JPH1157477A - Exhaust gas cleaning catalyst and method of using the same - Google Patents

Exhaust gas cleaning catalyst and method of using the same

Info

Publication number
JPH1157477A
JPH1157477A JP9217444A JP21744497A JPH1157477A JP H1157477 A JPH1157477 A JP H1157477A JP 9217444 A JP9217444 A JP 9217444A JP 21744497 A JP21744497 A JP 21744497A JP H1157477 A JPH1157477 A JP H1157477A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
composite oxide
powder
catalysts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9217444A
Other languages
Japanese (ja)
Inventor
Katsuo Suga
克雄 菅
Toru Sekiba
徹 関場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9217444A priority Critical patent/JPH1157477A/en
Publication of JPH1157477A publication Critical patent/JPH1157477A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas cleaning catalyst and method of using the same, having an enhanced NOx cleaning capacity under a lean atmosphere in which catalysts of the prior arts cannot demonstrate sufficient activity and fully exhibiting a function as a tertiary catalyst. SOLUTION: At least two kinds of catalysts are provided against an exhaust gas steam, and the two kinds of the catalysts contain at least one kind of noble metal selected from the group consisting of platinum, palladium and rhodium and a complex oxide represented by the formula: (La1-x Ax )1-α BOδ (wherein 0<x<1, 0<α<0.2, and δ is oxygen amount which satisfies valence of each atom, A = barium or potassium, B = at least one kind selected from the group consisting of iron, cobalt, nickel and manganese) and the catalyst disposed in a front step with regard to an exhaust gas stream contains a larger amount of the composite oxide than a catalyst disposed in a rear step.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車、ボイラー
等の内燃機関から排出される排気ガス中の炭化水素(H
C)、一酸化炭素(CO)および窒素酸化物(NOx)
を浄化する排気ガス浄化用触媒及びその使用方法に関
し、特に酸素過剰雰囲気下でのNOxの浄化性能に優れ
る排気ガス浄化用触媒及びその使用方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to hydrocarbons (H) contained in exhaust gas discharged from an internal combustion engine such as an automobile and a boiler.
C), carbon monoxide (CO) and nitrogen oxides (NOx)
The present invention relates to an exhaust gas purifying catalyst for purifying NOx and a method of using the same, and more particularly to an exhaust gas purifying catalyst excellent in NOx purifying performance in an oxygen-excess atmosphere and a method of using the same.

【0002】[0002]

【従来の技術】近年、石油資源の枯渇問題および地球温
暖化問題の関点から、低燃費自動車の実現が期待されて
おり、特にガソリン自動車に対しては希薄燃焼自動車の
開発が望まれている。希薄燃焼自動車においては、希薄
燃焼走行時の排気ガス雰囲気は、理論空燃状態(以下、
「ストイキ状態」と称す)に比べて酸素過剰雰囲気(以
下、「リーン雰囲気」と称す)となる。リーン雰囲気に
おいて、従来の三元触媒を適応させた場合には、過剰な
酸素の影響からNOx浄化作用が不十分となるという問
題があった。このためリーン雰囲気下においてもNOx
を浄化できる触媒の開発が望まれていた。
2. Description of the Related Art In recent years, in view of the problem of depletion of petroleum resources and the problem of global warming, realization of low fuel consumption vehicles is expected, and development of lean burn vehicles is particularly desired for gasoline vehicles. . In lean-burn vehicles, the exhaust gas atmosphere during lean-burn operation is based on the theoretical air-fuel condition
An oxygen-excess atmosphere (hereinafter, referred to as a “lean atmosphere”) as compared to “stoichiometric state”. When a conventional three-way catalyst is applied in a lean atmosphere, there has been a problem that the effect of excessive oxygen makes the NOx purification action insufficient. For this reason, NOx
There has been a demand for the development of a catalyst that can purify methane.

【0003】従来より、リーン雰囲気下におけるNOx
浄化性能を向上させる触媒は種々提案されており、例え
ば特開平5−168860号公報には、ランタン等を白
金(Pt)に担持させてランタンをNOx吸収材として
用いる触媒が開示されている。これはリーン雰囲気下で
NOxを吸収し、ストイキ状態あるいは燃料過剰(リッ
チ)雰囲気下でNOxを放出浄化するものである。
Conventionally, NOx in a lean atmosphere has been
Various catalysts for improving the purification performance have been proposed. For example, JP-A-5-168860 discloses a catalyst in which lanthanum or the like is supported on platinum (Pt) and lanthanum is used as a NOx absorbent. This is to absorb NOx in a lean atmosphere and to release and purify NOx in a stoichiometric or fuel-rich (rich) atmosphere.

【0004】しかしながら、上記従来のNOx吸収触媒
(例えばPt−ランタン触媒)は、その特性上、リーン
雰囲気で定常走行を行うとNOx吸収量が飽和に達して
やがて吸収作用が消失するという問題があり、NOx浄
化性能が不足し、耐久後の性能も十分でなく、幅広い運
転条件下でNOxを浄化することができない。
However, the conventional NOx absorption catalyst (for example, a Pt-lanthanum catalyst) has a problem in that, when the vehicle is steadily driven in a lean atmosphere, the amount of absorbed NOx reaches saturation and the absorption action eventually disappears. , NOx purification performance is insufficient, the performance after durability is not sufficient, and NOx cannot be purified under a wide range of operating conditions.

【0005】[0005]

【発明が解決しようとする課題】従って、請求項1〜3
記載の発明の目的は、従来の触媒では十分な活性を示さ
なかったリーン雰囲気下におけるNOx浄化性能を向上
させることができ、かつ三元触媒としての機能を十分に
発現することができる排気ガス浄化用触媒を提供するに
ある。
SUMMARY OF THE INVENTION
The object of the invention described is to improve the NOx purification performance in a lean atmosphere, which has not exhibited sufficient activity with a conventional catalyst, and to achieve exhaust gas purification capable of fully exhibiting a function as a three-way catalyst. To provide a catalyst for use.

【0006】また、請求項4記載の発明の目的は、本発
明の排気ガス浄化用触媒のそのNOx浄化作用が特に有
効に発現できる排気ガス浄化用触媒の使用方法を提供す
るにある。
It is another object of the present invention to provide a method of using an exhaust gas purifying catalyst capable of particularly effectively exhibiting its NOx purifying action of the exhaust gas purifying catalyst of the present invention.

【0007】[0007]

【課題を解決するための手段】請求項1記載の排気ガス
浄化用触媒は、排気流れに対して少なくとも2種の触媒
を設け、該2種の触媒はいずれも白金、パラジウム及び
ロジウムから成る群より選ばれた少なくとも一種の貴金
属と、次の一般式
According to a first aspect of the present invention, there is provided a catalyst for purifying exhaust gas, wherein at least two kinds of catalysts are provided for an exhaust gas flow, each of the two kinds of catalysts comprising platinum, palladium and rhodium. At least one precious metal selected from the following general formula

【数2】 で表される複合酸化物とを含有し、排気流れに対して前
段に配置される触媒が、後段に配置される触媒より当該
複合酸化物を多く含有することを特徴とする。
(Equation 2) Wherein the catalyst disposed upstream of the exhaust flow contains more of the composite oxide than the catalyst disposed downstream.

【0008】請求項2記載の排気ガス浄化用触媒は、排
気流れに対して前段に配置する触媒には、前記複合酸化
物を触媒1Lあたり30〜80g、後段に配置する触媒
には前記複合酸化物を触媒1Lあたり2〜40g含有す
ることを特徴とする。
According to a second aspect of the present invention, there is provided a catalyst for purifying exhaust gas, wherein the catalyst disposed in the first stage with respect to the exhaust flow contains the composite oxide in an amount of 30 to 80 g per liter of the catalyst, and the catalyst disposed in the second stage has the composite oxide. 2 to 40 g per 1 L of the catalyst.

【0009】請求項3記載の排気ガス浄化用触媒は、前
記白金、パラジウム及びロジウムから成る群より選ばれ
た少なくとも一種が前記複合酸化物に担持されているこ
とを特徴とする。
According to a third aspect of the present invention, the exhaust gas purifying catalyst is characterized in that at least one selected from the group consisting of platinum, palladium and rhodium is carried on the composite oxide.

【0010】また、上記本発明の排気ガス浄化用触媒の
有効なNOx吸収、放出サイクルを発現させるために、
請求項4記載の排気ガス浄化用触媒の使用方法は、本発
明の排気ガス浄化用触媒を、空燃比が10〜14.8
と、15〜50の範囲とを繰り返すリーンバーンエンジ
ン車に使用することを特徴とする。
Further, in order to exhibit an effective NOx absorption / release cycle of the exhaust gas purifying catalyst of the present invention,
According to a fourth aspect of the present invention, there is provided the exhaust gas purifying catalyst of the present invention, wherein the exhaust gas purifying catalyst has an air-fuel ratio of 10 to 14.8.
And a range of 15 to 50.

【0011】[0011]

【発明の実施の形態】本発明の排気ガス浄化用触媒中の
貴金属には、白金、パラジウム及びロジウムから成る群
より選ばれる少なくとも1種が用いられる。例えばPt
とRh、PdとRh、Pdのみ等の種々の組み合わせが
可能である。前記貴金属の含有量は、NOx吸収能と三
元触媒性能が十分に得られれば特に限定されないが、
0.1gより少ないと十分な三元性能が得られず、10
gより多く使用しても有意な特性向上はみられない点か
ら、本発明の排気ガス浄化用触媒1Lあたり0.1〜1
0gが好ましい。
DETAILED DESCRIPTION OF THE INVENTION As the noble metal in the exhaust gas purifying catalyst of the present invention, at least one selected from the group consisting of platinum, palladium and rhodium is used. For example, Pt
And Rh, and various combinations such as Pd and Rh and Pd alone are possible. The content of the noble metal is not particularly limited as long as the NOx absorption capacity and the three-way catalyst performance are sufficiently obtained.
If the amount is less than 0.1 g, sufficient ternary performance cannot be obtained, and
g of the exhaust gas purifying catalyst of the present invention.
0 g is preferred.

【0012】また本発明の排気ガス浄化用触媒中に含ま
れる複合酸化物は、次の一般式
The composite oxide contained in the exhaust gas purifying catalyst of the present invention has the following general formula:

【数3】 で表される。(Equation 3) It is represented by

【0013】本発明の排気ガス浄化用触媒に用いられる
複合酸化物には、希土類金属と、アルカリ金属及び/又
はアルカリ土類金属と、少なくとも1種の遷移金属とが
含まれる。希土類金属としては、ランタンが、アルカリ
金属としてはカリウムが、アルカリ土類金属としてはバ
リウムが、また遷移金属としては、鉄、コバルト、ニッ
ケル及びマンガンが好適に使用できる。
The composite oxide used in the exhaust gas purifying catalyst of the present invention contains a rare earth metal, an alkali metal and / or an alkaline earth metal, and at least one transition metal. Lanthanum is preferably used as the rare earth metal, potassium is used as the alkali metal, barium is used as the alkaline earth metal, and iron, cobalt, nickel and manganese can be suitably used as the transition metal.

【0014】このような上記ペロブスカイト型酸化物の
ような複合酸化物は、酸素欠損を生じ、この生成した酸
素欠損を介してNOxの吸着が容易になり、リーン雰囲
気においてNOxを吸収するという特性を利用すること
により、NOxの浄化性能を向上させることが可能とな
っている。
A composite oxide such as the above-described perovskite-type oxide has characteristics of causing oxygen deficiency, easily adsorbing NOx through the generated oxygen deficiency, and absorbing NOx in a lean atmosphere. Utilization makes it possible to improve NOx purification performance.

【0015】また、上記ペロブスカイト型酸化物は触媒
組成物中のアルミナ系酸化物と固相反応を起こして活性
が失活する場合がある。これを抑制するために、アルミ
ナ系酸化物にランタン等をプリコートする方法や、ジル
コニアのようにペロブスカイトとの反応性が小さい材料
を用いる方法がある。これに対して本発明のようにペロ
ブスカイト型酸化物のAサイトを量論比から僅かに欠損
させることにより、ペロブスカイト型酸化物と接する他
の酸化物(アルミナ等)との間での固相反応を抑制し、
熱的安定性を向上させることが可能となった。
Further, the perovskite-type oxide may cause a solid-phase reaction with the alumina-based oxide in the catalyst composition to deactivate the activity. In order to suppress this, there are a method of pre-coating lanthanum or the like on the alumina-based oxide and a method of using a material having low reactivity with perovskite such as zirconia. On the other hand, by slightly losing the A site of the perovskite-type oxide from the stoichiometric ratio as in the present invention, the solid-phase reaction between the perovskite-type oxide and another oxide (alumina or the like) in contact with the perovskite-type oxide To suppress
It has become possible to improve the thermal stability.

【0016】Aサイトの置換量は、0<x<1であり特
に限定されないが、NOx吸収能力を十分に得るために
は、特に、0.2≦x<1であることが好ましい。
The substitution amount of the A site is 0 <x <1 and is not particularly limited. However, in order to obtain a sufficient NOx absorption capacity, it is particularly preferable that 0.2 ≦ x <1.

【0017】αの値は、0.2を超えると単相のペロブ
スカイト構造を構成しなくなるので0<α<0.2であ
ることが好ましい。δの値は各原子の価数を満足する酸
素量であり、およそ0<δ<4程度である。
If the value of α exceeds 0.2, a single-phase perovskite structure is not formed, so that 0 <α <0.2 is preferable. The value of δ is the amount of oxygen that satisfies the valence of each atom, and is approximately 0 <δ <4.

【0018】また、本発明で用いられる複合酸化物、特
に部分置換ペロブスカイト酸化物は、その部分置換量と
ともにリーン雰囲気下でNOxを吸収する性能を発現さ
せるが、その吸収機構は、気相中のNOxが複合酸化物
上でNO2 に酸化され、複合酸化物表面のバリウム及び
/又はカリウムの近傍に硝酸基あるいはそれに近い状態
で吸収されるものと考えられる。従ってリーン雰囲気下
でNOxを有効に吸収するための複合酸化物の組成は、
硝酸塩を容易に製造し得るバリウム及び/又はカリウム
を含有し、更に、NOxをNO2 に酸化することができ
る遷移金属元素を含有することが重要である。
The composite oxide used in the present invention, particularly the partially substituted perovskite oxide, exhibits the ability to absorb NOx in a lean atmosphere together with the partially substituted amount thereof. It is considered that NOx is oxidized to NO 2 on the composite oxide and is absorbed in the vicinity of barium and / or potassium on the surface of the composite oxide in the form of a nitric acid group or a state close thereto. Therefore, the composition of the composite oxide for effectively absorbing NOx under a lean atmosphere is as follows:
Nitrate containing barium and / or potassium may be easily manufactured, and further, it is important to contain a transition metal element capable of oxidizing NOx to NO 2.

【0019】該複合酸化物の各構成元素は、触媒に含ま
れるこれらの全てが複合化している場合に、その上記し
た作用は最大限に発揮されるが、少なくとも一部が複合
体を形成しうる場合でも十分に上記作用を得ることがで
きる。該複合酸化物の各構成元素は、熱耐久後でも別々
の酸化物として分離することなく複合酸化物として存在
することができ、これは例えばX線回折測定により確認
することができる。
Each of the constituent elements of the composite oxide exerts the above-mentioned effects to the maximum when all of these elements contained in the catalyst are complexed, but at least a part thereof forms a complex. Even if it is possible, the above effect can be sufficiently obtained. Each constituent element of the composite oxide can exist as a composite oxide without being separated as a separate oxide even after thermal endurance, and this can be confirmed by, for example, X-ray diffraction measurement.

【0020】本発明の排気ガス浄化用触媒は、前記貴金
属と、複合酸化物とを共存させることにより、各々単独
では得られないNOx浄化作用を得ることが可能となっ
ている。即ち、排気ガス雰囲気がリーンとなった場合に
は、本発明の排気ガス浄化用触媒中の複合酸化物による
NOx吸収作用により、高いNOx浄化性能が得られ
る。該複合酸化物のNOx吸収し、また排気ガス雰囲気
がリーンからストイキに変化すると該複合酸化物からN
Oxが放出され、高いNOx浄化性能が得られる。該複
合酸化物を構成する各成分の単独物を単に混合しただけ
では得られない優れたNOx浄化性能を得るものであ
る。
In the exhaust gas purifying catalyst of the present invention, by coexisting the noble metal and the composite oxide, it is possible to obtain a NOx purifying action that cannot be obtained by each alone. That is, when the exhaust gas atmosphere becomes lean, high NOx purification performance can be obtained by the NOx absorbing action of the composite oxide in the exhaust gas purification catalyst of the present invention. When the composite oxide absorbs NOx and the exhaust gas atmosphere changes from lean to stoichiometric,
Ox is released, and high NOx purification performance is obtained. It is intended to obtain excellent NOx purification performance which cannot be obtained by simply mixing individual components of the composite oxide.

【0021】かかる吸収浄化サイクルをスムーズに行な
わせるためには、排気流れに少なくとも2種の触媒を設
け、排気流れに対して前段に配置する触媒が後段に配置
する触媒よりも上記複合酸化物を多く含有することが必
要である。これはストイキ時に両触媒が接触できる還元
性ガス(HC,CO,H2 )は、排気流れに対して前段
に配置した触媒の方が多く、後段に配置した触媒には少
ないことが原因で、吸収放出サイクルが可能なNOx吸
収能力に適正値が生じるためである。
In order to smoothly carry out such an absorption and purification cycle, at least two types of catalysts are provided in the exhaust gas flow, and the catalyst arranged at the former stage with respect to the exhaust gas is more effective than the catalyst arranged at the latter stage with the composite oxide. It is necessary to contain a large amount. This is because the amount of reducing gas (HC, CO, H 2 ) that both catalysts can contact at the time of stoichiometry is larger in the catalyst arranged in the front stage with respect to the exhaust gas flow, and less in the catalyst arranged in the latter stage with respect to the exhaust gas flow. This is because an appropriate value is generated in the NOx absorption capacity that allows the absorption and release cycle.

【0022】また本発明の触媒は熱耐久後においても高
いNOx吸収作用を有し、これは該複合酸化物がAサイ
ト割合の少ないペロブスカイト型構造をとっており、他
成分(例えばアルミナ)との固相反応が回避されたため
である。
Further, the catalyst of the present invention has a high NOx absorption function even after heat endurance. This is because the composite oxide has a perovskite structure having a small proportion of A site, and has a high NOx absorption. This is because the solid-phase reaction was avoided.

【0023】特に、排気流れに対して前段に配置した触
媒に含まれる上記複合酸化物の量は、触媒1L当たり3
0〜80g、後段に配置した触媒に含まれる上記複合酸
化物の量は触媒1L当たり2〜40gとすることが好ま
しい。排気流れに対して前段、後段のいずれの触媒も該
複合酸化物の量が上記より少ない場合にはNOx吸収機
能が十分とならず、また上記範囲を超えると互いの悪い
相互作用が生じ、適切でない。
In particular, the amount of the composite oxide contained in the catalyst disposed upstream of the exhaust gas flow is 3 per liter of the catalyst.
It is preferable that the amount of the composite oxide contained in the catalyst disposed in the subsequent stage be 0 to 80 g and 2 to 40 g per 1 L of the catalyst. When the amount of the composite oxide is smaller than the above, the NOx absorption function is not sufficient for any of the catalysts at the former stage and the latter stage with respect to the exhaust gas flow. Not.

【0024】更に、前記、白金、パラジウム及びロジウ
ムから成る群より選ばれた少なくとも一種は前記複合酸
化物に担持されていることが好ましい。これにより熱耐
久後においても高いNOx吸収能が得られることとな
る。これは熱耐久後においても、互いの接触が密に保た
れ、NOxの吸収放出サイクルのスムーズな進行が維持
できるためである。
Further, it is preferable that at least one selected from the group consisting of platinum, palladium and rhodium is carried on the composite oxide. As a result, high NOx absorption capacity can be obtained even after heat durability. This is because even after the heat endurance, the mutual contact is kept dense, and the smooth progress of the NOx absorption / release cycle can be maintained.

【0025】上記本発明の排気ガス浄化用触媒は、特
に、空燃比が10〜14.8と、15〜50の範囲とを
繰り返すリーンバーンエンジン車に使用することができ
る。このような使用方法とすることにより、NOx吸収
・放出のサイクルが極めて有効に成立し、特に効率の良
いNOx浄化が可能となる。
The exhaust gas purifying catalyst of the present invention can be used especially for lean burn engine vehicles in which the air-fuel ratio repeatedly ranges from 10 to 14.8 and from 15 to 50. With such a method of use, the cycle of NOx absorption / release is extremely effectively established, and particularly efficient NOx purification becomes possible.

【0026】本発明に用いる複合酸化物は、複合酸化物
の各構成元素の硝酸塩、酢酸塩又は炭酸塩等を、所望す
る複合酸化物の組成比に混合し、仮焼成した後粉砕し
て、熱処理焼成する固相反応や、複合酸化物の各構成元
素の硝酸塩、酢酸塩又は炭酸塩、塩酸塩、クエン酸塩等
を、所望する複合酸化物の組成比に混合し、水に溶解し
た後、必要に応じてNH4 OHやNH3 CO3 等のアル
カリ溶液を滴下して沈殿物を生成し、ろ過した後乾燥さ
せて焼成する共沈法等の公知の方法により調製すること
ができる。かかる方法により、複合酸化物を構成する各
成分の少なくとも一部を複合化することができる。
The composite oxide used in the present invention is prepared by mixing nitrates, acetates or carbonates of the respective constituent elements of the composite oxide in a desired composition ratio of the composite oxide, calcining the mixture, and pulverizing the mixture. After the solid-phase reaction to be subjected to heat treatment and firing, nitrate, acetate or carbonate, hydrochloride, citrate, etc. of each constituent element of the composite oxide are mixed in a desired composition ratio of the composite oxide, and then dissolved in water. If necessary, an alkaline solution such as NH 4 OH or NH 3 CO 3 may be added dropwise to form a precipitate, which can be prepared by a known method such as a coprecipitation method in which the precipitate is filtered, dried, and fired. By such a method, at least a part of each component constituting the composite oxide can be composited.

【0027】本発明で用いる触媒調製用原料には、その
上記作用を妨げる量でなければ微量の不純物を含んでも
構わず、例えばバリウム中に含まれるストロンチウム
や、セリウム中に含まれるランタン、ネオジウム、サマ
リウム等である。
The raw material for preparing the catalyst used in the present invention may contain a trace amount of impurities as long as the above-mentioned action is not impaired. For example, strontium contained in barium, lanthanum, neodymium contained in cerium, And samarium.

【0028】本発明の触媒は、一体構造型担体に担持し
て用いるのが好ましく、本発明の触媒を粉砕してスラリ
ーとし、触媒担体にコートして、400〜900℃の温
度で焼成することにより、本発明の排気ガス浄化用触媒
を得ることができる。
The catalyst of the present invention is preferably used by being supported on a monolithic carrier. The catalyst of the present invention is pulverized into a slurry, coated on the catalyst carrier, and calcined at a temperature of 400 to 900 ° C. Thus, the exhaust gas purifying catalyst of the present invention can be obtained.

【0029】触媒担体としては、公知の触媒担体の中か
ら適宜選択して使用することができ、例えば耐火性材料
からなるモノリス構造を有するハニカム担体やメタル担
体等が挙げられる。この触媒担体の形状は、特に制限さ
れないが、通常はハニカム形状で使用することが好まし
く、このハニカム材料としては、一般に例えばセラミッ
クス等のコージェライト質のものが多く用いられるが、
フェライト系ステンレス等の金属材料からなるハニカム
を用いることも可能であり、更には触媒粉末そのものを
ハニカム形状に成形しても良い。触媒の形状をハニカム
状とすることにより、触媒と排気ガスの触媒面積が大き
くなり、圧力損失も抑えられるため自動車用等として用
いる場合に極めて有利である。
The catalyst carrier can be appropriately selected from known catalyst carriers, and includes, for example, a honeycomb carrier and a metal carrier having a monolith structure made of a refractory material. Although the shape of the catalyst carrier is not particularly limited, it is usually preferable to use a honeycomb shape. As the honeycomb material, cordierite materials such as ceramics are generally used.
It is also possible to use a honeycomb made of a metal material such as a ferritic stainless steel, and further, the catalyst powder itself may be formed into a honeycomb shape. By making the shape of the catalyst into a honeycomb shape, the area of the catalyst and the exhaust gas becomes large, and the pressure loss can be suppressed.

【0030】本発明の触媒はストイキ時の三元触媒とし
ての機能も必要であるため、Pt,Pd及びRhから成
る群より選ばれた少なくとも一種は、少なくとも一部が
耐熱性担体に担持されることが好ましく、特にアルミナ
に担持されることが好ましい。ここで用いるアルミナは
耐熱性の高いものが好ましく、なかでも比表面積が50
〜300m2 /gの活性アルミナが好ましい。またアル
ミナの耐熱性を向上させるために、従来から三元触媒で
適用されているように、セリウム、ランタン等の希土類
化合物やジルコニウムなどの添加物をさらに加えてもよ
い。
Since the catalyst of the present invention also needs to function as a three-way catalyst during stoichiometry, at least one selected from the group consisting of Pt, Pd and Rh is at least partially supported on a heat-resistant carrier. It is particularly preferable that it is supported on alumina. The alumina used here is preferably one having high heat resistance, and particularly, having a specific surface area of 50%.
Activated alumina ~300m 2 / g are preferred. In order to improve the heat resistance of alumina, a rare earth compound such as cerium or lanthanum or an additive such as zirconium may be further added as conventionally used in a three-way catalyst.

【0031】更に本発明で用いる触媒は、ストイキ時の
三元触媒としての機能も必要であるため、従来から三元
触媒で用いられている添加物を更に加えても良く、例え
ば酸素ストレージ機能を有するセリアや、貴金属へのH
C吸着被毒を緩和するバリウムや、Rhの耐熱性向上に
寄与するジルコニア等である。
Further, since the catalyst used in the present invention also needs to function as a three-way catalyst during stoichiometry, additives conventionally used in three-way catalysts may be further added. H to ceria and precious metals
Barium, which alleviates C adsorption poisoning, and zirconia, which contributes to improving the heat resistance of Rh.

【0032】[0032]

【実施例】以下、本発明を次の実施例及び比較例により
説明する。実施例1 活性アルミナ粉末に硝酸パラジウム溶液を含浸し、乾燥
後400℃で1時間焼成して、Pdアルミナ粉末(粉末
A)を得た。この粉末APd濃度は4.0重量%であっ
た。
The present invention will be described below with reference to the following examples and comparative examples. Example 1 Activated alumina powder was impregnated with a palladium nitrate solution, dried and calcined at 400 ° C. for 1 hour to obtain a Pd alumina powder (powder A). The concentration of the powder APd was 4.0% by weight.

【0033】炭酸ランタンと炭酸バリウムと炭酸コバル
トとの混合物にクエン酸を加え、乾燥後700℃で焼成
し、粉末Bを得た。この粉末Bは金属原子比でランタン
/バリウム/コバルト=3/6/10であった。
Citric acid was added to a mixture of lanthanum carbonate, barium carbonate and cobalt carbonate, dried and calcined at 700 ° C. to obtain powder B. This powder B had a metal atom ratio of lanthanum / barium / cobalt = 3/6/10.

【0034】上記粉末Aを420g、上記粉末Bを18
0g、活性アルミナ粉末を300g、水900gを磁性
ボールミルに投入し、混合粉砕してスラリー液を得た。
このスラリー液をコーディエライト質モノリス担体
(1.0L,400セル)に付着させ、空気流にてセル
内の余剰のスラリーを取り除いて130℃で乾燥した
後、400℃で1時間焼成し、コート層重量150g/
L−担体の触媒1を得た。触媒1中の粉末Bの含有量は
30g/Lであった。上記粉末Aを400g、上記粉末
Bを60g、活性アルミナ粉末を420g、水900g
を磁性ボールミルに投入し、混合粉砕してスラリー液に
得た。このスラリー液をコーディエライトモノリス担体
(1.0L、400セル)に付着させ、空気流にてセル
内の余剰のスラリーを取り除いて130℃で乾燥した
後、400℃で1時間焼成し、コート層重量150g/
L−担体の触媒−2を得た。触媒2中の粉末Bの含有量
は10g/Lであった。排気流れに対して、触媒1を前
段に、触媒2を後段に配置した。
The powder A was 420 g and the powder B was 18
0 g, 300 g of activated alumina powder and 900 g of water were charged into a magnetic ball mill, and mixed and pulverized to obtain a slurry liquid.
This slurry liquid was attached to a cordierite-based monolithic carrier (1.0 L, 400 cells), excess slurry in the cells was removed by an air stream, dried at 130 ° C., and calcined at 400 ° C. for 1 hour. Coating layer weight 150g /
L-support catalyst 1 was obtained. The content of the powder B in the catalyst 1 was 30 g / L. 400 g of powder A, 60 g of powder B, 420 g of activated alumina powder, 900 g of water
Was put into a magnetic ball mill, mixed and pulverized to obtain a slurry liquid. This slurry liquid is adhered to a cordierite monolith carrier (1.0 L, 400 cells), excess slurry in the cells is removed by an air stream, dried at 130 ° C., baked at 400 ° C. for 1 hour, and coated. Layer weight 150g /
Catalyst 2 of L-support was obtained. The content of the powder B in the catalyst 2 was 10 g / L. With respect to the exhaust gas flow, the catalyst 1 was arranged at the front stage, and the catalyst 2 was arranged at the rear stage.

【0035】実施例2 粉末Bの含有量を70g/Lとした以外は、実施例1と
同様の方法で触媒3を得た。排気流れに対して、触媒3
を前段に、触媒1を後段に配置した。
Example 2 A catalyst 3 was obtained in the same manner as in Example 1 except that the content of the powder B was changed to 70 g / L. The catalyst 3
At the front stage and the catalyst 1 at the rear stage.

【0036】実施例3 粉末Bのコバルトを鉄に代えた以外は、実施例1と同様
の方法で、触媒4,5を得た。複合酸化物の量はそれぞ
れ30g/L、10g/Lであった。排気流れに対し
て、触媒4を前段に、触媒5を後段に配置した。
Example 3 Catalysts 4 and 5 were obtained in the same manner as in Example 1 except that iron in the powder B was replaced with iron. The amounts of the composite oxide were 30 g / L and 10 g / L, respectively. With respect to the exhaust gas flow, the catalyst 4 was arranged at the front stage and the catalyst 5 was arranged at the rear stage.

【0037】実施例4 粉末Bのコバルトをニッケルに代えた以外は、実施例1
と同様の方法で、触媒6,7を得た。複合酸化物の量は
それぞれ30g/L、10g/Lであった。排気流れに
対して、触媒6を前段に、触媒7を後段に配置した。
Example 4 Example 1 was repeated except that cobalt in powder B was changed to nickel.
Catalysts 6 and 7 were obtained in the same manner as described above. The amounts of the composite oxide were 30 g / L and 10 g / L, respectively. The catalyst 6 was arranged at the front stage and the catalyst 7 was arranged at the rear stage with respect to the exhaust gas flow.

【0038】実施例5 粉末Bのコバルトをマンガンに代えた以外は、実施例1
と同様の方法で、触媒8,9を得た。複合酸化物の量は
それぞれ30g/L、10g/Lであった。排気流れに
対して、触媒8を前段に、触媒9を後段に配置した。
Example 5 Example 1 was repeated except that cobalt in powder B was changed to manganese.
Catalysts 8 and 9 were obtained in the same manner as described above. The amounts of the composite oxide were 30 g / L and 10 g / L, respectively. The catalyst 8 was arranged at the front stage and the catalyst 9 was arranged at the rear stage with respect to the exhaust gas flow.

【0039】実施例6 実施例1で得られた粉末Bに硝酸パラジウム水溶液を含
浸し、乾燥後400℃で1時間焼成して、パラジウム担
持複合酸化物粉末(粉末C)を得た。この粉末Cのパラ
ジウム濃度は4.0重量%であった。
Example 6 The powder B obtained in Example 1 was impregnated with an aqueous solution of palladium nitrate, dried and calcined at 400 ° C. for 1 hour to obtain a palladium-supported composite oxide powder (powder C). The palladium concentration of this powder C was 4.0% by weight.

【0040】実施例1で得られた粉末Aを108g、上
記粉末Cを180g、活性アルミナ粉末を480g、水
900gを磁性ボールミルに投入し、混合粉砕してスラ
リー液を得た。このスラリー液をコーディエライト質モ
ノリス担体(1.0L、400セル)に付着させ、空気
流にてセル内の余剰のスラリーを取り除いて130℃で
乾燥した後、400℃で1時間焼成し、コート層重量1
50g/L−担体の触媒10を得た。触媒10中の粉末
Cの含有量は30g/Lであった。
108 g of the powder A obtained in Example 1, 180 g of the powder C, 480 g of the activated alumina powder, and 900 g of water were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was adhered to a cordierite-based monolithic carrier (1.0 L, 400 cells), excess slurry in the cells was removed by air flow, dried at 130 ° C., and calcined at 400 ° C. for 1 hour. Coat layer weight 1
Catalyst 10 of 50 g / L-support was obtained. The content of the powder C in the catalyst 10 was 30 g / L.

【0041】実施例1で得られた粉末Aを108g、上
記粉末Cを60g、活性アルミナ粉末を480g、水9
00gを磁性ボールミルに投入し、混合粉砕してスラリ
ー液を得た。このスラリー液をコーディエライト質モノ
リス担体(1.0L、400セル)に付着させ、空気流
にてセル内の余剰のスラリーを取り除いて130℃で乾
燥した後、400℃で1時間焼成し、コート層重量15
0g/L−担体の触媒11を得た。触媒11中の粉末C
の含有量は10g/Lであった。排気流れに対して、触
媒10を前段に、触媒11を後段に配置した。
108 g of the powder A obtained in Example 1, 60 g of the powder C, 480 g of the activated alumina powder and 9 g of water
00g was charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was adhered to a cordierite-based monolithic carrier (1.0 L, 400 cells), excess slurry in the cells was removed by air flow, dried at 130 ° C., and calcined at 400 ° C. for 1 hour. Coat layer weight 15
0 g / L-support of catalyst 11 was obtained. Powder C in catalyst 11
Was 10 g / L. The catalyst 10 was arranged at the front stage and the catalyst 11 was arranged at the rear stage with respect to the exhaust flow.

【0042】実施例7 活性アルミナ粉末に硝酸ロジウム水溶液を含浸し、乾燥
後空気中400℃で1時間焼成して、ロジウム担持アル
ミナ粉末(粉末D)を得た。この粉末Dのロジウム濃度
は2.0重量%であった。
Example 7 Activated alumina powder was impregnated with an aqueous rhodium nitrate solution, dried and calcined at 400 ° C. for 1 hour in air to obtain a rhodium-supported alumina powder (powder D). The rhodium concentration of this powder D was 2.0% by weight.

【0043】実施例1で得られた粉末Aを240g、実
施例6で得られた粉末Cを180g、上記粉末Dを84
g、活性アルミナ粉末を396g、水900gを磁性ボ
ールミルに投入し、混合粉砕してスラリー液を得た。こ
のスラリー液をコーディエライト質モノリス担体(1.
0L、400セル)に付着させ、空気流にてセル内の余
剰のスラリーを取り除いて130℃で乾燥した後、40
0℃で1時間焼成し、コート層重量150g/L−担体
の触媒−12を得た。この中の粉末Cの含有量は30g
/Lであった。
240 g of powder A obtained in Example 1, 180 g of powder C obtained in Example 6, and 84 g of powder D were obtained.
g, activated alumina powder (396 g) and water (900 g) were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was used as a cordierite monolithic carrier (1.
(0 L, 400 cells), and the excess slurry in the cells was removed by an air stream and dried at 130 ° C.
The mixture was calcined at 0 ° C. for 1 hour to obtain 150 g / L of a coat layer and a catalyst 12 of a carrier. The content of powder C in this is 30 g
/ L.

【0044】実施例1で得られた粉末Aを360g、実
施例6で得られた粉末Cを60g、上記粉末Dを84
g、活性アルミナ粉末を396g、水900gを磁性ボ
ールミルに投入し、混合粉砕してスラリー液を得た。こ
のスラリー液をコーディエライト質モノリス担体(1.
0L、400セル)に付着させ、空気流にてセル内の余
剰のスラリーを取り除いて130℃で乾燥した後、40
0℃で1時間焼成し、コート層重量150g/L−担体
の触媒13を得た。触媒13中の粉末Cの含有量は10
g/Lであった。排気流れに対して、触媒12を前段
に、触媒13を後段に配置した。
360 g of powder A obtained in Example 1, 60 g of powder C obtained in Example 6, and 84 g of powder D were obtained.
g, activated alumina powder (396 g) and water (900 g) were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was used as a cordierite monolithic carrier (1.
(0 L, 400 cells), and the excess slurry in the cells was removed by an air stream and dried at 130 ° C.
The mixture was calcined at 0 ° C. for 1 hour to obtain a catalyst 13 having a coat layer weight of 150 g / L-carrier. The content of the powder C in the catalyst 13 is 10
g / L. The catalyst 12 was arranged at the front stage and the catalyst 13 was arranged at the rear stage with respect to the exhaust gas flow.

【0045】実施例8 粉末A及び粉末CのPdをPtに置き換えた以外は、実
施例7と同様の方法で触媒14,15を得た。排気流れ
に対して、触媒14を前段に、触媒13を後段に配置し
た。
Example 8 Catalysts 14 and 15 were obtained in the same manner as in Example 7, except that Pd was replaced with Pt in Powder A and Powder C. The catalyst 14 was arranged at the front stage and the catalyst 13 was arranged at the rear stage with respect to the exhaust gas flow.

【0046】実施例9 触媒1L当たりのPt量を2.8g、Pd量を2.8
g、Rh量を0.3gとした以外は、実施例7と同様に
して複合酸化物を30gとした触媒15,10gとした
触媒16を作成した。排気流れに対して、触媒15前段
に、触媒16を後段に配置した。
Example 9 The amount of Pt per liter of catalyst was 2.8 g and the amount of Pd was 2.8.
Catalysts 15 and 10 g were prepared in the same manner as in Example 7, except that the amounts of g and Rh were changed to 0.3 g. With respect to the exhaust gas flow, the catalyst 16 was arranged before the catalyst 15 and the catalyst 16 was arranged after.

【0047】実施例10 実施例1におけるランタン/バリウム/コバルト比を4
/4.5/10とする以外は、実施例1と同様にして触
媒17を作成した。排気流れに対して、触媒17を前段
に、触媒2を後段に配置した。
Example 10 The lanthanum / barium / cobalt ratio in Example 1 was changed to 4
Catalyst 17 was prepared in the same manner as in Example 1, except that the ratio was changed to /4.5/10. The catalyst 17 was arranged at the front stage and the catalyst 2 was arranged at the rear stage with respect to the exhaust gas flow.

【0048】比較例1 排気流れに対して、触媒2を前段に、触媒1を後段に配
置した。
COMPARATIVE EXAMPLE 1 The catalyst 2 was arranged at the front stage and the catalyst 1 was arranged at the latter stage with respect to the exhaust gas flow.

【0049】比較例2 排気流れに対して、触媒1を前段に、触媒3を後段に配
置した。
COMPARATIVE EXAMPLE 2 The catalyst 1 was arranged at the front stage and the catalyst 3 was arranged at the rear stage with respect to the exhaust gas flow.

【0050】前記実施例1〜10及び比較例1〜2で得
られた排気ガス浄化用触媒の触媒組成を表1に示す。
Table 1 shows the catalyst compositions of the exhaust gas purifying catalysts obtained in Examples 1 to 10 and Comparative Examples 1 and 2.

【0051】[0051]

【表1】 [Table 1]

【0052】試験例 前記実施例1〜10及び比較例1〜2で得られた排気ガ
ス浄化用触媒について、以下の条件で初期及び耐久後の
触媒活性評価を行った。活性評価には、自動車の排気ガ
スを模したモデルガスを用いる自動評価装置を用いた。
Test Examples The exhaust gas purifying catalysts obtained in Examples 1 to 10 and Comparative Examples 1 and 2 were evaluated for initial and endurance catalytic activities under the following conditions. For the activity evaluation, an automatic evaluation device using a model gas simulating the exhaust gas of an automobile was used.

【0053】耐久条件 エンジン4400ccの排気系に触媒を装着し、触媒入
口温度700℃で、50時間運転して耐久を行った。
Endurance conditions A catalyst was attached to the exhaust system of a 4400 cc engine, and operation was performed at a catalyst inlet temperature of 700 ° C. for 50 hours to endurance.

【0054】評価条件 触媒活性評価は、排気量2000ccのエンジンの排気
系に各触媒を装着し、A/F=14.6(ストイキ状
態)で30秒間、その後A/F=22(リーン雰囲気)
で30秒間、その後A/F=50(リーン雰囲気)で3
0秒間の運転を1サイクル行ない、各々平均転化率を測
定し、このA/F=14.6(ストイキ状態)の場合の
平均転化率とA/F=22(リーン雰囲気)の場合の平
均転化率とA/F=50(リーン雰囲気)の場合の平均
転化率とを平均してトータル転化率とした。この評価を
初期及び耐久後に各々行ない、触媒活性評価値を以下の
式により決定した。但し前段の触媒入口温度を400℃
とした。
Evaluation Conditions The catalyst activity was evaluated by mounting each catalyst in an exhaust system of an engine with a displacement of 2000 cc, A / F = 14.6 (stoichiometric state) for 30 seconds, and then A / F = 22 (lean atmosphere).
For 30 seconds, then 3 at A / F = 50 (lean atmosphere)
One cycle of operation for 0 seconds was performed, and the average conversion was measured. The average conversion when A / F = 14.6 (stoichiometric state) and the average conversion when A / F = 22 (lean atmosphere). And the average conversion in the case of A / F = 50 (lean atmosphere) was averaged to obtain the total conversion. This evaluation was performed at the initial stage and after the endurance test, and the catalytic activity evaluation value was determined by the following equation. However, the catalyst inlet temperature of the former stage is 400 ° C.
And

【0055】[0055]

【数4】 (Equation 4)

【0056】トータル転化率として得られた触媒活性評
価結果を表2に示す。比較例に比べて実施例は、触媒活
性が高く、後述する本発明の効果を確認することができ
た。
Table 2 shows the catalytic activity evaluation results obtained as the total conversion. The catalytic activity of the example was higher than that of the comparative example, and the effect of the present invention described later could be confirmed.

【0057】[0057]

【表2】 [Table 2]

【0058】[0058]

【発明の効果】請求項1〜2記載の排気ガス浄化用触媒
は、従来の触媒では十分な活性を示さなかったリーン雰
囲気下におけるNOx浄化性能を向上させ、かつ三元触
媒としての機能を十分に発現することができ、更に熱耐
久後においても優れたNOx浄化性能を示すことができ
る。
The exhaust gas purifying catalyst according to claims 1 and 2 improves the NOx purifying performance in a lean atmosphere, which has not exhibited sufficient activity with the conventional catalyst, and has a sufficient function as a three-way catalyst. And can exhibit excellent NOx purification performance even after heat endurance.

【0059】請求項3記載の排気ガス浄化用触媒は、上
記効果に加えて更に、高い熱耐久性を得ることができ
る。
The exhaust gas purifying catalyst according to the third aspect can obtain higher heat durability in addition to the above effects.

【0060】請求項4記載の排気ガス浄化用触媒は、上
記本発明の排気ガス浄化用触媒の有効なNOx吸収、放
出サイクルを特に効率良く発現させることができる。
The exhaust gas purifying catalyst according to the fourth aspect is capable of exhibiting the effective NOx absorption / release cycle of the exhaust gas purifying catalyst of the present invention particularly efficiently.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 排気流れに対して少なくとも2種の触媒
を設け、該2種の触媒はいずれも白金、パラジウム及び
ロジウムから成る群より選ばれた少なくとも一種の貴金
属と、次の一般式 【数1】 で表される複合酸化物とを含有し、排気流れに対して前
段に配置される触媒が、後段に配置される触媒より当該
複合酸化物を多く含有することを特徴とする排気ガス浄
化用触媒。
1. An exhaust stream provided with at least two catalysts, each of which comprises at least one noble metal selected from the group consisting of platinum, palladium and rhodium, and the following general formula: 1) A catalyst for exhaust gas purification, comprising a composite oxide represented by the formula: wherein the catalyst disposed upstream of the exhaust stream contains more of the composite oxide than the catalyst disposed downstream. .
【請求項2】 排気流れに対して前段に配置する触媒に
は、前記複合酸化物を触媒1Lあたり30〜80g、後
段に配置する触媒には前記複合酸化物を触媒1Lあたり
2〜40g含有することを特徴とする請求項1記載の排
気ガス浄化用触媒。
2. The catalyst disposed at the front stage with respect to the exhaust gas flow contains 30 to 80 g of the composite oxide per 1 L of the catalyst, and the catalyst disposed at the rear stage contains 2 to 40 g of the composite oxide per 1 L of the catalyst. The exhaust gas purifying catalyst according to claim 1, characterized in that:
【請求項3】 前記白金、パラジウム及びロジウムから
成る群より選ばれた少なくとも一種が前記複合酸化物に
担持されていることを特徴とする請求項1又は2記載の
排気ガス浄化用触媒。
3. The exhaust gas purifying catalyst according to claim 1, wherein at least one selected from the group consisting of platinum, palladium and rhodium is carried on the composite oxide.
【請求項4】 請求項1〜3いずれかの項記載の排気ガ
ス浄化用触媒を、空燃比が10〜14.8と、15〜5
0の範囲とを繰り返すリーンバーンエンジン車に使用す
ることを特徴とする排気ガス浄化用触媒の使用方法。
4. An exhaust gas purifying catalyst according to any one of claims 1 to 3, wherein the air-fuel ratio is 10 to 14.8 and 15 to 5
A method for using an exhaust gas purifying catalyst, which is used for a lean burn engine vehicle that repeats a range of 0.
JP9217444A 1997-08-12 1997-08-12 Exhaust gas cleaning catalyst and method of using the same Withdrawn JPH1157477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9217444A JPH1157477A (en) 1997-08-12 1997-08-12 Exhaust gas cleaning catalyst and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9217444A JPH1157477A (en) 1997-08-12 1997-08-12 Exhaust gas cleaning catalyst and method of using the same

Publications (1)

Publication Number Publication Date
JPH1157477A true JPH1157477A (en) 1999-03-02

Family

ID=16704340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9217444A Withdrawn JPH1157477A (en) 1997-08-12 1997-08-12 Exhaust gas cleaning catalyst and method of using the same

Country Status (1)

Country Link
JP (1) JPH1157477A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030924A (en) * 2000-07-17 2002-01-31 Nissan Diesel Motor Co Ltd Exhaust emission control device for diesel engine
US6455463B1 (en) 2001-03-13 2002-09-24 Delphi Technologies, Inc. Alkaline earth/transition metal lean NOx catalyst
JP2002301337A (en) * 2001-04-10 2002-10-15 Toyota Motor Corp Apparatus for cleaning exhaust gas from internal combustion engine and catalyst for cleaning exhaust gas
US6576587B2 (en) 2001-03-13 2003-06-10 Delphi Technologies, Inc. High surface area lean NOx catalyst
US6624113B2 (en) 2001-03-13 2003-09-23 Delphi Technologies, Inc. Alkali metal/alkaline earth lean NOx catalyst
JP2003531717A (en) * 2000-03-17 2003-10-28 エンゲルハード・コーポレーシヨン Contact trap with multiple zones and method of making and using same
US6670296B2 (en) 2001-01-11 2003-12-30 Delphi Technologies, Inc. Alumina/zeolite lean NOx catalyst
US6864213B2 (en) 2001-03-13 2005-03-08 Delphi Technologies, Inc. Alkaline earth / rare earth lean NOx catalyst

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531717A (en) * 2000-03-17 2003-10-28 エンゲルハード・コーポレーシヨン Contact trap with multiple zones and method of making and using same
JP2002030924A (en) * 2000-07-17 2002-01-31 Nissan Diesel Motor Co Ltd Exhaust emission control device for diesel engine
US6670296B2 (en) 2001-01-11 2003-12-30 Delphi Technologies, Inc. Alumina/zeolite lean NOx catalyst
US6455463B1 (en) 2001-03-13 2002-09-24 Delphi Technologies, Inc. Alkaline earth/transition metal lean NOx catalyst
US6576587B2 (en) 2001-03-13 2003-06-10 Delphi Technologies, Inc. High surface area lean NOx catalyst
US6624113B2 (en) 2001-03-13 2003-09-23 Delphi Technologies, Inc. Alkali metal/alkaline earth lean NOx catalyst
US6864213B2 (en) 2001-03-13 2005-03-08 Delphi Technologies, Inc. Alkaline earth / rare earth lean NOx catalyst
JP2002301337A (en) * 2001-04-10 2002-10-15 Toyota Motor Corp Apparatus for cleaning exhaust gas from internal combustion engine and catalyst for cleaning exhaust gas

Similar Documents

Publication Publication Date Title
JP4092441B2 (en) Exhaust gas purification catalyst
US5814576A (en) Catalyst for purifying exhaust gas and method of producing same
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
JP3788141B2 (en) Exhaust gas purification system
JP2001079402A (en) Exhaust gas cleaning catalyst and its production
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
JPH1157477A (en) Exhaust gas cleaning catalyst and method of using the same
JP4852595B2 (en) Exhaust gas purification catalyst
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JPH10192713A (en) Exhaust gas purifying catalyst and its use
JPH08281110A (en) Catalyst for purifying exhaust gas and its production
JP2003245523A (en) Exhaust gas cleaning system
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH09220470A (en) Catalyst for purification of exhaust gas
JPH09253496A (en) Catalyst for clarification of exhaust gas and method for clarification of exhaust gas
JP3622893B2 (en) NOx absorbent and exhaust gas purification catalyst using the same
JP3885376B2 (en) Exhaust gas purification catalyst and method of using the same
JPH09225264A (en) Catalyst for purifying exhaust gas
JP3885339B2 (en) Exhaust gas purification catalyst, method for producing the same, and method for using the same
JP3477982B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH08281111A (en) Catalyst for purifying exhaust gas and its production
JP2000042370A (en) Catalyst device for purifying exhaust gas and its using method
JP3477974B2 (en) Exhaust gas purification catalyst
JPH06296869A (en) Catalyst for exhaust gas purification
JPH1099687A (en) Catalyst for cleaning exhaust gas

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102