JPH09220470A - Catalyst for purification of exhaust gas - Google Patents

Catalyst for purification of exhaust gas

Info

Publication number
JPH09220470A
JPH09220470A JP8029077A JP2907796A JPH09220470A JP H09220470 A JPH09220470 A JP H09220470A JP 8029077 A JP8029077 A JP 8029077A JP 2907796 A JP2907796 A JP 2907796A JP H09220470 A JPH09220470 A JP H09220470A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
silica
alumina powder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8029077A
Other languages
Japanese (ja)
Inventor
Motohisa Kamijo
元久 上條
Katsuo Suga
克雄 菅
Hiroaki Kaneko
浩昭 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP8029077A priority Critical patent/JPH09220470A/en
Publication of JPH09220470A publication Critical patent/JPH09220470A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a ternary catalyst having improved NOx removing performance in a lean atmosphere and excellent in durability. SOLUTION: At least two kinds of catalysts are arranged in a flow of exhaust gas from an engine. A zeolite-contg. catalyst carrying copper is disposed on the upper stream side and a catalyst contg. at least one kind of transition metal selected from among Fe, Co, Ni and Mn, Ba, La and at least one kind of noble metal selected from among Pt, Pd and Rh is disposed on the downstream side. The transition metal, Ba and La are partially or entirely in the form of a multiple oxide and the latter catalyst consists of an inner layer contg. the multiple oxide and a surface layer contg. the noble metal and silica-alumina.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガソリン及びディ
ーゼル自動車およびボイラー等の内燃機関から排出され
る排気ガス中の炭化水素(HC)、一酸化炭素(CO)
および窒素酸化物(NOx)を浄化する排気ガス浄化用
触媒に関し、特に酸素過剰雰囲気下でのNOxの浄化性
能に優れる排気ガス浄化用触媒に関する。
TECHNICAL FIELD The present invention relates to hydrocarbons (HC) and carbon monoxide (CO) in exhaust gas discharged from internal combustion engines such as gasoline and diesel automobiles and boilers.
The present invention also relates to an exhaust gas purifying catalyst that purifies nitrogen oxides (NOx), and particularly to an exhaust gas purifying catalyst that has excellent NOx purifying performance in an oxygen excess atmosphere.

【0002】[0002]

【従来の技術】近年、石油資源の枯渇問題および地球温
暖化問題の関点から、低燃費自動車の実現が期待されて
おり、特にガソリン自動車に対しては希薄燃焼自動車の
開発が望まれている。希薄燃焼自動車においては、希薄
燃焼走行時の排気ガス雰囲気は、理論空燃状態(以下、
「ストイキ状態」と称す)に比べて酸素過剰雰囲気(以
下、「リーン雰囲気」と称す)となる。リーン雰囲気に
おいて、従来の三元触媒を適応させた場合には、過剰な
酸素の影響からNOx浄化作用が不十分となるという問
題があった。このため酸素過剰雰囲気下においてもNO
xを浄化できる触媒の開発が望まれていた。
2. Description of the Related Art In recent years, fuel-efficient vehicles are expected to be realized from the viewpoints of exhaustion of petroleum resources and global warming, and particularly lean-burn vehicles are desired to be developed for gasoline vehicles. . In lean-burn vehicles, the exhaust gas atmosphere during lean-burn running is the theoretical air-fuel state (hereinafter,
An oxygen-excess atmosphere (hereinafter referred to as "lean atmosphere") is obtained as compared with a "stoichiometric state". When a conventional three-way catalyst is applied in a lean atmosphere, there is a problem that the NOx purification action becomes insufficient due to the influence of excess oxygen. Therefore, even in an oxygen excess atmosphere, NO
It has been desired to develop a catalyst that can purify x.

【0003】従来より、リーン雰囲気下においてNOx
浄化性能を向上させる触媒は種々提案されている。その
代表的なものには、例えば特開平5−168860号公
報に開示されているような、ランタン等を白金(Pt)
に担持させてランタンをNOx吸収材として用いている
触媒がある。これはリーン雰囲気下でNOxを吸収し、
ストイキ状態あるいは燃料過剰(リッチ)雰囲気下でN
Oxを放出浄化するものである。
Conventionally, NOx has been used in a lean atmosphere.
Various catalysts for improving purification performance have been proposed. As a typical example thereof, lanthanum or the like as disclosed in JP-A-5-168860 is platinum (Pt).
There is a catalyst in which lanthanum is carried on and used as a NOx absorbent. It absorbs NOx in a lean atmosphere,
N in a stoichiometric condition or in an excess fuel (rich) atmosphere
It is intended to release and purify Ox.

【0004】しかし上記特開平5−168860号公報
に開示された触媒は、NOx吸収能力が不十分であると
いう問題があり、かかる問題を解決する目的で、例えば
特開平5−261287号公報、特開平5−31765
2号公報及び特開平6−31139号公報にアルカリ金
属やアルカリ土類金属を用いる排気ガス浄化用触媒が開
示されている。また、特開平6−142458号公報お
よび特開平6−262040号公報には、アルカリ金
属、アルカリ土類金属、希土類金属、鉄属金属を含有す
る排気ガス浄化用触媒が開示されている。
However, the catalyst disclosed in Japanese Unexamined Patent Publication No. 5-168860 has a problem that the NOx absorption capacity is insufficient. For the purpose of solving such a problem, for example, in Japanese Unexamined Patent Publication No. 5-261287, Kaihei 5-31765
No. 2 and JP-A-6-31139 disclose an exhaust gas purifying catalyst using an alkali metal or an alkaline earth metal. Further, JP-A-6-142458 and JP-A-6-262040 disclose exhaust gas purifying catalysts containing an alkali metal, an alkaline earth metal, a rare earth metal and an iron group metal.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の排気ガス浄化触媒は、リーン雰囲気下におけるNO
x吸収性能が不十分であり、特に耐久後のNOx吸収性
能が不足している。
However, the above-mentioned conventional exhaust gas purifying catalyst has no NO in a lean atmosphere.
The x absorption performance is insufficient, and particularly the NOx absorption performance after endurance is insufficient.

【0006】またこの様なNOx吸収型の触媒において
は、リーン雰囲気で吸収したNOxをストイキあるいは
リッチ状態時に浄化しなければならないので、三元触媒
としての機能も同時に要求されるが、上述したように十
分なNOx吸収機能を得るために相当量のアルカリ金
属、アルカリ土類金属を添加すると、アルカリ金属、ア
ルカリ土類金属の強い塩基性が触媒性能に影響を及ぼし
て貴金属の酸化能力を低下させ、三元触媒としてのH
C,COの転化性能が不十分になるという問題があっ
た。更に、貴金属とNOx吸収材とが接触するために、
NOx浄化反応が阻害されるという問題があった。
Further, in such a NOx absorption type catalyst, since the NOx absorbed in the lean atmosphere has to be purified in the stoichiometric or rich state, the function as a three-way catalyst is also required at the same time, but as described above. If a considerable amount of alkali metal or alkaline earth metal is added in order to obtain a sufficient NOx absorption function, the strong basicity of alkali metal or alkaline earth metal will affect the catalytic performance and reduce the oxidizing ability of precious metals. , H as a three-way catalyst
There is a problem that the conversion performance of C and CO becomes insufficient. Furthermore, since the noble metal and the NOx absorbent contact each other,
There is a problem that the NOx purification reaction is hindered.

【0007】従って、本発明の目的は、従来の触媒では
十分な活性を示さなかったリーン雰囲気下におけるNO
x浄化性能を向上させることができ、かつ耐久後におい
ても三元触媒としての機能を十分に発現することができ
る排気ガス浄化用触媒を提供するにある。
Therefore, the object of the present invention is to provide NO in a lean atmosphere which has not been sufficiently activated by conventional catalysts.
It is intended to provide an exhaust gas purifying catalyst that can improve x purification performance and that can sufficiently exhibit the function as a three-way catalyst even after endurance.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために研究した結果、鉄、コバルト、ニッケ
ルおよびマンガンから成る群より選ばれた少なくとも一
種の遷移金属とバリウムとランタンとから成る複合酸化
物並びに、白金、パラジウム及びロジウムから成る群よ
り選ばれた少なくとも一種の貴金属とを含むことによ
り、リーン雰囲気下でのNOx吸収性能を向上させるこ
とを見出し、本発明に到達した。
As a result of research for solving the above problems, the present inventors have found that at least one transition metal selected from the group consisting of iron, cobalt, nickel and manganese, barium and lanthanum The present invention was found to improve the NOx absorption performance in a lean atmosphere by including a composite oxide composed of and a noble metal selected from the group consisting of platinum, palladium and rhodium, and arrived at the present invention.

【0009】請求項1記載の排気ガス浄化用触媒は、耐
火性無機担体上に、鉄、コバルト、ニッケル及びマンガ
ンから成る群より選ばれた少なくとも一種の遷移金属
と、バリウムと、ランタンと、白金、パラジウム及びロ
ジウムから成る群より選ばれた少なくとも一種の貴金属
とを含み、当該遷移金属とバリウムとランタンはその一
部若しくは全部が複合酸化物であることを特徴とする。
The catalyst for purifying exhaust gas according to claim 1 has at least one transition metal selected from the group consisting of iron, cobalt, nickel and manganese, barium, lanthanum and platinum on a refractory inorganic carrier. At least one noble metal selected from the group consisting of palladium, rhodium, and the transition metal, barium, and lanthanum are partly or wholly complex oxides.

【0010】また前記触媒のHC及びCO活性を更に向
上させるために、請求項2記載の排気ガス浄化用触媒
は、耐火性無機担体上に、鉄、コバルト、ニッケル及び
マンガンから成る群より選ばれた少なくとも一種の遷移
金属と、バリウムと、ランタンとを含む複合酸化物を含
有する触媒内層と、白金、パラジウム及びロジウムから
成る群から選ばれた少なくとも一種の貴金属を含み、上
記複合酸化物を含まないシリカアルミナを含有する触媒
表層とから構成されることを特徴とする。
In order to further improve the HC and CO activities of the catalyst, the exhaust gas purifying catalyst according to claim 2 is selected from the group consisting of iron, cobalt, nickel and manganese on a refractory inorganic carrier. At least one transition metal, barium, and a catalyst inner layer containing a complex oxide containing lanthanum, at least one precious metal selected from the group consisting of platinum, palladium and rhodium, containing the above complex oxide And a catalyst surface layer containing no silica-alumina.

【0011】更に、請求項1又は2に記載の排気ガス浄
化用触媒のNOx吸収作用を更に高めるために、請求項
3記載の排気ガス浄化用触媒は、エンジン排気気流中に
触媒を少なくとも2個設け、排気気流に対して上流側に
銅担持ゼオライト含有触媒を配置し、下流側に請求項1
又は2記載の触媒を配置することを特徴とする。
Further, in order to further enhance the NOx absorbing action of the exhaust gas purifying catalyst according to claim 1 or 2, the exhaust gas purifying catalyst according to claim 3 has at least two catalysts in an engine exhaust gas flow. A copper-containing zeolite-containing catalyst is provided upstream of the exhaust gas flow, and downstream of the exhaust gas flow.
Alternatively, the catalyst described in 2 is arranged.

【0012】更に、請求項1〜3に記載の排気ガス浄化
用触媒のNOx浄化性能を更に高めるために、請求項4
記載の排気ガス浄化用触媒は、請求項1〜3いずれかの
項記載の排気ガス浄化用触媒において、シリカアルミナ
中のシリカが0.5〜20重量%であることを特徴とす
る。
Further, in order to further improve the NOx purification performance of the exhaust gas purifying catalyst according to any one of claims 1 to 3, claim 4
The exhaust gas purifying catalyst as described above is characterized in that, in the exhaust gas purifying catalyst according to any one of claims 1 to 3, silica in the silica alumina is 0.5 to 20% by weight.

【0013】本発明の排気ガス浄化用触媒に用いる貴金
属としては、白金、パラジウムおよびロジウムから成る
群より選ばれる少なくとも一種が用いられる。触媒中の
前記貴金属の含有量は、NOx吸収能とストイキ時の三
元触媒性能が十分に得られれば特に限定されないが、
0.1gより少ないと十分な三元性能が得られず、10
gより多く使用しても有意な特性向上はみられない点か
ら触媒1Lあたり0.1〜10gが好ましい。
At least one selected from the group consisting of platinum, palladium and rhodium is used as the noble metal used in the exhaust gas purifying catalyst of the present invention. The content of the noble metal in the catalyst is not particularly limited as long as sufficient NOx absorption capacity and three-way catalyst performance during stoichiometry are obtained,
If the amount is less than 0.1 g, sufficient ternary performance cannot be obtained, and
The amount is preferably 0.1 to 10 g per 1 L of the catalyst, since no significant improvement in properties is observed even if the amount is used in excess of g.

【0014】本発明の排気ガス浄化用触媒に用いる遷移
金属は、鉄、コバルト、ニッケルおよびマンガンから成
る群より選ばれる少なくとも一種が用いられる。触媒中
の前記遷移金属の含有量は、金属酸化物重量に換算し
て、触媒1Lあたり1〜100gであることが好まし
い。1g未満だと複合酸化物体の有するNOx吸収性能
が充分に得られず、また100gを越えても有為な増量
効果は得られない。
The transition metal used in the exhaust gas purifying catalyst of the present invention is at least one selected from the group consisting of iron, cobalt, nickel and manganese. The content of the transition metal in the catalyst is preferably 1 to 100 g per 1 L of the catalyst in terms of metal oxide weight. If it is less than 1 g, the NOx absorption performance of the complex oxide cannot be sufficiently obtained, and if it exceeds 100 g, no significant amount increasing effect can be obtained.

【0015】また、本発明の排気ガス浄化用触媒に用い
るランタンの含有量は、金属酸化物重量に換算して、触
媒1Lあたり1〜100gであることが好ましい。1g
未満だと複合酸化物体の有するNOx吸収性能が充分に
得られず、また100gを越えても有為な増量効果は得
られない。
Further, the content of lanthanum used in the exhaust gas purifying catalyst of the present invention is preferably 1 to 100 g per 1 L of the catalyst in terms of metal oxide weight. 1 g
If it is less than 100 g, the NOx absorption performance of the composite oxide cannot be sufficiently obtained, and if it exceeds 100 g, a significant effect of increasing the amount cannot be obtained.

【0016】本発明の排気ガス浄化用触媒に用いるバリ
ウムの含有量は、金属酸化物重量に換算して、触媒1L
あたりバリウムが1〜100gであることが好ましい。
これより少ない量だとNOx吸収能が十分に得られず、
またこれより多い量を加えても有為な増量効果は得られ
ない。
The content of barium used in the exhaust gas purifying catalyst of the present invention is 1 L of the catalyst in terms of metal oxide weight.
Per barium is preferably 1 to 100 g.
If the amount is less than this, sufficient NOx absorption capacity cannot be obtained,
In addition, a significant amount increase effect cannot be obtained even if a larger amount is added.

【0017】上記遷移金属とランタンとバリウムは、そ
の一部または全部が複合化して、当該成分の複合酸化物
を構成する。該複合酸化物は含有される上記成分の全て
が複合化していることが好ましいが、少なくとも1部が
複合化していればよい。このような前記組成の複合酸化
物を用いることで、NOx吸収に必要なNOx酸化反応
が更に高まり、優れたNOx吸収作用を得る。
The transition metal, lanthanum, and barium are partly or wholly complexed to form a composite oxide of the component. It is preferable that all of the above-mentioned components contained in the complex oxide are complexed, but at least a part thereof may be complexed. By using the composite oxide having the above composition, the NOx oxidation reaction required for NOx absorption is further enhanced, and an excellent NOx absorption action is obtained.

【0018】このような本発明の組成物を用いること
で、吸収材から放出されるNOxを浄化する能力を高め
ることが可能となっている。これは、複合酸化物がNO
xを吸収する作用に優れること、白金、パラジウムある
いはロジウムが、該複合酸化物から放出されるNOxの
浄化能に優れることによる。
By using such a composition of the present invention, it is possible to enhance the ability to purify NOx emitted from the absorbent. This is because the composite oxide is NO
This is because it is excellent in the action of absorbing x, and platinum, palladium or rhodium is excellent in the ability to purify NOx released from the composite oxide.

【0019】特に、請求項2記載の排気ガス浄化用触媒
は、前記複合酸化物を含有する触媒内層と、前記貴金属
を含有する触媒表層とを組み合わせて成る。当該触媒表
層中には前記複合酸化物を含有してはならず、これは貴
金属のHC及びCOに対する酸化性能を低下させず十分
に高く維持するためである。
In particular, the exhaust gas purifying catalyst according to claim 2 is formed by combining the catalyst inner layer containing the composite oxide and the catalyst surface layer containing the noble metal. The complex oxide should not be contained in the surface layer of the catalyst, because this is to maintain the oxidation performance of noble metals for HC and CO at a sufficiently high level without deteriorating.

【0020】当該2層構造とすることにより、NOxの
吸収作用を触媒内層に、放出されるNOxを浄化する作
用を触媒表層に分担させる。ここで、放出NOx浄化作
用の向上は、触媒表層から、NOx浄化を妨げる遷移金
属、バリウム、ランタンを除くことと、触媒表層でNO
x浄化成分であるパラジウム、ロジウムを、酸点を多く
持つシリカアルミナ上に分散させることで、貴金属と排
気ガス中のHC(炭化水素)との相互作用を強め、H
C,NOxがCO2 ,N2 , 2 Oに変換する反応が促
進されることによる。
By adopting the two-layer structure, the function of absorbing NOx is shared by the inner layer of the catalyst, and the function of purifying the released NOx is shared by the surface layer of the catalyst. Here, the emission NOx purification action is improved by removing transition metals, barium, and lanthanum, which interfere with NOx purification, from the catalyst surface layer, and by removing NO from the catalyst surface layer.
x By dispersing palladium and rhodium, which are purification components, on silica-alumina, which has many acid points, the interaction between precious metals and HC (hydrocarbons) in exhaust gas is strengthened, and H
This is because the reaction of converting C and NOx into CO 2 , N 2 and H 2 O is promoted.

【0021】当該触媒表層中の貴金属を担持するための
基材には、貴金属と排気ガス中のHCの相互作用を強め
るため、酸点を多く有する無機材料が適し、特にシリカ
アルミナが好ましく、これにより著しくNOx浄化性能
が向上する。触媒中に含まれるシリカアルミナは、シリ
カが0.5〜20重量%含まれるアルミナであることが
好ましい。0.5重量%より少ないと、シリカアルナミ
上の酸点の量が充分に得られないことから、NOx浄化
活性が不足し、また20重量%を越えると貴金属の分散
性保持能力が不足し、特に耐久後の活性が悪化する。シ
リカアルミナの使用量は触媒1Lあたり、10gより少
ないと十分な貴金属の分散性が得られずに性能が低下
し、180gより多く用いてもNOx吸収性能が向上せ
ず有為な増量効果は得られないため10〜180gであ
ることが好ましい。当該貴金属担持基材の使用量は特に
限定されないが、触媒1L当り50〜300gであるこ
とが好ましい。
As the base material for supporting the noble metal in the surface layer of the catalyst, an inorganic material having a large number of acid sites is suitable for enhancing the interaction between the noble metal and HC in the exhaust gas, and silica alumina is particularly preferable. This significantly improves the NOx purification performance. The silica-alumina contained in the catalyst is preferably an alumina containing 0.5 to 20% by weight of silica. If it is less than 0.5% by weight, the amount of acid sites on the silica aluminum is not sufficiently obtained, so that the NOx purification activity is insufficient, and if it exceeds 20% by weight, the dispersibility retaining ability of the noble metal is insufficient. Activity after endurance deteriorates. If the amount of silica-alumina used is less than 10 g per liter of catalyst, sufficient noble metal dispersibility cannot be obtained and the performance deteriorates. Even if it is used in excess of 180 g, NOx absorption performance does not improve and a significant increase effect is obtained. Therefore, the amount is preferably 10 to 180 g. The amount of the noble metal-supporting base material used is not particularly limited, but is preferably 50 to 300 g per 1 L of the catalyst.

【0022】また、上記触媒内層中においてもNOx吸
収作用を促進させる目的で触媒1Lあたり0.1g〜1
0gの貴金属を含有させることもできる。触媒内層にお
ける貴金属担持基材には、貴金属の分散性を確保するた
めに比表面積の高い耐熱性無機材料が適し、アルミナ、
シリカアルミナ、ジルコニア等を用いることができる。
特に、活性アルミナが好ましく、耐熱比表面積を高める
ために希土類元素やジルコニウムなどを添加した活性ア
ルミナを使用してもよい。
Further, for the purpose of promoting the NOx absorbing action in the inner layer of the catalyst as well, 0.1 g to 1 g per 1 L of the catalyst is used.
It is also possible to contain 0 g of noble metal. For the precious metal-supporting base material in the catalyst inner layer, a heat-resistant inorganic material having a high specific surface area is suitable for ensuring the dispersibility of the precious metal, alumina,
Silica alumina, zirconia, etc. can be used.
In particular, activated alumina is preferable, and activated alumina to which a rare earth element, zirconium or the like is added may be used to increase the heat resistant specific surface area.

【0023】また、請求項3記載の発明において、排気
ガス流に対して上流側に設けられたCu担持ゼオライト
触媒の含有量は、NOx浄化作用を示す量であれば特に
限定されないが、50gより少ないと十分なNOx還元
性能が得られず、300gより多く使用しても有意な性
能向上はみられない点から触媒担体1Lあたり50〜3
00gが好ましい。触媒活性及び耐久性を向上させるた
めに、例えばCo,Ca,P,Ce,Nd等を添加して
もよい。Cuの担持方法は、公知の方法であればいずれ
の方法をも用いることができるが、Cuの分散性および
Cu+ (1価)状態確保の点より、イオン交換によりゼ
オライトに担持されることが好ましい。ゼオライトとし
ては、Cuイオン交換後の活性が高くかつ耐熱性に優れ
るものが好ましく使用され、例えば、ペンタル型ゼオラ
イト、Y型ゼオライト、モルデナイト、フェリエライト
等がある。
In the invention according to claim 3, the content of the Cu-supporting zeolite catalyst provided on the upstream side with respect to the exhaust gas flow is not particularly limited as long as it exhibits a NOx purification action, but from 50 g If the amount is small, sufficient NOx reduction performance cannot be obtained, and even if it is used in excess of 300 g, no significant performance improvement can be seen.
00 g is preferred. In order to improve the catalytic activity and durability, for example, Co, Ca, P, Ce, Nd or the like may be added. As a method for supporting Cu, any known method can be used, but from the viewpoint of the dispersibility of Cu and the Cu + (monovalent) state, it can be supported on zeolite by ion exchange. preferable. As the zeolite, those having high activity after Cu ion exchange and excellent heat resistance are preferably used, and examples thereof include pental-type zeolite, Y-type zeolite, mordenite, and ferrierite.

【0024】当該Cu担持ゼオライト触媒と、請求項1
又は2記載の触媒の排気系への設置方法は、Cu担持ゼ
オライト触媒を排気ガス流に対して上流側に、また請求
項1又は2記載の触媒を排気ガス流に対して下流側に設
置することが重要であり、例えば1個の触媒コンバータ
内に2種の触媒を装着して配置する方法や、前記2種の
触媒を別々のコンバータに入れて設置する方法等の公知
の方法を用いることができる。排気ガスを一旦Cu担持
ゼオライト触媒に接触させることで、後段のNOx吸収
触媒の吸収作用を高めている。その吸収作用は、例えば
Cu担持ゼオライト触媒でNOx吸収に必要なNOxの
酸化が速やかに進行してNOx吸収材の働きを補助して
いることや、Cu担持ゼオライト触媒がNOx吸収に好
都合なHC、NOx、O2 濃度に変換していることなど
が考えられる。
The Cu-supported zeolite catalyst according to claim 1,
In the method of installing the catalyst in the exhaust system according to claim 2, the Cu-supported zeolite catalyst is installed upstream of the exhaust gas flow, and the catalyst of claim 1 or 2 is installed downstream of the exhaust gas flow. It is important to use a known method such as a method of mounting and arranging two kinds of catalysts in one catalytic converter, or a method of installing the two kinds of catalysts in separate converters. You can By once contacting the exhaust gas with the Cu-supported zeolite catalyst, the absorption action of the NOx absorption catalyst in the subsequent stage is enhanced. The absorption action is, for example, that the oxidation of NOx necessary for NOx absorption in the Cu-supported zeolite catalyst rapidly progresses to assist the function of the NOx absorbent, and that the Cu-supported zeolite catalyst favors HC, which is convenient for NOx absorption. It is considered that the NOx and O 2 concentrations are converted.

【0025】触媒の設置位置は特に限定されず、例えば
マニホールド直下位置や床下位置等があげられる。この
触媒系の前段、後段それぞれ1個ずつの触媒で浄化性能
が十分でない場合には、さらに前段、後段の何れかある
いは両方を複数個としたり、多種触媒を追加しても良
い。
The installation position of the catalyst is not particularly limited, and examples thereof include a position directly under the manifold and a position under the floor. If the purification performance is not sufficient with one catalyst in each of the first and second stages of the catalyst system, one or both of the first and second stages may be further provided, or multiple catalysts may be added.

【0026】本発明で用いられる触媒担体としては、公
知の触媒担体の中から適宜選択して使用することがで
き、例えば耐火性材料からなるモノリス構造を有するハ
ニカム担体やメタル担体等が挙げられる。この触媒担体
の形状は、特に制限されないが、通常はハニカム形状で
使用することが好ましく、このハニカム材料としては、
一般にセラミック等のコーディエライト質のものが多く
用いられるが、フェライト系ステンレス等の金属材料か
らなるハニカムを用いることも可能であり、更には触媒
粉末そのものをハニカム形状に成形しても良い。触媒の
形状をハニカム状とすることにより、触媒と排気ガスの
触媒面積が大きくなり、圧力損失も抑えられるため自動
車用等として用いる場合に極めて有利である。
The catalyst carrier used in the present invention can be appropriately selected and used from known catalyst carriers, and examples thereof include a honeycomb carrier having a monolith structure made of a refractory material, a metal carrier and the like. The shape of this catalyst carrier is not particularly limited, but it is usually preferable to use it in a honeycomb shape, and as this honeycomb material,
In general, many cordierite materials such as ceramics are used, but it is also possible to use a honeycomb made of a metal material such as ferritic stainless steel, and the catalyst powder itself may be formed into a honeycomb shape. By making the shape of the catalyst into a honeycomb shape, the area of the catalyst and the exhaust gas becomes large, and the pressure loss is suppressed, which is extremely advantageous when the catalyst is used for an automobile or the like.

【0027】本発明の排気ガス浄化用触媒を製造する際
の複合酸化物の担持方法には、例えばアルミナ等の無機
担体の粉末を湿式にて粉砕した水溶性スラリーをモノリ
ス担体にコートし、乾燥した後焼成し、その後複合酸化
物を構成する各成分の金属塩を含有する水溶液を含浸し
て担持する方法や、複合酸化物成分の各金属塩を含む水
溶液を乾燥、焼成して得た酸化物粉末を予め調製し、当
該粉末とアルミナ等の粉末とを混合し、湿式にて粉砕し
た水溶性スラリーをモノリス担体にコートし、乾燥、焼
成して担持する方法がある。
In the method of supporting the composite oxide in the production of the exhaust gas purifying catalyst of the present invention, a monolith carrier is coated with a water-soluble slurry obtained by pulverizing a powder of an inorganic carrier such as alumina by a wet method, and then dried. After that, it is fired and then impregnated with an aqueous solution containing the metal salt of each component constituting the composite oxide, or the aqueous solution containing each metal salt of the composite oxide component is dried and fired to obtain the oxidation. There is a method in which an object powder is prepared in advance, the powder is mixed with a powder such as alumina, and a water-soluble slurry pulverized by a wet method is coated on a monolith carrier, dried and baked to be carried.

【0028】[0028]

【実施例】本発明を次の実施例及び比較例により説明す
る。実施例1 .活性アルミナ粉末に硝酸ロジウム水溶液を含
浸し、乾燥後400℃で1時間焼成して、Rh担持活性
アルミナ粉末(粉末A)を得た。この粉末AのRh濃度
は2.0重量%であった。活性アルミナ粉末に硝酸パラ
ジウム水溶液を含浸し、乾燥後400℃で1時間焼成し
て、Pd担持活性アルミナ粉末(粉末B)を得た。この
粉末BのPd濃度は2.0重量%であった。シリカを5
%含有するシリカアルミナ粉末に硝酸ロジウム水溶液を
含浸し、乾燥後400℃で1時間焼成して、Rh担持シ
リカアルミナ粉末(粉末C)を得た。この粉末CのRh
濃度は2.0重量%であった。シリカを5%含有するシ
リカアルミナ粉末に硝酸パラジウム水溶液を含浸し、乾
燥後400℃で1時間焼成して、Pd担持シリカアルミ
ナ粉末(粉末D)を得た。この粉末DのPd濃度は2.
0重量%であった。
The present invention will be described with reference to the following examples and comparative examples. Embodiment 1 FIG . The activated alumina powder was impregnated with a rhodium nitrate aqueous solution, dried and then calcined at 400 ° C. for 1 hour to obtain an Rh-supported activated alumina powder (powder A). The Rh concentration of this powder A was 2.0% by weight. The activated alumina powder was impregnated with an aqueous palladium nitrate solution, dried and then baked at 400 ° C. for 1 hour to obtain a Pd-supported activated alumina powder (powder B). The Pd concentration of this powder B was 2.0% by weight. 5 silica
% Of the silica-alumina powder was impregnated with a rhodium nitrate aqueous solution, dried, and then baked at 400 ° C. for 1 hour to obtain Rh-supported silica-alumina powder (powder C). Rh of this powder C
The concentration was 2.0% by weight. A silica-alumina powder containing 5% of silica was impregnated with an aqueous palladium nitrate solution, dried and then baked at 400 ° C. for 1 hour to obtain a Pd-supported silica-alumina powder (powder D). The Pd concentration of this powder D is 2.
It was 0% by weight.

【0029】上記Rh担持活性アルミナ粉末Aを53
g、Pd担持活性アルミナ粉末Bを266g、活性アル
ミナ粉末を581g、水を900g磁性ボールミルに投
入し、混合粉砕してスラリー液を得た。このスラリー液
をコーディエライト質モノリス担体(1.3L、400
セル)に付着させ、空気流にてセル内の余剰のスラリー
を取り除いて130℃で乾燥した後、400℃で1時間
焼成しコート層重量100g/L−担体の材料を得た。
The above Rh-supported activated alumina powder A was added to 53
g, 266 g of Pd-supported activated alumina powder B, 581 g of activated alumina powder, and 900 g of water in a magnetic ball mill, and mixed and pulverized to obtain a slurry liquid. This slurry liquid was used as a cordierite monolith carrier (1.3 L, 400 L
(Cell), the excess slurry in the cell was removed by an air flow, and the coating was dried at 130 ° C. and then baked at 400 ° C. for 1 hour to obtain a material having a coat layer weight of 100 g / L-carrier.

【0030】当該コート層重量100g/L−担体の材
料に、酢酸バリウムと酢酸マンガンと酢酸ランタンの混
合水溶液を含浸担持し、乾燥、焼成してコート層重量1
60g/L−担体の材料を得た。当該材料中のバリウ
ム、ランタン、マンガンの含有量は、各々酸化物換算で
20g/Lであった。
The coating layer weight 100 g / L-The carrier material was impregnated and supported with a mixed aqueous solution of barium acetate, manganese acetate and lanthanum acetate, dried and fired to give a coating layer weight of 1
60 g / L-carrier material was obtained. The content of barium, lanthanum, and manganese in the material was 20 g / L in terms of oxide.

【0031】上記Rh担持シリカアルミナ粉末Cを53
g、Pd担持シリカアルミナ粉末Dを266g、シリカ
を5重量%含有するシリカアルミナ粉末を581g、水
を900g磁性ボールミルに投入し、混合粉砕してスラ
リー液を得た。このスラリー液を上記160g/L−担
体の材料に付着させ、空気流にてセル内の余剰のスラリ
ーを取り除いて130℃で乾燥した後、400℃で1時
間焼成し、コート層重量260g/L−担体の排気ガス
浄化用触媒1を得た。
The above Rh-supported silica-alumina powder C was added to 53
g, 266 g of Pd-supported silica-alumina powder D, 581 g of silica-alumina powder containing 5% by weight of silica and 900 g of water were charged into a magnetic ball mill, and mixed and pulverized to obtain a slurry liquid. This slurry liquid was adhered to the above-mentioned material of 160 g / L-carrier, the excess slurry in the cell was removed by an air flow, dried at 130 ° C., and then baked at 400 ° C. for 1 hour to give a coat layer weight of 260 g / L. A carrier exhaust gas purification catalyst 1 was obtained.

【0032】実施例2.シリカを2重量%含有するシリ
カアルミナを用いること以外は、実施例1と同様の方法
で排気ガス浄化用触媒2を得た。
Embodiment 2 FIG. An exhaust gas purifying catalyst 2 was obtained in the same manner as in Example 1 except that silica alumina containing 2% by weight of silica was used.

【0033】実施例3.シリカを18重量%含有するシ
リカアルミナを用いること以外は、実施例1と同様の方
法で、排気ガス浄化用触媒3を得た。
Example 3 Exhaust gas purifying catalyst 3 was obtained in the same manner as in Example 1 except that silica-alumina containing 18% by weight of silica was used.

【0034】実施例4.シリカを5重量%含有するシリ
カアルミナ粉末に硝酸ロジウム水溶液を含浸し、乾燥後
400℃で1時間焼成して、Rh担持シリカアルミナ粉
末(粉末E)を得た。この粉末EのRh濃度は10.0
重量%であった。また、シリカを5重量%含有するシリ
カアルミナ粉末に硝酸パラジウム水溶液を含浸し、乾燥
後400℃で1時間焼成して、Pd担持シリカアルミナ
粉末(粉末F)を得た。この粉末FのPd濃度は10.
0重量%であった。
Example 4 A silica-alumina powder containing 5% by weight of silica was impregnated with an aqueous rhodium nitrate solution, dried and then calcined at 400 ° C. for 1 hour to obtain Rh-supported silica-alumina powder (powder E). The Rh concentration of this powder E is 10.0.
% By weight. Further, a silica-alumina powder containing 5% by weight of silica was impregnated with an aqueous palladium nitrate solution, dried and then baked at 400 ° C. for 1 hour to obtain a Pd-supported silica-alumina powder (powder F). The Pd concentration of this powder F was 10.
It was 0% by weight.

【0035】実施例1で得られたRh担持活性アルミナ
粉末A53gとPd担持活性アルミナ粉末B266g、
活性アルミナ粉末581g、水を900g磁性ボールミ
ルに投入し、混合粉砕してスラリー液を得た。このスラ
リー液をコーディエライト質モノリス担体(1.3L、
400セル)に付着させ、空気流にてセル内の余剰のス
ラリーを取り除いて130℃で乾燥した後、400℃で
1時間焼成し、コート層重量100g/L−担体の材料
を得た。
Rh-supported activated alumina powder A53g obtained in Example 1 and Pd-supported activated alumina powder B266g,
581 g of activated alumina powder and 900 g of water were put into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was used as a cordierite monolith carrier (1.3 L,
(400 cells), the excess slurry in the cells was removed by an air flow, and the coating was dried at 130 ° C. and then baked at 400 ° C. for 1 hour to obtain a material having a coat layer weight of 100 g / L-carrier.

【0036】当該コート層重量100g/L−担体の材
料に、酢酸バリウムと酢酸マンガンと酢酸ランタンの混
合水溶液を含浸担持し、乾燥、焼成してコート層重量1
60g/L−担体の材料を得た。バリウム,ランタン、
マンガンの含有量は、各々酸化物換算で20g/Lであ
った。
The coating layer weight 100 g / L-The carrier material was impregnated and supported with a mixed aqueous solution of barium acetate, manganese acetate and lanthanum acetate, dried and baked to give a coating layer weight of 1
60 g / L-carrier material was obtained. Barium, lantern,
The manganese content was 20 g / L in terms of oxide.

【0037】上記Rh担持シリカアルミナ粉末Eを53
g、Pd担持シリカアルミナ粉末Fを266g、シリカ
を5重量%含有するシリカアルミナ粉末を581g、水
を900g磁性ボールミルに投入し、混合粉砕してスラ
リー液を得た。このスラリー液を上記160g/L−担
体の材料に付着させ、空気流にてセル内の余剰のスラリ
ーを取り除いて130℃で乾燥した後、400℃で1時
間焼成し、コート層重量180g/L−担体の排気ガス
浄化用触媒4を得た。
The Rh-supported silica-alumina powder E was added to 53
g, 266 g of Pd-supported silica-alumina powder F, 581 g of silica-alumina powder containing 5% by weight of silica and 900 g of water were charged into a magnetic ball mill, and mixed and pulverized to obtain a slurry liquid. This slurry liquid was adhered to the material of the above-mentioned 160 g / L-carrier, excess slurry in the cell was removed by an air stream, dried at 130 ° C., and then baked at 400 ° C. for 1 hour to give a coat layer weight of 180 g / L. -A carrier exhaust gas purification catalyst 4 was obtained.

【0038】実施例5.シリカを5重量%含有するシリ
カアルミナ粉末に硝酸ロジウム水溶液を含浸し、乾燥後
400℃で1時間焼成して、Rh担持シリカアルミナ粉
末(粉末G)を得た。この粉末GのRh濃度は1.3重
量%であった。シリカを5重量%含有するシリカアルミ
ナ粉末に硝酸パラジウム水溶液を含浸し、乾燥後400
℃で1時間焼成して、Pd担持シリカアルミナ粉末(粉
末H)を得た。この粉末HのPd濃度は1.3重量%で
あった。
Example 5 A silica-alumina powder containing 5% by weight of silica was impregnated with an aqueous rhodium nitrate solution, dried and then baked at 400 ° C. for 1 hour to obtain Rh-supported silica-alumina powder (powder G). The Rh concentration of this powder G was 1.3% by weight. A silica-alumina powder containing 5% by weight of silica was impregnated with an aqueous palladium nitrate solution and dried to give 400
Firing at 1 ° C. for 1 hour gave a Pd-supported silica-alumina powder (powder H). The Pd concentration of this powder H was 1.3% by weight.

【0039】実施例1で得られたRh担持活性アルミナ
粉末Aを53gとPd担持活性アルミナ粉末Bを266
g、活性アルミナ粉末を581g、水を900g磁性ボ
ールミルに投入し、混合粉砕してスラリー液を得た。こ
のスラリー液をコーディエライト質モノリス担体(1.
3L、400セル)に付着させ、空気流にてセル内の余
剰のスラリーを取り除いて130℃で乾燥した後、40
0℃で1時間焼成し、コート層重量100g/L−担体
の材料を得た。
53 g of the Rh-supported activated alumina powder A obtained in Example 1 and 266 of the Pd-supported activated alumina powder B were obtained.
g, activated alumina powder (581 g) and water (900 g) were charged into a magnetic ball mill, and mixed and pulverized to obtain a slurry liquid. This slurry liquid was used as a cordierite monolith carrier (1.
(3 L, 400 cells), remove excess slurry in the cells by air flow and dry at 130 ° C., then
The material was baked at 0 ° C. for 1 hour to obtain a material having a coat layer weight of 100 g / L-carrier.

【0040】当該コート層重量100g/L−担体の材
料に、酢酸バリウムと酢酸マンガンと酢酸ランタンの混
合水溶液を含浸担持し、乾燥、焼成してコート層重量1
60g/L−担体の材料を得た。当該材料中のバリウ
ム、ランタン、マンガンの含有量は、各々酸化物換算で
20g/Lであった。
The coating layer weight 100 g / L-The carrier material was impregnated and supported with a mixed aqueous solution of barium acetate, manganese acetate and lanthanum acetate, dried and baked to give a coating layer weight of 1
60 g / L-carrier material was obtained. The content of barium, lanthanum, and manganese in the material was 20 g / L in terms of oxide.

【0041】上記Rh担持シリカアルミナ粉末Gを53
g、Pd担持シリカアルミナ粉末Hを266g、シリカ
を5重量%含有するシリカアルミナ粉末を581g、水
を900g磁性ボールミルに投入し、混合粉砕してスラ
リー液を得た。このスラリー液を上記160g/L−担
体に付着させ、空気流にてセル内の余剰のスラリーを取
り除いて130℃で乾燥した後、400℃で1時間焼成
し、コート層重量310g/L−担体の排気ガス浄化用
触媒5を得た。
The Rh-supported silica-alumina powder G was added to 53
g, 266 g of Pd-supported silica-alumina powder H, 581 g of silica-alumina powder containing 5% by weight of silica and 900 g of water were charged into a magnetic ball mill, and mixed and pulverized to obtain a slurry liquid. This slurry liquid was adhered to the above-mentioned 160 g / L-carrier, the excess slurry in the cell was removed by an air stream, dried at 130 ° C., and then baked at 400 ° C. for 1 hour to give a coat layer weight of 310 g / L-carrier. Thus, the exhaust gas purifying catalyst 5 was obtained.

【0042】実施例6.活性アルミナ粉末を900g、
水を900g磁性ボールミルに投入し、混合粉砕してス
ラリー液を得た。このスラリー液をコーディエライト質
モノリス担体(1.3L、400セル)に付着させ、空
気流にてセル内の余剰のスラリーを取り除いて130℃
で乾燥した後、400℃で1時間焼成しコート層重量1
00g/L−担体の材料を得た。
Example 6 900 g of activated alumina powder,
900 g of water was charged into a magnetic ball mill, mixed and pulverized to obtain a slurry liquid. This slurry liquid was attached to a cordierite-based monolith carrier (1.3 L, 400 cells), excess slurry in the cells was removed by an air flow, and the temperature was adjusted to 130 ° C.
And dried at 400 ° C for 1 hour, and coat layer weight 1
A material of 00 g / L-carrier was obtained.

【0043】当該コート層重量100g/L−担体の材
料に、酢酸バリウムと酢酸マンガンと酢酸ランタンの混
合水溶液を含浸担持し、乾燥、焼成してコート層重量1
60g/L−担体の材料を得た。当該材料中のバリウ
ム、ランタン、マンガンの含有量は、各々酸化物換算で
20g/Lであった。
The coat layer weight 100 g / L-The carrier material was impregnated and supported with a mixed aqueous solution of barium acetate, manganese acetate and lanthanum acetate, dried and baked to give a coat layer weight of 1
60 g / L-carrier material was obtained. The content of barium, lanthanum, and manganese in the material was 20 g / L in terms of oxide.

【0044】実施例1で得られたPd担持シリカアルミ
ナ粉末Dを635g、シリカを5重量%含有するシリカ
アルミナ粉末を265g、水を900g磁性ボールミル
に投入し、混合粉砕してスラリー液を得た。このスラリ
ー液を上記160g/L−担体の材料に付着させ、空気
流にてセル内の余剰のスラリーを取り除いて130℃で
乾燥した後、400℃で1時間焼成しコート層重量26
0g/L−担体の排気ガス浄化用触媒6を得た。
635 g of Pd-supported silica-alumina powder D obtained in Example 1, 265 g of silica-alumina powder containing 5% by weight of silica, and 900 g of water were charged into a magnetic ball mill and mixed and ground to obtain a slurry liquid. . This slurry liquid was adhered to the above-mentioned material of 160 g / L-carrier, the excess slurry in the cell was removed by an air flow, and dried at 130 ° C., and then baked at 400 ° C. for 1 hour, and the coating layer weight 26
An exhaust gas purifying catalyst 6 of 0 g / L-carrier was obtained.

【0045】実施例7.シリカを5重量%含有するシリ
カアルミナ粉末にジニトロジアミン白金水溶液を含浸
し、乾燥後400℃で1時間焼成して、白金担持シリカ
アルミナ粉末(粉末I)を得た。この粉末IのPt濃度
は2.0重量%であった。
Example 7 A silica-alumina powder containing 5% by weight of silica was impregnated with a dinitrodiamine platinum aqueous solution, dried and calcined at 400 ° C. for 1 hour to obtain a platinum-supported silica-alumina powder (powder I). The Pt concentration of this powder I was 2.0% by weight.

【0046】活性アルミナ粉末を900g、水を900
g磁性ボールミルに投入し、混合粉砕してスラリー液を
得た。このスラリー液をコーディエライト質モノリス担
体(1.3L、400セル)に付着させ、空気流にてセ
ル内の余剰のスラリーを取り除いて130℃で乾燥した
後、400℃で1時間焼成し、コート層重量100g/
L−担体の材料を得た。
900 g of activated alumina powder and 900 g of water
It was put into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was attached to a cordierite monolithic carrier (1.3 L, 400 cells), excess slurry in the cells was removed with an air stream, and dried at 130 ° C, followed by firing at 400 ° C for 1 hour, Coat layer weight 100g /
An L-carrier material was obtained.

【0047】当該コート層重量100g/L−担体の材
料に、酢酸バリウムと酢酸マンガンと酢酸ランタンの混
合水溶液を含浸担持し、乾燥、焼成してコート層重量1
60g/L−担体の材料を得た。当該材料中のバリウ
ム、ランタン、マンガンの含有量は、各々酸化物換算で
20g/Lであった。
The coat layer weight 100 g / L-The carrier material was impregnated and supported with a mixed aqueous solution of barium acetate, manganese acetate and lanthanum acetate, dried and baked to give a coat layer weight of 1
60 g / L-carrier material was obtained. The content of barium, lanthanum, and manganese in the material was 20 g / L in terms of oxide.

【0048】実施例1で得られたRh担持シリカアルミ
ナ粉末Cを103g、上記白金担持シリカアルミナ粉末
Iを532g、シリカを5重量%含有するシリカアルミ
ナを265g、水を900g磁性ボールミルに投入し、
混合粉砕してスラリー液を得た。このスラリー液を上記
160g/L−担体の材料に付着させ、空気流にてセル
内の余剰のスラリーを取り除いて130℃で乾燥した
後、400℃で1時間焼成し、コート層重量260g/
L−担体の排気ガス浄化用触媒7を得た。
103 g of the Rh-supported silica-alumina powder C obtained in Example 1, 532 g of the platinum-supported silica-alumina powder I, 265 g of silica-alumina containing 5% by weight of silica, and 900 g of water were charged into a magnetic ball mill,
The mixture was pulverized to obtain a slurry liquid. This slurry liquid was adhered to the above-mentioned material of 160 g / L-carrier, excess slurry in the cell was removed by an air stream, dried at 130 ° C., and then baked at 400 ° C. for 1 hour to give a coat layer weight of 260 g /
An L-carrier exhaust gas purification catalyst 7 was obtained.

【0049】実施例8.白金担持シリカアルミナ粉末I
の代わりに実施例1で得られたPd担持シリカアルミナ
粉末Dを用いること以外は、実施例7と同様の方法で、
排気ガス浄化用触媒8を得た。
Example 8 Platinum-supported silica-alumina powder I
In the same manner as in Example 7 except that the Pd-supported silica-alumina powder D obtained in Example 1 is used instead of
Exhaust gas purification catalyst 8 was obtained.

【0050】実施例9.活性アルミナ粉末にジニトロジ
アミン白金水溶液を含浸し、乾燥後400℃で1時間焼
成して、白金担持シリカアルミナ粉末(粉末J)を得
た。この粉末JのPt濃度は2.0重量%であった。
Example 9 The activated alumina powder was impregnated with a dinitrodiamine platinum aqueous solution, dried and then baked at 400 ° C. for 1 hour to obtain a platinum-supported silica alumina powder (powder J). The Pt concentration of this powder J was 2.0% by weight.

【0051】Pd担持活性アルミナ粉末Bの代わりに上
記白金担持シリカアルミナ粉末Jを、Pd担持シリカア
ルミナ粉末Dの代わりに実施例7で得られた白金担持シ
リカアルミナ粉末Iを用いること以外は、実施例1と同
様の方法で、排気ガス浄化用触媒9を得た。
Example 2 was repeated except that the platinum-supported silica alumina powder J was used in place of the Pd-supported activated alumina powder B and the platinum-supported silica alumina powder I obtained in Example 7 was used in place of the Pd-supported silica alumina powder D. Exhaust gas purifying catalyst 9 was obtained in the same manner as in Example 1.

【0052】実施例10.Rh担持活性アルミナ粉末A
の代わりにPd担持活性アルミナ粉末Bを、Rh担持シ
リカアルミナ粉末Cの代わりにPd担持シリカアルミナ
粉末Dを用いること以外は、実施例1と同様の方法で、
排気ガス浄化用触媒10を得た。
Example 10 Rh-supported activated alumina powder A
In the same manner as in Example 1 except that Pd-supporting activated alumina powder B is used instead of Rh and Pd-supporting silica alumina powder D is used instead of Rh-supporting silica alumina powder C.
An exhaust gas purifying catalyst 10 was obtained.

【0053】実施例11.酢酸マンガンの代わりに酢酸
鉄を用いること以外は、実施例1と同様の方法で排気ガ
ス浄化用触媒11を得た。
Example 11 An exhaust gas purifying catalyst 11 was obtained in the same manner as in Example 1 except that iron acetate was used instead of manganese acetate.

【0054】実施例12.酢酸マンガンの代わりに酢酸
コバルトを用いること以外は、実施例1と同様の方法
で、排気ガス浄化用触媒12を得た。
Example 12 An exhaust gas purifying catalyst 12 was obtained in the same manner as in Example 1 except that cobalt acetate was used instead of manganese acetate.

【0055】実施例13.酢酸マンガンの代わりに酢酸
ニッケルを用いること以外は、実施例1と同様の方法
で、排気ガス浄化用触媒13を得た。
Example 13 An exhaust gas purification catalyst 13 was obtained in the same manner as in Example 1 except that nickel acetate was used instead of manganese acetate.

【0056】実施例14.0.2モル/Lの硝酸銅水溶
液5.2Kgとゼオライト粉末2Kgとを混合した後、
攪拌、濾過する作業を3回繰り返し、その後乾燥、焼成
し、Cu担持ゼオライト粉末(粉末K)を得た。この粉
末のCu濃度は5重量%であった。
Example 14 After mixing 5.2 Kg of 0.2 mol / L copper nitrate aqueous solution and 2 Kg of zeolite powder,
The operations of stirring and filtering were repeated three times, and then dried and calcined to obtain Cu-supporting zeolite powder (powder K). The Cu concentration of this powder was 5% by weight.

【0057】上記Cu担持ゼオライト粉末Kを810
g、シリカゾル(固形分20%)を450g、水を54
0g磁性ボールミルに投入し、混合粉砕してスラリー液
を得た。このスラリー液をコーディエライト質モノリス
担体(1.3L、400セル)に付着させ、空気流にて
セル内の余剰のスラリーを取り除いて130℃で乾燥し
た後、400℃で1時間焼成し、コート層重量200g
/L−担体の材料を得た。当該コート層重量200g/
L−担体の材料を排気ガス流に対して前段に、実施例1
で得られた排気ガス浄化用触媒1を後段に配置し、排気
ガス浄化用触媒14を得た。
810 of the above Cu-supporting zeolite powder K was added.
g, silica sol (solid content 20%) 450 g, water 54
It was put into a 0 g magnetic ball mill, mixed and pulverized to obtain a slurry liquid. This slurry liquid was attached to a cordierite monolithic carrier (1.3 L, 400 cells), excess slurry in the cells was removed with an air stream, and dried at 130 ° C, followed by firing at 400 ° C for 1 hour, Coat layer weight 200g
A material for the / L-carrier was obtained. The coat layer weight 200 g /
The material of the L-carrier was placed before the exhaust gas flow, Example 1
The exhaust gas purifying catalyst 1 obtained in step 1 was placed in the latter stage to obtain an exhaust gas purifying catalyst 14.

【0058】実施例15.排気ガス浄化用触媒1のかわ
りに、実施例7で得られた排気ガス浄化用触媒7を用い
る以外は、実施例14と同様の方法で排気ガス浄化用触
媒15を得た。
Example 15 An exhaust gas purifying catalyst 15 was obtained in the same manner as in Example 14 except that the exhaust gas purifying catalyst 7 obtained in Example 7 was used instead of the exhaust gas purifying catalyst 1.

【0059】実施例16.排気ガス浄化用触媒1のかわ
りに、実施例8で得られた排気ガス浄化用触媒8を用い
る以外は、実施例14と同様の方法で、排気ガス浄化用
触媒16を得た。
Example 16 An exhaust gas purification catalyst 16 was obtained in the same manner as in Example 14 except that the exhaust gas purification catalyst 8 obtained in Example 8 was used instead of the exhaust gas purification catalyst 1.

【0060】実施例17.排気ガス浄化用触媒1のかわ
りに、実施例9で得られた排気ガス浄化用触媒19を用
いる以外は、実施例14と同様の方法で、排気ガス浄化
用触媒17を得た。
Example 17 An exhaust gas purifying catalyst 17 was obtained in the same manner as in Example 14 except that the exhaust gas purifying catalyst 19 obtained in Example 9 was used in place of the exhaust gas purifying catalyst 1.

【0061】実施例18.排気ガス浄化用触媒1のかわ
りに、実施例10で得られた排気ガス浄化用触媒10を
用いる以外は、実施例14と同様の方法で排気ガス浄化
用触媒18を得た。
Example 18 An exhaust gas purifying catalyst 18 was obtained in the same manner as in Example 14 except that the exhaust gas purifying catalyst 10 obtained in Example 10 was used in place of the exhaust gas purifying catalyst 1.

【0062】実施例19.排気ガス浄化用触媒1のかわ
りに、実施例12で得られた排気ガス浄化用触媒12を
用いる以外は実施例14と同様の方法で、排気ガス浄化
用触媒19を得た。
Example 19 An exhaust gas purification catalyst 19 was obtained in the same manner as in Example 14 except that the exhaust gas purification catalyst 12 obtained in Example 12 was used in place of the exhaust gas purification catalyst 1.

【0063】比較例1.シリカを0.2重量%含有する
シリカアルミナを用いること以外は、実施例1と同様の
方法で、排気ガス浄化用触媒20を得た。
Comparative Example 1 An exhaust gas purification catalyst 20 was obtained in the same manner as in Example 1 except that silica alumina containing 0.2% by weight of silica was used.

【0064】比較例2.シリカを30重量%含有するシ
リカアルミナを用いること以外は、実施例1と同様の方
法で、排気ガス浄化用触媒21を得た。
Comparative Example 2 An exhaust gas purifying catalyst 21 was obtained in the same manner as in Example 1 except that silica alumina containing 30% by weight of silica was used.

【0065】比較例3.実施例1で得られたRh担持活
性アルミナ粉末Aを53g、Pd担持活性アルミナ粉末
Bを266g、活性アルミナ粉末を581g、水を90
0g磁性ボールミルに投入し、混合粉砕してスラリー液
を得た。このスラリー液をコーディエライト質モノリス
担体(1.3L、400セル)に付着させ、空気流にて
セル内の余剰のスラリーを取り除いて130℃で乾燥し
た後、400℃で1時間焼成し、コート層重量100g
/L−担体の材料を得た。
Comparative Example 3 53 g of Rh-supporting activated alumina powder A obtained in Example 1, 266 g of Pd-supporting activated alumina powder B, 581 g of activated alumina powder, and 90 parts of water.
It was put into a 0 g magnetic ball mill, mixed and pulverized to obtain a slurry liquid. This slurry liquid was attached to a cordierite monolithic carrier (1.3 L, 400 cells), excess slurry in the cells was removed with an air stream, and dried at 130 ° C, followed by firing at 400 ° C for 1 hour, Coat layer weight 100g
A material for the / L-carrier was obtained.

【0066】当該コート層重量100g/L−担体の材
料に、酢酸バリウムと酢酸マンガンと酢酸ランタンの混
合水溶液を含浸担持し、乾燥、焼成してコート層重量1
60g/L−担体の材料を得た。当該材料中のバリウ
ム、ランタン、マンガンの含有量は、各々酸化物換算で
20g/Lであった。
The coat layer weight 100 g / L-The carrier material was impregnated and supported with a mixed aqueous solution of barium acetate, manganese acetate and lanthanum acetate, dried and fired to give a coat layer weight of 1
60 g / L-carrier material was obtained. The content of barium, lanthanum, and manganese in the material was 20 g / L in terms of oxide.

【0067】実施例14で得られたRh担持シリカアル
ミナ粉末Eを106gとPd担持シリカアルミナ粉末F
を532g、水を900g磁性ボールミルに投入し、混
合粉砕してスラリー液を得た。このスラリー液を上記1
60g/L−担体の材料に付着させ、空気流にてセル内
の余剰のスラリーを取り除いて130℃で乾燥した後、
400℃で1時間焼成し、コート層重量167g/L−
担体の排気ガス浄化用触媒22を得た。
106 g of Rh-supporting silica alumina powder E obtained in Example 14 and Pd-supporting silica alumina powder F
532 g and 900 g of water were put into a magnetic ball mill, and mixed and pulverized to obtain a slurry liquid. This slurry liquid is
60 g / L-After being adhered to the material of the carrier, the excess slurry in the cell was removed by an air stream, and dried at 130 ° C.,
Baking at 400 ° C. for 1 hour, coat layer weight 167 g / L-
A catalyst 22 for purifying the exhaust gas of the carrier was obtained.

【0068】比較例4.シリカを5重量%含有するシリ
カアルミナ粉末に硝酸ロジウム水溶液を含浸し、乾燥後
400℃で1時間焼成して、Rh担持シリカアルミナ粉
末(粉末L)を得た。この粉末のRh濃度は1.0重量
%であった。シリカを5重量%含有するシリカアルミナ
粉末に硝酸パラジウム水溶液を含浸、乾燥後400℃で
1時間焼成して、Pd担持シリカアルミナ粉末(粉末
M)を得た。この粉末MのPd濃度は1.0重量%であ
った。
Comparative Example 4 A rhodium nitrate aqueous solution was impregnated into silica-alumina powder containing 5% by weight of silica, dried and calcined at 400 ° C. for 1 hour to obtain Rh-supported silica-alumina powder (powder L). The Rh concentration of this powder was 1.0% by weight. A silica-alumina powder containing 5% by weight of silica was impregnated with an aqueous palladium nitrate solution, dried and then baked at 400 ° C. for 1 hour to obtain a Pd-supported silica-alumina powder (powder M). The Pd concentration of this powder M was 1.0% by weight.

【0069】実施例1で得られたRh担持活性アルミナ
粉末Aを53gとPd担持活性アルミナ粉末Bを266
g、活性アルミナ粉末を581g、水を900g磁性ボ
ールミルに投入し、混合粉砕してスラリー液を得た。こ
のスラリー液をコーディエライト質モノリス担体(1.
3L、400セル)に付着させ、空気流にてセル内の余
剰のスラリーを取り除いて130℃で乾燥した後、40
0℃で1時間焼成し、コート層重量100g/L−担体
の材料を得た。
53 g of Rh-supporting activated alumina powder A and 266 of Pd-supporting activated alumina powder B obtained in Example 1 were obtained.
g, activated alumina powder (581 g) and water (900 g) were charged into a magnetic ball mill, and mixed and pulverized to obtain a slurry liquid. This slurry liquid was used as a cordierite monolith carrier (1.
(3 L, 400 cells), remove excess slurry in the cells by air flow and dry at 130 ° C., then
The material was baked at 0 ° C. for 1 hour to obtain a material having a coat layer weight of 100 g / L-carrier.

【0070】当該コート層重量100g/L−担体の材
料に、酢酸バリウムと酢酸マンガンと酢酸ランタンの混
合水溶液を含浸担持し、乾燥、焼成してコート層重量1
60g/L−担体を得た。当該材料中のバリウム、ラン
タン、マンガンの含有量は、各々酸化物換算で20g/
Lであった。
The coat layer weight 100 g / L-The carrier material was impregnated and supported with a mixed aqueous solution of barium acetate, manganese acetate and lanthanum acetate, dried and fired to give a coat layer weight of 1
60 g / L-carrier was obtained. The content of barium, lanthanum and manganese in the material is 20 g / oxide.
L.

【0071】実施例5で得られたRh担持シリカアルミ
ナ粉末Gを53gとPd担持シリカアルミナ粉末Hを2
66g、シリカを5重量%含有するシリカアルミナ粉末
を581g、水を900g磁性ボールミルに投入し、混
合粉砕してスラリー液を得た。このスラリー液を上記1
60g/L−担体に付着させ、空気流にてセル内の余剰
のスラリーを取り除いて130℃で乾燥した後、400
℃で1時間焼成し、コート層重量360g/L−担体の
排気ガス浄化用触媒23を得た。
53 g of Rh-supporting silica alumina powder G and 2 g of Pd-supporting silica alumina powder H obtained in Example 5 were obtained.
66 g, 581 g of silica-alumina powder containing 5% by weight of silica, and 900 g of water were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid is
After being attached to 60 g / L-carrier, the excess slurry in the cell was removed by an air flow and dried at 130 ° C., 400
Firing at 1 ° C. for 1 hour gave an exhaust gas purifying catalyst 23 having a coat layer weight of 360 g / L-carrier.

【0072】比較例5.Rh担持シリカアルミナ粉末C
の代わりにRh担持活性アルミナ粉末Aを、Pd担持シ
リカアルミナ粉末Dの代わりにPd担持活性アルミナ粉
末Bを用いた以外は、実施例1と同様の方法で、排気ガ
ス浄化用触媒24を得た。
Comparative Example 5 Rh-supported silica-alumina powder C
Exhaust gas purifying catalyst 24 was obtained in the same manner as in Example 1 except that Rh-supporting activated alumina powder A was used in place of Pd, and Pd-supporting active alumina powder B was used in place of Pd-supporting silica alumina powder D. .

【0073】比較例6.実施例1で得られたRh担持シ
リカアルミナ粉末Cを103gとPd担持シリカアルミ
ナ粉末Dを532g、活性アルミナ粉末を265g、水
を900g磁性ボールミルに投入し、混合粉砕してスラ
リー液を得た。このスラリー液をコーディエライト質モ
ノリス担体(1.3L、400セル)に付着させ、空気
流にてセル内の余剰のスラリーを取り除いて130℃で
乾燥した後、400℃で1時間焼成し、コート層重量1
00セ/L−担体の材料を得た。
Comparative Example 6 103 g of the Rh-supported silica alumina powder C obtained in Example 1, 532 g of the Pd-supported silica alumina powder D, 265 g of activated alumina powder, and 900 g of water were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was attached to a cordierite monolithic carrier (1.3 L, 400 cells), excess slurry in the cells was removed with an air stream, and dried at 130 ° C, followed by firing at 400 ° C for 1 hour, Coat layer weight 1
A material of 00 cell / L-carrier was obtained.

【0074】当該コート層重量100g/L−担体の材
料に、酢酸バリウムと酢酸マンガンと酢酸ランタンの混
合水溶液を含浸担持し、乾燥、焼成してコート層重量1
60g/Lの排気ガス浄化用触媒25を得た。当該排気
ガス浄化用触媒中のバリウム、ランタン、マンガンの含
有量は、各々酸化物換算で20g/Lであった。
Weight of coat layer 100 g / L-The material of the carrier is impregnated and supported with a mixed aqueous solution of barium acetate, manganese acetate and lanthanum acetate, dried and fired to give a coat layer weight of 1
60 g / L of exhaust gas purifying catalyst 25 was obtained. The contents of barium, lanthanum and manganese in the exhaust gas purification catalyst were each 20 g / L in terms of oxide.

【0075】比較例7.酢酸マンガンを用いないこと以
外は、実施例1と同様の方法で、排気ガス浄化用触媒2
6を得た。この排気ガス浄化用触媒のコート総重量は2
40g/Lであった。
Comparative Example 7 Exhaust gas purifying catalyst 2 was prepared in the same manner as in Example 1 except that manganese acetate was not used.
6 was obtained. The total coat weight of this exhaust gas purification catalyst is 2
It was 40 g / L.

【0076】比較例8.酢酸バリウムを用いないこと以
外は、実施例1と同様の方法で、排気ガス浄化用触媒2
7を得た。この排気ガス浄化用触媒のコート総重量は2
40g/Lであった。
Comparative Example 8 Exhaust gas purifying catalyst 2 was prepared in the same manner as in Example 1 except that barium acetate was not used.
7 was obtained. The total coat weight of this exhaust gas purification catalyst is 2
It was 40 g / L.

【0077】比較例9.酢酸ランタンを用いないこと以
外は、実施例1と同様の方法で、排気ガス浄化用触媒2
8を得た。この排気ガス浄化用触媒のコート総重量は2
40g/Lであった。
Comparative Example 9 Exhaust gas purification catalyst 2 was prepared in the same manner as in Example 1 except that lanthanum acetate was not used.
8 was obtained. The total coat weight of this exhaust gas purification catalyst is 2
It was 40 g / L.

【0078】上記実施例1〜19及び比較例1〜9で得
られた排気ガス浄化用触媒1〜28の触媒組成を表1に
示す。
Table 1 shows the catalyst compositions of the exhaust gas purifying catalysts 1-28 obtained in the above Examples 1-19 and Comparative Examples 1-9.

【0079】[0079]

【表1】 [Table 1]

【0080】試験例 前記実施例1〜19及び比較例1〜9の触媒及び触媒シ
ステムについて、以下の条件で初期及び耐久後の触媒活
性評価を行った。活性評価には、自動車の排気ガスを模
したモデルガスを用いる自動評価装置を用いた。
Test Example The catalysts and catalyst systems of Examples 1 to 19 and Comparative Examples 1 to 9 were evaluated for catalyst activity under the following conditions at the initial stage and after endurance. For the activity evaluation, an automatic evaluation device using a model gas simulating the exhaust gas of an automobile was used.

【0081】耐久条件 エンジン4400ccの排気系に触媒を装着し、600
℃で、50時間運転して耐久を行った。
Endurance condition A catalyst is attached to the exhaust system of the engine 4400 cc, and 600
Durability was performed by operating at 50 ° C. for 50 hours.

【0082】評価条件 触媒活性評価は、排気量2000ccのエンジンの排気
系に各触媒を装着し、A/F=14.6(ストイキ状
態)で30秒間、その後A/F=22(リーン雰囲気)
で30秒間の運転を1サイクル行ない、各々平均転化率
を測定し、このA/F=14.6(ストイキ状態)の場
合の平均転化率とA/F=22(リーン雰囲気)の場合
の平均転化率とを平均してトータル転化率とした。この
評価を初期及び耐久後に各々行ない、触媒活性評価値を
以下の式により決定した。
Evaluation conditions In the catalyst activity evaluation, each catalyst was mounted on the exhaust system of an engine with a displacement of 2000 cc, A / F = 14.6 (stoichiometric state) for 30 seconds, and then A / F = 22 (lean atmosphere).
The operation was performed for one cycle for 30 seconds, and the average conversion was measured. The average conversion when A / F = 14.6 (stoichiometric state) and the average when A / F = 22 (lean atmosphere) The conversion rate was averaged to obtain a total conversion rate. This evaluation was performed at the initial stage and after the durability test, and the catalytic activity evaluation value was determined by the following formula.

【0083】[0083]

【数1】 [Equation 1]

【0084】トータル転化率として得られた触媒活性評
価結果を表2に示す。比較例に比べて実施例は、触媒活
性が高く、後述する本発明の効果を確認することができ
た。
Table 2 shows the results of the catalyst activity evaluation obtained as the total conversion. The catalytic activity of the example was higher than that of the comparative example, and the effect of the present invention described later could be confirmed.

【0085】[0085]

【表2】 [Table 2]

【0086】[0086]

【発明の効果】以上説明してきたように、本発明によれ
ば排気ガス浄化用触媒の構成を特定したことにより、酸
素過剰領域においてNOxを有効に吸収することがで
き、従来の触媒では十分な活性が得られないリーン雰囲
気下におけるNOxの浄化性能を向上させ、耐久後にお
いても三元触媒としての機能を十分に発現することがで
き、また特定の組成の複合酸化物を用いることで、NO
x吸収に必要なNOx酸化反応が高まり、優れたNOx
吸収作用を得ることができるという有為な効果が得られ
る。
As described above, according to the present invention, by specifying the structure of the exhaust gas purifying catalyst, NOx can be effectively absorbed in the oxygen excess region, and the conventional catalyst is sufficient. NOx purification performance in a lean atmosphere where no activity is obtained can be improved, and the function as a three-way catalyst can be sufficiently exhibited even after endurance. By using a composite oxide having a specific composition, NO
Excellent NOx due to increased NOx oxidation reaction required for x absorption
A significant effect that an absorbing action can be obtained is obtained.

【0087】また本発明によれば、排気ガス浄化用触媒
の構成を、貴金属担持層を表層に、複合酸化物層を内層
に上下に組み合わせる2層構造としたことにより、上記
効果に加えて、NOx吸収機能を得ながら十分な三元触
媒性能を確保することが可能となる。
Further, according to the present invention, the exhaust gas purifying catalyst has a two-layer structure in which the precious metal-supporting layer is the surface layer and the complex oxide layer is the upper layer and the lower layer are the upper and lower layers. It is possible to secure sufficient three-way catalyst performance while obtaining the NOx absorption function.

【0088】また、本発明の排気ガス浄化用触媒は、排
気気流に対して上流側に銅担持ゼオライト含有触媒を、
下流側に本発明による上記触媒を配置することにより、
上記効果に加えてよりNOx吸収触媒の吸収作用を向上
させることができるという優れた効果が得られる。
Further, the exhaust gas purifying catalyst of the present invention comprises a copper-containing zeolite-containing catalyst on the upstream side of the exhaust gas flow,
By arranging the above catalyst according to the present invention on the downstream side,
In addition to the above effects, an excellent effect that the absorption action of the NOx absorption catalyst can be further improved is obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/46 311 B01J 23/78 A 23/656 29/072 A 23/78 F01N 3/28 301Z 29/072 B01D 53/36 102H F01N 3/28 301 102B 104A B01J 23/64 104A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 23/46 311 B01J 23/78 A 23/656 29/072 A 23/78 F01N 3/28 301Z 29/072 B01D 53/36 102H F01N 3/28 301 102B 104A B01J 23/64 104A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 耐火性無機担体上に、鉄、コバルト、ニ
ッケル及びマンガンから成る群より選ばれた少なくとも
一種の遷移金属と、バリウムと、ランタンと、白金、パ
ラジウム及びロジウムから成る群より選ばれた少なくと
も一種の貴金属とを含み、当該遷移金属とバリウムとラ
ンタンはその一部若しくは全部が複合酸化物であること
を特徴とする排気ガス浄化用触媒。
1. On a refractory inorganic support, at least one transition metal selected from the group consisting of iron, cobalt, nickel and manganese, barium, lanthanum, and selected from the group consisting of platinum, palladium and rhodium. An exhaust gas purifying catalyst comprising at least one kind of noble metal, and the transition metal, barium, and lanthanum are part or all of a complex oxide.
【請求項2】 耐火性無機担体上に、鉄、コバルト、ニ
ッケル及びマンガンから成る群より選ばれた少なくとも
一種の遷移金属と、バリウムと、ランタンとを含む複合
酸化物を含有する触媒内層と、白金、パラジウム及びロ
ジウムから成る群から選ばれた少なくとも一種の貴金属
とを含み、上記複合酸化物を含まないシリカアルミナを
含有する触媒表層とから構成されることを特徴とする排
気ガス浄化用触媒。
2. A catalyst inner layer containing a complex oxide containing at least one transition metal selected from the group consisting of iron, cobalt, nickel and manganese, barium and lanthanum on a refractory inorganic support, An exhaust gas purifying catalyst comprising: a catalyst surface layer containing at least one noble metal selected from the group consisting of platinum, palladium and rhodium, and containing silica-alumina containing no complex oxide.
【請求項3】 エンジン排気気流中に触媒を少なくとも
2個設け、排気気流に対して上流側に銅担持ゼオライト
含有触媒を配置し、下流側に請求項1又は2記載の触媒
を配置することを特徴とする排気ガス浄化用触媒。
3. At least two catalysts are provided in an engine exhaust gas flow, a copper-containing zeolite-containing catalyst is arranged upstream of the exhaust gas flow, and a catalyst according to claim 1 is arranged downstream. A characteristic exhaust gas purification catalyst.
【請求項4】 請求項1〜3いずれかの項記載の排気ガ
ス浄化用触媒において、シリカアルミナ中のシリカが
0.5〜20重量%である排気ガス浄化用触媒。
4. The exhaust gas purifying catalyst according to claim 1, wherein the silica in the silica alumina is 0.5 to 20 wt%.
JP8029077A 1996-02-16 1996-02-16 Catalyst for purification of exhaust gas Pending JPH09220470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8029077A JPH09220470A (en) 1996-02-16 1996-02-16 Catalyst for purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8029077A JPH09220470A (en) 1996-02-16 1996-02-16 Catalyst for purification of exhaust gas

Publications (1)

Publication Number Publication Date
JPH09220470A true JPH09220470A (en) 1997-08-26

Family

ID=12266292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8029077A Pending JPH09220470A (en) 1996-02-16 1996-02-16 Catalyst for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPH09220470A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933409B1 (en) 1999-05-13 2005-08-23 Symyx Technologies, Inc. Amination of aromatic hydrocarbons and heterocyclic analogs thereof
WO2015059904A1 (en) * 2013-10-23 2015-04-30 マツダ株式会社 Exhaust gas purifying catalyst device and method for purifying exhaust gas
JP2015107479A (en) * 2013-10-23 2015-06-11 マツダ株式会社 Exhaust gas purification catalyst device and exhaust gas purification method
JP2015137605A (en) * 2014-01-23 2015-07-30 マツダ株式会社 Exhaust emission control catalyst device
JP2015137604A (en) * 2014-01-23 2015-07-30 マツダ株式会社 Exhaust emission control catalyst device and exhaust emission control method
JP2015175274A (en) * 2014-03-14 2015-10-05 本田技研工業株式会社 Internal combustion engine exhaust emission control system
CN105658329A (en) * 2013-10-23 2016-06-08 马自达汽车株式会社 Exhaust gas purifying catalyst device and method for purifying exhaust gas
CN108855072A (en) * 2018-08-16 2018-11-23 无锡威孚环保催化剂有限公司 A kind of three-way catalyst of high-temperature aging resisting and preparation method thereof
JP2021016854A (en) * 2019-07-19 2021-02-15 株式会社豊田中央研究所 Catalyst for exhaust purification

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933409B1 (en) 1999-05-13 2005-08-23 Symyx Technologies, Inc. Amination of aromatic hydrocarbons and heterocyclic analogs thereof
WO2015059904A1 (en) * 2013-10-23 2015-04-30 マツダ株式会社 Exhaust gas purifying catalyst device and method for purifying exhaust gas
JP2015107479A (en) * 2013-10-23 2015-06-11 マツダ株式会社 Exhaust gas purification catalyst device and exhaust gas purification method
CN105658329A (en) * 2013-10-23 2016-06-08 马自达汽车株式会社 Exhaust gas purifying catalyst device and method for purifying exhaust gas
US20160258330A1 (en) * 2013-10-23 2016-09-08 Mazda Motor Corporation Catalyst device for exhaust gas purification and method for exhaust gas purification
US9732648B2 (en) 2013-10-23 2017-08-15 Mazda Motor Corporation Catalyst device for exhaust gas purification and method for exhaust gas purification
JP2015137605A (en) * 2014-01-23 2015-07-30 マツダ株式会社 Exhaust emission control catalyst device
JP2015137604A (en) * 2014-01-23 2015-07-30 マツダ株式会社 Exhaust emission control catalyst device and exhaust emission control method
JP2015175274A (en) * 2014-03-14 2015-10-05 本田技研工業株式会社 Internal combustion engine exhaust emission control system
CN108855072A (en) * 2018-08-16 2018-11-23 无锡威孚环保催化剂有限公司 A kind of three-way catalyst of high-temperature aging resisting and preparation method thereof
CN108855072B (en) * 2018-08-16 2021-10-22 无锡威孚环保催化剂有限公司 High-temperature-aging-resistant three-way catalyst and preparation method thereof
JP2021016854A (en) * 2019-07-19 2021-02-15 株式会社豊田中央研究所 Catalyst for exhaust purification

Similar Documents

Publication Publication Date Title
JP4092441B2 (en) Exhaust gas purification catalyst
US6214307B1 (en) Exhaust gas purifying catalyst and exhaust gas purifying method
JP3493792B2 (en) Exhaust gas purification catalyst
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
JPH0884911A (en) Catalyst for decomposing nitrogen oxide and method for purifying diesel engine exhaust using the same
JPH09220470A (en) Catalyst for purification of exhaust gas
JPH08281110A (en) Catalyst for purifying exhaust gas and its production
JP3493879B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH09253453A (en) Cleaning of exhaust gas
JPH11221466A (en) Catalyst for purifying exhaust gas and purification of exhaust gas
JPH10192713A (en) Exhaust gas purifying catalyst and its use
JPH09103652A (en) Method for purifying exhaust gas
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JPH11123331A (en) Catalyst for cleaning exhaust gas
JPH08281111A (en) Catalyst for purifying exhaust gas and its production
JPH1157477A (en) Exhaust gas cleaning catalyst and method of using the same
JPH09225264A (en) Catalyst for purifying exhaust gas
JP3764760B2 (en) Catalyst for purifying exhaust gas from lean burn engine and purification method
JPH07308578A (en) Exhaust gas purifying catalyst
JP3477982B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3477974B2 (en) Exhaust gas purification catalyst
JPH0975741A (en) Catalyst for purification of exhaust gas
JPH0871424A (en) Catalyst for purification of exhaust gas
JPH09137719A (en) Emission control method
JPH09225306A (en) Exhaust gas purifying catalyst and its production