JPH09299795A - Catalyst for purification of exhaust gas - Google Patents

Catalyst for purification of exhaust gas

Info

Publication number
JPH09299795A
JPH09299795A JP8117538A JP11753896A JPH09299795A JP H09299795 A JPH09299795 A JP H09299795A JP 8117538 A JP8117538 A JP 8117538A JP 11753896 A JP11753896 A JP 11753896A JP H09299795 A JPH09299795 A JP H09299795A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
storage
oxidation
porous carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8117538A
Other languages
Japanese (ja)
Inventor
Toshiyuki Tanaka
寿幸 田中
直樹 ▲高▼橋
Naoki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP8117538A priority Critical patent/JPH09299795A/en
Publication of JPH09299795A publication Critical patent/JPH09299795A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To further improve NOx removing performance by enhancing the oxidation reactivity of NO. SOLUTION: An NO oxidation catalyst is disposed on the upstream side of a flow of exhaust gas and an NOx occlusion catalyst is disposed on the downstream side. Since a part having high NO oxidizing performance is separated from a part having high NOx occluding performance, NO oxidizing ability is improved as compared with that of the conventional catalyst for purification of exhaust gas and the rate of removal of Nox is also increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車などの内燃
機関から排出される排ガスを浄化する排ガス浄化用触媒
に関し、さらに詳しくは、酸素過剰の排ガス、すなわち
排ガス中に含まれる一酸化炭素(CO)、水素(H2
及び炭化水素(HC)等の還元性成分を完全に酸化する
のに必要な酸素量より過剰の酸素を含む排ガス中の、窒
素酸化物(NOx )を効率良く還元浄化できる排ガス浄
化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for purifying exhaust gas emitted from an internal combustion engine such as an automobile. More specifically, the present invention relates to exhaust gas with excess oxygen, that is, carbon monoxide (CO) contained in the exhaust gas. ), Hydrogen (H 2 )
And an exhaust gas purifying catalyst capable of efficiently reducing and purifying nitrogen oxides (NO x ) in exhaust gas containing oxygen in excess of the oxygen amount necessary for completely oxidizing reducing components such as hydrocarbons (HC). .

【0002】[0002]

【従来の技術】従来より自動車の排ガス浄化用触媒とし
て、理論空燃比(ストイキ)において排ガス中のCO及
びHCの酸化とNOx の還元とを同時に行って浄化する
三元触媒が用いられている。このような三元触媒として
は、例えばコーディエライトなどからなる耐熱性基材に
γ−アルミナからなる多孔質担体層を形成し、その多孔
質担体層に白金(Pt)、ロジウム(Rh)などの触媒
貴金属を担持させたものが広く知られている。また、酸
素吸蔵能をもつセリア(セリウム酸化物)を併用し、低
温活性を高めた三元触媒も知られている。
2. Description of the Related Art Conventionally, as a catalyst for purifying exhaust gas of automobiles, a three-way catalyst has been used which purifies CO and HC in exhaust gas at the stoichiometric air-fuel ratio by simultaneously oxidizing and reducing NO x . . As such a three-way catalyst, for example, a porous carrier layer made of γ-alumina is formed on a heat-resistant substrate made of cordierite or the like, and platinum (Pt), rhodium (Rh), or the like is formed on the porous carrier layer. What carried the catalyst noble metal is widely known. Further, a three-way catalyst using ceria (cerium oxide) having an oxygen storage ability and having enhanced low-temperature activity is also known.

【0003】一方、近年、地球環境保護の観点から、自
動車などの内燃機関から排出される排ガス中の二酸化炭
素(CO2 )が問題とされ、その解決策として酸素過剰
雰囲気において希薄燃焼させるいわゆるリーンバーンが
有望視されている。このリーンバーンにおいては、燃費
が向上するために燃料の使用が低減され、その燃焼排ガ
スであるCO2 の発生を抑制することができる。
On the other hand, in recent years, from the viewpoint of protecting the global environment, carbon dioxide (CO 2 ) in exhaust gas discharged from internal combustion engines such as automobiles has become a problem, and as a solution to this problem, so-called lean combustion in which lean combustion is performed in an oxygen excess atmosphere is performed. Burn is promising. In this lean burn, the use of fuel is reduced to improve fuel efficiency, and the generation of CO 2 , which is the combustion exhaust gas, can be suppressed.

【0004】これに対し、従来の三元触媒は、空燃比が
理論空燃比(ストイキ)において排ガス中のCO,H
C,NOx を同時に酸化・還元し浄化するものであっ
て、リーンバーン時の排ガスの酸素過剰雰囲気下におい
ては、NOx の還元除去に対して充分な浄化性能を示さ
ない。このため、酸素過剰雰囲気下においてもNOx
浄化しうる触媒及び浄化システムの開発が望まれてい
た。
On the other hand, in the conventional three-way catalyst, when the air-fuel ratio is the stoichiometric air-fuel ratio (stoichiometric), CO, H in the exhaust gas
It purifies by oxidizing and reducing C and NO x at the same time, and does not show sufficient purification performance for reducing and removing NO x in an oxygen excess atmosphere of exhaust gas during lean burn. Therefore, it has been desired to develop a catalyst and a purification system that can purify NO x even in an oxygen excess atmosphere.

【0005】そこで本願出願人は、先にBaなどのアル
カリ土類金属とPtをアルミナなどの多孔質担体に担持
した排ガス浄化用触媒(例えば特開平5−317625
号公報)を提案している。この排ガス浄化用触媒を用
い、空燃比をリーン側からパルス状にストイキ又はリッ
チ側となるように制御することにより、リーン側ではN
x がアルカリ土類金属(NOx 吸蔵元素)に吸蔵さ
れ、それがストイキ又はリッチ側でHCやCOなどの還
元性成分と反応して浄化されるため、リーンバーンにお
いてもNOx を効率良く浄化することができる。
Therefore, the applicant of the present application has previously proposed an exhaust gas purifying catalyst in which an alkaline earth metal such as Ba and Pt are supported on a porous carrier such as alumina (for example, Japanese Patent Laid-Open No. 5-317625).
Issue gazette). By using this exhaust gas purifying catalyst to control the air-fuel ratio from the lean side to the stoichiometric or rich side in a pulsed manner, N
O x is occluded in the alkaline earth metal (NO x occluding element), it is to be cleaned reacts with the reducing components such as HC and CO in the stoichiometric or rich side, efficiently even NO x in lean burn Can be purified.

【0006】[0006]

【発明が解決しようとする課題】上記排ガス浄化用触媒
におけるNOx の浄化反応は、排ガス中のNOを酸化し
てNOx とする第1ステップと、触媒上にNOx を吸蔵
する第2ステップと、吸蔵されたNOx あるいは触媒か
ら放出されたNOx を触媒上で還元する第3ステップと
からなることがわかっている。
The NO x purification reaction in the exhaust gas purifying catalyst is a first step of oxidizing NO in the exhaust gas to NO x and a second step of storing NO x on the catalyst. If, and the NO x released from occluded NO x or catalyst known to be composed of a third step of reduction on the catalyst.

【0007】しかしながら従来の排ガス浄化用触媒にお
いては、第2ステップ及び第3ステップの反応性は比較
的高いものの、第1ステップの反応性が低く、そのNO
x 浄化性能には限度があった。本発明はこのような事情
に鑑みてなされたものであり、上記第1ステップの反応
性を高めることでNOx 浄化性能を一層向上させること
を目的とする。
However, in the conventional exhaust gas purifying catalyst, the reactivity of the second step and the third step is relatively high, but the reactivity of the first step is low, and the NO
x Purification performance was limited. The present invention has been made in view of such circumstances, and an object thereof is to further improve the NO x purification performance by increasing the reactivity in the first step.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する請求
項1に記載の排ガス浄化用触媒の特徴は、多孔質担体に
少なくとも貴金属を担持してなるNO酸化触媒と、多孔
質担体にアルカリ金属、アルカリ土類金属及び希土類金
属から選ばれる少なくとも一種のNOx 吸蔵元素と貴金
属とを担持してなるNOx 吸蔵触媒と、を組み合わせる
ことにより構成されたことにある。
The exhaust gas-purifying catalyst according to claim 1 for solving the above-mentioned problems is characterized by an NO oxidation catalyst in which at least a noble metal is supported on a porous carrier, and an alkali metal on the porous carrier. It is configured by combining at least one NO x storage element selected from alkaline earth metals and rare earth metals and a NO x storage catalyst supporting a noble metal.

【0009】また上記課題を解決するさらに望ましい態
様である請求項2に記載の排ガス浄化用触媒の特徴は、
多孔質担体に少なくとも貴金属を担持してなるNO酸化
触媒と、多孔質担体にアルカリ金属、アルカリ土類金属
及び希土類金属から選ばれる少なくとも一種のNOx
蔵元素と貴金属とを担持してなるNOx 吸蔵触媒と、多
孔質担体に貴金属を担持してなるNOx 還元触媒と、を
組み合わせることにより構成されたことにある。
Further, the characteristics of the exhaust gas purifying catalyst according to claim 2 which is a more desirable mode for solving the above-mentioned problems,
A NO oxidation catalyst formed by carrying at least a noble metal on a porous support, an alkali metal on a porous support, comprising carrying at least one NO x storage element and a noble metal selected from alkaline earth metals and rare earth metals NO x It is configured by combining an occlusion catalyst and a NO x reduction catalyst in which a precious metal is supported on a porous carrier.

【0010】NO酸化触媒のNOの酸化活性をさらに向
上させるためには、請求項3に記載のようにNO酸化触
媒にさらに酸性元素を担持したり、請求項4に記載のよ
うにNO酸化触媒の多孔質担体を酸性酸化物から構成す
ることが望ましい。またNOx 吸蔵触媒のNOx 吸蔵活
性をさらに向上させるためには、請求項5に記載のよう
にNOx 吸蔵触媒の多孔質担体を塩基性酸化物から構成
することが望ましい。
In order to further improve the NO oxidation activity of the NO oxidation catalyst, the NO oxidation catalyst may be further loaded with an acidic element as described in claim 3, or the NO oxidation catalyst as described in claim 4. It is desirable that the porous carrier of (1) be composed of an acidic oxide. In order to further improve the NO x storage activity of the NO x storage catalyst, it is desirable to configure the porous carrier of the NO x storage catalyst as claimed in claim 5, basic oxides.

【0011】請求項1に記載の排ガス浄化用触媒におい
て、NO酸化触媒とNOx 吸蔵触媒との組み合わせ方法
としては、請求項6に記載のように排ガス流路にこの順
に直列に配置する方法、あるいは請求項7に記載のよう
にNO酸化触媒と前記NOx吸蔵触媒をそれぞれ粉末触
媒とし、両粉末触媒を混合して用いることもできる。請
求項2に記載の排ガス浄化用触媒において、NO酸化触
媒とNOx 吸蔵触媒及びNOx 還元触媒の組み合わせ方
法としては、請求項8に記載のように排ガス流路にこの
順に直列に配置する方法、あるいは請求項9に記載のよ
うにNO酸化触媒とNOx 吸蔵触媒及びNOx 還元触媒
をそれぞれ粉末触媒とし3種類の粉末触媒を混合して用
いる方法、あるいは請求項10に記載のようにNO酸化
触媒とNOx 吸蔵触媒との粉末を混合してなる触媒と、
NOx 還元触媒とを排ガス流路にこの順に直列に配置す
る方法、さらには請求項11に記載のようにNO酸化触
媒と、NOx 吸蔵触媒とNOx 還元触媒との粉末を混合
してなる触媒とを排ガス流路にこの順に直列に配置する
方法が望ましい。
In the exhaust gas purifying catalyst according to claim 1, as a method for combining the NO oxidation catalyst and the NO x storage catalyst, as described in claim 6, a method of arranging them in series in the exhaust gas passage in this order, Alternatively, as described in claim 7, the NO oxidation catalyst and the NO x storage catalyst may be used as powder catalysts, and both powder catalysts may be mixed and used. In the exhaust gas purifying catalyst according to claim 2, as a method of combining the NO oxidation catalyst, the NO x storage catalyst and the NO x reduction catalyst, a method of arranging them in series in the exhaust gas flow passage in this order as described in claim 8. Or a method of using a NO oxidation catalyst, a NO x storage catalyst and a NO x reduction catalyst as powder catalysts and mixing three kinds of powder catalysts, or NO as described in claim 10. A catalyst formed by mixing powders of an oxidation catalyst and a NO x storage catalyst;
A method of arranging a NO x reduction catalyst in series in the exhaust gas flow channel in this order, and further comprising mixing an NO oxidation catalyst, and a powder of a NO x storage catalyst and a NO x reduction catalyst as described in claim 11. A method of arranging the catalyst in series in the exhaust gas passage in this order is desirable.

【0012】さらに、請求項12に記載のようにNO酸
化触媒とNOx 吸蔵触媒とを複数個組み合わせてもよい
し、請求項13に記載のようにNO酸化触媒とNOx
蔵触媒とNOx 還元触媒とを複数個組み合わせることも
できる。
Furthermore, it may be combination of a plurality of the NO oxidation catalyst and the NO x storage catalyst as claimed in claim 12, the NO oxidation catalyst as claimed in claim 13 and the NO x storage catalyst and NO x It is also possible to combine a plurality of reduction catalysts.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(1)NO酸化触媒 請求項1及び請求項2にいうNO酸化触媒は、アルミ
ナ、シリカ、ジルコニア、シリカ−アルミナ、ゼオライ
トなどの多孔質担体に貴金属を担持したものである。こ
の貴金属としてはPt、Pd及びRhから選ぶことが好
ましい。
(1) NO Oxidation Catalyst The NO oxidation catalyst according to claims 1 and 2 is obtained by supporting a noble metal on a porous carrier such as alumina, silica, zirconia, silica-alumina, or zeolite. The noble metal is preferably selected from Pt, Pd and Rh.

【0014】NO酸化触媒における貴金属の担持量とし
ては、多孔質担体1リットル当たり0.1〜20gが好
ましく、0.5〜10gが特に好ましい。貴金属の担持
量をこれ以上増加させても酸化活性は向上せず、その有
効利用が図れない。また貴金属の担持量がこれより少な
いと、実用上十分な活性が得られない。NO酸化触媒で
は、多孔質担体を酸性化することが望ましい。これによ
り担持されている貴金属の酸化状態が高くなる。そして
生成したNOx が素早く放出される、また、NOx 吸蔵
元素が担持されていないため貴金属のシンタリングが抑
制される、などの現象が生じると推察され、NO酸化活
性が向上する。
The amount of the noble metal supported on the NO oxidation catalyst is preferably 0.1 to 20 g, and particularly preferably 0.5 to 10 g, per liter of the porous carrier. Even if the supported amount of the noble metal is further increased, the oxidation activity is not improved, and its effective use cannot be achieved. On the other hand, if the amount of the noble metal supported is less than this, sufficient activity for practical use cannot be obtained. For NO oxidation catalysts, it is desirable to acidify the porous support. This raises the oxidation state of the noble metal carried. Then, it is assumed that the generated NO x is released quickly, and that the sintering of the noble metal is suppressed because the NO x storage element is not supported, and the NO oxidation activity is improved.

【0015】このように多孔質担体を酸性化する方法と
しては、酸性元素を担持する方法がある。このような酸
性元素としてはV、Nb、Mo、W、Mn、Ti、Zr
及びSiから選ばれる少なくとも一種とすることができ
る。また多孔質担体自体を酸性化する方法として、酸性
酸化物から多孔質担体を構成する方法がある。このよう
な酸性酸化物としてはZrO2 、TiO2 、SiO 2
CeO2 などが例示され、これらの単独酸化物あるいは
複合酸化物から多孔質担体を形成するとよい。
In this way, the method for acidifying the porous carrier and
Then, there is a method of supporting an acidic element. Such an acid
As the element, V, Nb, Mo, W, Mn, Ti, Zr
And at least one selected from Si
You. In addition, as a method of acidifying the porous carrier itself,
There is a method of forming a porous carrier from an oxide. like this
ZrO as a suitable acidic oxideTwo, TiOTwo, SiO Two,
CeOTwoEtc. are exemplified, and these single oxides or
It is preferable to form the porous carrier from the composite oxide.

【0016】このNO酸化触媒は、それ自身でペレット
を形成してもよいし、コーディエライトやメタルなどか
ら形成されたハニカム形状あるいはペレット形状の耐熱
性基材表面に多孔質担体よりなるコート層を形成し、そ
のコート層に貴金属や酸性元素を担持したものとするこ
ともできる。 (2)NOx 吸蔵触媒 NOx 吸蔵触媒は、アルミナ、シリカ、ジルコニア、シ
リカ−アルミナ、ゼオライトなどの多孔質担体に、アル
カリ金属、アルカリ土類金属及び希土類金属から選ばれ
る少なくとも一種のNOx 吸蔵元素と貴金属とを担持し
たものである。この貴金属としてはPt、Pd及びRh
から選ぶことが好ましい。
The NO oxidation catalyst may form pellets by itself, or a coat layer made of a porous carrier on the surface of a honeycomb-shaped or pellet-shaped heat-resistant substrate formed of cordierite or metal. It is also possible to form noble metal and support the noble metal or acidic element on the coat layer. (2) the NO x storage catalyst the NO x storage catalyst, alumina, silica, zirconia, silica - alumina, a porous carrier such as zeolite, at least one NO x storage selected from alkali metals, alkaline earth metals and rare earth metals It carries an element and a noble metal. The noble metals include Pt, Pd and Rh.
It is preferable to select from

【0017】NOx 吸蔵触媒における貴金属の担持量と
しては、多孔質担体1リットル当たり0.1〜20gが
好ましく、0.5〜10gが特に好ましい。貴金属の担
持量をこれ以上増加させてもNOx の吸蔵活性は向上せ
ず、その有効利用が図れない。また貴金属の担持量がこ
れより少ないと、実用上十分な活性が得られない。NO
x 吸蔵元素であるアルカリ金属としてはリチウム(L
i)、ナトリウム(Na)、カリウム(K)、セシウム
(Cs)が挙げられる。また、アルカリ土類金属とは周
期表2A族元素をいい、マグネシウム(Mg)、カルシ
ウム(Ca)、ストロンチウム(Sr)、バリウム(B
a)が挙げられる。また希土類金属としてはランタン
(La)、セリウム(Ce)、プラセオジム(Pr)な
どが挙げられる。
The amount of the noble metal supported on the NO x storage catalyst is preferably 0.1 to 20 g, and particularly preferably 0.5 to 10 g, per liter of the porous carrier. Even if the supported amount of the noble metal is further increased, the NO x storage activity is not improved, and its effective use cannot be achieved. On the other hand, if the amount of the noble metal supported is less than this, sufficient activity for practical use cannot be obtained. NO
x As an alkali metal that is an occlusion element, lithium (L
i), sodium (Na), potassium (K), and cesium (Cs). Further, the alkaline earth metal means an element of Group 2A of the periodic table, and magnesium (Mg), calcium (Ca), strontium (Sr), barium (B
a). Examples of rare earth metals include lanthanum (La), cerium (Ce) and praseodymium (Pr).

【0018】NOx 吸蔵触媒の多孔質担体は、塩基性酸
化物から構成することが望ましい。このようにすること
により、NOx が引き付けられ易くなり、NOx 吸蔵活
性が一層向上する。このような塩基性酸化物としては、
MgO、La2 3 、Al23 、Y2 3 などが例示
され、これらの単独酸化物あるいは複合酸化物から多孔
質担体を形成するとよい。
The porous carrier of the NO x storage catalyst is preferably composed of a basic oxide. By doing so, NO x is easily attracted, and the NO x storage activity is further improved. As such a basic oxide,
Examples thereof include MgO, La 2 O 3 , Al 2 O 3 and Y 2 O 3, and it is preferable to form the porous carrier from a single oxide or a composite oxide of these.

【0019】このNOx 吸蔵触媒は、それ自身でペレッ
トを形成してもよいし、コーディエライトやメタルなど
から形成されたハニカム形状あるいはペレット形状の耐
熱性基材表面に多孔質担体よりなるコート層を形成し、
そのコート層に貴金属とNO x 吸蔵元素を担持したもの
とすることもできる。 (3)NOx 還元触媒 請求項2にいうNOx 還元触媒は、アルミナ、シリカ、
ジルコニア、シリカ−アルミナ、ゼオライトなどの多孔
質担体に貴金属を担持したものである。この貴金属とし
てはPt、Pd及びRhから選ぶことが好ましい。特に
2 選択性を向上させるためにはRhが好ましい。
This NOxThe storage catalyst is itself pelletized.
May be formed, cordierite, metal, etc.
Made of honeycomb-shaped or pellet-shaped
Form a coat layer consisting of a porous carrier on the surface of the thermal substrate,
Noble metal and NO in the coat layer xCarrying an occlusion element
It can also be. (3) NOxReduction catalyst NO according to claim 2xThe reduction catalyst is alumina, silica,
Porous zirconia, silica-alumina, zeolite, etc.
A noble metal is supported on a porous carrier. With this precious metal
It is preferable to select from Pt, Pd and Rh. Especially
NTwoRh is preferable for improving the selectivity.

【0020】NOx 還元触媒における貴金属の担持量と
しては、多孔質担体1リットル当たり0.1〜20gが
好ましく、0.5〜10gが特に好ましい。貴金属の担
持量をこれ以上増加させてもNOx の還元活性は向上せ
ず、その有効利用が図れない。また貴金属の担持量がこ
れより少ないと、実用上十分な活性が得られない。この
NOx 還元触媒は、それ自身でペレットを形成してもよ
いし、コーディエライトやメタルなどから形成されたハ
ニカム形状あるいはペレット形状の耐熱性基材表面に多
孔質担体よりなるコート層を形成し、そのコート層に貴
金属を担持したものとすることもできる。 (4)NO酸化触媒とNOx 吸蔵触媒との組み合わせ例 NO酸化触媒とNOx 吸蔵触媒とから請求項1に記載の
排ガス浄化用触媒を形成する組み合わせとしては、両触
媒を粉末形状として混合し、それをコーディエライトや
メタルなどから形成されたハニカム形状あるいはペレッ
ト形状の耐熱性基材表面にコートして用いる方法があ
る。
The amount of the noble metal supported on the NO x reduction catalyst is preferably 0.1 to 20 g, and particularly preferably 0.5 to 10 g, per liter of the porous carrier. Even if the supported amount of the noble metal is further increased, the NO x reducing activity is not improved, and its effective use cannot be achieved. On the other hand, if the amount of the noble metal supported is less than this, sufficient activity for practical use cannot be obtained. The NO x reduction catalyst may form pellets by itself, or a coat layer made of a porous carrier may be formed on the surface of a honeycomb-shaped or pellet-shaped heat-resistant substrate formed of cordierite or metal. However, a noble metal may be supported on the coat layer. (4) As a combination of forming the exhaust gas purifying catalyst as set forth in the example combination NO oxidation catalyst and the NO x storage catalyst with NO oxidation catalyst and the NO x storage catalyst in claim 1, and mixing both catalyst as powder shape There is a method of coating it on the surface of a honeycomb-shaped or pellet-shaped heat-resistant substrate formed of cordierite or metal.

【0021】またハニカム形状やペレット形状に形成さ
れた両触媒を、排ガス流路に直列に並べて用いることも
できる。この場合には、NO酸化触媒を排ガス流路の上
流側に配置し、NOx 吸蔵触媒を下流側に配置する。な
おNO酸化触媒をAとし、NOx 吸蔵触媒をBとするな
らこの配置例はA−Bと表される。また、請求項12に
記載のとおり、A−B−A−B−・・・のように複数の
触媒を直列に組み合わせることもできる。 (5)NO酸化触媒、NOx 吸蔵触媒及びNOx 還元触
媒の組み合わせ例 NO酸化触媒、NOx 吸蔵触媒及びNOx 還元触媒から
請求項2に記載の排ガス浄化用触媒を形成する組み合わ
せとしては、以下の組み合わせ方法がある。
It is also possible to use both catalysts formed in a honeycomb shape or a pellet shape in series in the exhaust gas passage. In this case, the NO oxidation catalyst is arranged on the upstream side of the exhaust gas passage, and the NO x storage catalyst is arranged on the downstream side. If the NO oxidation catalyst is A and the NO x storage catalyst is B, this arrangement example is expressed as AB. Further, as described in claim 12, a plurality of catalysts can be combined in series like A-B-A-B -... (5) Example of combination of NO oxidation catalyst, NO x storage catalyst and NO x reduction catalyst As a combination of the NO oxidation catalyst, NO x storage catalyst and NO x reduction catalyst to form the exhaust gas purifying catalyst according to claim 2, There are the following combination methods.

【0022】先ず、3種類の触媒をそれぞれ粉末形状と
して混合し、それをコーディエライトやメタルなどから
形成されたハニカム形状あるいはペレット形状の耐熱性
基材表面にコートして用いる方法がある。ハニカム形状
やペレット形状に形成されたそれぞれの触媒を、排ガス
流路に直列に並べて用いることもできる。NO酸化触媒
をAとし、NOx 吸蔵触媒をB、NOx 還元触媒をCと
して表現すると、この場合はA−B−Cと表され、排ガ
ス流路の上流側から下流側に向かってこの順に配置す
る。また請求項13に記載のとおり、A−B−C−A−
B−C−・・・のように複数の触媒をこの順に直列に組
み合わせてもよいし、A−B−A−B−・・・−Cのよ
うにNO酸化触媒AとNOx 吸蔵触媒Bを列設し、最後
にNOx 還元触媒Cを配置することもできる。
First, there is a method in which three types of catalysts are mixed in the form of powder, and the mixture is used by coating the surface of a heat-resistant base material in the shape of a honeycomb or pellet formed of cordierite or metal. It is also possible to use the respective catalysts formed in a honeycomb shape or a pellet shape, arranged in series in the exhaust gas passage. When the NO oxidation catalyst is A, the NO x storage catalyst is B, and the NO x reduction catalyst is C, in this case it is expressed as ABC, and in this order from the upstream side to the downstream side of the exhaust gas passage. Deploy. Moreover, as described in Claim 13, ABCA-
May be combined in series a plurality of catalyst in this order as B-C- ···, A-B -A-B- NO oxidation catalyst A as · · · -C and the NO x storage catalytic B Alternatively, the NO x reduction catalyst C may be arranged at the end.

【0023】またNO酸化触媒とNOx 吸蔵触媒をそれ
ぞれ粉末形状として混合し、それをコーディエライトや
メタルなどから形成されたハニカム形状あるいはペレッ
ト形状の耐熱性基材表面にコートしたものを排ガス流路
の上流側に配置し、下流側にNOx 還元触媒Cを配置す
ることもできる。さらに、NOx 吸蔵触媒とNOx 還元
触媒をそれぞれ粉末形状として混合し、それをコーディ
エライトやメタルなどから形成されたハニカム形状ある
いはペレット形状の耐熱性基材表面にコートしたものを
排ガス流路の下流側に配置し、上流側にNO酸化触媒A
を配置してもよい。 (6)請求項1の排ガス浄化用触媒の作用 請求項1の排ガス浄化用触媒では、リーン雰囲気におい
てNO酸化触媒により排ガス中のNOが酸化されてNO
x となる。この時NO酸化触媒が酸性側にあれば、活性
中心である貴金属の酸化状態が高くなるため、また生成
したNOx が速やかに離脱するため、NOの酸化活性が
向上する。
The NO oxidation catalyst and the NO x storage catalyst are mixed in the form of powder, and the mixture is coated on the surface of a honeycomb-shaped or pellet-shaped heat-resistant base material made of cordierite, metal, etc. It is also possible to arrange it on the upstream side of the passage and arrange the NO x reduction catalyst C on the downstream side. Further, the NO x storage catalyst and the NO x reduction catalyst are mixed in the form of powder, and the mixture is coated on the surface of a honeycomb-shaped or pellet-shaped heat-resistant base material formed of cordierite, metal, etc. The NO oxidation catalyst A on the upstream side.
May be arranged. (6) Action of the exhaust gas purifying catalyst according to claim 1 In the exhaust gas purifying catalyst according to claim 1, NO in the exhaust gas is oxidized by the NO oxidation catalyst in the lean atmosphere to generate NO.
x . At this time, if the NO oxidation catalyst is on the acidic side, the oxidation state of the noble metal, which is the active center, becomes high, and the generated NO x is rapidly released, so that the NO oxidation activity is improved.

【0024】そしてNO酸化触媒にはNOx 吸蔵元素が
担持されていないため、貴金属のシンタリングなどの不
具合が防止され耐久性に優れている。生成したNO
x は、NOx 吸蔵触媒のNOx 吸蔵元素に吸蔵される。
そしてリッチ雰囲気となったときに隣接担持された貴金
属の触媒作用を受け、排ガス中のHCやCOなどの還元
性成分と反応して還元浄化される。生成したNOx が吸
蔵される時、NOx 吸蔵触媒の多孔質担体が塩基性であ
れば、NOx が一層引き付けられ易くなり、NOx 吸蔵
活性が向上するためNOx 浄化率も向上する。
Since the NO oxidation catalyst does not support the NO x storage element, problems such as sintering of precious metals are prevented and the durability is excellent. Generated NO
x is stored in the NO x storage element of the NO x storage catalyst.
Then, when the atmosphere becomes rich, it is subjected to the catalytic action of the adjacently supported precious metal, reacts with reducing components such as HC and CO in the exhaust gas, and is reduced and purified. When the generated NO x is stored, if the porous carrier of the NO x storage catalyst is basic, NO x is more easily attracted and the NO x storage activity is improved, so the NO x purification rate is also improved.

【0025】このようにNO酸化性能の高い部分とNO
x 吸蔵性能の高い部分とが分離されているため、アルミ
ナ担体に貴金属とNOx 吸蔵元素を近接担持した従来の
排ガス浄化用触媒に比べてNO酸化能が向上し、NOx
浄化率も向上する。 (7)請求項2の排ガス浄化用触媒の作用 請求項2の排ガス浄化用触媒では、請求項1の排ガス浄
化用触媒に加えてさらにNOx 還元触媒が分離配置され
ている。したがって請求項1の排ガス浄化用触媒の上記
作用に加えて、リッチ雰囲気においてNOx 還元触媒が
排ガス中のNO x を還元浄化する。またNOx 吸蔵触媒
で還元できずに放出されたNOx もNO x 還元触媒で還
元することができ、NOx 浄化率が一層向上する。
As described above, the portion having high NO oxidation performance and NO
xSince the parts with high storage performance are separated,
Noble metal and NO for carrierxA conventional type that closely supports the storage element
Compared to exhaust gas purifying catalysts, NO oxidation ability is improved, and NOx
The purification rate is also improved. (7) Action of the exhaust gas purifying catalyst according to claim 2 The exhaust gas purifying catalyst according to claim 2 is the exhaust gas purifying catalyst according to claim 1.
NO in addition to chemical catalystxThe reduction catalyst is placed separately
ing. Therefore, the exhaust gas purifying catalyst according to claim 1,
In addition to the action, NO in rich atmospherexReduction catalyst
NO in exhaust gas xReduce and purify. Also NOxStorage catalyst
NO released without being reduced byxNO xReturn with reduction catalyst
Can be original, NOxThe purification rate is further improved.

【0026】つまり、NO酸化性能の高い部分と、NO
x 吸蔵性能の高い部分及びNOx 還元性能が高い部分が
分離されているため、アルミナ担体に貴金属とNOx
蔵元素を近接担持した従来の排ガス浄化用触媒に比べて
NO酸化能及びNOx 還元能が向上し、NOx 浄化率が
向上する。
That is, the portion having high NO oxidation performance and NO
Since the part with high x storage performance and the part with high NO x reduction performance are separated, the NO oxidation ability and NO x reduction are higher than those of conventional exhaust gas purification catalysts in which precious metals and NO x storage elements are closely supported on an alumina carrier. The performance is improved and the NO x purification rate is improved.

【0027】[0027]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。 (基本触媒の調製)アルミナ、チタニア及びシリカをそ
れぞれ担体とし、それぞれの担体を所定濃度のジニトロ
ジアンミン白金水溶液の所定量中にそれぞれ浸漬して5
時間攪拌した。これを蒸発乾固させ、大気中にて300
℃で3時間焼成することで表1に示す粉末触媒1〜3を
調製した。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. (Preparation of basic catalyst) Alumina, titania, and silica were used as carriers, and each carrier was immersed in a predetermined amount of a dinitrodiammineplatinum aqueous solution having a predetermined concentration, and 5
Stir for hours. Evaporate it to dryness and let it dry in air at 300
The powder catalysts 1 to 3 shown in Table 1 were prepared by firing at 3 ° C. for 3 hours.

【0028】また粉末触媒1を所定濃度の酢酸バリウム
水溶液の所定量中に浸漬して5時間攪拌した。これを蒸
発乾固させ、大気中にて300℃で3時間焼成すること
で表1に示す粉末触媒4を調製した。また、粉末触媒3
を所定濃度のタングステン酸アンモニウム水溶液の所定
量中に浸漬して5時間攪拌した。これを蒸発乾固させ、
大気中にて300℃で3時間焼成することで表1に示す
粉末触媒5を調製した。
The powder catalyst 1 was immersed in a predetermined amount of a barium acetate aqueous solution having a predetermined concentration and stirred for 5 hours. This was evaporated to dryness and calcined in the air at 300 ° C. for 3 hours to prepare powder catalyst 4 shown in Table 1. Also, powder catalyst 3
Was immersed in a predetermined amount of an ammonium tungstate aqueous solution having a predetermined concentration and stirred for 5 hours. Evaporate it to dryness,
The powder catalyst 5 shown in Table 1 was prepared by firing in air at 300 ° C. for 3 hours.

【0029】さらに、粉末触媒1と粉末触媒4を同量混
合した混合粉末を調製し、粉末触媒6を調製した。これ
らの粉末触媒1〜6を、それぞれ常法にてペレット化
し、それぞれのペレット触媒1〜6を調製した。最後に
ペレット触媒1〜6を500℃の水素気流中にて3時間
処理し、以下の排ガス浄化用触媒に用いた。
Further, the powder catalyst 1 and the powder catalyst 4 were mixed in the same amount to prepare a mixed powder to prepare a powder catalyst 6. Each of these powder catalysts 1 to 6 was pelletized by a conventional method to prepare each pellet catalyst 1 to 6. Finally, the pellet catalysts 1 to 6 were treated in a hydrogen stream at 500 ° C. for 3 hours and used as the following exhaust gas purifying catalyst.

【0030】[0030]

【表1】 (実施例1)図1に示すように、上記のペレット触媒1
を排ガス流路の上流側に配置しペレット触媒4を下流側
に配置して、本実施例の触媒とした。
[Table 1] (Example 1) As shown in FIG. 1, the above pellet catalyst 1
Was placed on the upstream side of the exhaust gas flow path, and the pellet catalyst 4 was placed on the downstream side to obtain the catalyst of this example.

【0031】そして表2に示すリッチモデルガスとリー
ンモデルガスを、それぞれ入りガス温度の水準を300
℃、400℃及び500℃の3水準で、2分間毎に交互
に2リットル/minの条件で流した時の過渡NOx
化率を測定した。これを初期浄化率とし、結果を表4に
示す。
Then, the rich model gas and the lean model gas shown in Table 2 are respectively introduced at the gas temperature levels of 300.
The transient NO x purification rate was measured when the mixture was flown at 2 liters / min alternately every 2 minutes at three levels of ℃, 400 ℃ and 500 ℃. This is taken as the initial purification rate, and the results are shown in Table 4.

【0032】[0032]

【表2】 また表3に示す耐久モデルガスを、リッチ1分間−リー
ン4分間で切り換えながら、入りガス温度900℃で5
時間流す耐久試験を行った。そして上記と同様にして過
渡NOx 浄化率を測定し、これを耐久後浄化率として結
果を表4に示す。
[Table 2] Further, the durability model gas shown in Table 3 was switched between rich for 1 minute and lean for 4 minutes while the incoming gas temperature was 900 ° C.
An endurance test was conducted for a long time. Then, the transient NO x purification rate was measured in the same manner as described above, and the results are shown in Table 4 as the purification rate after endurance.

【0033】[0033]

【表3】 (実施例2)ペレット触媒2を排ガス流路の上流側に配
置し、ペレット触媒4を下流側に配置して、本実施例の
触媒とした。そして実施例1と同様にして過渡NOx
化率を測定し、結果を表4に示す。
[Table 3] (Example 2) The pellet catalyst 2 was arranged on the upstream side of the exhaust gas flow path, and the pellet catalyst 4 was arranged on the downstream side to obtain the catalyst of this example. Then, the transient NO x purification rate was measured in the same manner as in Example 1, and the results are shown in Table 4.

【0034】(実施例3)ペレット触媒3を排ガス流路
の上流側に配置し、ペレット触媒4を下流側に配置し
て、本実施例の触媒とした。そして実施例1と同様にし
て過渡NOx 浄化率を測定し、結果を表4に示す。 (実施例4)ペレット触媒5を排ガス流路の上流側に配
置し、ペレット触媒4を下流側に配置して、本実施例の
触媒とした。そして実施例1と同様にして過渡NOx
化率を測定し、結果を表4に示す。
(Example 3) The pellet catalyst 3 was placed on the upstream side of the exhaust gas flow path, and the pellet catalyst 4 was placed on the downstream side to obtain the catalyst of this example. Then, the transient NO x purification rate was measured in the same manner as in Example 1, and the results are shown in Table 4. (Example 4) The pellet catalyst 5 was arranged on the upstream side of the exhaust gas flow path, and the pellet catalyst 4 was arranged on the downstream side to obtain the catalyst of this example. Then, the transient NO x purification rate was measured in the same manner as in Example 1, and the results are shown in Table 4.

【0035】(実施例5)ペレット触媒6を排ガス流路
に配置して、本実施例の触媒とした。そして実施例1と
同様にして過渡NOx 浄化率を測定し、結果を表4に示
す。 (実施例6)図2に示すように、上流側から下流側に向
かってペレット触媒1、ペレット触媒4及びペレット触
媒1をこの順に配置して、本実施例の触媒とした。そし
て実施例1と同様にして過渡NOx 浄化率を測定し、結
果を表4に示す。
(Embodiment 5) The pellet catalyst 6 was placed in the exhaust gas passage to obtain the catalyst of this embodiment. Then, the transient NO x purification rate was measured in the same manner as in Example 1, and the results are shown in Table 4. (Example 6) As shown in FIG. 2, a pellet catalyst 1, a pellet catalyst 4, and a pellet catalyst 1 were arranged in this order from the upstream side to the downstream side to obtain a catalyst of this example. Then, the transient NO x purification rate was measured in the same manner as in Example 1, and the results are shown in Table 4.

【0036】(比較例1)ペレット触媒4を排ガス流路
に配置し、比較例1の触媒とした。そして実施例1と同
様にして過渡NOx 浄化率を測定し、結果を表4に示
す。 (比較例2)ペレット触媒4を排ガス流路の上流側に配
置し、ペレット触媒1を下流側に配置して、比較例2の
触媒とした。そして実施例1と同様にして過渡NOx
化率を測定し、結果を表4に示す。
(Comparative Example 1) The pellet catalyst 4 was placed in the exhaust gas passage to obtain the catalyst of Comparative Example 1. Then, the transient NO x purification rate was measured in the same manner as in Example 1, and the results are shown in Table 4. (Comparative Example 2) The pellet catalyst 4 was placed on the upstream side of the exhaust gas flow path, and the pellet catalyst 1 was placed on the downstream side to obtain the catalyst of Comparative Example 2. Then, the transient NO x purification rate was measured in the same manner as in Example 1, and the results are shown in Table 4.

【0037】(比較例3)上流側から下流側に向かって
ペレット触媒1を3つ配置し、比較例3の触媒とした。
そして実施例1と同様にして過渡NOx 浄化率を測定
し、結果を表4に示す。
Comparative Example 3 Three pellet catalysts 1 were arranged from the upstream side to the downstream side to obtain a catalyst of Comparative Example 3.
Then, the transient NO x purification rate was measured in the same manner as in Example 1, and the results are shown in Table 4.

【0038】[0038]

【表4】 (評価)実施例1〜4の触媒では、比較例1及び比較例
2に比べて初期及び耐久後ともにNOx 浄化活性が向上
しており、これは上流側にNO酸化触媒を配置し、下流
側にNOx 吸蔵触媒であるペレット触媒4を配置した効
果であることが明らかである。また実施例5の触媒でも
比較例1及び比較例2に比べてNOx 浄化活性が高い。
すなわちNO酸化触媒である粉末触媒1とNOx 吸蔵触
媒である粉末触媒4を混合して用いても、実施例1の触
媒と同等の性能を示している。
[Table 4] (Evaluation) In the catalysts of Examples 1 to 4, the NO x purification activity was improved both in the initial stage and after the durability as compared with Comparative Example 1 and Comparative Example 2. This was because the NO oxidation catalyst was arranged on the upstream side and It is clear that this is the effect of arranging the pellet catalyst 4, which is the NO x storage catalyst, on the side. The catalyst of Example 5 also has a higher NO x purification activity than Comparative Examples 1 and 2.
That is, even when the powder catalyst 1 which is the NO oxidation catalyst and the powder catalyst 4 which is the NO x storage catalyst are mixed and used, the same performance as that of the catalyst of Example 1 is exhibited.

【0039】また実施例6の触媒では、比較例3に比べ
て初期及び耐久後ともにNOx 浄化活性が向上してお
り、また実施例1に比べてもNOx 浄化活性が向上して
いる。これは上流側から下流側に向かって、NO酸化触
媒であるペレット触媒1と、NOx 吸蔵触媒であるペレ
ット触媒4と、NOx 還元触媒でもあるペレット触媒1
をこの順で配置した効果であることが明らかである。
Further, the catalyst of Example 6 has an improved NO x purification activity both at the initial stage and after the durability as compared with Comparative Example 3, and also has an improved NO x purification activity as compared with Example 1. This is, from the upstream side to the downstream side, a pellet catalyst 1 that is an NO oxidation catalyst, a pellet catalyst 4 that is a NO x storage catalyst, and a pellet catalyst 1 that is also a NO x reduction catalyst.
It is clear that this is the effect of arranging in this order.

【0040】さらに実施例2〜4の触媒によれば、実施
例1に比べて高いNOx 浄化率を示し、これはペレット
触媒2及びペレット触媒3の担体(シリカ、チタニア)
の酸性度が触媒1の担体(アルミナ)より高いためであ
り、ペレット触媒5では酸性元素であるWを担持してい
るためと考えられる。すなわち実施例の触媒の初期活性
が高いのは、上流側の触媒のNO酸化能が高いことに起
因していると考えられる。また実施例の触媒の耐久後の
活性が高いのは、上流側の触媒のNO酸化能が高いこと
に加えて、上流側の触媒に塩基性物質であるBaが含ま
れていないためにPtのシンタリングなどが生じず性能
低下が抑制されたためと考えられる。
Further, the catalysts of Examples 2 to 4 exhibited a higher NO x purification rate than that of Example 1, which is the carrier of the pellet catalyst 2 and the pellet catalyst 3 (silica, titania).
It is considered that the acidity is higher than that of the carrier (alumina) of the catalyst 1, and the pellet catalyst 5 carries W which is an acidic element. That is, the high initial activity of the catalyst of the example is considered to be due to the high NO oxidation ability of the upstream catalyst. Further, the high activity of the catalyst of the example after endurance is due to the high NO oxidation ability of the upstream catalyst and the fact that the upstream catalyst does not contain Ba which is a basic substance. It is considered that the deterioration of performance was suppressed because sintering did not occur.

【0041】[0041]

【発明の効果】すなわち本発明の排ガス浄化用触媒によ
れば、NOを酸化してNOx とする反応活性に優れてい
るため、従来に比べて高いNOx 浄化活性を示す。また
貴金属のシンタリングも生じにくいため、耐久性にも優
れている。
In other words, the exhaust gas purifying catalyst of the present invention is excellent in the reaction activity of oxidizing NO to NO x, and therefore exhibits a higher NO x purification activity than in the past. It also has excellent durability because sintering of precious metals is unlikely to occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の触媒の構成説明図である。FIG. 1 is an explanatory diagram of a configuration of a catalyst according to one embodiment of the present invention.

【図2】本発明の第6実施例の触媒の構成説明図であ
る。
FIG. 2 is a structural explanatory view of a catalyst of a sixth embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F01N 3/28 301 B01D 53/36 102H B01J 23/64 103A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location F01N 3/28 301 B01D 53/36 102H B01J 23/64 103A

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 多孔質担体に少なくとも貴金属を担持し
てなるNO酸化触媒と、多孔質担体にアルカリ金属、ア
ルカリ土類金属及び希土類金属から選ばれる少なくとも
一種のNOx 吸蔵元素と貴金属とを担持してなるNOx
吸蔵触媒と、を組み合わせることにより構成されたこと
を特徴とする排ガス浄化用触媒。
1. A NO oxidation catalyst comprising a porous carrier carrying at least a noble metal, and a porous carrier carrying at least one NO x storage element and a noble metal selected from alkali metals, alkaline earth metals and rare earth metals. NO x
An exhaust gas-purifying catalyst, which is configured by combining with an occlusion catalyst.
【請求項2】 多孔質担体に少なくとも貴金属を担持し
てなるNO酸化触媒と、多孔質担体にアルカリ金属、ア
ルカリ土類金属及び希土類金属から選ばれる少なくとも
一種のNOx 吸蔵元素と貴金属とを担持してなるNOx
吸蔵触媒と、多孔質担体に貴金属を担持してなるNOx
還元触媒と、を組み合わせることにより構成されたこと
を特徴とする排ガス浄化用触媒。
2. A NO oxidation catalyst comprising at least a noble metal supported on a porous carrier, and at least one NO x storage element selected from an alkali metal, an alkaline earth metal and a rare earth metal and a noble metal supported on the porous carrier. NO x
NO x containing a storage catalyst and a noble metal supported on a porous carrier
An exhaust gas purifying catalyst, which is configured by combining a reduction catalyst.
【請求項3】 前記NO酸化触媒はさらに酸性元素を担
持していることを特徴とする請求項1又は請求項2記載
の排ガス浄化用触媒。
3. The exhaust gas purifying catalyst according to claim 1, wherein the NO oxidation catalyst further carries an acidic element.
【請求項4】 前記NO酸化触媒の前記多孔質担体は酸
性酸化物からなることを特徴とする請求項1又は請求項
2記載の排ガス浄化用触媒。
4. The exhaust gas purifying catalyst according to claim 1, wherein the porous carrier of the NO oxidation catalyst is made of an acidic oxide.
【請求項5】 前記NOx 吸蔵触媒の前記多孔質担体は
塩基性酸化物からなることを特徴とする請求項1又は請
求項2記載の排ガス浄化用触媒。
5. The exhaust gas-purifying catalyst according to claim 1 or 2, wherein the porous carrier of the NO x storage catalyst is made of a basic oxide.
【請求項6】 前記NO酸化触媒と前記NOx 吸蔵触媒
は、排ガス流路にこの順に直列に配置されることを特徴
とする請求項1記載の排ガス浄化用触媒。
6. The exhaust gas purifying catalyst according to claim 1, wherein the NO oxidation catalyst and the NO x storage catalyst are arranged in series in the exhaust gas passage in this order.
【請求項7】 前記NO酸化触媒と前記NOx 吸蔵触媒
のそれぞれの粉末を混合してなることを特徴とする請求
項1記載の排ガス浄化用触媒。
7. The exhaust gas-purifying catalyst according to claim 1, wherein the NO oxidation catalyst and the NO x storage catalyst are mixed with each other.
【請求項8】 前記NO酸化触媒と前記NOx 吸蔵触媒
及び前記NOx 還元触媒は、排ガス流路にこの順に直列
に配置されることを特徴とする請求項2記載の排ガス浄
化用触媒。
8. The exhaust gas purifying catalyst according to claim 2, wherein the NO oxidation catalyst, the NO x storage catalyst, and the NO x reduction catalyst are arranged in series in the exhaust gas passage in this order.
【請求項9】 前記NO酸化触媒と前記NOx 吸蔵触媒
及び前記NOx 還元触媒のそれぞれの粉末を混合してな
ることを特徴とする請求項2記載の排ガス浄化用触媒。
9. The exhaust gas purifying catalyst according to claim 2, wherein the NO oxidation catalyst, the NO x storage catalyst, and the NO x reduction catalyst are mixed with each other.
【請求項10】 前記NO酸化触媒と前記NOx 吸蔵触
媒との粉末を混合してなる触媒と、前記NOx 還元触媒
とが、排ガス流路にこの順に直列に配置されることを特
徴とする請求項2記載の排ガス浄化用触媒。
10. A catalyst obtained by mixing powders of the NO oxidation catalyst and the NO x storage catalyst, and the NO x reduction catalyst are arranged in series in the exhaust gas passage in this order. The exhaust gas-purifying catalyst according to claim 2.
【請求項11】 前記NO酸化触媒と、前記NOx 吸蔵
触媒と前記NOx 還元触媒との粉末を混合してなる触媒
とが、排ガス流路にこの順に直列に配置されることを特
徴とする請求項2記載の排ガス浄化用触媒。
11. The NO oxidation catalyst and a catalyst obtained by mixing powders of the NO x storage catalyst and the NO x reduction catalyst are arranged in series in the exhaust gas passage in this order. The exhaust gas-purifying catalyst according to claim 2.
【請求項12】 前記NO酸化触媒と前記NOx 吸蔵触
媒とを複数個組み合わせることにより構成されたことを
特徴とする請求項1記載の排ガス浄化用触媒。
12. The exhaust gas purifying catalyst according to claim 1, which is configured by combining a plurality of the NO oxidation catalyst and the NO x storage catalyst.
【請求項13】 前記NO酸化触媒と前記NOx 吸蔵触
媒と前記NOx 還元触媒とを複数個組み合わせることに
より構成されたことを特徴とする請求項2記載の排ガス
浄化用触媒。
13. The exhaust gas-purifying catalyst according to claim 2, which is configured by combining a plurality of the NO oxidation catalyst, the NO x storage catalyst, and the NO x reduction catalyst.
JP8117538A 1996-05-13 1996-05-13 Catalyst for purification of exhaust gas Pending JPH09299795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8117538A JPH09299795A (en) 1996-05-13 1996-05-13 Catalyst for purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8117538A JPH09299795A (en) 1996-05-13 1996-05-13 Catalyst for purification of exhaust gas

Publications (1)

Publication Number Publication Date
JPH09299795A true JPH09299795A (en) 1997-11-25

Family

ID=14714280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8117538A Pending JPH09299795A (en) 1996-05-13 1996-05-13 Catalyst for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPH09299795A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999029417A1 (en) * 1997-12-08 1999-06-17 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas and process for purifying exhaust gas
EP0947235A1 (en) * 1998-03-31 1999-10-06 Mazda Motor Corporation Exhaust gas purifying catalyst
JP2008272760A (en) * 2008-06-12 2008-11-13 Volvo Ab Porous material, method, and device for catalytic conversion of exhaust gas
JP2018038974A (en) * 2016-09-08 2018-03-15 株式会社豊田中央研究所 NOx PURIFYING CATALYST AND NOx PURIFYING METHOD USING THE SAME
US10159958B2 (en) 2015-10-13 2018-12-25 Hyundai Motor Company LNT catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999029417A1 (en) * 1997-12-08 1999-06-17 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas and process for purifying exhaust gas
EP0947235A1 (en) * 1998-03-31 1999-10-06 Mazda Motor Corporation Exhaust gas purifying catalyst
JP2008272760A (en) * 2008-06-12 2008-11-13 Volvo Ab Porous material, method, and device for catalytic conversion of exhaust gas
US10159958B2 (en) 2015-10-13 2018-12-25 Hyundai Motor Company LNT catalyst
JP2018038974A (en) * 2016-09-08 2018-03-15 株式会社豊田中央研究所 NOx PURIFYING CATALYST AND NOx PURIFYING METHOD USING THE SAME

Similar Documents

Publication Publication Date Title
JP3358766B2 (en) Exhaust gas purification catalyst
JP3798727B2 (en) Exhaust gas purification catalyst
JP3685463B2 (en) Exhaust gas purification catalyst
JP3789231B2 (en) Exhaust gas purification catalyst
JPH08117600A (en) Catalyst for purifying exhaust gas and preparation of catalyst
JP3446915B2 (en) Exhaust gas purification catalyst
JP3589383B2 (en) Exhaust gas purification catalyst
JP2001300262A (en) Exhaust gas purifying device and catalyst for purifying exhaust gas
JP3532979B2 (en) Exhaust gas purification catalyst
JP2004216224A (en) Nox occlusion reduction type catalyst
JP2005087963A (en) Exhaust gas cleaning apparatus
JP3741292B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH10128114A (en) Catalyst for purifying exhaust gas
JPH09299795A (en) Catalyst for purification of exhaust gas
JP2010017694A (en) NOx ABSORBING CATALYST FOR REDUCTION
JPH10249199A (en) Catalyst for purifying exhaust gas
JP3775080B2 (en) Exhaust gas purification catalyst
JPH10174868A (en) Catalyst for cleaning of exhaust gas
JP3589376B2 (en) Exhaust gas purification catalyst
JP5051009B2 (en) NOx storage reduction catalyst
JP2000271428A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning method
JP2005288382A (en) Catalyst for purifying exhaust gas
JP4048388B2 (en) Exhaust gas purification catalyst
JP3739226B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2000024499A (en) Catalyst for purification of exhaust gas and its production