JP4529463B2 - Exhaust gas purification catalyst and exhaust gas purification method - Google Patents

Exhaust gas purification catalyst and exhaust gas purification method Download PDF

Info

Publication number
JP4529463B2
JP4529463B2 JP2004033961A JP2004033961A JP4529463B2 JP 4529463 B2 JP4529463 B2 JP 4529463B2 JP 2004033961 A JP2004033961 A JP 2004033961A JP 2004033961 A JP2004033961 A JP 2004033961A JP 4529463 B2 JP4529463 B2 JP 4529463B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
metal
region
metal region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004033961A
Other languages
Japanese (ja)
Other versions
JP2005224669A (en
Inventor
義輝 矢澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004033961A priority Critical patent/JP4529463B2/en
Publication of JP2005224669A publication Critical patent/JP2005224669A/en
Application granted granted Critical
Publication of JP4529463B2 publication Critical patent/JP4529463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、酸素過剰雰囲気で燃焼された排ガス中で用いられる排ガス浄化用触媒と、その触媒を用いた排ガス浄化方法に関する。   The present invention relates to an exhaust gas purification catalyst used in exhaust gas burned in an oxygen-excess atmosphere, and an exhaust gas purification method using the catalyst.

自動車用の排ガス浄化用触媒として、酸化触媒、三元触媒、NOx 選択還元触媒、NOx 吸蔵還元触媒などが用いられている。このうち酸化触媒は、各種雰囲気の排ガス中でHC及びCOを酸化して浄化する。三元触媒は、ストイキ近傍雰囲気の排ガス中でHC及びCOを酸化し、NOx を還元して浄化する。またNOx 選択還元触媒は、酸素過剰のリーン雰囲気でNOx を選択的に還元して浄化する。さらにNOx 吸蔵還元触媒は、リーン雰囲気でNOx を吸蔵し、ストイキ又はリッチ雰囲気でNOx を放出するとともに雰囲気中に豊富に存在する還元成分によって放出されたNOx を還元浄化する。 As an exhaust gas purification catalyst for automobiles, an oxidation catalyst, a three-way catalyst, a NO x selective reduction catalyst, a NO x storage reduction catalyst, and the like are used. Of these, the oxidation catalyst oxidizes and purifies HC and CO in exhaust gas in various atmospheres. The three-way catalyst oxidizes HC and CO in the exhaust gas of near stoichiometric atmosphere, to purify by reduction the NO x. The NO x selective reduction catalyst selectively reduces and purifies NO x in a lean atmosphere containing excess oxygen. Moreover the NO x storage reduction catalyst occludes NO x in a lean atmosphere to reduce and purify the released NO x by reducing component abundantly present in the atmosphere as well as releasing the NO x in the stoichiometric or rich atmosphere.

ところで、地球温暖化の原因物質であるCO2 の排出を抑制するとともに燃費を低減するために、酸素過剰雰囲気で燃焼するリーンバーンエンジンが開発され、実用に供されている。しかしリーンバーンエンジンからの排ガスはリーン雰囲気であるために、上記した触媒単独では有害成分の浄化が困難であり、複数種の触媒を併用することが行われている。 By the way, a lean burn engine that burns in an oxygen-excess atmosphere has been developed and put into practical use in order to suppress CO 2 emission, which is a cause of global warming, and to reduce fuel consumption. However, since the exhaust gas from the lean burn engine has a lean atmosphere, it is difficult to purify harmful components with the above-described catalyst alone, and a plurality of types of catalysts are used in combination.

例えばエンジン直下に酸化触媒あるいは三元触媒を配置し、その下流側にNOx 吸蔵還元触媒を配置することが行われている。この場合、エンジン直下の触媒によって排ガスは比較的低温域から浄化され、その反応熱によってさらに温度が高くなった排ガスが下流側の触媒に流入するため、下流側の触媒の活性が向上する。またエンジン直下の触媒によって排ガス中のNOが酸化されてNO2 となり、下流側のNOx 吸蔵還元触媒に吸蔵されやすくなる。したがってエンジン直下に配置された触媒は、スタートアップ触媒(以下、 S/Cという)と称されている。 For example, an oxidation catalyst or a three-way catalyst is disposed immediately below the engine, and a NO x storage reduction catalyst is disposed downstream thereof. In this case, the exhaust gas is purified from a relatively low temperature range by the catalyst directly under the engine, and the exhaust gas whose temperature is further increased by the reaction heat flows into the downstream catalyst, so that the activity of the downstream catalyst is improved. Further, NO in the exhaust gas is oxidized by the catalyst directly under the engine to become NO 2 and is easily stored in the NO x storage reduction catalyst on the downstream side. Therefore, the catalyst placed directly under the engine is called the startup catalyst (hereinafter referred to as S / C).

しかし下流側のNOx 吸蔵還元触媒のみでは、全てのNOx を還元浄化することは困難である。またNOx 吸蔵還元触媒を用いる場合には、通常はリーン雰囲気で運転し間欠的にリッチスパイクを打つ必要があるが、燃費の観点からリッチスパイクの頻度を低減させることが望まれている。そこで、 S/CにもNOx 還元活性をもたせることが望ましい。さらにNOx 吸蔵還元触媒はHC及びCOの酸化活性が比較的低いので、 S/CはHC及びCOの酸化能に優れていることが望ましい。 However, it is difficult to reduce and purify all NO x only with the downstream side NO x storage reduction catalyst. In the case of using the NO x storage reduction catalyst, it is usually necessary to operate in a lean atmosphere and intermittently apply rich spikes, but it is desired to reduce the frequency of rich spikes from the viewpoint of fuel consumption. Therefore, it is desirable that S / C also has NO x reduction activity. Furthermore, since the NO x storage reduction catalyst has a relatively low HC and CO oxidation activity, it is desirable that the S / C is excellent in HC and CO oxidation ability.

ところが S/Cとして三元触媒を用いた場合には、リーン雰囲気でNOx を還元浄化することは困難である。また S/CとしてNOx 選択還元触媒を用いた場合には、NOx を還元浄化できる温度ウィンドウが狭く、ある温度範囲ではNOx を還元浄化することが困難となる。さらにNOx 選択還元触媒は、ストイキ近傍雰囲気においてHC及びCOの酸化活性が低いという問題があった。 However, when a three-way catalyst is used as S / C, it is difficult to reduce and purify NO x in a lean atmosphere. When a NO x selective reduction catalyst is used as S / C, the temperature window for reducing and purifying NO x is narrow, and it becomes difficult to reduce and purify NO x within a certain temperature range. Furthermore, the NO x selective reduction catalyst has a problem that the oxidation activity of HC and CO is low in an atmosphere near the stoichiometric atmosphere.

特開平05−285388号公報には、貴金属とCo、Znなどを担持した触媒が提案されている。この触媒によれば、CoなどによってNOx 選択還元活性が発現され、貴金属によってHC及びCOの酸化活性が発現されるので、ストイキ及びリーン雰囲気においてHC、CO及びNOx を高い浄化率で浄化することができる。 Japanese Patent Laid-Open No. 05-285388 proposes a catalyst supporting a noble metal and Co, Zn or the like. According to this catalyst, NO x selective reduction activity is expressed by Co and the like, and HC and CO oxidation activity is expressed by noble metals, so HC, CO and NO x are purified at a high purification rate in a stoichiometric and lean atmosphere. be able to.

また特開平06−343829号公報には、CuとAlを担持し、さらにGa、Znなどを担持した触媒が提案されている。この触媒によれば、リーン雰囲気においてNOx を効率的に還元浄化でき、しかも幅広い温度ウィンドウを有するので、三元触媒の代替品として利用できる。 Japanese Laid-Open Patent Publication No. 06-343829 proposes a catalyst supporting Cu and Al and further supporting Ga, Zn and the like. According to this catalyst, NO x can be efficiently reduced and purified in a lean atmosphere, and furthermore, since it has a wide temperature window, it can be used as an alternative to a three-way catalyst.

ところがこれらの触媒を S/Cとして用いても、今後さらに厳しくなる厳しい排ガス規制に対応することは困難であり、さらなる活性の向上が求められている。
特開平05−285388号 特開平06−343829号
However, even if these catalysts are used as S / C, it is difficult to meet stricter exhaust gas regulations that will become stricter in the future, and further improvement in activity is required.
JP 05-285388 A JP 06-343829

本発明は上記した事情に鑑みてなされたものであり、HC及びCOの酸化活性が高く、かつリーン雰囲気においても広い温度ウィンドウでNOx を効率よく還元浄化でき、 S/Cとして有用な触媒とすることを目的とする。 The present invention has been made in view of the above circumstances, and has a high oxidation activity of HC and CO, and can efficiently reduce and purify NO x over a wide temperature window even in a lean atmosphere, and is a catalyst useful as S / C. The purpose is to do.

上記課題を解決する本発明の排ガス浄化用触媒の特徴は、ハニカム基材と、ハニカム基材に形成されたコート層とからなる排ガス浄化用触媒であって、コート層にはGa、Zn、Cu、Co及び貴金属から選ばれる触媒金属が担持され、ハニカム基材の一端部に形成されCoのみを担持した第1金属領域と、第1金属領域に隣接しCoとCuを担持した第2金属領域と、第1金属領域と反対側で第2金属領域に隣接しCoとCuとZnを担持した第3金属領域と、第2金属領域と反対側で第3金属領域に隣接しCoとCuとZnとGaを担持した第4金属領域と、第3金属領域と反対側のハニカム基材の他端部で第4金属領域に隣接しCoとCuとZnとGaと貴金属とを担持した第5金属領域と、を有することにある。
A feature of the exhaust gas purifying catalyst of the present invention that solves the above problems is an exhaust gas purifying catalyst comprising a honeycomb substrate and a coat layer formed on the honeycomb substrate, and the coat layer includes Ga, Zn, Cu , A catalytic metal selected from Co and a noble metal is supported, and is formed at one end portion of the honeycomb base material, a first metal region supporting only Co, and a second metal region adjacent to the first metal region and supporting Co and Cu. And a third metal region supporting Co, Cu and Zn on the side opposite to the first metal region and supporting Co, Cu and Zn, and adjacent to the third metal region on the side opposite to the second metal region. A fourth metal region supporting Zn and Ga; and a fifth metal region supporting Co, Cu, Zn, Ga, and a noble metal adjacent to the fourth metal region at the other end of the honeycomb substrate opposite to the third metal region. A metal region .

また、貴金属はパラジウムであることが望ましい。The noble metal is preferably palladium.

また本発明の排ガス浄化方法の特徴は、本発明の排ガス浄化用触媒を用い、排ガスがハニカム基材の一端部から他端部へ向かって又は他端部から一端部へ向かって流れるように配置して排ガスを浄化することにある。 The exhaust gas purification method of the present invention is characterized in that the exhaust gas purification catalyst of the present invention is used so that the exhaust gas flows from one end to the other end of the honeycomb substrate or from the other end to the one end. It is to purify the exhaust gas.

本発明の排ガス浄化用触媒によれば、従来の S/Cに比べて、リーン雰囲気におけるHC及びCOの酸化活性とNOx の還元活性が共に向上する。したがってNOx 吸蔵還元触媒の S/Cとして用いることで、 S/Cからの出ガス中のHC、CO及びNOx 濃度が低減されるため、NOx 吸蔵還元触媒のNOx 吸蔵効率が向上する。これにより、リーンでの走行時間を延長して還元剤を供給するためのリッチスパイクの頻度を低下させることができるので、燃費が向上する。またNOx 吸蔵還元触媒に担持されている貴金属の担持量を少なくすることもでき、この場合はコストを低下させることができる。 According to the exhaust gas purifying catalyst of the present invention, both HC and CO oxidation activity and NO x reduction activity in a lean atmosphere are improved as compared with conventional S / C. Thus by using as the S / C of the NO x storage-reduction catalyst, since the HC outgoing gas from S / C, CO and NO x concentration is reduced, thereby improving the NO x storage efficiency of the NO x storage-reduction catalyst . As a result, it is possible to extend the lean travel time and reduce the frequency of the rich spike for supplying the reducing agent, thereby improving the fuel efficiency. In addition, the amount of noble metal supported on the NO x storage reduction catalyst can be reduced, and in this case, the cost can be reduced.

本発明の排ガス浄化用触媒及び排ガス浄化方法において、Ga、Zn、Cu、Co及び貴金属から選ばれる触媒金属は、それぞれNOx 選択還元活性を備えている。Ga、Zn、Cu、Co及び貴金属をそれぞれ同一担持量で担持した場合の、リーン雰囲気におけるNOx 選択還元浄化率を図4に、HC浄化率を図5に示す。図4に示されるように、NOx の選択還元浄化率が最高となる最高NOx 浄化温度は、貴金属<Ga<Zn<Cu<Coの順となり、図5に示されるように、HCを効率よく浄化できる温度で並べても同じ順序である。なお貴金属としてはPdを用いているが、他の貴金属も順位は同等である。 In the catalyst and the exhaust gas purifying method for purifying an exhaust gas of the present invention, the catalytic metal selected Ga, Zn, Cu, Co and noble metal is provided with the NO x selective reduction activity, respectively. FIG. 4 shows the NO x selective reduction purification rate in a lean atmosphere and FIG. 5 shows the HC purification rate when Ga, Zn, Cu, Co, and noble metal are supported in the same loading amount. As shown in FIG. 4, the highest the NO x purification temperature selective reduction purification ratio of the NO x becomes maximum becomes the order of the noble metal <Ga <Zn <Cu <Co , as shown in FIG. 5, the efficiency of HC Even if they are arranged at a temperature that can be purified well, the order is the same. Pd is used as the noble metal, but the ranking is the same for other noble metals.

そこで本発明では、単位担持量当たりのNOx の選択還元浄化率が最高となる最高NOx 浄化温度が低い触媒金属ほど、又は最高NOx 浄化温度が高い触媒金属ほど、排ガス上流側又は下流側で排ガスと接触可能に担持したところに特徴を有している。図1に示されるように、最高NOx 浄化温度が低い触媒金属ほど排ガス上流側で排ガスと接触可能に担持されている場合には、先ず低温活性が高い触媒金属によってHC及びCOが酸化浄化される。そしてその領域で酸化されなかったHC及びCOは、中温での活性が高い触媒金属によって酸化浄化され、次いで高温での活性が高い触媒金属によって酸化浄化される。排ガスは、それぞれの領域で酸化される際の反応熱によって下流側ほど温度が高くなり、触媒金属の活性も下流側ほど高温域での酸化活性が高くなるように配置されているので、HC及びCOの浄化活性がきわめて高い。 In this invention, as the best the NO x purification temperature is lower catalytic metal selective reduction purification ratio of the NO x per unit carrying amount is the highest, or maximum NO x as purification temperature higher catalytic metal, the exhaust gas upstream or downstream It is characterized in that it is supported so as to be in contact with exhaust gas. As shown in FIG. 1, when a catalyst metal having a lower maximum NO x purification temperature is supported on the upstream side of the exhaust gas so as to be able to come into contact with the exhaust gas, first, HC and CO are oxidized and purified by the catalyst metal having a higher low-temperature activity. The HC and CO that have not been oxidized in that region are oxidized and purified by a catalytic metal having a high activity at medium temperature, and then oxidized and purified by a catalytic metal having a high activity at high temperature. The exhaust gas is arranged so that the temperature on the downstream side becomes higher due to the reaction heat when it is oxidized in each region, and the activity of the catalytic metal is arranged so that the oxidation activity in the high temperature region becomes higher on the downstream side. CO purification activity is extremely high.

一方、NOx についても、最高NOx 浄化温度が低い触媒金属が担持された領域における反応熱によって加熱された排ガスが中温での活性が高い領域を通過して高温での活性が高い領域に流入し、上流側から下流側に向かって最高NOx 浄化温度が高くなっているため、排ガスの熱によって各領域の触媒金属が効果的に活性化され、広い温度ウィンドウでNOx が選択還元され浄化される。したがってリーン雰囲気においてHC、CO及びNOx を高い浄化率で浄化することができる。 On the other hand, for NO x , exhaust gas heated by reaction heat in the region where the catalyst metal with the lowest maximum NO x purification temperature is supported passes through the region with high activity at medium temperature and flows into the region with high activity at high temperature. However, since the maximum NO x purification temperature increases from the upstream side to the downstream side, the catalyst metal in each region is effectively activated by the heat of the exhaust gas, and NO x is selectively reduced and purified over a wide temperature window. Is done. Therefore it is possible to purify HC, and CO and NO x at a high purification rate in a lean atmosphere.

また図2に示されるように、最高NOx 浄化温度が高い触媒金属ほど排ガス上流側で排ガスと接触可能に担持されている場合には、排ガスは先ず高温での活性が高い領域に流入し、次いで中温での活性が高い領域を通過し、最後に低温での活性が高い領域を通過する。これにより、NOの選択還元によりNO浄化率が向上し、貴金属のみでは不可能なHC浄化温度が高い領域でのHC浄化も可能となる。そしてNOx 浄化率が飛躍的に向上し、最高NOx 浄化温度が低い触媒金属ほど排ガス上流側で排ガスと接触可能に担持されている場合に比べても高いNOx 浄化活性が発現される。また高温での活性が高い領域及び中温での活性が高い領域でHC及びCOがNOx の還元に消費され、残ったHC及びCOは最下流の低温での活性が高い領域において酸化浄化されるので、最高NOx 浄化温度が低い触媒金属ほど排ガス上流側で排ガスと接触可能に担持されている場合には及ばないものの、HC及びCOの浄化活性も高い。 In addition, as shown in FIG. 2, when the catalyst metal having the highest maximum NO x purification temperature is supported on the upstream side of the exhaust gas so as to be in contact with the exhaust gas, the exhaust gas first flows into a region where the activity at a high temperature is high, Next, it passes through a region having high activity at medium temperature, and finally passes through a region having high activity at low temperature. As a result, the NO purification rate is improved by selective reduction of NO, and HC purification in a region where the HC purification temperature is impossible, which is impossible with only a noble metal, becomes possible. The NO x purification rate is dramatically improved, and the catalyst metal having a lower maximum NO x purification temperature exhibits a higher NO x purification activity than when it is supported on the upstream side of the exhaust gas so as to be in contact with the exhaust gas. The HC and CO in the region of high activity in the active region of high and medium temperature at a high temperature are consumed in the reduction of NO x, the remaining HC and CO are oxidized and purified in the region is high activity in the most downstream cold Therefore, although the catalyst metal having the lowest maximum NO x purification temperature does not reach the case where it is supported so as to be in contact with the exhaust gas upstream of the exhaust gas, the HC and CO purification activity is also high.

触媒金属としては、図4に示される順位に従って、最高NOx 浄化温度が高いものを第1の金属として選択し、選択された第1の金属より最高NOx 浄化温度が低いものを第2の金属として選択し、選択された第2の金属より最高NOx 浄化温度が低いものを第3の金属として選択すればよい。なお選択される金属は少なくとも3種であるが、4種以上選択することもできる。この場合は、最高NOx 浄化温度が、第1の金属>第2の金属>第3の金属>第4の金属・・となるように選択し、その順に相対的に高温での活性が高い領域、中温での活性が高い領域及び低温での活性が高い領域を形成すればよい。 According to the order shown in FIG. 4, a catalyst metal having a highest maximum NO x purification temperature is selected as the first metal, and a catalyst metal having a maximum NO x purification temperature lower than the selected first metal is selected as the second catalyst metal. selected as the metal, may be selected to best the NO x purification temperature is lower than a second metal selected as the third metal. In addition, although the metal selected is at least 3 types, 4 or more types can also be selected. In this case, the highest NO x purification temperature is selected as follows: first metal> second metal> third metal> fourth metal... A region, a region having a high activity at a medium temperature, and a region having a high activity at a low temperature may be formed.

低温での活性が高い領域には、少なくとも貴金属が担持されていることが望ましい。貴金属は低温域におけるHC及びCOの酸化活性が特に高いからである。この貴金属としてはPt、Rh、Pd、Irなどの白金族貴金属が好ましいが、中でもリーン雰囲気において低温域からHC及びCOの酸化活性に優れるPdを用いることが望ましい。   It is desirable that at least a noble metal is supported in a region having high activity at a low temperature. This is because noble metals have particularly high oxidation activity of HC and CO at low temperatures. The noble metal is preferably a platinum group noble metal such as Pt, Rh, Pd, or Ir, but it is desirable to use Pd that is excellent in HC and CO oxidation activity from a low temperature range in a lean atmosphere.

高温での活性が高い領域、中温での活性が高い領域、低温での活性が高い領域は、互いに分断されていてもよいし、オーバーラップする部分が存在していてもよい。実際の製造方法を考慮すると、オーバーラップする部分が存在するのが自然である。   The region having high activity at high temperature, the region having high activity at medium temperature, and the region having high activity at low temperature may be separated from each other, or overlapping portions may exist. Considering the actual manufacturing method, it is natural that there are overlapping portions.

本発明の排ガス浄化用触媒は、それぞれの金属が担持されたペレットを上記した順序となるように排気流路に充填してペレット触媒としてもよいし、フォーム基材あるいはハニカム基材のそれぞれの金属を順に担持したフォーム触媒あるいはハニカム触媒とすることもできる。例えばハニカム触媒とする場合には、コージェライトあるいは金属箔から形成されたハニカム基材に、アルミナ、ジルコニア、チタニア、セリア、セリア−ジルコニアなどから選ばれる酸化物からウォッシュコート法にてコート層を形成し、そのコート層に第1の金属、第2の金属及び第3の金属を含む薬液をそれぞれ所定位置に含浸して焼成することで、高温での活性が高い領域、中温での活性が高い領域及び低温での活性が高い領域を形成することができる。   The exhaust gas purifying catalyst of the present invention may be used as a pellet catalyst by filling the exhaust channels so that the pellets carrying the respective metals are in the above-described order, or each metal of the foam substrate or the honeycomb substrate. It is also possible to use a foam catalyst or a honeycomb catalyst that supports the catalyst in order. For example, when a honeycomb catalyst is used, a coat layer is formed by a wash coat method from an oxide selected from alumina, zirconia, titania, ceria, ceria-zirconia, etc. on a honeycomb substrate formed of cordierite or metal foil. Then, the coating layer is impregnated with a chemical solution containing the first metal, the second metal, and the third metal at predetermined positions and baked, so that the activity at a high temperature is high and the activity at a medium temperature is high. Regions and regions with high activity at low temperatures can be formed.

高温での活性が高い領域、中温での活性が高い領域及び低温での活性が高い領域における第1の金属、第2の金属及び第3の金属の担持量は、それぞれ基材1リットルあたり0.01〜 0.5モルが好ましく、低温での活性が高い領域における貴金属の担持量は基材1リットルあたり 0.1〜5gが好ましい。第1の金属、第2の金属及び第3の金属の担持量がこの範囲より少ないとNOx 浄化率が低すぎて実用的でなく、この範囲を超えるとNO浄化率が低下する場合がある。また貴金属の担持量がこの範囲より少ないとHC及びCOの浄化率が低すぎて実用的でなく、この範囲を超えて担持しても効果が飽和するとともに高価となる。 The loading amounts of the first metal, the second metal, and the third metal in the region having a high activity at high temperature, the region having a high activity at medium temperature, and the region having a high activity at low temperature were 0.01 per liter of the substrate, respectively. The amount of noble metal supported in a region having high activity at low temperatures is preferably 0.1 to 5 g per liter of the substrate. If the loading amount of the first metal, the second metal, and the third metal is less than this range, the NO x purification rate is too low to be practical, and if it exceeds this range, the NO purification rate may decrease. . If the amount of noble metal supported is less than this range, the purification rate of HC and CO is too low to be practical, and if it exceeds this range, the effect is saturated and expensive.

本発明の排ガス浄化用触媒は、リーンバーンエンジンからの排ガスを浄化するのに最適であり、特にその下流側にNOx 吸蔵還元触媒を配置して S/Cとして用いることが望ましい。これにより下流側のNOx 吸蔵還元触媒のNOx 浄化性能を最大に引き出すことができ、HC及びCOもほぼ 100%浄化することができる。 The exhaust gas purifying catalyst of the present invention is optimal for purifying exhaust gas from a lean burn engine, and in particular, it is desirable to use an NO x storage reduction catalyst downstream as the S / C. As a result, the NO x purification performance of the downstream NO x storage reduction catalyst can be maximized, and HC and CO can also be substantially 100% purified.

以下、実施例及び比較例により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

(実施例1)
図1に本実施例の触媒を模式的に示す。この触媒は、表面にアルミナを主とするコート層が形成されたハニカム基材1と、排ガス最下流のコート層にCoが担持された第1金属領域2と、第1金属領域2の上流側のコート層にCu及びCoが担持された第2金属領域3と、第2金属領域3の上流側のコート層にZn、Cu及びCoが担持された第3金属領域4と、第3金属領域4の上流側のコート層にGa、Zn、Cu及びCoが担持された第4金属領域5と、第4金属領域5の上流側のコート層にPd、Ga、Zn、Cu及びCoが担持された貴金属領域6と、から構成されている。以下、この触媒の製造方法を説明し、構成の詳細な説明に代える。
Example 1
FIG. 1 schematically shows the catalyst of this example. This catalyst includes a honeycomb substrate 1 having a coating layer mainly composed of alumina on the surface, a first metal region 2 in which Co is supported on the coating layer on the most downstream side of the exhaust gas, and an upstream side of the first metal region 2. The second metal region 3 in which Cu and Co are supported on the coating layer, the third metal region 4 in which Zn, Cu and Co are supported on the upstream coating layer of the second metal region 3, and the third metal region The fourth metal region 5 in which Ga, Zn, Cu and Co are supported on the coat layer on the upstream side of 4, and Pd, Ga, Zn, Cu and Co are supported in the coat layer on the upstream side of the fourth metal region 5. And a noble metal region 6. Hereinafter, the method for producing the catalyst will be described, and the detailed description of the configuration will be substituted.

コージェライト製で体積 0.7Lのハニカム基材( 600セル/in2 、直径93mm、長さ 100mm)を用意し、アルミナ粉末と硫酸バリウム粉末、アルミナゾル及び水からなるスラリーをウォッシュコートし乾燥、焼成してコート層を形成した。コート層はハニカム基材1Lあたり 115g形成された。コート層中の硫酸バリウムは、PdのHC被毒を抑制するために添加している。 Prepare a honeycomb substrate made of cordierite with a volume of 0.7 L (600 cells / in 2 , diameter 93 mm, length 100 mm), wash coat slurry of alumina powder, barium sulfate powder, alumina sol and water, dry and fire A coat layer was formed. The coating layer was formed in an amount of 115 g per liter of honeycomb substrate. Barium sulfate in the coating layer is added to suppress HC poisoning of Pd.

コート層をもつハニカム基材全体に、所定濃度の硝酸コバルト水溶液の所定量を吸水させ、乾燥後 500℃で焼成してコート層全体にCoを担持した。Coの担持量は、ハニカム基材1Lあたり 0.1モルである。   A predetermined amount of a cobalt nitrate aqueous solution having a predetermined concentration was absorbed into the entire honeycomb base material having the coat layer, dried, and fired at 500 ° C. to carry Co on the entire coat layer. The amount of Co supported is 0.1 mol per liter of honeycomb substrate.

次に、所定濃度の硝酸銅水溶液の所定量を、排ガス上流側端面から全長の80%の位置までのコート層に吸水させ、同様に乾燥、焼成してCuを担持した。Cuの担持量は、ハニカム基材1Lあたり 0.125モルである。   Next, a predetermined amount of a copper nitrate aqueous solution having a predetermined concentration was absorbed into the coating layer from the end face on the exhaust gas upstream side to a position of 80% of the total length, and dried and baked in the same manner to carry Cu. The amount of Cu supported is 0.125 mol per liter of honeycomb substrate.

続いて所定濃度の硝酸亜鉛水溶液の所定量を、排ガス上流側端面から全長の60%の位置までのコート層に吸水させ、同様に乾燥、焼成してZnを担持した。Znの担持量は、ハニカム基材1Lあたり 0.167モルである。   Subsequently, a predetermined amount of a zinc nitrate aqueous solution having a predetermined concentration was absorbed into the coating layer from the exhaust gas upstream side end surface to a position of 60% of the total length, and dried and fired in the same manner to carry Zn. The amount of Zn supported is 0.167 mol per liter of honeycomb substrate.

続いて所定濃度の硝酸ガリウム水溶液の所定量を、排ガス上流側端面から全長の40%の位置までのコート層に吸水させ、同様に乾燥、焼成してGaを担持した。Gaの担持量は、ハニカム基材1Lあたり0.25モルである。   Subsequently, a predetermined amount of a gallium nitrate aqueous solution having a predetermined concentration was absorbed in the coating layer from the exhaust gas upstream side end surface to a position of 40% of the total length, and similarly dried and fired to carry Ga. The amount of Ga supported is 0.25 mol per liter of honeycomb substrate.

続いて所定濃度の硝酸パラジウムの硝酸酸性水溶液の所定量を、排ガス上流側端面から全長の20%の位置までのコート層に吸水させ、同様に乾燥、焼成してPdを担持した。Pdの担持量は、ハニカム基材1Lあたり3gである。   Subsequently, a predetermined amount of a nitric acid aqueous solution of palladium nitrate having a predetermined concentration was absorbed into the coating layer from the end face on the upstream side of the exhaust gas to a position of 20% of the total length, and similarly dried and fired to carry Pd. The amount of Pd supported is 3 g per liter of honeycomb substrate.

こうして第1金属領域2、第2金属領域3、第3金属領域4、第4金属領域5、貴金属領域6を形成した。第1金属領域2と第2金属領域3を比較すると、Coは両方に同量担持されているが、Cuは第1金属領域には担持されていない。したがってCuが担持されている第2金属領域3の方が、Coのみを担持した第1金属領域2より最高NOx 浄化温度が低いことになる。以下同様にして、第1金属領域2、第2金属領域3、第3金属領域4及び第4金属領域5の範囲では、排ガス上流側ほど最高NOx 浄化温度が低くなっている。そして排ガス最上流側に貴金属領域6が形成されている。 Thus, the first metal region 2, the second metal region 3, the third metal region 4, the fourth metal region 5, and the noble metal region 6 were formed. Comparing the first metal region 2 and the second metal region 3, Co is supported in the same amount in both, but Cu is not supported in the first metal region. Therefore, the maximum NO x purification temperature is lower in the second metal region 3 supporting Cu than in the first metal region 2 supporting only Co. Similarly, in the range of the first metal region 2, the second metal region 3, the third metal region 4, and the fourth metal region 5, the maximum NO x purification temperature is lower toward the exhaust gas upstream side. A noble metal region 6 is formed on the most upstream side of the exhaust gas.

得られた触媒を2Lのリーンバーンエンジンを搭載したエンジンベンチの排気系に、貴金属領域6が排ガス上流側、第1金属領域1が排ガス下流側となるように配置し、空燃比( A/F)を23で希薄燃焼させた排ガスを流通させながら、触媒入りガス温度 250℃の時のHC浄化率及びNOx 浄化率を測定した。結果を図3に示す。 The obtained catalyst is arranged in the exhaust system of an engine bench equipped with a 2 L lean burn engine so that the noble metal region 6 is on the exhaust gas upstream side and the first metal region 1 is on the exhaust gas downstream side, and the air-fuel ratio (A / F ) while was passed through the exhaust gas is lean combustion at 23, to measure the HC purification rate and the NO x purification ratio when the catalyst entering gas temperature 250 ° C.. The results are shown in FIG.

(実施例2)
実施例1と同様の触媒を逆に用いることで実施例2の触媒とした。すなわち図2に示すように、実施例1と同様の触媒を、エンジンベンチの排気系に第1金属領域2が排ガス上流側に、貴金属領域6が排ガス下流側になるように配置した。そして実施例1と同様にしてHC浄化率及びNOx 浄化率を測定した。結果を図3に示す。
(Example 2)
The catalyst of Example 2 was obtained by using the same catalyst as in Example 1 in reverse. That is, as shown in FIG. 2, the same catalyst as in Example 1 was disposed in the exhaust system of the engine bench so that the first metal region 2 was on the exhaust gas upstream side and the noble metal region 6 was on the exhaust gas downstream side. In the same manner as in Example 1, the HC purification rate and the NO x purification rate were measured. The results are shown in FIG.

(比較例1)
実施例1と同様にコート層が形成されたハニカム基材を用い、所定濃度の硝酸パラジウムの硝酸酸性水溶液の所定量を、コート層全体に均一に吸水させ、実施例1と同様に乾燥、焼成してPdを担持した。Pdの担持量は、ハニカム基材1Lあたり3gである。
(Comparative Example 1)
Using a honeycomb substrate on which a coating layer was formed as in Example 1, a predetermined amount of a nitric acid aqueous solution of palladium nitrate having a predetermined concentration was uniformly absorbed throughout the coating layer, and dried and fired in the same manner as in Example 1. To support Pd. The amount of Pd supported is 3 g per liter of honeycomb substrate.

次に、予めRhが 0.4重量%含浸担持されたZrO2粉末(Rh/ZrO2粉末)をスラリー化し、Pdが担持されたコート層の表面にさらにウォッシュコートし乾燥、焼成して第2のコート層を形成した。第2のコート層は、ハニカム基材1Lあたり70g形成された。 Next, ZrO 2 powder impregnated and supported by 0.4% by weight of Rh (Rh / ZrO 2 powder) was slurried in advance, and the surface of the coating layer on which Pd was supported was further washed, dried and fired to form a second coat. A layer was formed. 70 g of the second coat layer was formed per 1 L of the honeycomb substrate.

得られた触媒は、NOx 吸蔵還元触媒の上流側に配置されるリーンバーン用 S/Cとして一般に用いられているものである。この触媒を用い、実施例1と同様にしてHC浄化率及びNOx 浄化率を測定した。結果を図3に示す。 The obtained catalyst is generally used as a lean burn S / C disposed upstream of the NO x storage reduction catalyst. Using this catalyst, the HC purification rate and the NO x purification rate were measured in the same manner as in Example 1. The results are shown in FIG.

(比較例2)
実施例1と同様にコート層が形成されたハニカム基材を用い、所定濃度の硝酸コバルト水溶液の所定量を全体に均一に吸水させ、乾燥後 500℃で焼成してコート層全体にCoを担持した。Coの担持量は、ハニカム基材1Lあたり 0.1モルである。
(Comparative Example 2)
Using a honeycomb substrate with a coating layer formed in the same manner as in Example 1, a predetermined amount of a cobalt nitrate aqueous solution having a predetermined concentration is uniformly absorbed throughout, dried, and fired at 500 ° C. to carry Co on the entire coating layer. did. The amount of Co supported is 0.1 mol per liter of honeycomb substrate.

次に、所定濃度の硝酸銅水溶液の所定量を、コート層全体に均一に吸水させ、同様に乾燥、焼成してCuを担持した。Cuの担持量は、ハニカム基材1Lあたり 0.1モルである。   Next, a predetermined amount of a copper nitrate aqueous solution having a predetermined concentration was uniformly absorbed throughout the coating layer, and similarly dried and fired to carry Cu. The supported amount of Cu is 0.1 mol per liter of honeycomb substrate.

続いて所定濃度の硝酸亜鉛水溶液の所定量を、コート層全体に均一に吸水させ、同様に乾燥、焼成してZnを担持した。Znの担持量は、ハニカム基材1Lあたり 0.1モルである。   Subsequently, a predetermined amount of a zinc nitrate aqueous solution having a predetermined concentration was uniformly absorbed throughout the coating layer, and similarly dried and fired to carry Zn. The amount of Zn supported is 0.1 mol per liter of honeycomb substrate.

続いて所定濃度の硝酸ガリウム水溶液の所定量を、コート層全体に均一に吸水させ、同様に乾燥、焼成してGaを担持した。Gaの担持量は、ハニカム基材1Lあたり 0.1モルである。   Subsequently, a predetermined amount of a gallium nitrate aqueous solution having a predetermined concentration was uniformly absorbed throughout the coating layer, and similarly dried and fired to carry Ga. The amount of Ga supported is 0.1 mol per liter of honeycomb substrate.

続いて所定濃度の硝酸パラジウムの硝酸酸性水溶液の所定量を、コート層全体に均一に吸水させ、同様に乾燥、焼成してPdを担持した。Pdの担持量は、ハニカム基材1Lあたり3gである。   Subsequently, a predetermined amount of a nitric acid aqueous solution of palladium nitrate having a predetermined concentration was uniformly absorbed by the entire coating layer, and similarly dried and fired to carry Pd. The amount of Pd supported is 3 g per liter of honeycomb substrate.

この触媒を用い、実施例1と同様にしてHC浄化率及びNOx 浄化率を測定した。結果を図3に示す。 Using this catalyst, the HC purification rate and the NO x purification rate were measured in the same manner as in Example 1. The results are shown in FIG.

<評価>
図3より、Co、Cu、Zn及びGaを均一に担持した比較例2の触媒は、比較例1の触媒に比べてHC及びNOx の浄化率が向上している。これは、比較例2の触媒でNOx 選択還元活性が発現したことによるものであると考えられる。しかし実施例1及び実施例2の触媒は、触媒金属の担持量は比較例2の触媒と同等であるにも関わらず、比較例2の触媒よりHC及びNOx の浄化率が向上し、これは触媒金属を所定の順に担持した効果である。
<Evaluation>
As shown in FIG. 3, the catalyst of Comparative Example 2 in which Co, Cu, Zn, and Ga are uniformly supported has an improved HC and NO x purification rate as compared with the catalyst of Comparative Example 1. This is believed to be due to the NO x selective reduction activity in the catalyst of Comparative Example 2 was expressed. However, the catalyst of Example 1 and Example 2 has an improved purification rate of HC and NO x compared with the catalyst of Comparative Example 2, although the supported amount of catalyst metal is equivalent to that of Comparative Example 2. Is the effect of supporting the catalyst metals in a predetermined order.

そして実施例1と実施例2を比べると、実施例1の触媒はHC浄化率が特に高く、実施例2の触媒はNOx 浄化率が特に高い。すなわち、排ガス上流側から下流側に向かって貴金属領域6、第4金属領域5、第3金属領域4、第2金属領域3及び第1金属領域2がこの順で並んでいることで、HCの酸化活性が格段に向上し、排ガス上流側から下流側に向かって第1金属領域2、第2金属領域3、第3金属領域4、第4金属領域5及び貴金属領域6がこの順で並んでいることで、NOx 還元活性が格段に向上していることが明らかである。 When comparing Example 1 and Example 2, the catalyst of Example 1 has a particularly high HC purification rate, and the catalyst of Example 2 has a particularly high NO x purification rate. That is, the noble metal region 6, the fourth metal region 5, the third metal region 4, the second metal region 3 and the first metal region 2 are arranged in this order from the exhaust gas upstream side to the downstream side. The oxidation activity is remarkably improved, and the first metal region 2, the second metal region 3, the third metal region 4, the fourth metal region 5 and the noble metal region 6 are arranged in this order from the exhaust gas upstream side to the downstream side. Thus, it is clear that the NO x reduction activity is significantly improved.

本発明の排ガス浄化用触媒は、NOx 吸蔵還元触媒の上流側に配置される S/Cとしてきわめて有用である。また単独で、リーンバーン用の排ガス浄化用触媒として用いることも可能である。 The exhaust gas purifying catalyst of the present invention is extremely useful as S / C disposed upstream of the NO x storage reduction catalyst. It can also be used alone as an exhaust gas purification catalyst for lean burn.

本発明の一実施例の触媒の模式的説明図である。It is a typical explanatory view of the catalyst of one example of the present invention. 本発明の第2の実施例の触媒の模式的説明図である。It is a typical explanatory view of the catalyst of the 2nd example of the present invention. 実施例及び比較例の触媒におけるHC浄化率及びNOx 浄化率を示すグラフである。It is a graph showing the HC purification rate and NO x purification rate of the catalysts of Examples and Comparative Examples. 各種金属の温度とNOx 浄化率との関係を示すグラフである。Is a graph showing the relationship between the temperature and the NO x purification rate of various metals. 各種金属の温度とHC浄化率との関係を示すグラフである。It is a graph which shows the relationship between the temperature of various metals, and HC purification rate.

符号の説明Explanation of symbols

1:ハニカム基材 2:第1金属領域 3:第2金属領域
4:第3金属領域 5:第4金属領域 6:貴金属領域
1: Honeycomb substrate 2: First metal region 3: Second metal region 4: Third metal region 5: Fourth metal region 6: Noble metal region

Claims (3)

ハニカム基材と、該ハニカム基材に形成されたコート層とからなる排ガス浄化用触媒であって、該コート層にはGa、Zn、Cu、Co及び貴金属から選ばれる触媒金属が担持され、
該ハニカム基材の一端部に形成されCoのみを担持した第1金属領域と、該第1金属領域に隣接しCoとCuを担持した第2金属領域と、該第1金属領域と反対側で該第2金属領域に隣接しCoとCuとZnを担持した第3金属領域と、該第2金属領域と反対側で該第3金属領域に隣接しCoとCuとZnとGaを担持した第4金属領域と、該第3金属領域と反対側の前記ハニカム基材の他端部で該第4金属領域に隣接しCoとCuとZnとGaと貴金属とを担持した第5金属領域と、を有することを特徴とする排ガス浄化用触媒。
A catalyst for exhaust gas purification comprising a honeycomb substrate and a coating layer formed on the honeycomb substrate, and the coating layer carries a catalyst metal selected from Ga, Zn, Cu, Co and a noble metal ,
A first metal region formed on one end of the honeycomb substrate and supporting only Co; a second metal region supporting Co and Cu adjacent to the first metal region; and a side opposite to the first metal region. A third metal region adjacent to the second metal region and supporting Co, Cu, and Zn; and a second metal region adjacent to the third metal region opposite to the second metal region and supporting Co, Cu, Zn, and Ga. A fifth metal region carrying Co, Cu, Zn, Ga, and a noble metal adjacent to the fourth metal region at the other end of the honeycomb substrate opposite to the third metal region; An exhaust gas purifying catalyst characterized by comprising:
前記貴金属はパラジウムである請求項1に記載の排ガス浄化用触媒。The exhaust gas purifying catalyst according to claim 1, wherein the noble metal is palladium. 請求項1又は請求項2に記載の排ガス浄化用触媒を用い、排ガスが前記ハニカム基材の一端部から他端部へ向かって又は他端部から一端部へ向かって流れるように配置して排ガスを浄化することを特徴とする排ガス浄化方法。The exhaust gas purifying catalyst according to claim 1 or 2, wherein the exhaust gas is disposed so that the exhaust gas flows from one end to the other end of the honeycomb substrate or from the other end to the one end. An exhaust gas purification method characterized by purifying gas.
JP2004033961A 2004-02-10 2004-02-10 Exhaust gas purification catalyst and exhaust gas purification method Expired - Fee Related JP4529463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004033961A JP4529463B2 (en) 2004-02-10 2004-02-10 Exhaust gas purification catalyst and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004033961A JP4529463B2 (en) 2004-02-10 2004-02-10 Exhaust gas purification catalyst and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JP2005224669A JP2005224669A (en) 2005-08-25
JP4529463B2 true JP4529463B2 (en) 2010-08-25

Family

ID=34999799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004033961A Expired - Fee Related JP4529463B2 (en) 2004-02-10 2004-02-10 Exhaust gas purification catalyst and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP4529463B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8800270B2 (en) * 2007-11-14 2014-08-12 Umicore Autocat Usa Inc. Process for reducing NO2 from combustion system exhaust

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416239A (en) * 1990-05-07 1992-01-21 Mitsubishi Heavy Ind Ltd Treatment of exhaust gas
JPH05146639A (en) * 1991-11-27 1993-06-15 Nippon Steel Corp Catalytic reactor
JPH05237389A (en) * 1990-09-25 1993-09-17 Riken Corp Purifier of exhaust gas and method for purification of exhaust gas
JPH06134258A (en) * 1992-10-23 1994-05-17 Hitachi Ltd Denitration method and catalyst used therein
JPH07148438A (en) * 1993-11-29 1995-06-13 Riken Corp Exhaust gas cleaning material and exhaust gas cleaning method
JPH09253453A (en) * 1996-03-19 1997-09-30 Nissan Motor Co Ltd Cleaning of exhaust gas
JPH10156144A (en) * 1996-10-04 1998-06-16 Masakazu Iwamoto Exhaust gas purifying catalyst
JPH10252455A (en) * 1997-03-13 1998-09-22 Nippon Soken Inc Exhaust emission cleaning catalyst device and exhaust emission control method for internal combustion engine
JPH10272341A (en) * 1997-03-28 1998-10-13 Sekiyu Sangyo Kasseika Center Removal of nitrogen oxides

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416239A (en) * 1990-05-07 1992-01-21 Mitsubishi Heavy Ind Ltd Treatment of exhaust gas
JPH05237389A (en) * 1990-09-25 1993-09-17 Riken Corp Purifier of exhaust gas and method for purification of exhaust gas
JPH05146639A (en) * 1991-11-27 1993-06-15 Nippon Steel Corp Catalytic reactor
JPH06134258A (en) * 1992-10-23 1994-05-17 Hitachi Ltd Denitration method and catalyst used therein
JPH07148438A (en) * 1993-11-29 1995-06-13 Riken Corp Exhaust gas cleaning material and exhaust gas cleaning method
JPH09253453A (en) * 1996-03-19 1997-09-30 Nissan Motor Co Ltd Cleaning of exhaust gas
JPH10156144A (en) * 1996-10-04 1998-06-16 Masakazu Iwamoto Exhaust gas purifying catalyst
JPH10252455A (en) * 1997-03-13 1998-09-22 Nippon Soken Inc Exhaust emission cleaning catalyst device and exhaust emission control method for internal combustion engine
JPH10272341A (en) * 1997-03-28 1998-10-13 Sekiyu Sangyo Kasseika Center Removal of nitrogen oxides

Also Published As

Publication number Publication date
JP2005224669A (en) 2005-08-25

Similar Documents

Publication Publication Date Title
US10010873B2 (en) Catalytic converter
JP5345530B2 (en) Structured SCR catalyst for reducing nitrogen oxides in exhaust gas from lean burn engines using ammonia as a reducing agent
EP2047903B1 (en) Catalyst for purifying exhaust gas
JP5804004B2 (en) Catalytic converter
US20080081761A1 (en) Catalyst for Purifying Exhaust Gases
JP2006326495A (en) Exhaust-gas cleaning catalyst
WO2006059471A1 (en) NOx PURIFICAITION SYSTEM
JP4197029B2 (en) Exhaust gas purification catalyst, exhaust gas purification system, and exhaust gas purification method
JP2009273986A (en) Exhaust gas cleaning catalyst
JP3685463B2 (en) Exhaust gas purification catalyst
KR20080066944A (en) Exhaust gas clean-up system and exhaust gas clean-up method
JP4793316B2 (en) Sulfur storage catalyst
JP2009082846A (en) Nitrogen oxide adsorbent, and method for exhaust gas purification using the same
JP2006289301A (en) Catalyst for clarifying exhaust gas
JP4529463B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP5094199B2 (en) Exhaust gas purification device
JP2006233774A (en) Exhaust emission control device and exhaust emission control method
JP2002168117A (en) Exhaust emission control system
JP4479418B2 (en) Exhaust gas purification catalyst
JP4225099B2 (en) Exhaust gas purification catalyst, exhaust gas purification device, and exhaust gas purification method
JP5994730B2 (en) Method for producing exhaust gas purifying catalyst
JP2005185966A (en) Automobile exhaust emission purification catalyst
WO2014050361A1 (en) NOx REMOVAL SYSTEM
JP4172370B2 (en) Method for producing exhaust gas purification catalyst
JP2006102628A (en) Sulfur oxide absorber and its manufacturing method, and emission gas purifying facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees