invention can be obtained by the same method.

【0022】本発明の実施の形態で用いるCu担持ゼオ
ライト触媒中のCu担持ゼオライト量は、NOx浄化作
用を示す量であれば特に限定されないが、触媒担体1L
当り100〜300gであることが好ましい。Cuはイ
オン交換によりゼオライトに担持されることが好まし
い。活性、耐久性を向上させるための添加物、例えばC
o、Ca、P、Ce、Nd等を添加してもよい。ゼオラ
イトにはCuイオン交換後の活性が高くかつ耐熱性に優
れるものが好ましく、例えばペンタシル型ゼオライト、
Y型ゼオライト、モルデナイト、フェリエライト等が用
いられる。
The amount of Cu-supporting zeolite in the Cu-supporting zeolite catalyst used in the embodiment of the present invention is not particularly limited as long as it exhibits a NOx purification action, but catalyst carrier 1L
It is preferably 100 to 300 g per unit. Cu is preferably supported on zeolite by ion exchange. Additives for improving activity and durability, such as C
You may add o, Ca, P, Ce, Nd, etc. Zeolites having high activity after Cu ion exchange and excellent heat resistance are preferable, for example, pentasil-type zeolite,
Y-type zeolite, mordenite, ferrierite, etc. are used.

【0023】Cu担持ゼオライト触媒とNOx吸収触媒
の2つの触媒の排気系への設置方法としては、例えば1
個の触媒コンバータ内に2つの触媒を装着して配置する
方法や、2種類の触媒を別々のコンバータに入れて設置
する方法がある。触媒の設置位置は特に限定されず、例
えばマニホールド直下位置や床下位置が挙げられる。前
段、後段それぞれ1個ずつの触媒で浄化性能が充分でな
い場合には、さらに前段、後段のいずれかあるいは両方
を複数個としたり、他種触媒を追加してもよい。
As a method of installing two catalysts, a Cu-supported zeolite catalyst and a NOx absorption catalyst, in the exhaust system, for example, 1
There are a method of mounting and arranging two catalysts in one catalytic converter, and a method of putting two kinds of catalysts in different converters and installing them. The installation position of the catalyst is not particularly limited, and examples thereof include a position directly under the manifold and a position under the floor. If the purification performance is not sufficient with one catalyst in each of the front stage and the rear stage, a plurality of one or both of the front stage and the rear stage may be provided, or another type of catalyst may be added.

【0024】[0024]

【実施例】以下、本発明を実施例、比較例および試験例
により説明する。
EXAMPLES The present invention will be described below with reference to Examples, Comparative Examples and Test Examples.

【0025】実施例1 活性アルミナ粉末に硝酸ロジウム水溶液を含浸し、乾燥
後400℃で1時間焼成して、Rh担持活性アルミナ粉
末(粉末A)を得た。この粉末のRh濃度は2.0重量
%であった。
Example 1 Activated alumina powder was impregnated with an aqueous rhodium nitrate solution, dried and then calcined at 400 ° C. for 1 hour to obtain Rh-supported activated alumina powder (powder A). The Rh concentration of this powder was 2.0% by weight.

【0026】活性アルミナ粉末に硝酸Pd水溶液を含浸
し、乾燥後400℃で1時間焼成して、Pd担持活性ア
ルミナ粉末(粉末B)を得た。この粉末のPd濃度は
2.0重量%であった。
The activated alumina powder was impregnated with a Pd nitrate aqueous solution, dried, and calcined at 400 ° C. for 1 hour to obtain a Pd-supported activated alumina powder (powder B). The Pd concentration of this powder was 2.0% by weight.

【0027】硝酸セリウムと硝酸ジルコニウムの混合水
溶液にアンモニアを加え、生じた沈澱物を乾燥後、40
0℃で焼成し、セリウム−ジルコニウム酸化物粉末(粉
末C)を得た。この粉末は金属原子比でセリウム/ジル
コニウム=8/2であった。粉末Cに硝酸Pd水溶液を
含浸し、乾燥後400℃で1時間焼成して、Pd担持セ
リウム−ジルコニウム粉末(粉末D)を得た。この粉末
のPd濃度は2.0重量%であった。
Ammonia was added to a mixed aqueous solution of cerium nitrate and zirconium nitrate, and the resulting precipitate was dried.
Firing was performed at 0 ° C. to obtain cerium-zirconium oxide powder (powder C). This powder had a metal atom ratio of cerium / zirconium = 8/2. The powder C was impregnated with an aqueous Pd nitrate solution, dried and then baked at 400 ° C. for 1 hour to obtain a Pd-supporting cerium-zirconium powder (powder D). The Pd concentration of this powder was 2.0% by weight.

【0028】炭酸ランタンと炭酸バリウムと炭酸コバル
トの混合物にクエン酸を加え、乾燥後700℃で焼成
し、(粉末E)を得た。この粉末は金属原子比でランタ
ン/バリウム/コバルト=2/2/5であった。
Citric acid was added to a mixture of lanthanum carbonate, barium carbonate and cobalt carbonate, dried and calcined at 700 ° C. to obtain (powder E). This powder had a metal atomic ratio of lanthanum / barium / cobalt = 2/2/5.

【0029】粉末Aを106g、粉末Bを305g、粉
末Dを225g、粉末Eを225g、活性アルミナ粉末
を39g、水900gを磁性ボールミルに投入し、混合
粉砕してスラリ液を得た。このスラリ液をコーディライ
ト質モノリス担体(1.0L、400セル)に付着さ
せ、空気流にてセル内の余剰のスラリを取り除いて13
0℃で乾燥した後、400℃で1時間焼成した。この作
業を2回行い、コート層重量200g/L−担体の(触
媒−1)を得た。
106 g of powder A, 305 g of powder B, 225 g of powder D, 225 g of powder E, 39 g of activated alumina powder, and 900 g of water were put into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was attached to a cordierite monolith carrier (1.0 L, 400 cells), and excess slurry in the cells was removed by an air flow to remove the slurry.
After drying at 0 ° C, it was baked at 400 ° C for 1 hour. This operation was performed twice to obtain (Catalyst-1) having a coat layer weight of 200 g / L-carrier.

【0030】実施例2 粉末Eの製造時に炭酸バリウムの代わりに炭酸カリウム
を用いる以外は実施例1と同様の方法で作成し、(触媒
−2)を得た。
Example 2 (Catalyst-2) was prepared in the same manner as in Example 1 except that potassium carbonate was used instead of barium carbonate in the production of powder E.

【0031】実施例3 炭酸ランタンと炭酸バリウムと炭酸カリウムと炭酸コバ
ルトの混合物にクエン酸を加え、乾燥後700℃で焼成
し、金属原子比でランタン/バリウム/カリウム/コバ
ルト=1/2/1/5の粉末を得た。
Example 3 Citric acid was added to a mixture of lanthanum carbonate, barium carbonate, potassium carbonate and cobalt carbonate, dried and calcined at 700 ° C., and the metal atomic ratio was lanthanum / barium / potassium / cobalt = 1/2/1. A powder of / 5 was obtained.

【0032】粉末Eの代わりにこの粉末を用いる以外は
実施例1と同様の方法で作成し、(触媒−3)を得た。
(Catalyst-3) was prepared in the same manner as in Example 1 except that this powder was used instead of the powder E.

【0033】比較例1 粉末Eのランタンを除く以外は実施例1と同様の方法で
作成し、(触媒−4)を得た。
Comparative Example 1 (Catalyst-4) was prepared in the same manner as in Example 1 except that the lanthanum of the powder E was removed.

【0034】比較例2 粉末Eのバリウムを除く以外は実施例1と同様の方法で
作成し、(触媒−5)を得た。
Comparative Example 2 (Catalyst-5) was prepared in the same manner as in Example 1 except that powder E except for barium was removed.

【0035】比較例3 粉末Eのコバルトを除く以外は実施例1と同様の方法で
作成し、(触媒−6)を得た。
Comparative Example 3 (Catalyst-6) was prepared in the same manner as in Example 1 except that the powder E except cobalt was removed.

【0036】比較例4 粉末Cのセリウムを除く以外は実施例1と同様の方法で
作成し、(触媒−7)を得た。
Comparative Example 4 (Catalyst-7) was prepared in the same manner as in Example 1 except that powder C except for cerium was removed.

【0037】比較例5 粉末Cのジルコニウムを除く以外は実施例1と同様の方
法で作成し、(触媒−8)を得た。
Comparative Example 5 (Catalyst-8) was prepared in the same manner as in Example 1 except that the powder C except for zirconium was removed.

【0038】比較例6 活性アルミナ粉末に硝酸Pd水溶液を含浸し、乾燥後4
00℃で1時間焼成して、Pd担持活性アルミナ粉末
(粉末F)を得た。この粉末のPd濃度は4.0重量%
であった。
Comparative Example 6 Activated alumina powder was impregnated with an aqueous solution of Pd nitrate and dried 4
The Pd-supported activated alumina powder (powder F) was obtained by firing at 00 ° C. for 1 hour. The Pd concentration of this powder is 4.0% by weight.
Met.

【0039】粉末Aを106g、粉末Fを265g、酸
化ジルコニウムを36g、酸化セリウムを189g、酸
化ランタンを71g、酸化バリウムを71g、酸化コバ
ルトを83g、活性アルミナ粉末を79g、水900g
を磁性ボールミルに投入し、混合粉砕してスラリ液を得
た。このスラリ液をコーディライト質モノリス担体
(1.0L、400セル)に付着させ、空気流にてセル
内の余剰のスラリを取り除いて130℃で乾燥した後、
400℃で1時間焼成した。この作業を2回行い、コー
ト層重量200g/L−担体の(触媒−9)を得た。
106 g of powder A, 265 g of powder F, 36 g of zirconium oxide, 189 g of cerium oxide, 71 g of lanthanum oxide, 71 g of barium oxide, 83 g of cobalt oxide, 79 g of activated alumina powder and 900 g of water.
Was charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was attached to a cordierite monolith carrier (1.0 L, 400 cells), excess slurry in the cells was removed by an air stream, and the slurry was dried at 130 ° C.
It was baked at 400 ° C. for 1 hour. This operation was performed twice to obtain (Catalyst-9) having a coat layer weight of 200 g / L-carrier.

【0040】比較例7 粉末Aを106g、粉末Fを265g、粉末Cを225
g、粉末Eを225g、活性アルミナ粉末を79g、水
900gを磁性ボールミルに投入し、混合粉砕してスラ
リ液を得た。このスラリ液をコーディライト質モノリス
担体(1.0L、400セル)に付着させ、空気流にて
セル内の余剰のスラリを取り除いて130℃で乾燥した
後、400℃で1時間焼成した。この作業を2回行い、
コート層重量200g/L−担体の(触媒−10)を得
た。
Comparative Example 7 106 g of powder A, 265 g of powder F and 225 of powder C
g, 225 g of powder E, 79 g of activated alumina powder and 900 g of water were put into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry solution was adhered to a cordierite monolith carrier (1.0 L, 400 cells), excess slurry in the cells was removed by an air stream, dried at 130 ° C, and then calcined at 400 ° C for 1 hour. Do this work twice,
(Catalyst-10) having a coat layer weight of 200 g / L-support was obtained.

【0041】実施例4 活性アルミナ粉末にジニトロジアンミンPt水溶液を含
浸し、乾燥後400℃で1時間焼成して、Pt担持活性
アルミナ粉末(粉末G)を得た。この粉末のPt濃度は
2.0重量%であった。
Example 4 Activated alumina powder was impregnated with an aqueous solution of dinitrodiammine Pt, dried and calcined at 400 ° C. for 1 hour to obtain Pt-supported activated alumina powder (powder G). The Pt concentration of this powder was 2.0% by weight.

【0042】粉末CにジニトロジアンミンPt水溶液を
含浸し、乾燥後400℃で1時間焼成して、Pt担持活
性アルミナ粉末(粉末H)を得た。この粉末のPt濃度
は2.0重量%であった。
Powder C was impregnated with an aqueous solution of dinitrodiammine Pt, dried and calcined at 400 ° C. for 1 hour to obtain Pt-supported activated alumina powder (powder H). The Pt concentration of this powder was 2.0% by weight.

【0043】粉末Aを106g、粉末Gを305g、粉
末Hを225g、粉末Eを225g、活性アルミナ粉末
を39g、水900gを磁性ボールミルに投入し、混合
粉砕してスラリ液を得た。このスラリ液をコーディライ
ト質モノリス担体(1.0L、400セル)に付着さ
せ、空気流にてセル内の余剰のスラリを取り除いて13
0℃で乾燥した後、400℃で1時間焼成した。この作
業を2回行い、コート層重量200g/L−担体の(触
媒−11)を得た。
106 g of powder A, 305 g of powder G, 225 g of powder H, 225 g of powder E, 39 g of activated alumina powder and 900 g of water were put into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was attached to a cordierite monolith carrier (1.0 L, 400 cells), and excess slurry in the cells was removed by an air flow to remove the slurry.
After drying at 0 ° C, it was baked at 400 ° C for 1 hour. This operation was performed twice to obtain (Catalyst-11) having a coat layer weight of 200 g / L-carrier.

【0044】実施例5 粉末Eの代わりに金属原子比でランタン/バリウム/コ
バルト=1/3/5とした粉末を用いる以外は実施例1
と同様の方法で作成し、(触媒−12)を得た。
Example 5 Example 1 was repeated except that powder E was replaced with powder having a metal atomic ratio of lanthanum / barium / cobalt = 1/3/5.
Was prepared in the same manner as in (Catalyst-12).

【0045】実施例6 粉末Eの代わりに金属原子比でランタン/バリウム/コ
バルト=3/1/5とした粉末を用いる以外は実施例1
と同様の方法で作成し、(触媒−13)を得た。
Example 6 Example 1 was repeated except that powder E was replaced with powder having a metal atomic ratio of lanthanum / barium / cobalt = 3/1/5.
Was prepared in the same manner as in (Catalyst-13).

【0046】実施例7 粉末Cの代わりに金属原子比でセリウム/ジルコニウム
=2/8とした粉末を用いる以外は実施例1と同様の方
法で作成し、(触媒−14)を得た。
Example 7 (Catalyst-14) was prepared in the same manner as in Example 1 except that the powder C was replaced by a powder having a metal atomic ratio of cerium / zirconium = 2/8.

【0047】実施例8 粉末Eのコバルトを鉄とした以外は実施例1と同様の方
法で作成し、(触媒−15)を得た。
Example 8 (Catalyst-15) was prepared in the same manner as in Example 1 except that the powder E was cobalt instead of iron.

【0048】実施例9 粉末Eのコバルトをニッケルとした以外は実施例1と同
様の方法で作成し、(触媒−16)を得た。
Example 9 (Catalyst-16) was prepared in the same manner as in Example 1 except that the powder E was replaced by nickel.

【0049】実施例10 粉末Eのコバルトをマンガンとした以外は実施例1と同
様の方法で作成し、(触媒−17)を得た。
Example 10 (Catalyst-17) was prepared in the same manner as in Example 1 except that manganese was used instead of cobalt in powder E.

【0050】実施例11 粉末Aを85g、粉末Bを244g、粉末Dを180
g、粉末Eを360g、活性アルミナ粉末を31g、水
900gを磁性ボールミルに投入し、混合粉砕してスラ
リ液を得た。このスラリ液をコーディライト質モノリス
担体(1.0L、400セル)に付着させ、空気流にて
セル内の余剰のスラリを取り除いて130℃で乾燥した
後、400℃で1時間焼成し、コート層重量125g/
L−担体を得た。
Example 11 85 g of powder A, 244 g of powder B and 180 of powder D
g, 360 g of powder E, 31 g of activated alumina powder, and 900 g of water were put into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was attached to a cordierite monolith carrier (1.0 L, 400 cells), excess slurry in the cells was removed by an air stream, dried at 130 ° C, and then baked at 400 ° C for 1 hour to coat. Layer weight 125g /
An L-carrier was obtained.

【0051】粉末Aを142g、粉末Bを407g、粉
末Dを300g、活性アルミナ粉末を51g、水900
gを磁性ボールミルに投入し、混合粉砕してスラリ液を
得た。このスラリ液を上記125g/L担体に付着さ
せ、空気流にてセル内の余剰のスラリを取り除いて13
0℃で乾燥した後、400℃で1時間焼成し、コート層
重量200g/L−担体の(触媒−18)を得た。
142 g of powder A, 407 g of powder B, 300 g of powder D, 51 g of activated alumina powder, and 900 of water.
g was put into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid is adhered to the above-mentioned 125 g / L carrier, and the excess slurry in the cell is removed by an air flow to remove 13
After being dried at 0 ° C., it was baked at 400 ° C. for 1 hour to obtain (Catalyst-18) having a coat layer weight of 200 g / L-carrier.

【0052】実施例12 炭酸ランタンと炭酸バリウムと炭酸カリウムと炭酸コバ
ルトの混合物にクエン酸を加え、乾燥後700℃で焼成
し、金属原子比でランタン/バリウム/カリウム/コバ
ルト=1/2/1/5の粉末を得た。
Example 12 Citric acid was added to a mixture of lanthanum carbonate, barium carbonate, potassium carbonate and cobalt carbonate, dried and calcined at 700 ° C., and the metal atomic ratio was lanthanum / barium / potassium / cobalt = 1/2/1. A powder of / 5 was obtained.

【0053】粉末Eの代わりにこの粉末を用いる以外は
実施例11と同様の方法で作成し、(触媒−19)を得
た。
(Catalyst-19) was prepared in the same manner as in Example 11 except that this powder was used instead of the powder E.

【0054】実施例13 粉末Fを365g、粉末Dを225g、粉末Eを225
g、活性アルミナ粉末を85g、水900gを磁性ボー
ルミルに投入し、混合粉砕してスラリ液を得た。このス
ラリ液をコーディライト質モノリス担体(1.0L、4
00セル)に付着させ、空気流にてセル内の余剰のスラ
リを取り除いて130℃で乾燥した後、400℃で1時
間焼成した。この作業を2回行い、コート層重量200
g/L−担体の(触媒−20)を得た。
Example 13 365 g of powder F, 225 g of powder D and 225 of powder E
g, 85 g of activated alumina powder and 900 g of water were put into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was used as a cordierite monolith carrier (1.0 L, 4 L
No. 00 cell), the excess slurry in the cell was removed by an air flow, the resultant was dried at 130 ° C., and then baked at 400 ° C. for 1 hour. This operation is performed twice, and the coat layer weight is 200
A g / L-support (Catalyst-20) was obtained.

【0055】実施例14 0.2モル/Lの硝酸銅水溶液5.2Kgとゼオライト
粉末2Kgとを混合し撹拌、濾過する作業を3回繰り返
し、その後乾燥、焼成し、Cu担持ゼオライト粉末(粉
末J)を得た。この粉末のCu濃度は5%であった。
Example 14 A 0.2 mol / L copper nitrate aqueous solution (5.2 Kg) and zeolite powder (2 Kg) were mixed, stirred and filtered three times, and then dried and fired to prepare a Cu-supporting zeolite powder (Powder J). ) Got. The Cu concentration of this powder was 5%.

【0056】粉末Jを810g、シリカゾル(固形分2
0%)450g、水540gを磁性ボールミルに投入
し、混合粉砕してスラリ液を得た。このスラリ液をコー
ディライト質モノリス担体(1.0L、400セル)に
付着させ、空気流にてセル内の余剰のスラリを取り除い
て130℃で乾燥した後、400℃で1時間焼成し、コ
ート層重量300g/L−担体の(触媒−21)を得
た。
810 g of Powder J, silica sol (solid content 2
0%) 450 g and water 540 g were put into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was attached to a cordierite monolith carrier (1.0 L, 400 cells), excess slurry in the cells was removed by an air stream, dried at 130 ° C, and then baked at 400 ° C for 1 hour to coat. (Catalyst-21) having a layer weight of 300 g / L-support was obtained.

【0057】触媒−21を前段に、触媒−1を後段に配
置した。
The catalyst-21 was placed in the front stage and the catalyst-1 was placed in the rear stage.

【0058】実施例15 触媒−21を前段に、触媒−2を後段に配置した。Example 15 The catalyst-21 was placed in the front stage, and the catalyst-2 was placed in the rear stage.

【0059】実施例16 触媒−21を前段に、触媒−3を後段に配置した。Example 16 The catalyst-21 was placed in the front stage, and the catalyst-3 was placed in the rear stage.

【0060】実施例17 触媒−21を前段に、触媒−4を後段に配置した。Example 17 Catalyst-21 was placed in the front stage and catalyst-4 was placed in the rear stage.

【0061】実施例18 触媒−21を前段に、触媒−11を後段に配置した。Example 18 The catalyst-21 was placed in the front stage and the catalyst-11 was placed in the rear stage.

【0062】実施例19 触媒−21を前段に、触媒−19を後段に配置した。Example 19 Catalyst-21 was placed in the front stage and catalyst-19 was placed in the rear stage.

【0063】実施例20 触媒−21を前段に、触媒−20を後段に配置した。Example 20 Catalyst-21 was placed in the front stage and catalyst-20 was placed in the rear stage.

【0064】試験例 耐久方法 排気量4400ccのエンジンの排気系に触媒を装着
し、触媒入口温度600℃で50時間運転した。
Test Example Durability Method A catalyst was attached to the exhaust system of an engine having a displacement of 4400 cc and operated at a catalyst inlet temperature of 600 ° C. for 50 hours.

【0065】評価方法 排気量2000ccのエンジンの排気系に触媒を装着
し、A/F=14.6を30秒→A/F=22を30
秒、の運転を繰り返した。触媒入口温度は400℃とし
た。この切り替え運転1サイクルのトータル転化率を求
めた。
Evaluation method A catalyst was attached to the exhaust system of an engine with a displacement of 2000 cc, and A / F = 14.6 was set for 30 seconds and A / F = 22 was set at 30.
The operation was repeated for 2 seconds. The catalyst inlet temperature was 400 ° C. The total conversion rate for one cycle of this switching operation was determined.

【0066】実施例1〜19、比較例1〜7の転化率の
評価結果を表1に示す。また各実施例、比較例において
得られた触媒組成を表2に示す。
Table 1 shows the evaluation results of the conversion rates of Examples 1 to 19 and Comparative Examples 1 to 7. Table 2 shows the catalyst compositions obtained in the respective examples and comparative examples.

【0067】[0067]

【表1】 [Table 1]

【0068】[0068]

【表2】 [Table 2]

【0069】[0069]

【発明の効果】以上説明したように、本発明によれば以
下のような効果が得られる。
As described above, according to the present invention, the following effects can be obtained.

【0070】 本発明の触媒は、2種複合体が相互作
用することによって高いNOx吸収作用が得られる。こ
のうち貴金属を担持した複合体−IIはNOをNO2 やN
3に酸化する作用を持ち、複合体−Iはこれを硝酸塩
として速やかに吸収する作用を持つ。貴金属は本来NO
をNO2 やNO3 に転換する能力を有するが、その転換
能は複合体−IIに担持することでさらに向上することと
なる。複合体−I、IIはいずれも複合化したことによ
り、それぞれの元素単独の酸化物を混合しただけでは得
られない高い作用効果が発現している。
In the catalyst of the present invention, a high NOx absorption action can be obtained by the interaction of the two-type complex. Of these, the complex-II carrying a noble metal is used to convert NO into NO 2 and N.
It has an action of oxidizing to O 3 , and the complex-I has a action of rapidly absorbing it as a nitrate. Noble metal is originally NO
Has the ability to be converted to NO 2 or NO 3 , and its conversion ability will be further improved by loading it on the complex-II. Since each of the composites-I and II is composited, a high action and effect which cannot be obtained only by mixing oxides of each element alone are exhibited.

【0071】複合体−IIに担持される貴金属の量は、触
媒に含まれる貴金属のうちの2〜8割であり、残りの貴
金属はアルミナ等の高比表面積担体に担持されることが
好ましい。高比表面積担体に担持された貴金属は分散性
が高いことから、三元機能のうち低温活性、ウインドウ
幅拡大に効果がある。貴金属を複合体−IIと高比表面積
担体の両方に担持することで、ストイキからリーン域ま
で幅広く排ガスを浄化することが可能となる。
The amount of the noble metal supported on the composite-II is 20 to 80% of the noble metal contained in the catalyst, and the remaining noble metal is preferably supported on the high specific surface area carrier such as alumina. Since the noble metal supported on the high specific surface area carrier has high dispersibility, it is effective in low temperature activation and widening of the window width among the ternary functions. By loading the noble metal on both the composite-II and the high specific surface area carrier, it becomes possible to purify exhaust gas in a wide range from stoichiometric to lean regions.

【0072】また本触媒は熱耐久後においても高いNO
x吸収作用を持つことも特徴の一つである。これは、各
成分が複合化されたことによって熱耐久性向上効果が発
現したことによる。複合体−IはAサイト割合の少ない
ペロブスカイト型構造をとっているため、他成分(例え
ばアルミナ)との固相反応が起こりにくくなっており、
その結果耐久後の物性変化が抑えられる。複合体−IIは
熱耐久後においても比表面関低下が少ないため、貴金属
によるNO酸化能力が維持される。
Further, the present catalyst has high NO even after thermal endurance.
One of the characteristics is that it has an x-absorbing effect. This is because the effect of improving the thermal durability was exhibited by combining the respective components. Since the complex-I has a perovskite structure with a small proportion of A sites, solid-state reaction with other components (for example, alumina) is less likely to occur,
As a result, changes in physical properties after endurance can be suppressed. Since the composite-II has a small decrease in the specific surface even after the thermal endurance, the NO oxidation ability by the noble metal is maintained.

【0073】このように2種の異なる複合体を触媒中に
含有させることで、本発明の目的とする高いNOx吸収
機能が得られることとなる。
Thus, by incorporating two different kinds of composites in the catalyst, a high NOx absorption function, which is the object of the present invention, can be obtained.

【0074】 また本発明では、鉄、コバルト、ニッ
ケル、マンガンから選ばれた少なくとも一種が酸化物換
算で触媒1L当り5〜50g、ランタンが酸化物換算で
触媒1L当り5〜50g、バリウムが酸化物換算で触媒
1L当り5〜100g、カリウムが酸化物換算で触媒1
L当り1〜20g、セリウムが酸化物換算で触媒1L当
り5〜100g、ジルコニウムが酸化物換算で触媒1L
当り5〜100g含有されてなることを特徴の一つとし
ている。
In the present invention, at least one selected from iron, cobalt, nickel, and manganese is 5 to 50 g per 1 L of the catalyst in terms of oxide, lanthanum is 5 to 50 g per 1 L of the catalyst in terms of oxide, and barium is oxide. 5 to 100 g of catalyst per liter of catalyst, potassium 1 in terms of oxide
1 to 20 g per L, cerium 5 to 100 g per 1 L catalyst in terms of oxide, zirconium 1 L in terms of oxide
One of the features is that each of them is contained in an amount of 5 to 100 g.

【0075】鉄、コバルト、ニッケル、マンガンから選
ばれた少なくとも一種が上記範囲以下の場合には、十分
なNOx吸収能と耐久性が得られずまた上記範囲以上と
しても有為な増量効果は得られない。ランタンが上記範
囲以下の場合には、十分なNOx吸収能と耐久性が得ら
れずまた上記範囲以上としても有為な増量効果は得られ
ない。バリウムが上記範囲以下の場合には十分なNOx
吸収能が得られず、また上記範囲以上としても有為な増
量効果は得られない。カリウムが上記範囲以下の場合に
は十分なNOx吸収能が得られず、また上記範囲以上と
しても有為な増量効果は得られず、また三元機能のうち
のHC,CO酸化反応を低下させることとなる。セリウ
ムが上記範囲以下の場合には十分なNOx吸収能向上効
果、三元機能向上効果が得られず、また上記範囲以上と
しても有為な増量効果は得られない。ジルコニウムが上
記範囲以下の場合には十分なNOx吸収能向上効果、三
元機能向上効果が得られず、また上記範囲以上としても
有為な増量効果は得られない。
When at least one selected from iron, cobalt, nickel and manganese is within the above range, sufficient NOx absorption capacity and durability cannot be obtained, and even when it is above the above range, a significant amount increasing effect is obtained. I can't. When the lanthanum is within the above range, sufficient NOx absorption capacity and durability cannot be obtained, and even when the lanthanum is above the above range, a significant amount increasing effect cannot be obtained. Sufficient NOx when barium is below the above range
Absorptive capacity cannot be obtained, and a significant amount increasing effect cannot be obtained even if the above range is exceeded. When potassium is below the above range, sufficient NOx absorption capacity cannot be obtained, and above the above range, no significant effect of increasing the amount can be obtained, and HC and CO oxidation reactions among the three functions are reduced. It will be. When the amount of cerium is less than the above range, the effect of improving the NOx absorption capacity and the effect of improving the ternary function cannot be obtained sufficiently. When the amount of zirconium is less than the above range, sufficient NOx absorption capacity improving effect and ternary function improving effect cannot be obtained, and even when it is more than the above range, a significant amount increasing effect cannot be obtained.

【0076】 また本発明では、複合体−Iを下層に
設け、複合体−Iを含まない層をその上層に設けること
を特徴の一つとしている。このような構造とすることで
ストイキ時に放出されるNOxを効率よく浄化できるこ
ととなる。これは吸収機能を下層に分担させることによ
り、ストイキ時に放出されるNOxが一旦上層を通こと
となり、その結果効率よくNOxが浄化できるためと考
えている。このような層構造とすることで、高いNOx
吸収能を得つつ三元触媒性能を確保することが可能とな
っている。
Further, one feature of the present invention is that the complex-I is provided as the lower layer and the layer not containing the complex-I is provided as the upper layer. With such a structure, NOx released during stoichiometry can be efficiently purified. This is because NOx released during stoichiometry once passes through the upper layer by sharing the absorption function with the lower layer, and as a result, NOx can be efficiently purified. With such a layered structure, high NOx can be obtained.
It is possible to secure three-way catalyst performance while obtaining absorption capacity.

【0077】 また本発明では、エンジンの排気系に
触媒を少なくとも2個設け、前段にCuを担持してなる
ゼオライトを含む触媒を配置し、後段に請求項1乃至3
に記載の触媒を配置することを特徴の一つとしている。
このような配置とすることで幅広い運転条件下でNOx
を浄化することが可能となっている。
Further, according to the present invention, at least two catalysts are provided in the exhaust system of the engine, the catalyst containing the zeolite supporting Cu is arranged in the front stage, and the catalysts in the rear stage are arranged in the first to third stages.
One of the features is to dispose the catalyst described in 1.
With this arrangement, NOx can be used under a wide range of operating conditions.
It is possible to purify.

【0078】Cu担持ゼオライト触媒は、酸素過剰域で
のNOxを浄化する触媒として、例えば特開昭63−1
00919号にあるようにすでに開示されているが、こ
の触媒ではHC/NOx比が低いとNOx浄化性能が不
十分となる問題があった。またNOxを吸収浄化する触
媒は、HC/NOx比が低くてもその作用は低下しない
ものの、リーン定常走行を長い時間続けるとNOx吸収
量が飽和し、やがて吸収作用が無くなるという問題があ
った。本発明では前段にCu担持ゼオライト触媒を、後
段にNOx吸収触媒を配置することで上記問題を解決し
ている。すなわちHC/CO比が低い場合には後段の触
媒が働き、リーン定常走行時には前段の触媒が働き、幅
広い運転条件を可能としている。
The Cu-supported zeolite catalyst is used as a catalyst for purifying NOx in the oxygen excess region, for example, JP-A-63-1.
Although already disclosed as in No. 00919, this catalyst has a problem that the NOx purification performance becomes insufficient when the HC / NOx ratio is low. Further, although the action of the catalyst that absorbs and purifies NOx does not decrease even if the HC / NOx ratio is low, there is a problem that the NOx absorption amount becomes saturated when the lean steady running is continued for a long time, and eventually the absorption action disappears. In the present invention, the above problem is solved by disposing the Cu-supported zeolite catalyst in the front stage and the NOx absorption catalyst in the rear stage. That is, when the HC / CO ratio is low, the catalyst in the latter stage works, and the catalyst in the former stage works during lean steady running, enabling a wide range of operating conditions.

【0079】また本発明のような配置を採ることで、後
段のNOx吸収触媒の作用が大幅に高められる効果が見
いだされている。その原因はまだ明らかでないが、例え
ばCuゼオライト触媒がNOx吸収に必要なNOxの酸
化を速やかに行なっていることや、Cuゼオライト触媒
がNOx吸収に好都合なHCD,NOx,O2 濃度に変
換していること等が考えられる。
Further, it has been found that by adopting the arrangement as in the present invention, the action of the NOx absorption catalyst in the latter stage can be greatly enhanced. The cause is not yet clear, but for example, the Cu zeolite catalyst is rapidly oxidizing NOx necessary for NOx absorption, and the Cu zeolite catalyst is converted into HCD, NOx, and O 2 concentrations that are convenient for NOx absorption. It is possible that

【0080】 さらに本発明では、空燃比がストイキ
オメトリーと15以上とを繰り返し変動するリーンバー
ンエンジン車の排ガスを、上記〜の触媒により浄化
することを特徴の一つとしている。このように雰囲気が
変動することによりNOx吸収、放出のサイクルが成立
し、効率よくNOxが浄化できることとなる。
Furthermore, the present invention is characterized in that the exhaust gas of a lean-burn engine vehicle in which the air-fuel ratio repeatedly changes between stoichiometry and 15 or more is purified by the above-mentioned catalysts. By changing the atmosphere in this way, a cycle of NOx absorption and release is established, and NOx can be efficiently purified.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01J 23/64 104A (72)発明者 伊藤 秀俊 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (56)参考文献 特開 平5−31367(JP,A) 特開 平4−367713(JP,A) 特開 平5−86849(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 B01D 53/86,53/94 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI B01J 23/64 104A (72) Inventor Hidetoshi Ito 2 Takara-cho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (56) References JP-A-5-31367 (JP, A) JP-A-4-367713 (JP, A) JP-A-5-86849 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 21/00-38/74 B01D 53 / 86,53 / 94

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一体構造型担体上に、 a)白金、パラジウム、ロジウムから選ばれた少なくと
も一種と、 b)(La 1-x x 1- α B O 3- δ 0<x<1、 0<α<0.2、 0≦δ≦1 A=Ba、Kから選ばれた少なくとも一種 B=鉄、コバルト、ニッケル、マンガンから選ばれた少
なくとも一種で示される複合体(複合体−I)と、 c)Cey Zr1-y2 0<y<1で示される複合体(複合体−II)とを含有
し、かつ触媒に含まれる貴金属の2〜8割を前記複合体
−IIに担持することを特徴とする、酸素過剰雰囲気下
の窒素酸化物を浄化する排ガス浄化用触媒。
1. On a monolithic structure type carrier, a) at least one selected from platinum, palladium and rhodium, and b) (La 1-x A x ) 1- α B O 3- δ 0 <x <1. , 0 <α <0.2, 0 ≦ δ ≦ 1 A = Ba, at least one selected from K, B = complex represented by at least one selected from iron, cobalt, nickel, and manganese (complex-I ), And c) the complex represented by Ce y Zr 1-y O 2 0 <y <1 (complex-II), and 20 to 80% of the noble metal contained in the catalyst is contained in the complex- An exhaust gas purifying catalyst for purifying nitrogen oxides in an oxygen excess atmosphere, which is supported on II.
【請求項2】 鉄、コバルト、ニッケル、マンガンから
選ばれた少なくとも一種が酸化物換算で触媒1L当り5
〜50g、ランタンが酸化物換算で触媒1L当り5〜5
0g、バリウムが酸化物換算で触媒1L当り5〜100
g、カリウムが酸化物換算で触媒1L当り1〜20g、
セリウムが酸化物換算で触媒1L当り5〜100g、ジ
ルコニウムが酸化物換算で触媒1L当り5〜100g含
有されてなることを特徴とする、請求項1記載の酸素過
剰雰囲気下の窒素酸化物を浄化する排ガス浄化用触媒。
2. At least one selected from iron, cobalt, nickel and manganese is 5 per liter of catalyst in terms of oxide.
~ 50g, 5 to 5 per liter of catalyst in terms of oxide of lanthanum
0 g, barium is 5 to 100 per 1 L of catalyst in terms of oxide.
g, potassium is 1 to 20 g per 1 L of the catalyst in terms of oxide,
Cerium is contained in an amount of 5 to 100 g per 1 L of the catalyst in terms of oxide, and zirconium is contained in the amount of 5 to 100 g per 1 L of in terms of the oxide, purifying nitrogen oxides in an excess oxygen atmosphere according to claim 1. Exhaust gas purification catalyst.
【請求項3】 複合体−Iを下層に設け、その上層に複
合体−Iを含まない層を設けて成る、請求項1あるいは
2記載の酸素過剰雰囲気下の窒素酸化物を浄化する排ガ
ス浄化用触媒。
3. Exhaust gas purification for purifying nitrogen oxides in an oxygen excess atmosphere according to claim 1 or 2, wherein Complex-I is provided as a lower layer, and a layer not containing Complex-I is provided as an upper layer. Catalyst.
【請求項4】 エンジンの排気系に触媒を少なくとも2
個設け、前段にCuを担持してなるゼオライトを含む触
媒を配置し、後段に請求項1乃至3のいずれか一つに記
載の触媒を配置することを特徴とする、酸素過剰雰囲気
下の窒素酸化物を浄化する排ガス浄化用触媒システム
4. An engine exhaust system comprising at least two catalysts.
Nitrogen in an oxygen-excess atmosphere, characterized in that a single catalyst is provided at the front stage, and a catalyst containing zeolite supporting Cu is disposed at the front stage, and the catalyst according to any one of claims 1 to 3 is disposed at the rear stage. Exhaust gas purification catalyst system that purifies oxides.
【請求項5】 空燃比がストイキオメトリーと15以上
とを繰り返すリーンバーンエンジン車の排ガスを浄化す
ることを特徴とする、請求項1乃至4のいずれか一つに
記載の排ガス浄化用触媒。
5. The exhaust gas purifying catalyst according to claim 1, which purifies exhaust gas of a lean-burn engine vehicle in which an air-fuel ratio repeats stoichiometry and 15 or more.
【請求項6】 リーンバーンエンジンからの排ガスを、
Cuを担持してなるゼオライトを含む触媒に接触させ、
ついで、 a)白金、パラジウム、ロジウムから選ばれた少なくと
も一種と、 b)(La 1-x x 1- α B O 3- δ 0<x<1、 0<α<0.2、 0≦δ≦1 A=Ba、Kから選ばれた少なくとも一種 B=鉄、コバルト、ニッケル、マンガンから選ばれた少
なくとも一種で示される複合体(複合体−I)と、 c)Cey Zr1-y2 0<y<1 で示される複合体(複合体−II)とを含有し、かつ触
媒に含まれる貴金属の2〜8割を前記複合体−IIに担
持した触媒に接触させることを特徴とする排ガス浄化方
法。
6. The exhaust gas from the lean burn engine,
Contacting with a catalyst containing zeolite supporting Cu,
Then, a) at least one selected from platinum, palladium, and rhodium, and b) (La 1-x A x ) 1- α B O 3- δ 0 <x <1, 0 <α <0.2, 0 ≤ δ ≤ 1 A = at least one selected from Ba and K B = a composite (complex-I) represented by at least one selected from iron, cobalt, nickel, and manganese; and c) Ce y Zr 1- y O 2 0 <y <1 and a complex (complex-II), and 20 to 80% of the noble metal contained in the catalyst is brought into contact with the catalyst supported on the complex-II. A characteristic exhaust gas purification method.
【請求項7】 鉄、コバルト、ニッケル、マンガンから
選ばれた少なくとも一種が酸化物換算で触媒1L当り5
〜50g、ランタンが酸化物換算で触媒1L当り5〜5
0g、バリウムが酸化物換算で触媒1L当り5〜100
g、カリウムが酸化物換算で触媒1L当り1〜20g、
セリウムが酸化物換算で触媒1L当り5〜100g、ジ
ルコニウムが酸化物換算で触媒1L当り5〜100g含
有されてなることを特徴とする、請求項6記載の排ガス
浄化方法。
7. At least one selected from iron, cobalt, nickel and manganese is 5 per liter of catalyst in terms of oxide.
~ 50g, 5 to 5 per liter of catalyst in terms of oxide of lanthanum
0 g, barium is 5 to 100 per 1 L of catalyst in terms of oxide.
g, potassium is 1 to 20 g per 1 L of the catalyst in terms of oxide,
The exhaust gas purifying method according to claim 6, wherein cerium is contained in an amount of 5 to 100 g per 1 L of the catalyst in terms of oxide, and zirconium is included in the amount of 5 to 100 g per 1 L of in terms of the oxide.
【請求項8】 前記複合体−Iを下層に設け、その上層
に前記複合体−Iを含まない層を設けて成ることを特徴
とする、請求項6あるいは7記載の排ガス浄化方法。
8. The exhaust gas purification method according to claim 6, wherein the complex-I is provided as a lower layer, and a layer not containing the complex-I is provided as an upper layer.
【請求項9】 空燃比がストイキオメトリーと15以上
とを繰り返すリーンバーンエンジン車の排ガスを浄化す
ることを特徴とする、請求項6乃至8のいずれか一つに
記載の排ガス浄化方法。
9. The exhaust gas purifying method according to claim 6, wherein the exhaust gas of a lean-burn engine vehicle in which the air-fuel ratio repeats stoichiometry and 15 or more is purified.
JP06648396A 1996-03-22 1996-03-22 Exhaust gas purification catalyst and exhaust gas purification method Expired - Fee Related JP3493879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06648396A JP3493879B2 (en) 1996-03-22 1996-03-22 Exhaust gas purification catalyst and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06648396A JP3493879B2 (en) 1996-03-22 1996-03-22 Exhaust gas purification catalyst and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JPH09253496A JPH09253496A (en) 1997-09-30
JP3493879B2 true JP3493879B2 (en) 2004-02-03

Family

ID=13317086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06648396A Expired - Fee Related JP3493879B2 (en) 1996-03-22 1996-03-22 Exhaust gas purification catalyst and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP3493879B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102728A (en) * 1998-09-29 2000-04-11 Mazda Motor Corp Catalyst for purifying exhaust gas
FR2793163B1 (en) * 1999-05-07 2001-08-10 Ecia Equip Composants Ind Auto PURIFICATION COMPOSITION WITH TREATMENT OF NOX FROM EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE
US7490464B2 (en) * 2003-11-04 2009-02-17 Basf Catalysts Llc Emissions treatment system with NSR and SCR catalysts
DE102005053232A1 (en) * 2005-11-06 2007-05-10 Basf Ag Process for dealkylation of alkyl-substituted aromatic hydrocarbons with water vapor
JPWO2010010714A1 (en) * 2008-07-23 2012-01-05 新日鉄マテリアルズ株式会社 Oxygen storage material, exhaust gas purification catalyst, and honeycomb catalyst structure for exhaust gas purification
JP5673173B2 (en) * 2011-02-10 2015-02-18 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP5720558B2 (en) * 2011-12-15 2015-05-20 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP5576420B2 (en) * 2012-03-21 2014-08-20 トヨタ自動車株式会社 Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JPH09253496A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
JP4092441B2 (en) Exhaust gas purification catalyst
EP0935055A2 (en) Device for purifying oxygen rich exhaust gas
JP3493792B2 (en) Exhaust gas purification catalyst
JP2003190790A (en) Catalyst for purifying exhaust gas and system therefor
JPH11104493A (en) Catalyst for purifying exhaust gas and its use
JP3493879B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
JPH08281110A (en) Catalyst for purifying exhaust gas and its production
JPH09220470A (en) Catalyst for purification of exhaust gas
JPH11221466A (en) Catalyst for purifying exhaust gas and purification of exhaust gas
JPH10192713A (en) Exhaust gas purifying catalyst and its use
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JPH09103652A (en) Method for purifying exhaust gas
JPH1157477A (en) Exhaust gas cleaning catalyst and method of using the same
JPH09225264A (en) Catalyst for purifying exhaust gas
JP3477982B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH11123331A (en) Catalyst for cleaning exhaust gas
JPH07308578A (en) Exhaust gas purifying catalyst
JPH08281111A (en) Catalyst for purifying exhaust gas and its production
JP3477974B2 (en) Exhaust gas purification catalyst
JP3338889B2 (en) Exhaust gas purification device
JP2000042369A (en) Purifying device for exhaust gas from internal combustion engine, purifying method of exhaust gas and purifying catalyst for exhaust gas
JPH0975741A (en) Catalyst for purification of exhaust gas
JPH09225306A (en) Exhaust gas purifying catalyst and its production
JP2000015104A (en) Catalyst for purification of exhaust gas and purification of exhaust gas

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees