JPH09253453A - Cleaning of exhaust gas - Google Patents

Cleaning of exhaust gas

Info

Publication number
JPH09253453A
JPH09253453A JP8062857A JP6285796A JPH09253453A JP H09253453 A JPH09253453 A JP H09253453A JP 8062857 A JP8062857 A JP 8062857A JP 6285796 A JP6285796 A JP 6285796A JP H09253453 A JPH09253453 A JP H09253453A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
cobalt
oxide
gas purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8062857A
Other languages
Japanese (ja)
Inventor
Junji Ito
淳二 伊藤
Yasuyuki Murofushi
康行 室伏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP8062857A priority Critical patent/JPH09253453A/en
Publication of JPH09253453A publication Critical patent/JPH09253453A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for cleaning an exhaust gas which enhances a NOx-cleaning performance under a lean atmosphere in which an adequate NOx activity is not displayed as long as a conventional method for cleaning an exhaust gas is employed. SOLUTION: A nitrogen oxide in an exhaust gas which contains an unburnt component coexistent with the nitrogen oxide and changeable in the quantity of oxygen to a case where the unburnt component is equal to a theoretical reaction amount and to a case where the quantity of oxygen is more than that is cleaned using a catalyst for cleaning the exhaust gas. This catalyst is composed of a catalyst 1 containing a composite oxide which contains at least one selected from a group of platinum, palladium and rhodium, and at least one selected from a group of iron, cobalt, nickel and manganese, and barium and lanthanum, carried on a fire-resistant inorganic carrier, and a catalyst 2 containing indium and/or gallium and cobalt, carried on an alumina oxide carrier. In addition, the catalyst 1 is arranged downstream from the exhaust gas while the catalyst 2 is arranged upstream from the exhaust gas. Further, the catalyst 1 is arranged in the lower layer, while the catalyst 2 is arranged in the upper layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は排ガス浄化方法に関
し、特に化学量論比雰囲気(以下、「ストイキ雰囲気」
と称す)通過後の酸素過剰雰囲気(以下、「リーン」と
称す)下における窒素酸化物(以下、NOxと称す)の
浄化性能に優れる排ガス浄化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification method, and more particularly, to a stoichiometric ratio atmosphere (hereinafter, "stoichi atmosphere").
The present invention relates to an exhaust gas purification method that is excellent in the purification performance of nitrogen oxides (hereinafter, referred to as NOx) under an excess oxygen atmosphere (hereinafter, referred to as “lean”) after passing through.

【0002】[0002]

【従来の技術】近年、石油資源の枯渇問題および地球温
暖化問題の点から、低燃費自動車の実現が高まってお
り、特にガソリン自動車に対しては希薄燃焼自動車の開
発が注目されている。希薄燃焼自動車においては、希薄
燃焼走行時の排ガス雰囲気がストイキ状態(理論空燃状
態)に比べて酸素過剰雰囲気(リーン)となる。リーン
雰囲気において、通常の三元触媒を用いた場合には、過
剰な酸素の影響からNOx浄化作用が不十分となるとい
う問題があった。このため酸素が過剰となってもNOx
を浄化する触媒の開発が望まれていた。
2. Description of the Related Art In recent years, the realization of fuel-efficient automobiles has been increasing in view of the problem of exhaustion of petroleum resources and the problem of global warming, and the development of lean-burn automobiles has attracted attention especially for gasoline automobiles. In a lean-burn vehicle, the exhaust gas atmosphere during lean-burn running becomes an oxygen excess atmosphere (lean) compared to a stoichiometric state (theoretical air-fuel state). When a normal three-way catalyst is used in a lean atmosphere, there is a problem that the NOx purification action becomes insufficient due to the influence of excess oxygen. Therefore, even if oxygen becomes excessive, NOx
There has been a demand for the development of a catalyst for purifying the water.

【0003】従来より、リーン雰囲気下においてNOx
浄化性能を向上させる排ガス浄化技術は種々提案されて
おり、例えば特開平5−168860号公報に、ランタ
ン等を白金(Pt)に担持させてリーン雰囲気下でNO
xを吸収し、ストイキ状態でNOxを放出浄化する排ガ
ス浄化触媒が開示されている。
Conventionally, NOx has been used in a lean atmosphere.
Various exhaust gas purification techniques for improving the purification performance have been proposed. For example, in Japanese Patent Laid-Open No. 168860/1993, lanthanum or the like is supported on platinum (Pt) and NO in a lean atmosphere.
An exhaust gas purifying catalyst that absorbs x and releases and purifies NOx in a stoichiometric state is disclosed.

【0004】しかし、上記特開平5−168860号公
報に開示された触媒は、NOx吸収能力が不充分である
という問題があり、かかる問題を解決する目的で、例え
ば特開平5−261287号公報、特開平5−3176
52号公報、特開平6−31139号公報に、アルカリ
金属やアルカリ土類金属を用いる排ガス浄化技術が提案
されている。さらに特開平6−142458号公報およ
び特開平6−262040号公報には、アルカリ金属、
アルカリ土類金属、希土類金属、鉄属金属を用いた排ガ
ス浄化技術が開示されている。
However, the catalyst disclosed in JP-A-5-168860 has a problem that the NOx absorption capacity is insufficient, and for the purpose of solving such a problem, for example, JP-A-5-261287, JP-A-5-3176
No. 52 and Japanese Unexamined Patent Publication (Kokai) No. 6-31139 propose exhaust gas purification techniques using an alkali metal or an alkaline earth metal. Furthermore, in JP-A-6-142458 and JP-A-6-262040, alkali metal,
An exhaust gas purification technique using an alkaline earth metal, a rare earth metal, and an iron group metal is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の排ガス浄化技術は、リーン雰囲気下におけるNOx
吸収性能が不十分であり、特に耐久後のNOx吸収性能
が不足している。
However, the above-mentioned conventional exhaust gas purification technology is not suitable for NOx in a lean atmosphere.
The absorption performance is insufficient, and especially the NOx absorption performance after endurance is insufficient.

【0006】従って、本発明の目的は、従来の排ガス浄
化方法では十分なNOx活性を示さなかったリーン雰囲
気下におけるNOx浄化性能を向上させることができる
排ガス浄化方法を提供するにある。
Therefore, an object of the present invention is to provide an exhaust gas purification method capable of improving the NOx purification performance in a lean atmosphere where the conventional exhaust gas purification method did not exhibit sufficient NOx activity.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために研究した結果、特定の複合酸化物を含
有する触媒と、遷移金属を含有する触媒とを用いること
により、リーン雰囲気下でのNOx吸収性能を向上させ
ることを見出し、本発明に到達した。
Means for Solving the Problems As a result of research for solving the above-mentioned problems, the present inventors have found that by using a catalyst containing a specific composite oxide and a catalyst containing a transition metal, The inventors have found that the NOx absorption performance in an atmosphere is improved and have reached the present invention.

【0008】すなわち本発明は、窒素酸化物と共存する
未燃焼成分を含み、未燃焼成分に対する酸素量が論理反
応量と同量の場合と多い場合とに切り替わる排ガス中の
窒素酸化物を、(1)耐火性無機担体上に、白金、パラ
ジウム、ロジウムから成る群より選ばれた少なくとも一
種を含みかつ、鉄、コバルト、ニッケル、マンガンから
成る群より選ばれた少なくとも一種とバリウムとランタ
ンとからなる複合酸化物とを含む触媒1と、(2)アル
ミナ系酸化物担体上に、インジウムおよび/またはガリ
ウム、並びにコバルトを含む触媒2とから成る排ガス浄
化用触媒を用いて浄化することを特徴とする排ガス浄化
方法を開示するものである。
That is, according to the present invention, the nitrogen oxide in the exhaust gas, which contains unburned components coexisting with nitrogen oxides and is switched between the case where the amount of oxygen with respect to the unburned components is equal to the logical reaction amount and the case where it is large, 1) At least one selected from the group consisting of platinum, palladium, and rhodium on a refractory inorganic carrier, and at least one selected from the group consisting of iron, cobalt, nickel, and manganese, and barium and lanthanum. Purification is performed by using an exhaust gas purification catalyst comprising a catalyst 1 containing a complex oxide and (2) a catalyst 2 containing indium and / or gallium and cobalt on an alumina-based oxide carrier. An exhaust gas purification method is disclosed.

【0009】本発明における排ガス浄化用触媒の主要構
成部分は、(1)白金、パラジウム、ロジウムから成る
群より選ばれた少なくとも一種を含みかつ、鉄、コバル
ト、ニッケル、マンガンから成る群より選ばれた少なく
とも一種とバリウムとランタンからなる複合酸化物を含
む触媒1と(2)アルミナ系酸化物の担体上にインジウ
ムおよび/またはガリウム、並びにコバルトからなる触
媒2である。
The main constituent part of the exhaust gas purifying catalyst of the present invention comprises (1) at least one selected from the group consisting of platinum, palladium and rhodium, and is selected from the group consisting of iron, cobalt, nickel and manganese. Further, there are a catalyst 1 containing a composite oxide composed of at least one kind and barium and lanthanum, and (2) a catalyst 2 composed of indium and / or gallium and cobalt on a carrier of an alumina-based oxide.

【0010】上記組成の触媒1を用いることで、高いN
Ox吸収能と放出NOx浄化能を得ることが可能となっ
ている。これは、該複合酸化物がNOxを吸収する作用
に優れること、及び白金、パラジウム、ロジウムが、該
複合酸化物から放出されるNOxの浄化能に優れること
による。なお該複合酸化物の複合化により、NOx吸収
効率を高めることができる。また該複合酸化物は含有す
る成分の全てが複合化していることが好ましいが、少な
くとも1部が複合化していれば上記作用を得ることがで
きる。
By using the catalyst 1 having the above composition, high N
It is possible to obtain the Ox absorption capacity and the released NOx purification capacity. This is because the composite oxide is excellent in the action of absorbing NOx, and platinum, palladium and rhodium are excellent in the ability to purify NOx released from the composite oxide. Note that the NOx absorption efficiency can be increased by combining the composite oxides. Further, it is preferable that all of the components contained in the complex oxide are complexed, but the above effect can be obtained if at least a part of the complex oxide is complexed.

【0011】上記触媒2の担体成分としては、例えば担
体として一般的に使用されているγ−アルミナの他、シ
リカ−アルミナ系、及びβ−アルミナ等のアルミナ系酸
化物の多孔質担体を用いることができる。またアルミナ
系酸化物を安定化するのに有効な助触媒成分や酸化ラン
タン等の成分を、アルミナ系酸化物担体に含有させるこ
とができる。
As the carrier component of the catalyst 2, for example, in addition to γ-alumina which is generally used as a carrier, silica-alumina type and porous carriers of alumina type oxides such as β-alumina are used. You can Further, a cocatalyst component effective for stabilizing the alumina-based oxide and a component such as lanthanum oxide can be contained in the alumina-based oxide carrier.

【0012】上記触媒2におけるインジウム、ガリウ
ム、コバルトの活性成分は、金属および/または酸化物
の形態で用いる。インジウムおよび/またはガリウムの
担持量は多孔質担体に対して0.05〜30重量%の範
囲である。この範囲以外となると、高温耐久試験後のN
Ox除去能低下が著しく、好ましくない。
The active components of indium, gallium and cobalt in the catalyst 2 are used in the form of metal and / or oxide. The loading amount of indium and / or gallium is in the range of 0.05 to 30% by weight with respect to the porous carrier. Outside this range, N after the high temperature endurance test
It is not preferable because the Ox removing ability is significantly lowered.

【0013】またコバルトの担持量は多孔質担体に対し
て0.01〜50重量%の範囲である。この範囲以外と
なると、高温でのNOx除去能が十分でなく好ましくな
い。
The amount of cobalt supported is in the range of 0.01 to 50% by weight with respect to the porous carrier. If it is out of this range, the NOx removing ability at high temperature is not sufficient, which is not preferable.

【0014】上記触媒1及び2を排ガス流に対して配置
するに際しては、上記触媒1を排気下流側に、触媒2を
排気上流側に配置する。または、上記触媒1を下層に、
触媒2を上層に配置して、排ガスを浄化する。このよう
な配置としたのは、リーン雰囲気中で触媒2がNOxを
2 にまで還元し、触媒1が未還元NOx分を吸収する
にあたり、触媒1のNOx吸収量が増加するからであ
る。これは、上記配置とすることにより、触媒1による
NOx吸収を妨害する排ガス中のHC等の特定成分が、
触媒2と優先的に反応するため、触媒1でのNOx吸収
能が向上したものと考えられる。
When the catalysts 1 and 2 are arranged with respect to the exhaust gas flow, the catalyst 1 is arranged on the exhaust downstream side and the catalyst 2 is arranged on the exhaust upstream side. Alternatively, the above catalyst 1 is in the lower layer,
The catalyst 2 is arranged in the upper layer to purify the exhaust gas. The reason for this arrangement is that when the catalyst 2 reduces NOx to N 2 in the lean atmosphere and the catalyst 1 absorbs the unreduced NOx, the NOx absorption amount of the catalyst 1 increases. This is because the specific components such as HC in the exhaust gas that interfere with NOx absorption by the catalyst 1 are
It is considered that the NOx absorbing ability of the catalyst 1 is improved because it reacts preferentially with the catalyst 2.

【0015】触媒担体としては、公知の触媒担体の中か
ら適宜選択して使用することができ、例えば耐火性材料
からなるモノリス構造を有するハニカム担体やメタル担
体等が挙げられる。この触媒担体の形状は、特に制限さ
れないが、通常はハニカム形状で使用することが好まし
く、ハニカム状の各種基材に触媒粉末をコートして用い
る。このハニカム材料としては、一般に例えばセラミッ
クス等のコージェライト質のものが多く用いられるが、
フェライト系ステンレス等の金属材料からなるハニカム
を用いることも可能である。更には触媒粉末そのものを
ハニカム形状に成形しても良い。触媒の形状をハニカム
状とすることにより、触媒と排気ガスの触媒面積が大き
くなり、圧力損失も抑えられるめた自動車用等として用
いる場合に極めて有利である。
The catalyst carrier can be appropriately selected and used from known catalyst carriers, and examples thereof include a honeycomb carrier having a monolith structure made of a refractory material and a metal carrier. The shape of this catalyst carrier is not particularly limited, but it is usually preferable to use it in a honeycomb shape, and various honeycomb-shaped base materials are coated with catalyst powder for use. As this honeycomb material, generally, a cordierite material such as ceramics is generally used.
It is also possible to use a honeycomb made of a metal material such as ferritic stainless steel. Further, the catalyst powder itself may be formed into a honeycomb shape. The honeycomb shape of the catalyst is extremely advantageous when it is used for an automobile or the like in which the catalyst area of the catalyst and the exhaust gas is increased and the pressure loss is suppressed.

【0016】[0016]

【実施例】本発明を次の実施例及び比較例により説明す
る。実施例及び比較例において特に断らない限り、部及
び%はそれぞれ重量部及び重量%を示す。実施例1 活性アルミナ粉末に硝酸ロジウム水溶液を含浸し、乾燥
後400℃で1時間焼成して、Rh担持活性アルミナ粉
末(粉末A)を得た。この粉末AのRh濃度は2.0重
量%であった。活性アルミナ粉末に硝酸パラジウム水溶
液を含浸し、乾燥後400℃で1時間焼成して、Pd担
持活性アルミナ粉末(粉末B)を得た。この粉末BのP
d濃度は2.0重量%であった。
The present invention will be described with reference to the following examples and comparative examples. In the examples and comparative examples, parts and% are parts by weight and% by weight, respectively, unless otherwise specified. Example 1 Activated alumina powder was impregnated with an aqueous rhodium nitrate solution, dried and then calcined at 400 ° C. for 1 hour to obtain Rh-supported activated alumina powder (powder A). The Rh concentration of this powder A was 2.0% by weight. The activated alumina powder was impregnated with an aqueous palladium nitrate solution, dried and then baked at 400 ° C. for 1 hour to obtain a Pd-supported activated alumina powder (powder B). P of this powder B
The d concentration was 2.0% by weight.

【0017】上記Rh担持活性アルミナ粉末Aを106
g、Pd担持活性アルミナ粉末Bを530g、活性アル
ミナ粉末を264g、水を900g磁性ボールに投入
し、混合粉砕してスラリー液を得た。このスラリー液を
コージェライト質モノリス担体(0.3L、400セ
ル)に付着させ、空気流にてセル内の余剰のスラリーを
取り除いて130℃で乾燥した後、400℃で1時間焼
成し、コート層重量100g/L−担体の材料を得た。
The Rh-supported activated alumina powder A was added to 106
g, 530 g of Pd-supporting activated alumina powder B, 264 g of activated alumina powder, and 900 g of water were charged into a magnetic ball, and mixed and pulverized to obtain a slurry liquid. This slurry liquid was attached to a cordierite-based monolith carrier (0.3 L, 400 cells), excess slurry in the cells was removed with an air stream, and the coating was dried at 130 ° C and then baked at 400 ° C for 1 hour to coat. A layer weight of 100 g / L-support material was obtained.

【0018】当該コート層重量100g/L−担体の材
料に、酢酸バリウムと酢酸マンガンと酢酸ランタンの混
合水溶液を含浸担持し、150℃で乾燥した後、400
℃で焼成して触媒1を得た。触媒1に含有される各成分
の量は、各々酸化物換算でバリウムが20g/L、マン
ガンが20g/L、ランタンが20gであった。
The coating layer weight 100 g / L-The material of the carrier was impregnated with a mixed aqueous solution of barium acetate, manganese acetate and lanthanum acetate, dried at 150 ° C., and then 400
Calcination was performed at 0 ° C. to obtain catalyst 1. The amount of each component contained in the catalyst 1 was 20 g / L of barium, 20 g / L of manganese, and 20 g of lanthanum in terms of oxide.

【0019】次に、γ−アルミナ粉末に、塩化インジウ
ムと硝酸コバルトを溶解した水溶液を用いてインジウム
とコバルトを含浸担持させた。その後150℃で乾燥し
た後、850℃で焼成して触媒組成物を得た。この触媒
組成物を硝酸酸性ベーマイトゾルと混合してスラリーと
し、コージェライト製ハニカム(0.3L、400セ
ル)担体にコートした後、150℃で乾燥した後、60
0℃で焼成して触媒2を得た。このように調製した触媒
2のコート量は、アルミナが150g/L、インジウム
が4.5g/L(アルミナに対して3重量%)、コバル
トが3g/L(アルミナに対して2重量%)であった。
Next, γ-alumina powder was impregnated and supported with indium and cobalt using an aqueous solution in which indium chloride and cobalt nitrate were dissolved. After that, it was dried at 150 ° C. and then calcined at 850 ° C. to obtain a catalyst composition. This catalyst composition was mixed with nitric acid-acidic boehmite sol to form a slurry, which was coated on a cordierite honeycomb (0.3 L, 400 cells) carrier and dried at 150 ° C., then 60
The catalyst 2 was obtained by firing at 0 ° C. The coating amount of the catalyst 2 thus prepared was 150 g / L for alumina, 4.5 g / L for indium (3% by weight with respect to alumina), and 3 g / L for cobalt (2% by weight with respect to alumina). there were.

【0020】得られた触媒2を排気上流側に、触媒1を
排気下流側に装填し、触媒コンバータを得た。得られ
た触媒容量はトータルで0.6Lとなった。
The catalyst 2 thus obtained was loaded on the upstream side of the exhaust gas, and the catalyst 1 was loaded on the downstream side of the exhaust gas to obtain a catalytic converter A. The obtained catalyst capacity was 0.6 L in total.

【0021】実施例2 実施例1において、触媒1におけるスラリーをまず0.
6Lハニカム単体にコートし、次いでその上層に触媒2
におけるスラリーをコートする以外は、実施例1と同様
にして触媒コンバータを得た。
Example 2 In Example 1, the slurry in Catalyst 1 was first adjusted to 0.
6L honeycomb alone is coated, and then catalyst 2 is formed on the upper layer.
A catalytic converter B was obtained in the same manner as in Example 1 except that the slurry in Example 2 was coated.

【0022】実施例3 実施例1において、塩化インジウムのかわりに硝酸ガリ
ウムを用いた以外は、実施例1と同様にして触媒コンバ
ータを得た。従って、触媒2のコート量は、アルミナ
が150g/L、ガリウムが4.5g/L(アルミナに
対して3重量%)、コバルトが3g/L(アルミナに対
して2重量%)であった。
Example 3 A catalytic converter C was obtained in the same manner as in Example 1 except that gallium nitrate was used instead of indium chloride. Therefore, the coating amount of the catalyst 2 was 150 g / L for alumina, 4.5 g / L for gallium (3% by weight with respect to alumina), and 3 g / L for cobalt (2% by weight with respect to alumina).

【0023】実施例4 実施例3において、触媒1におけるスラリーをまず0.
6Lハニカム単体にコートし、次いでその上層に触媒2
におけるスラリーをコートする以外は、実施例1と同様
にして触媒コンバータを得た。
Example 4 In Example 3, the slurry in catalyst 1 was first adjusted to 0.
6L honeycomb alone is coated, and then catalyst 2 is formed on the upper layer.
A catalytic converter D was obtained in the same manner as in Example 1 except that the slurry in Example 2 was coated.

【0024】実施例5 実施例1において、触媒2の調製時に硝酸ガリウムを加
えること以外は、実施例1と同様にして触媒コンバータ
を得た。但し、触媒2のコート量は、アルミナが15
0g/L、ガリウム1.5/L(アルミナに対して1重
量%)、インジウムが4.5g/L(アルミナに対して
3重量%)、コバルト3g/L(アルミナに対して2重
量%)であった。
Example 5 A catalytic converter was prepared in the same manner as in Example 1 except that gallium nitrate was added when the catalyst 2 was prepared.
I got E. However, the coating amount of the catalyst 2 is 15 for alumina.
0 g / L, gallium 1.5 / L (1% by weight based on alumina), indium 4.5 g / L (3% by weight based on alumina), cobalt 3 g / L (2% by weight based on alumina) Met.

【0025】実施例6 実施例5において、触媒1におけるスラリーをまず0.
6Lハニカム単体にコートし、次いでその上層に触媒2
におけるスラリーをコートする以外は、実施例1と同様
にして触媒コンバータを得た。
Example 6 In Example 5, the slurry in catalyst 1 was first adjusted to 0.
6L honeycomb alone is coated, and then catalyst 2 is formed on the upper layer.
A catalytic converter F was obtained in the same manner as in Example 1 except that the slurry in Example 1 was coated.

【0026】実施例7 実施例1において、触媒1の製造時に用いた酢酸マンガ
ンのかわりに酢酸鉄を用いること以外は、実施例1と同
様にして触媒コンバータを得た。このとき触媒1に含
有される各成分の量は、酸化物換算でバリウムが20g
/L、鉄が20g/L、ランタンが20g/Lであっ
た。
Example 7 A catalytic converter G was obtained in the same manner as in Example 1 except that iron acetate was used instead of manganese acetate used in the production of the catalyst 1. At this time, the amount of each component contained in the catalyst 1 is 20 g of barium in terms of oxide.
/ L, iron was 20 g / L, and lanthanum was 20 g / L.

【0027】実施例8 実施例2において、触媒1の製造時に用いた酢酸マンガ
ンのかわりに酢酸鉄を用いること以外は、実施例2と同
様にして触媒コンバータを得た。このとき触媒1に含
有される各成分の量は、酸化物換算でバリウムが20g
/L、鉄が20g/L、ランタンが20g/Lであっ
た。
Example 8 A catalytic converter H was obtained in the same manner as in Example 2 except that iron acetate was used in place of manganese acetate used in the production of the catalyst 1. At this time, the amount of each component contained in the catalyst 1 is 20 g of barium in terms of oxide.
/ L, iron was 20 g / L, and lanthanum was 20 g / L.

【0028】実施例9 実施例3において、触媒1の製造時に用いた酢酸マンガ
ンのかわりに酢酸鉄を用いること以外は、実施例3と同
様にして触媒コンバータを得た。このとき触媒1に含
有される各成分の量は、酸化物換算でバリウムが20g
/L、鉄が20g/L、ランタンが20g/Lであっ
た。
Example 9 A catalytic converter I was obtained in the same manner as in Example 3 except that iron acetate was used instead of manganese acetate used in the production of the catalyst 1. At this time, the amount of each component contained in the catalyst 1 is 20 g of barium in terms of oxide.
/ L, iron was 20 g / L, and lanthanum was 20 g / L.

【0029】実施例10 実施例4において、触媒1の製造時に用いた酢酸マンガ
ンのかわりに酢酸鉄を用いること以外は、実施例4と同
様にして触媒コンバータを得た。このとき触媒1に含
有される各成分の量は、酸化物換算でバリウムが20g
/L、鉄が20g/L、ランタンが20g/Lであっ
た。
Example 10 A catalytic converter J was obtained in the same manner as in Example 4 except that iron acetate was used instead of manganese acetate used in the production of the catalyst 1. At this time, the amount of each component contained in the catalyst 1 is 20 g of barium in terms of oxide.
/ L, iron was 20 g / L, and lanthanum was 20 g / L.

【0030】実施例11 実施例5において、触媒1の製造時に用いた酢酸マンガ
ンのかわりに酢酸鉄を用いること以外は、実施例5と同
様にして触媒コンバータを得た。このとき触媒1に含
有される各成分の量は、酸化物換算でバリウムが20g
/L、鉄が20g/L、ランタンが20g/Lであっ
た。
Example 11 A catalytic converter K was obtained in the same manner as in Example 5 except that iron acetate was used instead of manganese acetate used in the production of the catalyst 1. At this time, the amount of each component contained in the catalyst 1 is 20 g of barium in terms of oxide.
/ L, iron was 20 g / L, and lanthanum was 20 g / L.

【0031】実施例12 実施例6において、触媒1の製造時に用いた酢酸マンガ
ンのかわりに酢酸鉄を用いること以外は、実施例6と同
様にして触媒コンバータを得た。このとき触媒1に含
有される各成分の量は、酸化物換算でバリウムが20g
/L、鉄が20g/L、ランタンが20g/Lであっ
た。
Example 12 A catalytic converter L was obtained in the same manner as in Example 6 except that iron acetate was used instead of manganese acetate used in the production of catalyst 1. At this time, the amount of each component contained in the catalyst 1 is 20 g of barium in terms of oxide.
/ L, iron was 20 g / L, and lanthanum was 20 g / L.

【0032】実施例13 実施例1において、触媒1の製造時に用いた酢酸マンガ
ンのかわりに酢酸コバルトを用いること以外は、実施例
1と同様にして触媒コンバータを得た。このとき触媒
1に含有される各成分の量は、酸化物換算でバリウムが
20g/L、コバルトが20g/L,ランタンが20g
/Lであった。
Example 13 A catalytic converter M was obtained in the same manner as in Example 1 except that cobalt acetate was used instead of manganese acetate used in the production of the catalyst 1. At this time, the amount of each component contained in the catalyst 1 is 20 g / L of barium, 20 g / L of cobalt, and 20 g of lanthanum in terms of oxide.
/ L.

【0033】実施例14 実施例2において、触媒1の製造時に用いた酢酸マンガ
ンのかわりに酢酸コバルトを用いること以外は、実施例
2と同様にして触媒コンバータを得た。このとき触媒
1に含有される各成分の量は、酸化物換算でバリウムが
20g/L、コバルトが20g/L,ランタンが20g
/Lであった。
Example 14 A catalytic converter N was obtained in the same manner as in Example 2 except that cobalt acetate was used instead of manganese acetate used in the production of the catalyst 1. At this time, the amount of each component contained in the catalyst 1 is 20 g / L of barium, 20 g / L of cobalt, and 20 g of lanthanum in terms of oxide.
/ L.

【0034】実施例15 実施例3において、触媒1の製造時に用いた酢酸マンガ
ンのかわりに酢酸コバルトを用いること以外は、実施例
3と同様にして触媒コンバータを得た。このとき触媒
1に含有される各成分の量は、酸化物換算でバリウムが
20g/L、コバルトが20g/L,ランタンが20g
/Lであった。
Example 15 A catalytic converter O was obtained in the same manner as in Example 3 except that cobalt acetate was used instead of manganese acetate used in the production of the catalyst 1. At this time, the amount of each component contained in the catalyst 1 is 20 g / L of barium, 20 g / L of cobalt, and 20 g of lanthanum in terms of oxide.
/ L.

【0035】実施例16 実施例4において、触媒1の製造時に用いた酢酸マンガ
ンのかわりに酢酸コバルトを用いること以外は、実施例
4と同様にして触媒コンバータを得た。このとき触媒
1に含有される各成分の量は、酸化物換算でバリウムが
20g/L、コバルトが20g/L,ランタンが20g
/Lであった。
Example 16 A catalytic converter P was obtained in the same manner as in Example 4 except that cobalt acetate was used instead of manganese acetate used in the production of the catalyst 1. At this time, the amount of each component contained in the catalyst 1 is 20 g / L of barium, 20 g / L of cobalt, and 20 g of lanthanum in terms of oxide.
/ L.

【0036】実施例17 実施例5において、触媒1の製造時に用いた酢酸マンガ
ンのかわりに酢酸コバルトを用いること以外は、実施例
5と同様にして触媒コンバータを得た。このとき触媒
1に含有される各成分の量は、酸化物換算でバリウムが
20g/L、コバルトが20g/L,ランタンが20g
/Lであった。
Example 17 A catalytic converter Q was obtained in the same manner as in Example 5 except that cobalt acetate was used instead of manganese acetate used in the production of the catalyst 1. At this time, the amount of each component contained in the catalyst 1 is 20 g / L of barium, 20 g / L of cobalt, and 20 g of lanthanum in terms of oxide.
/ L.

【0037】実施例18 実施例6において、触媒1の製造時に用いた酢酸マンガ
ンのかわりに酢酸コバルトを用いること以外は、実施例
6と同様にして触媒コンバータを得た。このとき触媒
1に含有される各成分の量は、酸化物換算でバリウムが
20g/L、コバルトが20g/L,ランタンが20g
/Lであった。
Example 18 A catalytic converter R was obtained in the same manner as in Example 6 except that cobalt acetate was used instead of manganese acetate used in the production of the catalyst 1. At this time, the amount of each component contained in the catalyst 1 is 20 g / L of barium, 20 g / L of cobalt, and 20 g of lanthanum in terms of oxide.
/ L.

【0038】実施例19 実施例1において、触媒1の製造時に用いた酢酸マンガ
ンのかわりに酢酸ニッケルを用いること以外は、実施例
1と同様にして触媒コンバータを得た。このとき触媒
1に含有される各成分の量は、酸化物換算でバリウムが
20g/L、ニッケルが20g/L,ランタンが20g
/Lであった。
Example 19 A catalytic converter S was obtained in the same manner as in Example 1 except that nickel acetate was used instead of manganese acetate used in the production of the catalyst 1. At this time, the amount of each component contained in the catalyst 1 is 20 g / L of barium, 20 g / L of nickel, and 20 g of lanthanum in terms of oxide.
/ L.

【0039】実施例20 実施例2において、触媒1の製造時に用いた酢酸マンガ
ンのかわりに酢酸ニッケルを用いること以外は、実施例
2と同様にして触媒コンバータを得た。このとき触媒
1に含有される各成分の量は、酸化物換算でバリウムが
20g/L、ニッケルが20g/L,ランタンが20g
/Lであった。
Example 20 A catalytic converter T was obtained in the same manner as in Example 2 except that nickel acetate was used instead of manganese acetate used in the production of the catalyst 1. At this time, the amount of each component contained in the catalyst 1 is 20 g / L of barium, 20 g / L of nickel, and 20 g of lanthanum in terms of oxide.
/ L.

【0040】実施例21 実施例3において、触媒1の製造時に用いた酢酸マンガ
ンのかわりに酢酸ニッケルを用いること以外は、実施例
3と同様にして触媒コンバータを得た。このとき触媒
1に含有される各成分の量は、酸化物換算でバリウムが
20g/L、ニッケルが20g/L,ランタンが20g
/Lであった。
Example 21 A catalytic converter U was obtained in the same manner as in Example 3 except that nickel acetate was used instead of manganese acetate used in the production of the catalyst 1. At this time, the amount of each component contained in the catalyst 1 is 20 g / L of barium, 20 g / L of nickel, and 20 g of lanthanum in terms of oxide.
/ L.

【0041】実施例22 実施例4において、触媒1の製造時に用いた酢酸マンガ
ンのかわりに酢酸ニッケルを用いること以外は、実施例
4と同様にして触媒コンバータを得た。このとき触媒
1に含有される各成分の量は、酸化物換算でバリウムが
20g/L、ニッケルが20g/L,ランタンが20g
/Lであった。
Example 22 A catalytic converter V was obtained in the same manner as in Example 4 except that nickel acetate was used instead of manganese acetate used in the production of the catalyst 1. At this time, the amount of each component contained in the catalyst 1 is 20 g / L of barium, 20 g / L of nickel, and 20 g of lanthanum in terms of oxide.
/ L.

【0042】実施例23 実施例5において、触媒1の製造時に用いた酢酸マンガ
ンのかわりに酢酸ニッケルを用いること以外は、実施例
5と同様にして触媒コンバータを得た。このとき触媒
1に含有される各成分の量は、酸化物換算でバリウムが
20g/L、ニッケルが20g/L,ランタンが20g
/Lであった。
Example 23 A catalytic converter W was obtained in the same manner as in Example 5, except that nickel acetate was used instead of manganese acetate used in the production of the catalyst 1. At this time, the amount of each component contained in the catalyst 1 is 20 g / L of barium, 20 g / L of nickel, and 20 g of lanthanum in terms of oxide.
/ L.

【0043】実施例24 実施例6において、触媒1の製造時に用いた酢酸マンガ
ンのかわりに酢酸ニッケルを用いること以外は、実施例
6と同様にして触媒コンバータを得た。このとき触媒
1に含有される各成分の量は、酸化物換算でバリウムが
20g/L、ニッケルが20g/L,ランタンが20g
/Lであった。
Example 24 A catalytic converter X was obtained in the same manner as in Example 6 except that nickel acetate was used instead of manganese acetate used in the production of the catalyst 1. At this time, the amount of each component contained in the catalyst 1 is 20 g / L of barium, 20 g / L of nickel, and 20 g of lanthanum in terms of oxide.
/ L.

【0044】比較例1 実施例1で得られた触媒1を排気上流側および排気下流
側に装填し、触媒コンバータを得た。この時の触媒容
量はトータルで0.6Lであった。
[0044] The catalyst 1 obtained in Comparative Example 1 Example 1 was loaded on the exhaust upstream side and the downstream side of exhaust gas, to obtain a catalytic converter i. The catalyst capacity at this time was 0.6 L in total.

【0045】比較例2 実施例1で得られた触媒2を排気上流側および排気下流
側に装填し、触媒コンバータを得た。この時の触媒容
量はトータルで0.6Lであった。
[0045] The catalyst 2 obtained in Comparative Example 2 Example 1 was loaded on the exhaust upstream side and the downstream side of exhaust gas, to obtain a catalytic converter b. The catalyst capacity at this time was 0.6 L in total.

【0046】比較例3 実施例3で得られた触媒2を排気上流側および排気下流
側に装填し、触媒コンバータを得た。この時の触媒容
量はトータルで0.6Lであった。
Comparative Example 3 The catalyst 2 obtained in Example 3 was loaded on the exhaust upstream side and the exhaust downstream side to obtain a catalytic converter ha . The catalyst capacity at this time was 0.6 L in total.

【0047】比較例4 実施例5で得られた触媒2を排気上流側および排気下流
側に装填し、触媒コンバータを得た。この時の触媒容
量はトータル0.6Lであった。
[0047] The catalyst 2 obtained in Comparative Example 4 Example 5 was loaded into the exhaust upstream side and the downstream side of exhaust gas, to obtain a catalytic converter two. The total catalyst capacity at this time was 0.6 L.

【0048】比較例5 実施例7において、触媒1を排気上流側および排気下流
側に装填し、触媒コンバータを得た。触媒容量はトー
タルで0.6Lであった。
Comparative Example 5 In Example 7, the catalyst 1 was loaded on the exhaust upstream side and the exhaust downstream side to obtain a catalytic converter ho . The total catalyst capacity was 0.6 L.

【0049】比較例6 実施例13において、触媒1を排気上流側および排気下
流側に装填し、触媒コンバータを得た。触媒容量はト
ータルで0.6Lであった。
[0049] In Comparative Example 6 Example 13, the catalyst 1 was charged into the exhaust upstream side and the downstream side of exhaust gas, to obtain a catalytic converter f. The total catalyst capacity was 0.6 L.

【0050】比較例7 実施例19において、触媒1を排気上流側および排気下
流側に装填し、触媒コンバータを得た。触媒容量はト
ータルで0.6Lであった。
[0050] In Comparative Example 7 Example 19, the catalyst 1 was charged into the exhaust upstream side and the downstream side of exhaust gas, to obtain a catalytic converter and. The total catalyst capacity was 0.6 L.

【0051】比較例8 実施例1において、触媒1を排気上流側、触媒2を排気
下流側に装填し、触媒コンバータを得た。触媒容量は
トータルで0.6Lであった。
[0051] In Comparative Example 8 Example 1, the catalyst 1 exhaust upstream side, loading the catalyst 2 to the exhaust downstream side, to obtain a catalytic converter switch. The total catalyst capacity was 0.6 L.

【0052】比較例9 実施例2において、上層と下層のコート順序を逆にする
事以外は、実施例2と同様にして触媒コンバータを得
た。
[0052] In Comparative Example 9 Example 2, except that the upper layer and the lower layer coat in the reverse order to obtain a catalyst converter Li in the same manner as in Example 2.

【0053】比較例10 実施例3において、触媒1を排気上流側、触媒2を排気
下流側に装填し、触媒コンバータを得た。触媒容量は
トータルで0.6Lであった。
[0053] In Comparative Example 10 Example 3, the catalyst 1 exhaust upstream side, loading the catalyst 2 to the exhaust downstream side, to obtain a catalytic converter switch. The total catalyst capacity was 0.6 L.

【0054】比較例11 実施例4において、上層と下層のコート順序を逆にする
事以外は、実施例4と同様にして触媒コンバータを得
た。
[0054] In Comparative Example 11 Example 4, except that the upper layer and the lower layer coat in the reverse order to obtain a catalyst converter Le in the same manner as in Example 4.

【0055】比較例12 実施例5において、触媒1を排気上流側、触媒2を排気
下流側に装填し、触媒コンバータを得た。触媒容量は
トータルで0.6Lであった。
[0055] In Comparative Example 12 Example 5, the catalyst 1 exhaust upstream side, loading the catalyst 2 to the exhaust downstream side, to obtain a catalytic converter Wo. The total catalyst capacity was 0.6 L.

【0056】比較例13 実施例6において、上層と下層のコート順序を逆にする
事以外は、実施例6と同様にして触媒コンバータを得
た。
[0056] In Comparative Example 13 Example 6, except that the upper layer and the lower layer coat in the reverse order to obtain a catalyst converter word in the same manner as in Example 6.

【0057】上記実施例1〜24及び比較例1〜13で
得られた排ガス浄化用触媒コンバータの触媒組成を表1
及び2に示す。
The catalyst compositions of the exhaust gas purifying catalytic converters obtained in Examples 1 to 24 and Comparative Examples 1 to 13 are shown in Table 1.
And 2.

【0058】〔試験例〕前記実施例1〜24及び比較例
1〜13の触媒について、以下の条件で触媒活性評価を
行った。活性評価には、自動車の排気ガスを模したモデ
ルガスを用いて、プロピレン及びプロパンと、窒素酸化
物を反応させて、化学発光式窒素酸化物分析計を備えた
自動評価装置を用いた。また、ここで用いるL値は、酸
化性ガス(NO,O2)と還元性ガス(CO,C 3 6
3 8 )との量論比率を示し、下式で定義される。
[Test Example] Examples 1 to 24 and Comparative Example
For the catalysts 1 to 13, the catalytic activity was evaluated under the following conditions.
went. For activity evaluation, a model simulating the exhaust gas of an automobile is used.
Propylene and propane with nitrogen gas
Equipped with a chemiluminescent nitrogen oxide analyzer
An automatic evaluation device was used. The L value used here is the acid
Chemical gas (NO, OTwo) And reducing gas (CO, C ThreeH6,
CThreeH8) And the stoichiometric ratio is defined by the following formula.

【0059】[0059]

【数1】 [Equation 1]

【0060】活性試験条件 触媒 0.6Lハニカムコート触媒 総ガス流量 200L/分 触媒入口ガス温度 450℃ 入口ガス組成 平均空燃比20.0相当のモデルガス組成(L=10. 6)または平均空燃比14.6相当のモデルガス組成( L=1.06) L=1.06の時 CO 0.7% HC 1667ppm C(C3 6 +C3 8) NO 500ppm O2 0.62% CO2 10.0% H2 O 10.0% N2 バランス L=10.6の時 CO 0.2% HC 3000ppm C(C3 6 +C3 8) NO 200ppm O2 6.00% CO2 10.0% H2 O 10.0% N2 バランス A/F振幅 なし Activity test conditions Catalyst 0.6 L Honeycomb coat catalyst Total gas flow rate 200 L / min Catalyst inlet gas temperature 450 ° C. Inlet gas composition Model gas composition (L = 10.6) or average air-fuel ratio corresponding to average air-fuel ratio 20.0 Model gas composition equivalent to 14.6 (L = 1.06) When L = 1.06 CO 0.7% HC 1667ppm C (C 3 H 6 + C 3 H 8 ) NO 500ppm O 2 0.62% CO 2 10.0% H 2 O 10.0% N 2 balance When L = 10.6 CO 0.2% HC 3000ppm C (C 3 H 6 + C 3 H 8 ) NO 200ppm O 2 6.00% CO 2 10 0.0% H 2 O 10.0% N 2 balance A / F amplitude None

【0061】触媒活性評価は、L=1.06で30秒
間、その後L=10.6で30秒間の切り替え運転を1
サイクルを行ない、各々平均転化率を測定し、このL=
1.06の場合の平均転化率と、L=10.6の場合の
平均転化率とを平均して、トータル転化率とし、触媒活
性評価値を以下の式により決定した。
The catalyst activity was evaluated by switching operation at L = 1.06 for 30 seconds and then L = 10.6 for 30 seconds.
The cycle was repeated and the average conversion was measured.
The average conversion rate in the case of 1.06 and the average conversion rate in the case of L = 10.6 were averaged to obtain the total conversion rate, and the catalyst activity evaluation value was determined by the following formula.

【数2】 [Equation 2]

【0062】トータル転化率として得られた触媒活性評
価結果を表1及び2に示す。
Tables 1 and 2 show the results of the catalytic activity evaluation obtained as the total conversion.

【0063】[0063]

【表1】 [Table 1]

【0064】[0064]

【表2】 [Table 2]

【0065】上記結果より、例えば実施例1及び2の排
ガス浄化用触媒コンバータA及びBは触媒2にInとC
oを含んだ場合で、各々2%Rh−2%Pd−BaO−
Mn−Zr/アルミナ(NOx吸収触媒)を下層及び下
流側に配置した場合であるが、いずれも比較例1及び2
の排ガス浄化用触媒コンバータイ及びロよりもHC,C
O,NOx転化率が高い。
From the above results, for example, in the exhaust gas purifying catalytic converters A and B of Examples 1 and 2, In and C were added to the catalyst 2.
2% Rh-2% Pd-BaO-
This is a case where Mn-Zr / alumina (NOx absorption catalyst) is arranged in the lower layer and the downstream side, and both are Comparative Examples 1 and 2.
HC and C rather than catalytic converters I and B for exhaust gas purification
O, NOx conversion rate is high.

【0066】また、実施例3及び4の排ガス浄化用触媒
コンバータC及びDは触媒2にGaとCoを含んだ場合
で、それぞれ2%Rh−2%Pd−BaO−Mn−Zr
/アルミナを下層及び下流側に配置した場合であるが、
いずれも比較例1及び3の排ガス浄化用触媒コンバータ
イ及びハよりもHC,CO,NOx転化率が高い。
In the exhaust gas purifying catalytic converters C and D of Examples 3 and 4, the catalyst 2 contained Ga and Co, respectively, and each contained 2% Rh-2% Pd-BaO-Mn-Zr.
/ When alumina is placed in the lower layer and the downstream side,
Both are catalytic converters for exhaust gas purification of Comparative Examples 1 and 3.
Than) and (c HC, CO, high NOx conversion.

【0067】更に、実施例5及び6の排ガス浄化用触媒
コンバータE及びFはIn,Ga,Coを含んだ場合
で、それぞれ2%Rh−2%Pd−BaO−Mn−Zr
/アルミナを下層及び下流側に配置した場合であるが、
いずれも比較例1及び4の排ガス浄化用触媒コンバータ
イ及びニよりもHC,CO,NOx転化率が高い。
Further, the exhaust gas-purifying catalytic converters E and F of Examples 5 and 6 were those containing In, Ga, and Co, and each contained 2% Rh-2% Pd-BaO-Mn-Zr.
/ When alumina is placed in the lower layer and the downstream side,
Both are catalytic converters for exhaust gas purification of Comparative Examples 1 and 4.
Lee and HC than two, CO, high NOx conversion.

【0068】[0068]

【発明の効果】以上説明してきたように、本発明によれ
ば、リーン雰囲気においてNOxを有効に吸収すること
ができ、従来の触媒では十分に活性が得られないリーン
雰囲気下におけるNOx浄化性能を向上させ、また特定
の触媒を用いることでNOx吸収に必要なNOx酸化反
応が高まり、優れたNOx吸収作用を得ることができる
という有為な効果が得られる。
As described above, according to the present invention, NOx can be effectively absorbed in the lean atmosphere, and the NOx purification performance in the lean atmosphere, which is not sufficiently activated by the conventional catalyst, can be obtained. By improving and using a specific catalyst, the NOx oxidation reaction required for NOx absorption is enhanced, and a significant effect that an excellent NOx absorption action can be obtained is obtained.

【0069】また本発明によれば排ガス浄化用触媒の配
置を特定したことにより、上記効果に加えて、触媒1に
よるNOx吸収妨害成分の反応が優先し、触媒2でのN
Ox吸収性能を高めることができる。
Further, according to the present invention, since the arrangement of the exhaust gas purifying catalyst is specified, in addition to the above effects, the reaction of the NOx absorption inhibiting component by the catalyst 1 is prioritized, and the N 2 in the catalyst 2 is prioritized.
Ox absorption performance can be improved.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物と共存する未燃焼成分を含
み、未燃焼成分に対する酸素量が理論反応量と同量の場
合と多い場合とに切り替わる排ガス中の窒素酸化物を、
(1)耐火性無機担体上に、白金、パラジウム、ロジウ
ムから成る群より選ばれた少なくとも一種を含みかつ、
鉄、コバルト、ニッケル、マンガンから成る群より選ば
れた少なくとも一種とバリウムとランタンとからなる複
合酸化物とを含む触媒1と、(2)アルミナ系酸化物担
体上に、インジウムおよび/またはガリウム、並びにコ
バルトを含む触媒2とから成る排ガス浄化用触媒を用い
て浄化することを特徴とする排ガス浄化方法。
1. A nitrogen oxide in exhaust gas, which contains unburned components coexisting with nitrogen oxides and is switched between when the amount of oxygen relative to the unburned components is the same as the theoretical reaction amount and when it is large,
(1) contains at least one selected from the group consisting of platinum, palladium and rhodium on a refractory inorganic carrier, and
A catalyst 1 containing at least one selected from the group consisting of iron, cobalt, nickel and manganese, and a complex oxide consisting of barium and lanthanum, and (2) indium and / or gallium on an alumina-based oxide carrier. And an exhaust gas purification catalyst comprising a catalyst 2 containing cobalt.
【請求項2】 請求項1記載の排ガス浄化方法であっ
て、触媒1を排ガス下流側に、触媒2を排ガス上流側に
配置することを特徴とする排ガス浄化方法。
2. The exhaust gas purification method according to claim 1, wherein the catalyst 1 is arranged on the exhaust gas downstream side and the catalyst 2 is arranged on the exhaust gas upstream side.
【請求項3】 請求項1記載の排ガス浄化方法であっ
て、触媒1を下層に、触媒2を上層に配置することを特
徴とする排ガス浄化方法。
3. The exhaust gas purification method according to claim 1, wherein the catalyst 1 is arranged in a lower layer and the catalyst 2 is arranged in an upper layer.
【請求項4】 請求項1〜3いずれかの項記載の排ガス
浄化方法であって、前記触媒2におけるインジウムおよ
び/またはガリウムの担持量は両者の合計において0.
05〜30重量%の範囲であり、またコバルトの担持量
は0.01〜50重量%の範囲であることを特徴とする
排ガス浄化方法。
4. The exhaust gas purification method according to any one of claims 1 to 3, wherein the amount of indium and / or gallium supported on the catalyst 2 is 0.
The exhaust gas purification method is characterized in that it is in the range of 05 to 30% by weight, and the supported amount of cobalt is in the range of 0.01 to 50% by weight.
【請求項5】 請求項1〜4いずれかの項記載の排ガス
浄化方法であって、前記触媒1および2を触媒担体にコ
ート層として備えたことを特徴とする排ガス浄化方法。
5. The exhaust gas purification method according to claim 1, wherein the catalysts 1 and 2 are provided as a coat layer on a catalyst carrier.
【請求項6】 請求項5記載の排ガス浄化方法であっ
て、前記触媒担体がハニカム状モノリス担体基材である
ことを特徴とする排ガス浄化方法。
6. The exhaust gas purification method according to claim 5, wherein the catalyst carrier is a honeycomb monolith carrier substrate.
JP8062857A 1996-03-19 1996-03-19 Cleaning of exhaust gas Pending JPH09253453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8062857A JPH09253453A (en) 1996-03-19 1996-03-19 Cleaning of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8062857A JPH09253453A (en) 1996-03-19 1996-03-19 Cleaning of exhaust gas

Publications (1)

Publication Number Publication Date
JPH09253453A true JPH09253453A (en) 1997-09-30

Family

ID=13212398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8062857A Pending JPH09253453A (en) 1996-03-19 1996-03-19 Cleaning of exhaust gas

Country Status (1)

Country Link
JP (1) JPH09253453A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069291A (en) * 1996-06-12 2000-05-30 Guild Associates, Inc. Catalytic process for the decomposition of perfluoroalkanes
US6509511B1 (en) 1998-10-07 2003-01-21 Guild Associates, Inc. Process for the conversion of perfluoroalkanes, a catalyst for use therein and a method for its preparation
US6576587B2 (en) 2001-03-13 2003-06-10 Delphi Technologies, Inc. High surface area lean NOx catalyst
US6670296B2 (en) 2001-01-11 2003-12-30 Delphi Technologies, Inc. Alumina/zeolite lean NOx catalyst
US6673326B1 (en) 2000-08-07 2004-01-06 Guild Associates, Inc. Catalytic processes for the reduction of perfluorinated compounds and hydrofluorocarbons
US6676913B2 (en) 1996-06-12 2004-01-13 Guild Associates, Inc. Catalyst composition and method of controlling PFC and HFC emissions
US6864213B2 (en) 2001-03-13 2005-03-08 Delphi Technologies, Inc. Alkaline earth / rare earth lean NOx catalyst
JP2005224669A (en) * 2004-02-10 2005-08-25 Toyota Motor Corp Catalyst and method for purifying exhaust gas
WO2014038294A1 (en) * 2012-09-10 2014-03-13 日産自動車株式会社 Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method for producing exhaust gas purification catalyst
GB2541500A (en) * 2015-06-18 2017-02-22 Johnson Matthey Plc NH3 overdosing-tolerant SCR catalyst
GB2542231A (en) * 2015-06-18 2017-03-15 Johnson Matthey Plc Single or dual layer ammonia slip catalyst

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069291A (en) * 1996-06-12 2000-05-30 Guild Associates, Inc. Catalytic process for the decomposition of perfluoroalkanes
US6426443B1 (en) 1996-06-12 2002-07-30 Guild Associates, Inc. Catalytic process for the decomposition of perfluoroalkanes
US6676913B2 (en) 1996-06-12 2004-01-13 Guild Associates, Inc. Catalyst composition and method of controlling PFC and HFC emissions
US6509511B1 (en) 1998-10-07 2003-01-21 Guild Associates, Inc. Process for the conversion of perfluoroalkanes, a catalyst for use therein and a method for its preparation
US6673326B1 (en) 2000-08-07 2004-01-06 Guild Associates, Inc. Catalytic processes for the reduction of perfluorinated compounds and hydrofluorocarbons
US6670296B2 (en) 2001-01-11 2003-12-30 Delphi Technologies, Inc. Alumina/zeolite lean NOx catalyst
US6576587B2 (en) 2001-03-13 2003-06-10 Delphi Technologies, Inc. High surface area lean NOx catalyst
US6864213B2 (en) 2001-03-13 2005-03-08 Delphi Technologies, Inc. Alkaline earth / rare earth lean NOx catalyst
JP2005224669A (en) * 2004-02-10 2005-08-25 Toyota Motor Corp Catalyst and method for purifying exhaust gas
JP4529463B2 (en) * 2004-02-10 2010-08-25 トヨタ自動車株式会社 Exhaust gas purification catalyst and exhaust gas purification method
WO2014038294A1 (en) * 2012-09-10 2014-03-13 日産自動車株式会社 Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method for producing exhaust gas purification catalyst
JP5885004B2 (en) * 2012-09-10 2016-03-15 日産自動車株式会社 Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method of manufacturing exhaust gas purification catalyst
US9352301B2 (en) 2012-09-10 2016-05-31 Nissan Motor Co., Ltd. Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method for producing exhaust gas purification catalyst
JPWO2014038294A1 (en) * 2012-09-10 2016-08-08 日産自動車株式会社 Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method of manufacturing exhaust gas purification catalyst
GB2541500A (en) * 2015-06-18 2017-02-22 Johnson Matthey Plc NH3 overdosing-tolerant SCR catalyst
GB2542231A (en) * 2015-06-18 2017-03-15 Johnson Matthey Plc Single or dual layer ammonia slip catalyst
US9789441B2 (en) 2015-06-18 2017-10-17 Johnson Matthey Public Limited Company Single or dual layer ammonia slip catalyst
US9878287B2 (en) 2015-06-18 2018-01-30 Johnson Matthey Public Limited Company NH3 overdosing-tolerant SCR catalyst
GB2541500B (en) * 2015-06-18 2019-06-26 Johnson Matthey Plc NH3 overdosing-tolerant SCR catalyst
GB2542231B (en) * 2015-06-18 2019-08-14 Johnson Matthey Plc Single or dual layer ammonia slip catalyst
RU2715539C2 (en) * 2015-06-18 2020-02-28 Джонсон Мэтти Паблик Лимитед Компани Nh3 overdosing-tolerant scr catalyst

Similar Documents

Publication Publication Date Title
JP3291086B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH05261287A (en) Method for purifying exhaust gas and catalyst therefor
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
JPH09253453A (en) Cleaning of exhaust gas
JPH08229355A (en) Exhaust gas purifying catalyst
JPH0957098A (en) Catalyst for purification of exhaust gas
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
JPH11169670A (en) Nox occlusion-reduction type ternary catalyst and apparatus for cleaning exhaust gas using same
US20020076373A1 (en) Use of lithium in NOx adsorbers for improved low temperature performance
JPH09220470A (en) Catalyst for purification of exhaust gas
JPH08281110A (en) Catalyst for purifying exhaust gas and its production
JPH10192713A (en) Exhaust gas purifying catalyst and its use
JP3741292B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH0810573A (en) Exhaust gas purifying device
JP2003245523A (en) Exhaust gas cleaning system
JPH1157477A (en) Exhaust gas cleaning catalyst and method of using the same
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JP2004216224A (en) Nox occlusion reduction type catalyst
JPH09225264A (en) Catalyst for purifying exhaust gas
JPH0871424A (en) Catalyst for purification of exhaust gas
JP3589376B2 (en) Exhaust gas purification catalyst
JP3379125B2 (en) Exhaust gas purification catalyst
JPH08281111A (en) Catalyst for purifying exhaust gas and its production
JPH09299795A (en) Catalyst for purification of exhaust gas