JP3532979B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst

Info

Publication number
JP3532979B2
JP3532979B2 JP29178994A JP29178994A JP3532979B2 JP 3532979 B2 JP3532979 B2 JP 3532979B2 JP 29178994 A JP29178994 A JP 29178994A JP 29178994 A JP29178994 A JP 29178994A JP 3532979 B2 JP3532979 B2 JP 3532979B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
supporting layer
gas purifying
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29178994A
Other languages
Japanese (ja)
Other versions
JPH08141394A (en
Inventor
幸治 横田
直樹 高橋
直人 三好
伸一 竹島
俊明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP29178994A priority Critical patent/JP3532979B2/en
Publication of JPH08141394A publication Critical patent/JPH08141394A/en
Application granted granted Critical
Publication of JP3532979B2 publication Critical patent/JP3532979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動車などの内燃機関
から排出される排ガスを浄化する排ガス浄化用触媒に関
し、さらに詳しくは、酸素過剰の排ガス、すなわち排ガ
ス中に含まれる一酸化炭素(CO)、水素(H2 )及び
炭化水素(HC)等の還元性成分を完全に酸化するのに
必要な酸素量より過剰の酸素を含む排ガス中の、窒素酸
化物(NOx )を効率良く還元浄化できる排ガス浄化用
触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine of an automobile or the like, and more particularly, to an exhaust gas containing excess oxygen, that is, carbon monoxide (CO) contained in the exhaust gas. ), Hydrogen (H 2 ) and hydrocarbons (HC) such as nitrogen oxides (NO x ) in exhaust gas containing excess oxygen in excess of the amount of oxygen necessary to completely oxidize reducing components. The present invention relates to an exhaust gas purifying catalyst that can be purified.

【0002】[0002]

【従来の技術】従来より、自動車の排ガス浄化用触媒と
して、CO及びHCの酸化とNOx の還元とを同時に行
って排ガスを浄化する三元触媒が用いられている。この
ような三元触媒としては、例えばコーディエライトなど
からなる耐熱性基材にγ−アルミナからなる多孔質担体
層を形成し、その多孔質担体層に白金(Pt)、ロジウ
ム(Rh)などの触媒貴金属を担持させたものが広く知
られている。また、酸素吸蔵能をもつセリア(セリウム
酸化物)を併用し、低温活性を高めた三元触媒も知られ
ている。
Conventionally, as an exhaust gas purifying catalyst of an automobile, a three-way catalyst for purifying exhaust gas by performing the reduction of CO and HC oxidation and NO x simultaneously is used. As such a three-way catalyst, for example, a porous carrier layer made of γ-alumina is formed on a heat-resistant substrate made of cordierite or the like, and platinum (Pt), rhodium (Rh), or the like is formed on the porous carrier layer. What carried the catalyst noble metal is widely known. Also known is a three-way catalyst having a low-temperature activity enhanced by using ceria (cerium oxide) having oxygen storage capacity in combination.

【0003】一方、近年、地球環境保護の観点から、自
動車などの内燃機関から排出される排ガス中の二酸化炭
素(CO2 )が問題とされ、その解決策として酸素過剰
雰囲気において希薄燃焼させるいわゆるリーンバーンが
有望視されている。このリーンバーンにおいては、燃費
が向上するために燃料の使用が低減され、その燃焼排ガ
スであるCO2 の発生を抑制することができる。
On the other hand, in recent years, carbon dioxide (CO 2 ) in exhaust gas discharged from internal combustion engines such as automobiles has become a problem from the viewpoint of protection of the global environment. As a solution, lean combustion in an oxygen-rich atmosphere is performed. Burn is promising. In this lean burn, the use of fuel is reduced to improve fuel efficiency, and the generation of CO 2 , which is the combustion exhaust gas, can be suppressed.

【0004】これに対し、従来の三元触媒は、空燃比が
理論空燃比(ストイキ)において排ガス中のCO,H
C,NOx を同時に酸化・還元し、浄化するものであっ
て、前記三元触媒はリーンバーン時の排ガスの酸素過剰
雰囲気下においてはNOx の還元除去に対しては充分な
浄化性能を示さない。このため、酸素過剰雰囲気下にお
いてもNOx を浄化しうる触媒及び浄化システムの開発
が望まれている。
On the other hand, in the conventional three-way catalyst, when the air-fuel ratio is the stoichiometric air-fuel ratio (stoichiometric), CO, H
The three-way catalyst simultaneously oxidizes and reduces C and NO x to purify the catalyst. The three-way catalyst exhibits sufficient purification performance for the reduction and removal of NO x under an oxygen-excess atmosphere of the exhaust gas during lean burn. Absent. Therefore, development of a catalyst and purification system is desired can purify NO x even in an oxygen rich atmosphere.

【0005】そこで本願出願人は、先にアルカリ土類金
属とPtをアルミナなどの多孔質担体に担持した排ガス
浄化用触媒(特開平5−317652号公報)や、ラン
タンとPtを多孔質担体に担持した排ガス浄化用触媒
(特開平5−168860号公報)を提案している。こ
れらの排ガス浄化用触媒によれば、リーン側ではNOx
がアルカリ土類金属の酸化物やランタンの酸化物に吸蔵
され、それがストイキ又はリッチ側でHCやCOなどの
還元性成分と反応して浄化されるため、リーン側におい
てもNOx の浄化性能に優れている。
Accordingly, the applicant of the present application has proposed an exhaust gas purifying catalyst in which an alkaline earth metal and Pt are first supported on a porous carrier such as alumina (Japanese Patent Laid-Open No. 5-317652), or a lanthanum and Pt as a porous carrier. A supported exhaust gas purifying catalyst (JP-A-5-168860) has been proposed. According to these exhaust gas purifying catalysts, NO x
There is occluded in the oxide or oxides of lanthanum alkaline earth metal, because it is purified by reacting with reducing components such as HC and CO in the stoichiometric or rich side, purification performance of even NO x in the lean side Is excellent.

【0006】[0006]

【発明が解決しようとする課題】ところで、NOx がア
ルカリ土類金属やランタンなどのNOx 吸蔵材に吸蔵さ
れるためには、NOなどは硝酸イオンにまで酸化される
ことが必要である。しかしながらリーン側の排ガスとい
えどもH2 ,CO,HCなどの還元性成分が含まれてい
るために、排ガス浄化用触媒上でのNOなどの酸化が妨
害され、NOx 吸蔵材への吸蔵が阻害されるという問題
がある。
In order to store NO x in a NO x storage material such as an alkaline earth metal or lanthanum, it is necessary that NO or the like be oxidized to nitrate ions. However, since even the lean exhaust gas contains reducing components such as H 2 , CO, and HC, the oxidation of NO and the like on the exhaust gas purifying catalyst is hindered, and the NO x storage material is not occluded. There is a problem of being hindered.

【0007】また触媒貴金属の種類によって触媒活性が
異なり、PtはNOx の酸化活性に特に優れ、RhやP
dはHCやCOなどの酸化活性に優れるという特性をも
っている。そこで三元活性を高めるために、PtとRh
やPdを併用することが行われている。ところがPtを
RhやPdと近接担持すると、酸化雰囲気ではPt表面
にRhやPdが濃縮され、Ptの酸化活性が損なわれる
場合がある。そのためNOx の酸化が不十分となり、N
x 吸蔵材に吸蔵されずに排出されるという問題があ
る。
The catalytic activity varies depending on the type of catalytic noble metal, and Pt is particularly excellent in NO x oxidizing activity.
d has the property of being excellent in the oxidation activity of HC and CO. Therefore, in order to enhance ternary activity, Pt and Rh
And Pd are used together. However, when Pt is carried close to Rh or Pd, Rh or Pd is concentrated on the surface of Pt in an oxidizing atmosphere, and the oxidation activity of Pt may be impaired. As a result, the oxidation of NO x becomes insufficient, and N
There is a problem that it is discharged without being stored in the O x storage material.

【0008】一方、ストイキ及びリッチ時には、吸蔵さ
れていたNOx がNOx 吸蔵材から放出され、触媒貴金
属上でHCやCOなどの還元性成分と反応して還元され
2となって浄化される。ここで、触媒貴金属のうちリ
ッチ時でのNOx 浄化性能はRhが最も優れている。し
たがってRhを積極的に使用すればリーン側のN2 選択
性は改善されるものの、上記したようにPtの酸化活性
が損なわれるという不具合が生ずる。
On the other hand, during stoichiometric and rich conditions, the stored NO x is released from the NO x storage material, and is reacted with reducing components such as HC and CO on the catalytic noble metal to be reduced to N 2 and purified. You. Here, NO x purifying performance in the rich among the catalytic noble metal is Rh is most excellent. Therefore, if Rh is positively used, the N 2 selectivity on the lean side is improved, but the Pt oxidation activity is impaired as described above.

【0009】さらにセリアなどの酸素吸蔵能をもつ成分
がNOx 吸蔵材近傍に存在すると、リーン側では酸素が
その成分に吸蔵されるためNOx の酸化に消費される酸
素が減少し、NOx 吸蔵材に吸蔵されるNOx 量が低減
してNOx の排出量が多くなるという不具合がある。本
発明はこのような問題点を改良すべくなされたものであ
り、触媒貴金属やNOx 吸蔵材などのそれぞれの機能が
十分に果たされる構成とすることにより、排ガス中のN
x を一層効率よく還元浄化できる排ガス浄化用触媒の
提供を目的とする。
[0009] Further components having oxygen storage capacity such as ceria is present in the vicinity the NO x storage material, oxygen is oxygen consumed in the oxidation of the NO x to be occluded is reduced to its component in the lean side, NO x amount of NO x occluded in the occluding material there is a disadvantage that the emissions of reduced NO x increases. The present invention has been made for improving the above problems, by a structure in which respective functions, such as catalytic precious metal and the NO x storage material is sufficiently fulfilled, N in the exhaust gas
An object of the present invention is to provide an exhaust gas purifying catalyst capable of reducing and purifying O x more efficiently.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する第1
発明の排ガス浄化用触媒は、リーン時にNO x をNO x
吸蔵材に吸蔵し、ストイキ・リッチ時にNO x 吸蔵材か
ら放出されたNO x を還元浄化する触媒であって、第1
多孔質担体と第1多孔質担体に担持された白金及びロ
ジウムの少なくとも1種からなる第1触媒貴金属と
1多孔質担体に含まれたアルカリ金属及びアルカリ土類
金属から選ばれる少なくとも一種のNO x 吸蔵材と、
りなる第1触媒担持層と、第2多孔質担体と第2多孔
質担体に担持された第2触媒貴金属とよりなり第1触
媒担持層上に被覆された第2触媒担持層と、からなるこ
とを特徴とする。
Means for Solving the Problems A first method for solving the above problems is described below.
Exhaust gas purifying catalyst of the invention, the NO x during lean NO x
Occluded in the storage material, or the NO x storage material during the stoichiometric-rich
A catalyst for reducing and purifying the al released NO x, first
A porous support, a first catalytic noble metal consisting of at least one of platinum and rhodium supported on the first porous carrier, alkali metal and alkaline earth contained in the first porous carrier
And at least one NO x storage material selected from metal, and more become the first catalyst support layer, a second porous carrier, and a second catalytic noble metal supported on the second porous carrier, more will first catalyst loaded And a second catalyst supporting layer coated on the layer.

【0011】第2発明の排ガス浄化用触媒は、前記第2
触媒担持層には酸素吸蔵能を有する成分をさらに含むこ
とを特徴とする。また第3発明の排ガス浄化用触媒は、
前記酸素吸蔵能を有する成分はセリアであることを特徴
とする。
An exhaust gas purifying catalyst according to a second aspect of the present invention comprises the second exhaust gas purifying catalyst.
The catalyst support layer is characterized by further containing a component having an oxygen storage ability. Further, the exhaust gas purifying catalyst of the third invention is:
The component having the oxygen storage ability is ceria.

【0012】[0012]

【作用】[Action]

(1)リーン時 第1発明の排ガス浄化用触媒では、排ガスは先ず上層の
第2触媒担持層と接触し、酸素の存在下で第2触媒貴金
属の触媒作用によりH2 ,CO,HCなどの還元性成分
が酸化除去される。
(1) Lean time In the exhaust gas purifying catalyst of the first invention, the exhaust gas first comes into contact with the upper second catalyst supporting layer, and the second catalytic noble metal catalyzes H 2 , CO, HC and the like in the presence of oxygen. The reducing components are oxidized and removed.

【0013】また第1触媒担持層では、排ガス中のNO
などのNOx は酸素の存在下で第1触媒貴金属の触媒作
用により酸化されて硝酸イオンとなり、第1触媒貴金属
近傍に存在するNOx 吸蔵材に吸蔵される。この第1触
媒担持層に到達した排ガス中には、第2触媒担持層と接
触したことによりH2 ,CO,HCなどの還元性成分が
ほとんど存在しないので、還元性成分によるNOx の酸
化反応の阻害が生じず第1触媒担持層でのNOなどの酸
化が促進され、排ガス中のNOx は効率よくNOx 吸蔵
材に吸蔵される。
In the first catalyst supporting layer, NO in exhaust gas
NO x, such as become nitrate ions are oxidized by the catalytic action of the first catalytic noble metal in the presence of oxygen, and are inserted into the NO x storage material present in the first neighborhood catalytic noble metal. Since the exhaust gas reaching the first catalyst supporting layer hardly contains reducing components such as H 2 , CO, and HC due to contact with the second catalyst supporting layer, the oxidation reaction of NO x by the reducing component is performed. inhibition of oxidized such as NO in the first catalyst supporting layer is promoted not occur, NO x in the exhaust gas is occluded efficiently the NO x storage material.

【0014】そして第1触媒貴金属がPtであれば、N
Oなどの酸化反応が一層活発となり、NOx 吸蔵材のN
x 吸蔵作用が一層向上する。またPt近傍にRhやP
dが存在しないので、Pt表面にRhやPdが濃縮され
ることがなく、Ptは高い触媒活性を示す。 (2)ストイキ・リッチ時 第1発明の排ガス浄化用触媒では、第1触媒担持層のN
x 吸蔵材からNOxが放出され、NOx は還元性成分
の存在下で第1触媒貴金属によりある程度還元されて第
2触媒担持層と接触する。
If the first catalytic noble metal is Pt, N
Oxidation reaction such as O becomes more active, and N x
O x adsorption action is further improved. Rh or P near Pt
Since d does not exist, Rh and Pd are not concentrated on the Pt surface, and Pt exhibits high catalytic activity. (2) At the time of stoichiometric richness In the exhaust gas purifying catalyst of the first invention, the N
NO x is released from the O x storage material, and the NO x is reduced to some extent by the first catalytic noble metal in the presence of the reducing component and comes into contact with the second catalyst supporting layer.

【0015】第2触媒担持層では、NOx は還元性成分
の存在下で第2触媒貴金属によりさらに還元され、N2
となって浄化される。ここで第2触媒貴金属として少な
くともRhが担持されていれば、Rhの優れた還元活性
によりNOx は一層効率よく還元され、NOx 浄化率が
一層向上する。
In the second catalyst supporting layer, NO x is further reduced by the second catalytic noble metal in the presence of a reducing component, and N 2
It is purified. Here, when at least Rh is supported as the second catalytic noble metal, NO x is more efficiently reduced by the excellent reduction activity of Rh, and the NO x purification rate is further improved.

【0016】また第2発明のように、第2触媒担持層に
酸素吸蔵能をもつ成分が含まれていれば、リーン時に吸
蔵されていた酸素がこの成分から放出されるので、排ガ
スに含まれるHCやCOなどNOx の還元に使用された
残部の還元性成分が酸化浄化され、三元活性が向上す
る。また、第3発明のように、酸素吸蔵能をもつ成分と
しては、セリアが耐熱性に優れるために最も好ましい。
Further, if the second catalyst supporting layer contains a component having an oxygen storage ability as in the second invention, the oxygen stored during the lean operation is released from this component, so that the oxygen is contained in the exhaust gas. The remaining reducing components such as HC and CO used for the reduction of NO x are oxidized and purified, and the ternary activity is improved. Further, as in the third invention, as a component having an oxygen storage ability, ceria is most preferable because of its excellent heat resistance.

【0017】[0017]

【実施例】【Example】

〔発明の具体例〕第1及び第2多孔質担体の材質は特に
限定されず、アルミナ、シリカ、シリカ・アルミナ、チ
タニアなどから選択して用いることができる。中でも耐
熱性及び貴金属分散性に優れたアルミナを用いるのが特
に好ましい。
[Specific Examples of the Invention] The material of the first and second porous carriers is not particularly limited, and may be selected from alumina, silica, silica-alumina, titania and the like. Among them, it is particularly preferable to use alumina having excellent heat resistance and noble metal dispersibility.

【0018】第1触媒貴金属としては、Pt,Rhの1
種又は複数種を用いることができ、Ptが特に望まし
い。その担持量は、いずれの貴金属でも、第1多孔質担
体100gに対して0.2〜40gが好ましく、1〜2
0gが特に好ましい。触媒全体の体積1リットル当たり
に換算すれば、0.1〜20gが好ましく、0.5〜1
0gが特に好ましい。
As the first catalytic noble metal, one of Pt and Rh is used.
One or more species can be used, with Pt being particularly desirable. The loading amount of any noble metal is preferably 0.2 to 40 g with respect to 100 g of the first porous carrier, and is 1 to 2 g.
0 g is particularly preferred. When converted to 1 liter volume of the entire catalyst, 0.1 to 20 g is preferable, and 0.5 to 1 g.
0 g is particularly preferred.

【0019】第2触媒貴金属としては、Pt,Rh,P
dの1種又は複数種を用いることができ、少なくともR
hを含むことが特に望ましい。その望ましい担持量は第
1触媒貴金属の場合と同様である。触媒貴金属の担持量
をこれ以上増加させても活性は向上せず、その有効利用
が図れない。また触媒貴金属の担持量がこれより少ない
と、実用上十分な活性が得られない。
As the second catalytic noble metal, Pt, Rh, P
One or more of d can be used, and at least R
It is particularly desirable to include h. The desirable loading amount is the same as in the case of the first catalytic noble metal. Even if the supported amount of the catalytic noble metal is further increased, the activity is not improved, and its effective use cannot be achieved. On the other hand, if the supported amount of the catalytic noble metal is smaller than this, practically sufficient activity cannot be obtained.

【0020】なお、第1触媒貴金属及び第2触媒貴金属
を各多孔質担体に担持させるには、その塩化物や硝酸塩
等を用いて、含浸法、噴霧法、スラリー混合法などを利
用して従来と同様に担持させることができる。第1触媒
担持層に含まれるNOx 吸蔵材としては、アルカリ金属
及びアルカリ土類金属から選ばれる少なくとも一種を用
いることができる。アルカリ金属としてはリチウム、ナ
トリウム、カリウム、ルビジウム、セシウム、フランシ
ウムが挙げられる。また、アルカリ土類金属とは周期表
2A族元素をいい、バリウム、ベリリウム、マグネシウ
ム、カルシウム、ストロンチウムが挙げられる。
In order to support the first catalytic noble metal and the second catalytic noble metal on the respective porous carriers, the chloride, nitrate and the like are conventionally used by impregnation, spraying, slurry mixing and the like. Can be carried in the same manner as described above. As the NO x storage material contained in the first catalyst support layer, an alkali metal
And at least one selected from alkaline earth metals . Examples of the alkali metal include lithium, sodium, potassium, rubidium, cesium, and francium. Further, the alkaline earth metal refers to an element of Group 2A of the periodic table, and examples thereof include barium, beryllium, magnesium, calcium, and strontium.

【0021】NOx 吸蔵材の含有量は、第1多孔質担体
100gに対して0.05〜1.0モルの範囲が望まし
い。含有量が0.05モルより少ないとNOx 吸蔵能力
が小さくNOx 浄化性能が低下し、1.0モルを超えて
含有しても、NOx 吸蔵能力が飽和すると同時にHCの
エミッションが増加するなどの不具合が生じる。酸素吸
蔵能を有する成分としては、鉄、ニッケル、セリアなど
が挙げられるが、これらのうち耐熱性が最も高いものと
してセリアが代表的に例示される。この成分の含有量
は、第2多孔質担体100gに対して0.05〜1.0
モル、さらに好ましくは0.1〜0.5モルとすること
ができる。触媒全体の体積1リットル当たりに換算すれ
ば、0.025〜0.5モルが好ましく、特に望ましく
は0.05〜0.25モルである。この成分をこれ以上
多く含有させても効果が飽和し、これより少ない場合は
実用上のその効果が十分に得られない。
The content of the NO x occluding material is preferably in the range of 0.05 to 1.0 mol per 100 g of the first porous carrier. If the content is less than 0.05 mol, the NO x storage capacity is small and the NO x purification performance is reduced. Even if the content exceeds 1.0 mol, the NO x storage capacity is saturated and the emission of HC increases at the same time. Such troubles occur. Examples of the component having the oxygen storage ability include iron, nickel, and ceria. Among them, ceria is typically exemplified as the one having the highest heat resistance. The content of this component is 0.05 to 1.0 with respect to 100 g of the second porous carrier.
Mol, more preferably 0.1 to 0.5 mol. If converted to 1 liter of the volume of the entire catalyst, it is preferably from 0.025 to 0.5 mol, particularly preferably from 0.05 to 0.25 mol. The effect is saturated even if this component is contained more than this amount, and if it is less than this, the practical effect cannot be sufficiently obtained.

【0022】第1触媒担持層と第2触媒担持層は、モノ
リス担体基材、メタル担体基材あるいはペレット基材表
面に被覆形成することができる。また例えば基材を第1
触媒担持層とし、その表面に第2触媒担持層を被覆した
構造とすることもできる。なお、第2触媒担持層の厚さ
は10〜100μmの範囲が好ましい。これより厚すぎ
ると排ガスの第1触媒担持層への到達が困難となり、こ
れより薄すぎると第2触媒担持層での反応が不十分とな
るので好ましくない。また第1触媒担持層の厚さは、反
応を十分に行わせるために10μm以上とするのが好ま
しい。 〔実施例〕以下、実施例及び比較例により本発明をさら
に具体的に説明する。なお、以下にいう「部」は全て
「重量部」を意味する。 (実施例1)実施例1の排ガス浄化用触媒の要部断面図
を図1に示す。この排ガス浄化用触媒は、ハニカム形状
の担体基材1と、担体基材1表面に被覆された第1触媒
担持層2と、第1触媒担持層2表面に担持された第2触
媒担持層3とからなり、第1触媒担持層2にはPt20
とRh21が担持されるとともにNOx 吸蔵材としての
Ba22が担持され、第2触媒担持層3にはPt30と
Pd31が担持されている。
The first catalyst supporting layer and the second catalyst supporting layer can be formed by coating on the surface of a monolithic carrier substrate, a metal carrier substrate or a pellet substrate. Also, for example, the base material is
It is also possible to adopt a structure in which a catalyst supporting layer is provided and the surface thereof is covered with a second catalyst supporting layer. Note that the thickness of the second catalyst supporting layer is preferably in the range of 10 to 100 μm. If the thickness is too thick, it is difficult for the exhaust gas to reach the first catalyst support layer, and if it is too thin, the reaction in the second catalyst support layer becomes insufficient, which is not preferable. Further, the thickness of the first catalyst supporting layer is preferably set to 10 μm or more in order to sufficiently perform the reaction. [Examples] Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. It should be noted that all “parts” described below mean “parts by weight”. (Embodiment 1) FIG. 1 is a sectional view of a main part of an exhaust gas purifying catalyst of Embodiment 1. The exhaust gas purifying catalyst includes a honeycomb-shaped carrier substrate 1, a first catalyst carrier layer 2 coated on the surface of the carrier substrate 1, and a second catalyst carrier layer 3 supported on the surface of the first catalyst carrier layer 2. The first catalyst supporting layer 2 has Pt20
And Rh21 as well as Ba22 as a NO x storage material, and Pt30 and Pd31 on the second catalyst support layer 3.

【0023】以下、この排ガス浄化用触媒の製造方法を
説明し、構成の詳細な説明に代える。 (1)第1触媒担持層の形成 アルミナ粉末100部と、アルミナゾル(アルミナ含有
率10重量%)70部と、40重量%硝酸アルミニウム
水溶液15部及び水30部を混合し、よく攪拌してスラ
リーを調製した。
Hereinafter, a method for producing the exhaust gas purifying catalyst will be described, and the detailed description of the structure will be substituted. (1) Formation of First Catalyst Support Layer 100 parts of alumina powder, 70 parts of alumina sol (alumina content: 10% by weight), 15 parts of a 40% by weight aqueous solution of aluminum nitrate and 30 parts of water were mixed, and the mixture was thoroughly stirred to obtain a slurry. Was prepared.

【0024】そしてコージェライト製のハニカム担体基
材1を水に浸漬し、余分な水滴を吹き払った後、上記ス
ラリー中に浸漬した。スラリーから取り出した後、余分
なスラリーを吹き払い、80℃で20分間乾燥し600
℃で1時間焼成して、ハニカム担体基材表面にアルミナ
コート層を形成した。アルミナのコート量は、ハニカム
担体基材1リットル当たり50gであった。
Then, the cordierite honeycomb carrier base material 1 was immersed in water, and after blowing off excess water droplets, it was immersed in the slurry. After removing from the slurry, excess slurry is blown off and dried at 80 ° C. for 20 minutes.
The resultant was fired at 1 ° C. for 1 hour to form an alumina coat layer on the surface of the honeycomb carrier substrate. The coating amount of alumina was 50 g per liter of the honeycomb carrier substrate.

【0025】次に得られたハニカム担体を所定濃度のジ
ニトロジアンミン白金水溶液中に浸漬し、引き上げて余
分な液滴を吹き払って250℃で乾燥してPt20を担
持した。次いで所定濃度の硝酸ロジウム水溶液中に浸漬
し、引き上げて余分な液滴を吹き払って、250℃で乾
燥してRh21を担持した。コート層中には、第1触媒
担持層のアルミナ100gに対してPtが2g担持さ
れ、Rhが0.2g担持されている。
Next, the obtained honeycomb carrier was immersed in an aqueous solution of dinitrodiammineplatinum having a predetermined concentration, pulled up, blown off excess droplets, and dried at 250 ° C. to carry Pt20. Then, it was immersed in an aqueous solution of rhodium nitrate having a predetermined concentration, pulled up, blown off extra droplets, and dried at 250 ° C. to carry Rh21. In the coat layer, 2 g of Pt and 0.2 g of Rh are supported on 100 g of alumina of the first catalyst supporting layer.

【0026】この触媒貴金属が担持されたハニカム担体
を所定濃度の酢酸バリウム水溶液中に浸漬し、引き上げ
て余分な液滴を吹き払って250℃で乾燥後500℃で
焼成してBa22を担持した。これにより第1触媒担持
層2を形成した。Baは、第1触媒担持層のアルミナ1
00gに対して金属Baとして0.6モル担持されてい
る。 (2)第2触媒担持層の形成 先に調製されたスラリーに、所定濃度となるようにジニ
トロジアンミン白金水溶液と硝酸パラジウム水溶液を混
合した。そのスラリーに上記第1触媒担持層2が形成さ
れたハニカム担体基材1を浸漬し、取り出した後余分な
スラリーを吹き払い、80℃で20分間乾燥し600℃
で1時間焼成して、第1触媒担持層2表面に第2触媒担
持層3を形成した。
The honeycomb carrier carrying the catalytic noble metal was immersed in an aqueous solution of barium acetate having a predetermined concentration, pulled up, blown off excess droplets, dried at 250 ° C., and fired at 500 ° C. to carry Ba22. Thus, the first catalyst supporting layer 2 was formed. Ba is alumina 1 of the first catalyst supporting layer.
0.6 mol of metal Ba is supported per 00 g. (2) An aqueous solution of dinitrodiammineplatinum and an aqueous solution of palladium nitrate were mixed with the slurry prepared before the formation of the second catalyst-supporting layer to a predetermined concentration. The honeycomb carrier substrate 1 on which the first catalyst supporting layer 2 is formed is immersed in the slurry, taken out, and then the excess slurry is blown off, dried at 80 ° C for 20 minutes, and dried at 600 ° C.
For 1 hour to form a second catalyst support layer 3 on the surface of the first catalyst support layer 2.

【0027】この第2触媒担持層3のアルミナのコート
量はハニカム担体基材1の1リットル当たり50g形成
され、第2触媒担持層のアルミナ100gに対してPt
30が2g担持され、Pd31が0.2g担持されてい
る。 (実施例2)アルミナコート層にジニトロジアンミン白
金水溶液と酢酸バリウム水溶液を含浸させて、Rhを担
持せずPtとBaを担持した第1触媒担持層2を形成し
たこと以外は実施例1と同様にして、実施例2の排ガス
浄化用触媒を調製した。Pt及びBaの担持量は実施例
1と同様である。 (実施例3)硝酸パラジウムの代わりに硝酸ロジウムを
用いて、PtとRhを担持した第2触媒担持層3を形成
したこと以外は実施例1と同様にして、実施例3の排ガ
ス浄化用触媒を調製した。Rhの担持量は実施例1のP
dと同様である。 (実施例4)アルミナコート層にジニトロジアンミン白
金水溶液と酢酸バリウム水溶液を含浸させてPtとBa
を担持した第1触媒担持層2を形成し、硝酸パラジウム
の代わりに硝酸ロジウムを用いてPtとRhを担持した
第2触媒担持層3を形成したこと以外は実施例1と同様
にして、実施例4の排ガス浄化用触媒を調製した。Pt
及びBaの担持量は実施例1と同様であり、Rhの担持
量は実施例1のPdと同様である。 (実施例5)さらに酸化セリウム(セリア)粉末を混合
したスラリーを用いて第2触媒担持層3を形成したこと
以外は実施例1と同様にして、実施例5の排ガス浄化用
触媒を調製した。セリアは第2触媒担持層のアルミナ1
00gに対して0.6モル担持されている。 (実施例6)アルミナコート層にジニトロジアンミン白
金水溶液と酢酸バリウム水溶液を含浸させてPtとBa
を担持した第1触媒担持層2を形成し、硝酸パラジウム
の代わりに硝酸ロジウムを用いかつ酸化セリウム(セリ
ア)粉末を混合したスラリーを用いてPtとRh及びC
eを担持した第2触媒担持層3を形成したこと以外は実
施例1と同様にして、実施例6の排ガス浄化用触媒を調
製した。Ptの担持量は実施例1と同様であり、Rhの
担持量は実施例1のPdと同様であって、セリアの担持
量は実施例5と同様である。
The amount of alumina coated on the second catalyst supporting layer 3 is 50 g per liter of the honeycomb substrate 1, and 100 g of alumina on the second catalyst supporting layer is Pt.
30 of 2 g and Pd31 of 0.2 g are supported. Example 2 The same as Example 1 except that the alumina coat layer was impregnated with an aqueous solution of dinitrodiammine platinum and an aqueous solution of barium acetate to form a first catalyst support layer 2 supporting Pt and Ba without supporting Rh. Thus, the exhaust gas purifying catalyst of Example 2 was prepared. The amounts of Pt and Ba carried are the same as in Example 1. (Example 3) Exhaust gas purification catalyst of Example 3 in the same manner as in Example 1 except that rhodium nitrate was used instead of palladium nitrate to form second catalyst-supporting layer 3 supporting Pt and Rh. Was prepared. The amount of Rh supported was P in Example 1.
Same as d. Example 4 An alumina coat layer was impregnated with an aqueous solution of dinitrodiammine platinum and an aqueous solution of barium acetate to form Pt and Ba.
Was formed in the same manner as in Example 1 except that the first catalyst supporting layer 2 supporting Pt and Rh was formed using rhodium nitrate instead of palladium nitrate. The exhaust gas purifying catalyst of Example 4 was prepared. Pt
The amounts of supported Ba and Ba are the same as in Example 1, and the amounts of supported Rh are the same as those of Pd in Example 1. Example 5 An exhaust gas purifying catalyst of Example 5 was prepared in the same manner as in Example 1 except that the second catalyst supporting layer 3 was formed using a slurry mixed with cerium oxide (ceria) powder. . Ceria is alumina 1 of the second catalyst support layer.
0.6 mol is supported per 00 g. Example 6 Pt and Ba were impregnated in an alumina coat layer with an aqueous solution of dinitrodiammine platinum and an aqueous solution of barium acetate.
Is formed, and rhodium nitrate is used in place of palladium nitrate and Pt, Rh and C are mixed using a slurry in which cerium oxide (ceria) powder is mixed.
The exhaust gas purifying catalyst of Example 6 was prepared in the same manner as in Example 1 except that the second catalyst supporting layer 3 supporting e was formed. The supported amount of Pt is the same as in Example 1, the supported amount of Rh is the same as Pd of Example 1, and the supported amount of ceria is the same as Example 5.

【0028】なお、図2に本実施例の排ガス浄化用触媒
の構成を示す。 (比較例1)アルミナコート量を実施例の倍量のハニカ
ム担体基材1リットル当たり100gとしたこと以外は
実施例1と同様にしてアルミナコート層を形成し、実施
例1の第1触媒担持層の形成と同様にしてPtとRhと
Pd及びBaを均一に担持させて、比較例1の排ガス浄
化用触媒とした。PtとRhとPd及びBaの担持量
は、アルミナ100gに対してそれぞれ2g,0.1
g,0.1g及び0.3モルである。 (比較例2)さらにセリア粉末を混合したスラリーを用
いてアルミナコート層を形成したこと以外は比較例1と
同様にして、比較例2の排ガス浄化用触媒とした。セリ
アの担持量はアルミナ100gに対して0.3モルであ
る。 (性能評価試験)それぞれの排ガス浄化用触媒(容積3
5cc)を石英製の反応管に設置し、表1に示す2種類
のモデルガスを用いて、A/F=14.5(ストイキ)
からA/F=22.0(リーン)へ一定時間(2分間)
毎に変化させながら流速25リットル/minで通過さ
せ、その時のNOx 浄化率を測定した。入りガス温度は
300℃である。結果を表2に示す。
FIG. 2 shows the structure of the exhaust gas purifying catalyst of this embodiment. (Comparative Example 1) An alumina coat layer was formed in the same manner as in Example 1 except that the amount of alumina coating was set to 100 g per liter of the honeycomb carrier base material, which was twice as large as that of Example 1. Pt, Rh, Pd, and Ba were uniformly carried in the same manner as in the formation of the layer, to obtain an exhaust gas purifying catalyst of Comparative Example 1. The supported amounts of Pt, Rh, Pd and Ba were 2 g, 0.1 g and 100 g of alumina, respectively.
g, 0.1 g and 0.3 mol. (Comparative Example 2) An exhaust gas purifying catalyst of Comparative Example 2 was prepared in the same manner as in Comparative Example 1 except that an alumina coat layer was formed using a slurry mixed with ceria powder. The supported amount of ceria is 0.3 mol per 100 g of alumina. (Performance evaluation test) Each exhaust gas purification catalyst (volume 3
5 cc) was placed in a quartz reaction tube, and A / F = 14.5 (stoichiometric) using the two types of model gases shown in Table 1.
To A / F = 22.0 (lean) for a fixed time (2 minutes)
The gas was passed at a flow rate of 25 liter / min while changing every time, and the NO x purification rate at that time was measured. The incoming gas temperature is 300 ° C. Table 2 shows the results.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 実施例1と比較例1の比較及び実施例5と比較例2の比
較より、第1触媒担持層2と第2触媒担持層3に各成分
を分けて担持した実施例の方がNOx 浄化率が向上して
いることが明らかである。
[Table 2] From a comparison between Example 1 and Comparative Example 1 and a comparison between Example 5 and Comparative Example 2, the example in which each component is separately supported on the first catalyst supporting layer 2 and the second catalyst supporting layer 3 has a higher NO x purification. It is clear that the rate has improved.

【0031】各実施例どうしを比較すると、実施例1よ
り実施例2の方がNOx 浄化率が高く、実施例3より実
施例4の方がNOx 浄化率が高い。したがって第1触媒
担持層2の第1触媒貴金属としてはPtのみを担持した
方が好ましいことがわかる。また、実施例1より実施例
3の方がNOx 浄化率が高く、実施例2より実施例4の
方がNOx 浄化率が高い。したがって第2触媒担持層3
の第2触媒貴金属としては、Rhを含むのが好ましいこ
とが明らかである。
Comparing the examples, Example 2 has a higher NO x purification rate than Example 1, and Example 4 has a higher NO x purification rate than Example 3. Therefore, it is understood that it is preferable to support only Pt as the first catalytic noble metal of the first catalyst supporting layer 2. Further, towards the Example 3 than in Example 1 is higher the NO x purification rate, towards the Example 2 than in Example 4 is higher the NO x purification rate. Therefore, the second catalyst supporting layer 3
It is apparent that the second catalytic noble metal preferably contains Rh.

【0032】さらに、実施例1より実施例5の方がNO
x 浄化率が高く、実施例4より実施例6の方がNOx
化率が高い。したがって第2触媒担持層3には、さらに
セリアを担持させるのが好ましいことが明らかである。
Further, the embodiment 5 is more NO than the embodiment 1.
The x purification rate is higher, and the sixth embodiment has a higher NO x purification rate than the fourth embodiment. Therefore, it is clear that it is preferable to further support ceria on the second catalyst support layer 3.

【0033】[0033]

【発明の効果】すなわち第1発明の排ガス浄化用触媒に
よれば、排ガス中の還元性成分によるNOx の酸化反応
の阻害が生じずNOx は効率よくNOx 吸蔵材に吸蔵さ
れるので、NOx 浄化性能が向上する。また第1触媒貴
金属がPtのみからなる場合には、NOなどの酸化が一
層活発となり、NOx 吸蔵作用が一層向上する。またP
t近傍にPdやRhが存在しないので、Pt表面にRh
やPdが濃縮されることがなく、Ptの高い触媒活性が
示される。したがってNOx の浄化性能が一層向上す
る。
Effects of the Invention] That is, according to the exhaust gas purifying catalyst of the first invention, the inhibition of the oxidation reaction of the NO x by reducing component in the exhaust gas is NO x not occur are inserted efficiently the NO x storage material, The NO x purification performance is improved. When the first catalytic noble metal is composed only of Pt, the oxidation of NO and the like becomes more active, and the NO x storage effect is further improved. Also P
Since there is no Pd or Rh near t, Rh on the Pt surface
Pt and Pd are not concentrated, and a high catalytic activity of Pt is exhibited. Therefore, the NO x purification performance is further improved.

【0034】また第2触媒貴金属がRhの場合には、R
hは高い還元活性を示すためNOxは一層効率よく還元
され、NOx の浄化性能が一層向上する。さらに第2触
媒担持層に酸素吸蔵能を有する成分が含まれる場合に
は、その成分がNOx の還元に使用された残部のHCや
COなどの還元性成分の酸化に寄与するので、三元活性
が一層向上する。
When the second catalytic noble metal is Rh, R
Since h shows a high reduction activity, NO x is reduced more efficiently, and the purification performance of NO x is further improved. Further if it contains a component having oxygen storage capacity in the second catalyst support layer, since the component contributes to the oxidation of the reducing components such as HC and CO the remainder used for the reduction of NO x, the three-way The activity is further improved.

【0035】また、酸素吸蔵能を有する成分がセリアの
場合には、耐熱性が向上する。
When the component having oxygen storage ability is ceria, heat resistance is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の排ガス浄化用触媒の構成を
説明する模式的断面図である。
FIG. 1 is a schematic sectional view illustrating a configuration of an exhaust gas purifying catalyst according to an embodiment of the present invention.

【図2】本発明の実施例6の排ガス浄化用触媒の構成を
説明する模式的断面図である。
FIG. 2 is a schematic sectional view illustrating a configuration of an exhaust gas purifying catalyst according to a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:担体基材 2:第1触媒担持層 3:
第2触媒担持層
1: support base material 2: first catalyst supporting layer 3:
Second catalyst support layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01J 23/56 301A (72)発明者 三好 直人 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 竹島 伸一 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 田中 俊明 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 昭62−197148(JP,A) 特開 平6−246159(JP,A) 特開 昭62−71536(JP,A) 国際公開93/008383(WO,A1) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 B01D 53/94 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification code FI B01J 23/56 301A (72) Inventor Naoto Miyoshi 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Takeshima Shinichi 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Inventor Toshiaki Tanaka 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (56) References JP 62-197148 (JP, JP) A) JP-A-6-246159 (JP, A) JP-A-62-71536 (JP, A) WO 93/008383 (WO, A1) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 21/00-38/74 B01D 53/94

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リーン時にNO x をNO x 吸蔵材に吸蔵
し、ストイキ・リッチ時にNO x 吸蔵材から放出された
NO x を還元浄化する触媒であって、 第1多孔質担体と該第1多孔質担体に担持された白金
及びロジウムの少なくとも1種からなる第1触媒貴金属
該第1多孔質担体に含まれたアルカリ金属及びアル
カリ土類金属から選ばれる少なくとも一種のNO x 吸蔵
材と、よりなる第1触媒担持層と、 第2多孔質担体と該第2多孔質担体に担持された第2
触媒貴金属とよりなり該第1触媒担持層上に被覆され
た第2触媒担持層と、を含んで構成されることを特徴と
する排ガス浄化用触媒。
1. A occluding NO x during lean the NO x storage material
And released from NO x storage material during stoichiometric rich
A catalyst for reducing and purifying the NO x, a first porous carrier, and a first catalytic noble metal consisting of at least one of platinum and rhodium supported on the first porous carrier, the first porous carrier Alkali metal and Al contained
At least one kind of NO x storage selected from potassium earth metals
Material, a first catalyst support layer made of a material, a second porous support, and a second support supported on the second porous support.
An exhaust gas purifying catalyst, comprising: a catalytic noble metal; and a second catalyst supporting layer made of a material coated on the first catalyst supporting layer.
【請求項2】 前記第2触媒担持層には酸素吸蔵能を有
する成分をさらに含むことを特徴とする請求項1記載の
排ガス浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the second catalyst supporting layer further contains a component having an oxygen storage ability.
【請求項3】 前記酸素吸蔵能を有する成分はセリアで
あることを特徴とする請求項2記載の排ガス浄化用触
媒。
3. The exhaust gas purifying catalyst according to claim 2, wherein the component having an oxygen storage ability is ceria.
JP29178994A 1994-11-25 1994-11-25 Exhaust gas purification catalyst Expired - Lifetime JP3532979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29178994A JP3532979B2 (en) 1994-11-25 1994-11-25 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29178994A JP3532979B2 (en) 1994-11-25 1994-11-25 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH08141394A JPH08141394A (en) 1996-06-04
JP3532979B2 true JP3532979B2 (en) 2004-05-31

Family

ID=17773455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29178994A Expired - Lifetime JP3532979B2 (en) 1994-11-25 1994-11-25 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3532979B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9713428D0 (en) * 1997-06-26 1997-08-27 Johnson Matthey Plc Improvements in emissions control
JP4438114B2 (en) * 1999-01-14 2010-03-24 株式会社日立製作所 Exhaust gas purification method, exhaust gas purification catalyst and exhaust gas purification device for internal combustion engine
JP2001276622A (en) * 2000-03-31 2001-10-09 Isuzu Motors Ltd Catalyst for storaging and reducing nitrogen oxide
JP2003080081A (en) * 2001-09-12 2003-03-18 Cataler Corp Catalyst for cleaning exhaust gas
JPWO2006001077A1 (en) * 2004-06-28 2008-04-17 株式会社日立製作所 Exhaust gas purification device for internal combustion engine and exhaust gas purification method
KR101448734B1 (en) * 2009-03-09 2014-10-08 현대자동차 주식회사 Nox reduction catalyst and exhaust system using the same
US20130065754A1 (en) * 2010-03-24 2013-03-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst
JP5604497B2 (en) * 2012-10-31 2014-10-08 株式会社キャタラー Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JPH08141394A (en) 1996-06-04

Similar Documents

Publication Publication Date Title
JP3358766B2 (en) Exhaust gas purification catalyst
JP3291086B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3494147B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JPH08229395A (en) Exhaust gas purifying catalyst
JP3216858B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3821343B2 (en) Exhaust gas purification device
JP3798727B2 (en) Exhaust gas purification catalyst
JPH08192051A (en) Catalyst for purification of exhaust gas
JP2009273986A (en) Exhaust gas cleaning catalyst
JP3685463B2 (en) Exhaust gas purification catalyst
JP3532979B2 (en) Exhaust gas purification catalyst
JP3789231B2 (en) Exhaust gas purification catalyst
JP3589383B2 (en) Exhaust gas purification catalyst
JP3446915B2 (en) Exhaust gas purification catalyst
JP3488487B2 (en) Exhaust gas purification method
JP3335755B2 (en) Exhaust gas purification catalyst
JP2010017694A (en) NOx ABSORBING CATALYST FOR REDUCTION
JP3496348B2 (en) Exhaust gas purification catalyst
JP3551346B2 (en) Exhaust gas purification equipment
JPH08281071A (en) Waste gas purifying method and waste gas purifying catalyst
JP3347481B2 (en) Exhaust gas purification catalyst
JPH09299795A (en) Catalyst for purification of exhaust gas
JP3839860B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH10174868A (en) Catalyst for cleaning of exhaust gas
JP2000157867A (en) Catalyst for exhaust gas treatment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040305

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 10

EXPY Cancellation because of completion of term