JP2003080081A - Catalyst for cleaning exhaust gas - Google Patents
Catalyst for cleaning exhaust gasInfo
- Publication number
- JP2003080081A JP2003080081A JP2001276852A JP2001276852A JP2003080081A JP 2003080081 A JP2003080081 A JP 2003080081A JP 2001276852 A JP2001276852 A JP 2001276852A JP 2001276852 A JP2001276852 A JP 2001276852A JP 2003080081 A JP2003080081 A JP 2003080081A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- catalyst
- dimensional structure
- nox
- nox storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 212
- 238000004140 cleaning Methods 0.000 title abstract 4
- 230000003647 oxidation Effects 0.000 claims abstract description 85
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 85
- 229910052751 metal Inorganic materials 0.000 claims abstract description 57
- 239000002184 metal Substances 0.000 claims abstract description 57
- 230000003197 catalytic effect Effects 0.000 claims abstract description 38
- 239000000463 material Substances 0.000 claims abstract description 29
- 229910052809 inorganic oxide Inorganic materials 0.000 claims abstract description 22
- 238000003860 storage Methods 0.000 claims description 80
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 62
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 38
- 229910052697 platinum Inorganic materials 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 229910021536 Zeolite Inorganic materials 0.000 claims description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 8
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 8
- 239000010457 zeolite Substances 0.000 claims description 8
- 229910052783 alkali metal Inorganic materials 0.000 claims description 4
- 150000001340 alkali metals Chemical class 0.000 claims description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 4
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 4
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 4
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 229910052741 iridium Inorganic materials 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims 2
- 230000009970 fire resistant effect Effects 0.000 abstract description 2
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 228
- 239000007789 gas Substances 0.000 description 100
- 229910052878 cordierite Inorganic materials 0.000 description 39
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 39
- 239000010410 layer Substances 0.000 description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- 238000000746 purification Methods 0.000 description 23
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 18
- 239000008367 deionised water Substances 0.000 description 16
- 229910021641 deionized water Inorganic materials 0.000 description 16
- 229910052788 barium Inorganic materials 0.000 description 13
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 13
- 229910000510 noble metal Inorganic materials 0.000 description 13
- 239000002002 slurry Substances 0.000 description 12
- 229910052703 rhodium Inorganic materials 0.000 description 10
- 239000010948 rhodium Substances 0.000 description 10
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 229910052744 lithium Inorganic materials 0.000 description 8
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 8
- 230000004323 axial length Effects 0.000 description 7
- 239000004215 Carbon black (E152) Substances 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 6
- 239000013618 particulate matter Substances 0.000 description 6
- 229910052700 potassium Inorganic materials 0.000 description 6
- 239000011591 potassium Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000011232 storage material Substances 0.000 description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- ITHZDDVSAWDQPZ-UHFFFAOYSA-L barium acetate Chemical compound [Ba+2].CC([O-])=O.CC([O-])=O ITHZDDVSAWDQPZ-UHFFFAOYSA-L 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- NWAHZABTSDUXMJ-UHFFFAOYSA-N platinum(2+);dinitrate Chemical compound [Pt+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O NWAHZABTSDUXMJ-UHFFFAOYSA-N 0.000 description 4
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052680 mordenite Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 101100325793 Arabidopsis thaliana BCA2 gene Proteins 0.000 description 1
- 101100121112 Oryza sativa subsp. indica 20ox2 gene Proteins 0.000 description 1
- 101100121113 Oryza sativa subsp. japonica GA20OX2 gene Proteins 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Landscapes
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、排ガス浄化用触媒
に関し、詳しくは、高いNOx吸蔵還元性能を有する排
ガス浄化用触媒に関する。TECHNICAL FIELD The present invention relates to an exhaust gas purifying catalyst, and more particularly to an exhaust gas purifying catalyst having high NOx storage reduction performance.
【0002】[0002]
【従来の技術】自動車のエンジン等の内燃機関から排出
される排気ガスは、炭化水素(HC)、一酸化炭素(C
O)、窒素酸化物(NOx)などの有害成分を含有して
いる。この有害な成分を含有した排気ガスをそのまま大
気中に排出すると、公害の発生や環境の悪化が生じるよ
うになる。このため、これらの成分を含む排気ガスは、
排ガス浄化用触媒等の浄化手段により有害成分が浄化さ
れた後に大気中に排出されている。Exhaust gas emitted from an internal combustion engine such as an automobile engine is a hydrocarbon (HC) or carbon monoxide (C).
O), nitrogen oxides (NOx) and other harmful components. If exhaust gas containing this harmful component is directly discharged into the atmosphere, pollution will occur and the environment will deteriorate. Therefore, the exhaust gas containing these components is
Hazardous components are purified by a purification means such as an exhaust gas purification catalyst and then discharged into the atmosphere.
【0003】また、地球環境への関心の高まりにより、
特に自動車においては、低燃費、低公害であることが求
められている。この要求を満たす車両のエンジンとし
て、リーンバーンエンジンやディーゼルエンジンの利用
が図られている。Further, due to the growing interest in the global environment,
In particular, automobiles are required to have low fuel consumption and low pollution. Lean burn engines and diesel engines are being used as vehicle engines that meet this demand.
【0004】リーンバーンエンジンやディーゼルエンジ
ンは、酸素過剰雰囲気下で燃焼を行うため、多量のNO
xを排出する。このため、これらのエンジンの排ガスを
浄化する排ガス浄化用触媒には、通常の排ガス浄化用触
媒に、アルカリ金属あるいはアルカリ土類金属の元素よ
りなるNOx吸蔵還元材が添加された吸蔵還元型触媒が
用いられている。Since lean burn engines and diesel engines burn in an oxygen excess atmosphere, a large amount of NO is generated.
Discharge x. Therefore, as an exhaust gas purifying catalyst for purifying the exhaust gas of these engines, a storage reduction catalyst in which a NOx storage reducing material made of an alkali metal or alkaline earth metal element is added to a normal exhaust gas purifying catalyst is used. It is used.
【0005】しかしながら、アルカリ金属やアルカリ土
類金属の元素には、触媒作用を有する触媒金属の酸化機
能を著しく低下させる作用を有することが知られてい
る。このため、NOx吸蔵還元材を添加することで、吸
蔵還元型触媒は、触媒金属の酸化性能が低下するという
問題を有していた。However, it is known that the elements of alkali metal and alkaline earth metal have a function of significantly reducing the oxidizing function of the catalytic metal having a catalytic action. Therefore, the storage reduction catalyst has a problem that the oxidation performance of the catalyst metal is deteriorated by adding the NOx storage reduction material.
【0006】[0006]
【発明が解決しようとする課題】本発明は上記実情に鑑
みてなされたものであり、高い酸化性能およびNOx吸
蔵還元性能を有する排ガス浄化用触媒を提供することを
課題とする。The present invention has been made in view of the above circumstances, and an object thereof is to provide an exhaust gas purifying catalyst having high oxidation performance and NOx storage reduction performance.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するため
に本発明者らは、三次元構造体上に酸化触媒部とNOx
吸蔵還元部とを有する排ガス浄化用触媒とすることで上
記課題を解決できることを見出した。In order to solve the above-mentioned problems, the present inventors have found that an oxidation catalyst portion and NOx are formed on a three-dimensional structure.
It has been found that the above problem can be solved by using an exhaust gas purifying catalyst having an occlusion reduction section.
【0008】すなわち、本発明の排ガス浄化用触媒は、
耐火性を有する三次元構造体と、三次元構造体上にもう
けられた第一無機酸化物よりなる第一担持層部と、第一
担持層部に担持された第一触媒金属と、を有する酸化触
媒部と、三次元構造体上にもうけられた第二無機酸化物
よりなる第二担持層部と、第二担持層部に担持された第
二触媒金属と、第二担持層部に担持されたNOx吸蔵還
元材と、を有するNOx吸蔵還元部と、を有することを
特徴とする。That is, the exhaust gas purifying catalyst of the present invention is
It has a three-dimensional structure having fire resistance, a first supporting layer portion made of a first inorganic oxide provided on the three-dimensional structure, and a first catalytic metal supported on the first supporting layer portion. Oxidation catalyst part, second supporting layer part made of a second inorganic oxide provided on the three-dimensional structure, second catalyst metal supported on the second supporting layer part, and supported on the second supporting layer part And a NOx storage / reduction unit including the stored NOx storage / reduction material.
【0009】本発明の排ガス浄化用触媒は、三次元構造
体上に酸化触媒部とNOx吸蔵還元部とを有すること
で、酸化触媒部の第一触媒金属とNOx吸蔵還元部のN
Ox吸蔵還元材とが接触しなくなり、第一触媒金属が酸
化機能の低下を生じなくなっている。すなわち、本発明
の排ガス浄化用触媒は、酸化触媒部が排ガスを酸化浄化
し、NOx吸蔵還元部がNOxを吸蔵還元により浄化す
る。この結果、本発明の排ガス浄化用触媒は、高い酸化
性能およびNOx吸蔵還元性能を有する触媒となってい
る。The exhaust gas purifying catalyst of the present invention has the oxidation catalyst portion and the NOx storage reduction portion on the three-dimensional structure, so that the first catalyst metal of the oxidation catalyst portion and the Nx storage reduction portion of the NOx storage reduction portion.
The Ox storage reduction material does not come into contact with the first catalyst metal, and the oxidation function of the first catalyst metal does not deteriorate. That is, in the exhaust gas purifying catalyst of the present invention, the oxidation catalyst unit oxidizes and purifies the exhaust gas, and the NOx storage reduction unit purifies NOx by storage reduction. As a result, the exhaust gas purifying catalyst of the present invention is a catalyst having high oxidation performance and NOx storage reduction performance.
【0010】[0010]
【発明の実施の形態】本発明の排ガス浄化用触媒は、三
次元構造体と、酸化触媒部と、NOx吸蔵還元部と、を
有する。BEST MODE FOR CARRYING OUT THE INVENTION The exhaust gas-purifying catalyst of the present invention has a three-dimensional structure, an oxidation catalyst portion, and a NOx storage reduction portion.
【0011】三次元構造体は、耐火性を有し、表面上に
酸化触媒部およびNOx吸蔵還元部が形成される部材で
ある。すなわち、三次元構造体は、表面上に触媒成分を
保持する。また、三次元構造体が耐火性を有すること
で、高温の排ガスを浄化することができる。The three-dimensional structure is a member having fire resistance and having an oxidation catalyst portion and a NOx storage reduction portion formed on its surface. That is, the three-dimensional structure retains the catalyst component on the surface. Further, since the three-dimensional structure has fire resistance, it is possible to purify high temperature exhaust gas.
【0012】酸化触媒部は、三次元構造体上にもうけら
れた第一無機酸化物よりなる第一担持層部と、第一担持
層部に担持された第一触媒金属と、を有する。すなわ
ち、酸化触媒部が、第一担持層部と第一触媒金属とを有
することで、本発明の排ガス浄化用触媒は、排ガスを酸
化浄化することができる。The oxidation catalyst portion has a first supporting layer portion made of a first inorganic oxide provided on the three-dimensional structure, and a first catalytic metal supported on the first supporting layer portion. That is, since the oxidation catalyst portion has the first supporting layer portion and the first catalyst metal, the exhaust gas purifying catalyst of the present invention can oxidize and purify exhaust gas.
【0013】NOx吸蔵還元部は、三次元構造体上にも
うけられた第二無機酸化物よりなる第二担持層部と、第
二担持層部に担持された第二触媒金属と、第二担持層部
に担持されたNOx吸蔵還元材と、を有する。すなわ
ち、NOx吸蔵還元部が、第二担持層部と、第二触媒金
属と、NOx吸蔵還元材と、を有することで、本発明の
排ガス浄化用触媒は、排ガス中のNOxを吸蔵還元する
ことができる。The NOx occlusion reduction section comprises a second supporting layer section made of a second inorganic oxide provided on the three-dimensional structure, a second catalytic metal supported on the second supporting layer section, and a second supporting layer. And a NOx storage-reduction material carried on the layer portion. That is, the NOx occlusion reduction section has the second support layer section, the second catalytic metal, and the NOx occlusion reduction material, so that the exhaust gas purifying catalyst of the present invention occlusion-reduces NOx in the exhaust gas. You can
【0014】本発明の排ガス浄化用触媒は、酸化触媒部
とNOx吸蔵還元部とを有することで、酸化機能が損な
われることなく高いNOx吸蔵還元性能を有する排ガス
浄化用触媒となっている。詳しくは、酸化触媒部が排ガ
ス中の有害成分を酸化浄化し、NOx成分をNOx吸蔵
還元部が還元浄化をするため、本発明の排ガス浄化用触
媒は、酸化性能が損なわれることなく高いNOx吸蔵還
元性能を有する排ガス浄化用触媒となっている。Since the exhaust gas purifying catalyst of the present invention has the oxidation catalyst portion and the NOx occlusion reduction portion, it is an exhaust gas purifying catalyst having a high NOx occlusion reduction performance without impairing the oxidation function. Specifically, the oxidation catalyst part oxidizes and purifies harmful components in the exhaust gas, and the NOx storage reduction part reduces and purifies NOx components. Therefore, the exhaust gas purification catalyst of the present invention has a high NOx storage capacity without impairing oxidation performance. It is a catalyst for exhaust gas purification that has reducing performance.
【0015】酸化触媒部とNOx吸蔵還元部とが、三次
元構造体上で排ガスの流れ方向に並んだ状態でもうけら
れたことが好ましい。すなわち、酸化触媒部とNOx吸
蔵還元部とが並んだ状態で配されていることで、酸化触
媒部とNOx吸蔵還元部とが混在しないため、NOx吸
蔵還元材による第一触媒金属の触媒性能の低下が抑えら
れている。It is preferable that the oxidation catalyst portion and the NOx occlusion reduction portion are provided on the three-dimensional structure side by side in the exhaust gas flow direction. That is, since the oxidation catalyst portion and the NOx storage / reduction portion are arranged side by side, the oxidation catalyst portion and the NOx storage / reduction portion do not coexist, so that the catalyst performance of the first catalyst metal by the NOx storage / reduction material is The decrease is suppressed.
【0016】また、酸化触媒部とNOx吸蔵還元部と
が、排ガスの流れ方向にそって並んだ状態でもうけられ
たことで、NOx吸蔵還元部あるいは酸化触媒部により
浄化された排ガスが酸化触媒部あるいはNOx吸蔵還元
部により浄化される。このため、酸化性能が損なわれる
ことなく高いNOx吸蔵還元性能を発揮することができ
る。Further, since the oxidation catalyst portion and the NOx occlusion reduction portion are arranged side by side along the flow direction of the exhaust gas, the exhaust gas purified by the NOx occlusion reduction portion or the oxidation catalyst portion is oxidized. Alternatively, it is purified by the NOx storage reduction unit. Therefore, a high NOx storage reduction performance can be exhibited without impairing the oxidation performance.
【0017】なお、酸化触媒部とNOx吸蔵還元部と
は、排ガスの流れ方向に並んだ状態であればよく、相対
的な位置については、特に限定されるものではない。詳
しくは、三次元構造体上に、酸化触媒部とNOx吸蔵還
元部とが排ガスの流れ方向にそって並んだ状態でもうけ
られたときに、上流側に酸化触媒部とNOx吸蔵還元部
のいずれをもうけてもよい。The oxidation catalyst portion and the NOx occlusion reduction portion may be arranged in a line in the exhaust gas flow direction, and their relative positions are not particularly limited. Specifically, when the oxidation catalyst portion and the NOx storage reduction portion are provided on the three-dimensional structure in a line along the flow direction of the exhaust gas, either the oxidation catalyst portion or the NOx storage reduction portion is provided upstream. You may make money.
【0018】さらに、排ガスの流れ方向にそって並んだ
状態で配された酸化触媒部とNOx吸蔵還元部は、それ
ぞれ複数部であってもよい。すなわち、酸化触媒部とN
Ox吸蔵還元部とが交互にもうけられていてもよい。Further, the oxidation catalyst portion and the NOx occlusion reduction portion, which are arranged side by side along the flow direction of the exhaust gas, may each be a plurality of portions. That is, the oxidation catalyst part and N
Ox storage reduction units may be provided alternately.
【0019】また、本発明の排ガス浄化用触媒におい
て、酸化触媒部とNOx吸蔵還元部とは、同一の三次元
構造体上にもうけられていても、それぞれ異なる三次元
構造体にもうけられていてもよい。Further, in the exhaust gas purifying catalyst of the present invention, the oxidation catalyst portion and the NOx storage reduction portion may be provided on the same three-dimensional structure, but may be provided on different three-dimensional structures. Good.
【0020】酸化触媒部とNOx吸蔵還元部とが、三次
元構造体上で積層してもうけられたことが好ましい。す
なわち、酸化触媒部とNOx吸蔵還元部とが積層しても
うけられることで、酸化触媒部とNOx吸蔵還元部とが
混在しないため、NOx吸蔵還元材による第一触媒金属
の触媒性能の低下が抑えられている。It is preferable that the oxidation catalyst portion and the NOx occlusion reduction portion are laminated on the three-dimensional structure. That is, since the oxidation catalyst portion and the NOx storage reduction portion are stacked and provided, the oxidation catalyst portion and the NOx storage reduction portion do not coexist, and therefore the deterioration of the catalytic performance of the first catalyst metal by the NOx storage reduction material is suppressed. Has been.
【0021】また、酸化触媒部とNOx吸蔵還元部と
が、三次元構造体上で積層してもうけられたことで、N
Ox吸蔵還元部あるいは酸化触媒部により浄化された排
ガスが酸化触媒部あるいはNOx吸蔵還元部により浄化
される。このため、酸化性能が損なわれることなく高い
NOx吸蔵還元性能を発揮することができる。Since the oxidation catalyst portion and the NOx occlusion reduction portion are stacked and provided on the three-dimensional structure, N
The exhaust gas purified by the Ox storage reduction section or the oxidation catalyst section is purified by the oxidation catalyst section or the NOx storage reduction section. Therefore, a high NOx storage reduction performance can be exhibited without impairing the oxidation performance.
【0022】なお、酸化触媒部とNOx吸蔵還元部と
は、三次元構造体上で積層してもうけられていればよ
く、相対的な位置については、特に限定されるものでは
ない。詳しくは、三次元構造体上で酸化触媒部とNOx
吸蔵還元部とが積層してもうけられたときに、上層に酸
化触媒部とNOx吸蔵還元部のいずれをもうけてもよ
い。The oxidation catalyst portion and the NOx occlusion reduction portion only need to be stacked on the three-dimensional structure, and their relative positions are not particularly limited. Specifically, the oxidation catalyst part and NOx on the three-dimensional structure
When the storage reduction unit is stacked and provided, either the oxidation catalyst unit or the NOx storage reduction unit may be provided in the upper layer.
【0023】さらに、三次元構造体上で積層してもうけ
られた酸化触媒部とNOx吸蔵還元部は、それぞれ複数
部であってもよい。すなわち、三次元構造体上で酸化触
媒部とNOx吸蔵還元部とが交互に積層してもうけられ
ていてもよい。Further, the oxidation catalyst portion and the NOx occlusion reduction portion, which are stacked on the three-dimensional structure, may be plural in number. That is, the oxidation catalyst portion and the NOx storage reduction portion may be alternately stacked on the three-dimensional structure.
【0024】さらに、本発明の排ガス浄化用触媒は、酸
化触媒部とNOx吸蔵還元部とが、排ガスの流れ方向に
並ぶとともに積層していてもよい。Further, in the exhaust gas purifying catalyst of the present invention, the oxidation catalyst portion and the NOx storage / reduction portion may be lined up in the exhaust gas flow direction and laminated.
【0025】酸化触媒部を構成する第一無機酸化物およ
び第一触媒金属は、特に限定されるものではなく、従来
の排ガス浄化用触媒に用いられた材質を用いられること
ができる。The first inorganic oxide and the first catalytic metal forming the oxidation catalyst portion are not particularly limited, and the materials used for conventional exhaust gas purifying catalysts can be used.
【0026】第一無機酸化物は、アルミナ、シリカ、チ
タニア、ジルコニア、セリア、ゼオライトの少なくとも
一種よりなることが好ましい。第一無機酸化物がこれら
の少なくとも一種よりなることで、耐熱性に優れかつ大
きな比表面積を有する担持層が形成されるようになる。The first inorganic oxide is preferably made of at least one of alumina, silica, titania, zirconia, ceria and zeolite. When the first inorganic oxide is composed of at least one of these, a supporting layer having excellent heat resistance and a large specific surface area can be formed.
【0027】第一触媒金属は、Pt、Pd、Rh、A
g、Au、Irの少なくとも一種よりなることが好まし
い。すなわち、第一触媒金属が、これらの少なくとも一
種よりなることで、酸化触媒部が排ガスを浄化すること
ができるようになる。The first catalytic metal is Pt, Pd, Rh, A
It is preferably made of at least one of g, Au and Ir. That is, when the first catalyst metal is made of at least one of these, the oxidation catalyst part can purify the exhaust gas.
【0028】NOx吸蔵還元部を構成する第二無機酸化
物、NOx吸蔵還元材および第二触媒金属は、特に限定
されるものではなく、従来のNOx吸蔵還元型排ガス浄
化用触媒において用いられた材質を用いられることがで
きる。The second inorganic oxide, NOx storage-reducing material and second catalyst metal forming the NOx storage-reduction part are not particularly limited, and are materials used in conventional NOx storage-reduction type exhaust gas purifying catalysts. Can be used.
【0029】第二無機酸化物は、アルミナ、シリカ、チ
タニア、ジルコニア、セリア、ゼオライトの少なくとも
一種よりなることが好ましい。第二無機酸化物がこれら
の少なくとも一種よりなることで、耐熱性に優れかつ大
きな比表面積を有する担持層が形成されるようになる。The second inorganic oxide is preferably made of at least one of alumina, silica, titania, zirconia, ceria and zeolite. When the second inorganic oxide is composed of at least one of these, a supporting layer having excellent heat resistance and a large specific surface area can be formed.
【0030】第二触媒金属は、Pt、Pd、Rh、A
g、Au、Irの少なくとも一種よりなることが好まし
い。すなわち、第二触媒金属が、これらの少なくとも一
種よりなることで、NOx吸蔵還元部が排ガスを浄化す
ることができるようになる。The second catalytic metal is Pt, Pd, Rh, A
It is preferably made of at least one of g, Au and Ir. That is, when the second catalytic metal is made of at least one of these, the NOx storage reduction unit can purify the exhaust gas.
【0031】NOx吸蔵還元材は、アルカリ金属、アル
カリ土類金属より選ばれる少なくとも一種よりなること
が好ましい。すなわち、NOx吸蔵還元材が、これらの
少なくとも一種よりなることで、NOx吸蔵還元部がN
Oxを吸蔵することができるようになる。The NOx occlusion reducing material is preferably made of at least one selected from alkali metals and alkaline earth metals. That is, since the NOx storage / reduction material is made of at least one of these, the NOx storage / reduction portion has N
It becomes possible to store Ox.
【0032】第一無機酸化物と第二無機酸化物とは、同
種の無機酸化物あるいは異種の無機酸化物のいずれでも
よい。材料の種類が増えないことから同種の無機酸化物
であることが好ましい。さらに、同種の無機酸化物とす
ると、酸化触媒部とNOx吸蔵還元部の配置によって
は、第一担持層と第二担持層とを同時に形成することが
でき、製造に要するコストの上昇を抑えることができ
る。The first inorganic oxide and the second inorganic oxide may be the same inorganic oxide or different inorganic oxides. Inorganic oxides of the same kind are preferable because the number of kinds of materials does not increase. Further, when the same kind of inorganic oxide is used, the first supporting layer and the second supporting layer can be formed at the same time depending on the arrangement of the oxidation catalyst part and the NOx storage reduction part, and the increase in cost required for production can be suppressed. You can
【0033】第一触媒金属と第二触媒金属とは、同種の
金属であっても異種の金属であっても、どちらでもよ
い。材料の種類が増えないことから同種の触媒金属であ
ることが好ましい。さらに、同種の触媒金属とすると、
酸化触媒部とNOx吸蔵還元部の配置によっては、第一
触媒金属と第二触媒金属とを同時に担持させることが可
能となり、製造に要するコストの上昇を抑えることがで
きる。The first catalytic metal and the second catalytic metal may be the same kind of metal or different kinds of metal. It is preferable to use the same kind of catalytic metal because the number of kinds of materials does not increase. Furthermore, if the same kind of catalytic metal is used,
Depending on the arrangement of the oxidation catalyst part and the NOx storage reduction part, it becomes possible to support the first catalyst metal and the second catalyst metal at the same time, and it is possible to suppress an increase in manufacturing cost.
【0034】三次元構造体は、オープンフローのハニカ
ムあるいはウォールフローのDPFであることが好まし
い。The three-dimensional structure is preferably an open flow honeycomb or a wall flow DPF.
【0035】また、三次元構造体は、セラミックスある
いはメタルよりなることが好ましい。三次元構造体を形
成するセラミックスあるいはメタルとしては、たとえ
ば、コーディエライト、炭化ケイ素(SiC)、ステン
レス、セラミックス繊維をあげることができる。The three-dimensional structure is preferably made of ceramics or metal. Examples of ceramics or metals that form the three-dimensional structure include cordierite, silicon carbide (SiC), stainless steel, and ceramic fibers.
【0036】三次元構造体上にもうけられた第一担持層
および第二担持層における第一および第二無機酸化物の
担持量は、特に限定されるものではない。すなわち、そ
れぞれの担持層に担持されるべき触媒金属および吸蔵還
元成分を担持できるようにもうけられていればよい。The supported amounts of the first and second inorganic oxides in the first supporting layer and the second supporting layer provided on the three-dimensional structure are not particularly limited. That is, it is sufficient that the catalyst metal and the storage reduction component to be supported on the respective support layers can be supported.
【0037】第一触媒金属の第一担持層部への担持量
は、第一担持層部全体を100wt%としたときに、
0.01〜10wt%で含まれることが好ましい。すな
わち、第一担持層部が第一触媒金属を0.01〜10w
t%で有することで、排ガスの浄化が十分に行われる。
なお、第一触媒金属が0.01wt%未満では、第一触
媒金属量が少なく、排ガスの浄化が不十分となる。ま
た、第一触媒金属が10wt%を超えると、触媒金属の
担持量の増加に対する排ガス浄化の効果の向上が小さく
なる。より好ましくは、0.1〜5wt%の範囲であ
る。The amount of the first catalytic metal supported on the first supporting layer part is 100 wt% of the entire first supporting layer part.
It is preferably contained in an amount of 0.01 to 10 wt%. That is, the first support layer portion contains 0.01 to 10 w of the first catalyst metal.
By having the content of t%, exhaust gas can be sufficiently purified.
If the amount of the first catalytic metal is less than 0.01 wt%, the amount of the first catalytic metal will be small and the purification of the exhaust gas will be insufficient. Further, if the first catalytic metal exceeds 10 wt%, the improvement in the effect of exhaust gas purification with respect to the increase in the carried amount of the catalytic metal becomes small. More preferably, it is in the range of 0.1 to 5 wt%.
【0038】NOx吸蔵還元材の第二担持層部への担持
量は、第二担持層部全体を100wt%としたときに、
0.5〜30wt%で含まれることが好ましい。すなわ
ち、第二担持層部がNOx吸蔵還元材を0.5〜30w
t%で有することで、NOx吸蔵還元部がNOxを還元
浄化することができる。なお、NOx吸蔵還元材が0.
5wt%未満では、NOx吸蔵還元材量が少なく、排ガ
ス中のNOxの浄化が不十分となる。また、NOx吸蔵
還元材が30wt%を超えると、NOx吸蔵還元材の担
持量の増加に対するNOx浄化の効果の向上が小さくな
る。より好ましくは、1〜20wt%の範囲である。The amount of NOx occlusion-reducing material loaded on the second carrier layer part is 100 wt% of the entire second carrier layer part.
It is preferably contained in an amount of 0.5 to 30 wt%. That is, the second support layer portion contains 0.5 to 30 w of the NOx storage reducing material.
By having t%, the NOx storage reduction unit can reduce and purify NOx. It should be noted that the NOx occlusion reducing material is less than 0.
If it is less than 5 wt%, the amount of NOx storage-reducing material is small and purification of NOx in exhaust gas is insufficient. Further, when the NOx storage / reduction material exceeds 30 wt%, the improvement of the NOx purification effect against the increase in the carried amount of the NOx storage / reduction material becomes small. More preferably, it is in the range of 1 to 20 wt%.
【0039】また、第二触媒金属の第二担持層部への担
持量は、第二担持層部全体を100wt%としたとき
に、0.1〜10wt%で含まれることが好ましい。す
なわち、第二担持層部が第二触媒金属を0.1〜10w
t%で有することで、NOxの浄化が十分に行われる。
なお、第二触媒金属が0.1wt%未満では、第二触媒
金属量が少なく、排ガス中のNOxの浄化が不十分とな
る。また、第二触媒金属が10wt%を超えると、触媒
金属の担持量の増加に対するNOx浄化の効果の向上が
小さくなる。より好ましくは、1〜5wt%の範囲であ
る。The amount of the second catalytic metal supported on the second supporting layer portion is preferably 0.1 to 10 wt% when the entire second supporting layer portion is 100 wt%. That is, the second support layer portion contains the second catalyst metal in an amount of 0.1 to 10
By having it at t%, the purification of NOx is sufficiently performed.
If the amount of the second catalytic metal is less than 0.1 wt%, the amount of the second catalytic metal will be small and the purification of NOx in the exhaust gas will be insufficient. Further, when the content of the second catalytic metal exceeds 10 wt%, the improvement in the effect of NOx purification with respect to the increase in the carried amount of the catalytic metal becomes small. More preferably, it is in the range of 1 to 5 wt%.
【0040】酸化触媒部とNOx吸蔵還元部との割合
は、特に限定されるものではなく、浄化される排ガスの
成分により適宜決定することができる。さらに、それぞ
れに担持された触媒金属およびNOx吸蔵還元材の担持
量によっても適宜決定できる。The ratio between the oxidation catalyst portion and the NOx storage reduction portion is not particularly limited and can be appropriately determined depending on the components of the exhaust gas to be purified. Further, it can be appropriately determined depending on the amounts of the catalyst metal and the NOx storage-reduction material carried on each.
【0041】本発明の排ガス浄化用触媒は、三次元構造
体と、酸化触媒部と、NOx吸蔵還元部と、を有してい
ればよく、その製造方法が特に限定されるものではな
い。The exhaust gas purifying catalyst of the present invention is not particularly limited as long as it has a three-dimensional structure, an oxidation catalyst portion, and a NOx storage reduction portion, and its manufacturing method is not particularly limited.
【0042】本発明の排ガス浄化用触媒は、三次元構造
体上に酸化触媒部とNOx吸蔵還元部とを有すること
で、酸化触媒部の第一触媒金属とNOx吸蔵還元部のN
Ox吸蔵還元材とが接触しなくなり、第一触媒金属が酸
化機能の低下を生じなくなっている。すなわち、本発明
の排ガス浄化用触媒は、酸化触媒部が排ガスを酸化浄化
し、NOx吸蔵還元部がNOxを吸蔵還元により浄化す
る。この結果、本発明の排ガス浄化用触媒は、高い酸化
性能およびNOx吸蔵還元性能を有する触媒となってい
る。The exhaust gas purifying catalyst of the present invention has the oxidation catalyst part and the NOx storage reduction part on the three-dimensional structure, so that the first catalyst metal of the oxidation catalyst part and the Nx storage reduction part of the NOx storage reduction part.
The Ox storage reduction material does not come into contact with the first catalyst metal, and the oxidation function of the first catalyst metal does not deteriorate. That is, in the exhaust gas purifying catalyst of the present invention, the oxidation catalyst unit oxidizes and purifies the exhaust gas, and the NOx storage reduction unit purifies NOx by storage reduction. As a result, the exhaust gas purifying catalyst of the present invention is a catalyst having high oxidation performance and NOx storage reduction performance.
【0043】[0043]
【実施例】以下、実施例を用いて本発明を説明する。EXAMPLES The present invention will be described below with reference to examples.
【0044】実施例として、排ガス浄化用触媒を製造し
た。As an example, an exhaust gas purifying catalyst was manufactured.
【0045】(実施例1)まず、アルミナ粉末100重
量部を脱イオン水140重量部に分散させ、ついでアル
ミナ換算で3重量部のアルミナゾルを添加し、湿式粉砕
してアルミナスラリーを調製した。Example 1 First, 100 parts by weight of alumina powder was dispersed in 140 parts by weight of deionized water, and then 3 parts by weight of alumina sol in terms of alumina was added and wet pulverized to prepare an alumina slurry.
【0046】調製されたアルミナスラリーを、セル数が
47個/cm2(約300個/inch2)のウォールフ
ローのガス流通セルを有する直径12.9センチ×軸方
向の長さ15.0センチの円筒状のコーディエライト製
DPF担体に塗布し、250℃で1時間乾燥し、ついで
500℃で1時間焼成してアルミナコートコーディエラ
イトDPFを得た。The prepared alumina slurry had a wall flow gas distribution cell having a cell number of 47 cells / cm 2 (about 300 cells / inch 2 ) in diameter of 12.9 cm and axial length of 15.0 cm. Was coated on a cylindrical DPF carrier made of cordierite, dried at 250 ° C. for 1 hour, and then calcined at 500 ° C. for 1 hour to obtain an alumina-coated cordierite DPF.
【0047】得られたアルミナコートコーディエライト
DPFのアルミナ量は、耐火性三次元構造体1リットル
あたり100gであった。The amount of alumina in the obtained alumina-coated cordierite DPF was 100 g per liter of the refractory three-dimensional structure.
【0048】得られたアルミナコートコーディエライト
DPFに白金硝酸塩水溶液を含浸させ、250℃で1時
間乾燥後、硝酸ロジウム水溶液を含浸させ、250℃で
1時間乾燥させ、触媒貴金属担持アルミナコートコーデ
ィエライトDPFを得た。触媒貴金属担持アルミナコー
トコーディエライトDPFの触媒貴金属の担持量は、D
PF担体1リットルあたり白金で5g、ロジウムで0.
1gであった。The obtained alumina-coated cordierite DPF was impregnated with an aqueous solution of platinum nitrate, dried at 250 ° C. for 1 hour, then impregnated with an aqueous solution of rhodium nitrate and dried at 250 ° C. for 1 hour, and then the catalyst-coated alumina-coated cordierite carrying a noble metal was used. I got a light DPF. Amount of supported catalytic precious metal of alumina coated cordierite DPF carrying supported catalytic precious metal is D
5 g of platinum and 0.1 of rhodium per liter of PF carrier.
It was 1 g.
【0049】触媒貴金属担持アルミナコートコーディエ
ライトDPFを脱イオン水中に浸漬した後に、吸引を行
い触媒貴金属担持アルミナコートコーディエライトDP
Fの1個あたりの吸水量を求めた。なお、触媒貴金属担
持アルミナコートコーディエライトDPFに担持された
触媒貴金属は、脱イオン水中に浸漬されても、焼成が施
されているため、脱イオン水中に溶解しない。また、吸
水量の測定は、事前に触媒貴金属担持アルミナコートコ
ーディエライトDPFの重量を測定し、脱イオン水に浸
しして吸引を行った後の重量を測定することで、両者の
重量の差から吸水量を得た。Alumina-coated cordierite DP supporting catalyst noble metal was immersed in deionized water and then suctioned to carry out alumina-coated cordierite DP supporting catalyst noble metal.
The water absorption per F was determined. The catalytic noble metal supported on the catalytic noble metal-supported alumina-coated cordierite DPF does not dissolve in deionized water because it is calcined even when immersed in deionized water. In addition, the water absorption is measured by measuring the weight of the catalyst noble metal-supported alumina-coated cordierite DPF in advance and immersing it in deionized water and sucking it to measure the weight difference between the two. The water absorption was obtained from
【0050】得られた吸水量の半分量の脱イオン水に酢
酸バリウム、硝酸リチウムを溶解させ、その溶解液に触
媒貴金属担持アルミナコートコーディエライトDPFを
一方の端面からのみ浸漬させた。このとき、溶解液は、
一方の端面からDPF担体の軸方向の長さの1/2まで
の部分に浸漬された。その後、250℃で1時間乾燥
し、ついで500℃で1時間焼成することで実施例1の
ガス浄化用触媒を得た。実施例1の排ガス浄化用触媒の
NOx吸蔵材量は三次元構造体1個あたりバリウムで1
3.5g、リチウムで1.4gであった。Barium acetate and lithium nitrate were dissolved in deionized water in an amount half the water absorption obtained, and the catalyst-precious metal-supported alumina-coated cordierite DPF was immersed in the solution only from one end surface. At this time, the solution is
It was immersed in a portion from one end face to half the axial length of the DPF carrier. Then, it was dried at 250 ° C. for 1 hour and then calcined at 500 ° C. for 1 hour to obtain a gas purifying catalyst of Example 1. The NOx storage material amount of the exhaust gas purifying catalyst of Example 1 was 1 barium per one three-dimensional structure.
3.5 g and 1.4 g of lithium.
【0051】実施例1の排ガス浄化用触媒は、バリウ
ム、リチウムが担持された部分がNOx吸蔵還元部に、
担持されていない部分が酸化触媒部となっている。In the exhaust gas purifying catalyst of Example 1, the part carrying barium and lithium was used as the NOx storage reduction part.
The portion not supported is the oxidation catalyst portion.
【0052】詳しくは、実施例1の排ガス浄化用触媒
は、コーディエライト製DPF担体と、DPF担体上に
もうけられたアルミナコート層部と、アルミナコート層
部に担持された白金、ロジウムとを有する酸化触媒部
と、DPF担体上にもうけられたアルミナコート層部
と、アルミナコート層部に担持された白金、ロジウム
と、アルミナコート層部に担持されたバリウム、リチウ
ムとを有するNOx吸蔵還元部と、を有する触媒であ
る。Specifically, the exhaust gas-purifying catalyst of Example 1 comprises a cordierite DPF carrier, an alumina coat layer portion provided on the DPF carrier, and platinum and rhodium supported on the alumina coat layer portion. NOx occlusion reduction section having an oxidation catalyst section, an alumina coating layer section provided on a DPF carrier, platinum and rhodium supported on the alumina coating layer section, and barium and lithium supported on the alumina coating layer section. And a catalyst having
【0053】(実施例2)実施例2の排ガス浄化用触媒
は、担持層がチタニアにより形成されかつNOx吸蔵還
元部にさらにカリウムを担持させた以外は、実施例1と
同様な排ガス浄化用触媒である。(Example 2) The exhaust gas purifying catalyst of Example 2 is the same as the exhaust gas purifying catalyst of Example 1 except that the supporting layer is made of titania and potassium is further supported in the NOx occlusion reduction section. Is.
【0054】まず、チタニア100重量部を脱イオン水
67重量部に分散させ、さらに、チタニアゾル83重量
部を添加して湿式粉砕してチタニアスラリーを調製し
た。First, 100 parts by weight of titania was dispersed in 67 parts by weight of deionized water, 83 parts by weight of titania sol was added, and wet pulverization was performed to prepare a titania slurry.
【0055】調製されたチタニアスラリーを、実施例1
と同様なコーディエライト製DPF担体に塗布し、25
0℃で1時間乾燥し、ついで500℃で1時間焼成して
チタニアコートコーディエライトDPFを得た。The titania slurry prepared was used in Example 1.
Apply to a cordierite DPF carrier similar to
It was dried at 0 ° C. for 1 hour and then baked at 500 ° C. for 1 hour to obtain a titania-coated cordierite DPF.
【0056】得られたチタニアコートコーディエライト
DPFのチタニア量は、耐火性三次元構造体1リットル
あたり100gであった。The titania amount of the obtained titania-coated cordierite DPF was 100 g per liter of the fire-resistant three-dimensional structure.
【0057】得られたチタニアコートコーディエライト
DPFに白金硝酸塩水溶液を含浸させ、250℃で1時
間乾燥後、硝酸ロジウム水溶液を含浸させ、250℃で
1時間乾燥させ、触媒貴金属担持チタニアコートコーデ
ィエライトDPFを得た。The resulting titania-coated cordierite DPF was impregnated with an aqueous solution of platinum nitrate, dried at 250 ° C. for 1 hour, then impregnated with an aqueous solution of rhodium nitrate and dried at 250 ° C. for 1 hour, and the titania-coated cordierite carrying catalyst noble metal was used. I got a light DPF.
【0058】得られた触媒貴金属担持チタニアコートコ
ーディエライトDPFの触媒貴金属の担持量は、DPF
担体1リットルあたり白金で5g、ロジウムで0.1g
であった。The amount of the catalyst noble metal supported on the obtained catalyst noble metal-supported titania-coated cordierite DPF was determined by the DPF.
5 g of platinum and 0.1 g of rhodium per liter of carrier
Met.
【0059】得られた触媒貴金属担持チタニアコートコ
ーディエライトDPFを脱イオン水中に浸漬した後に、
吸引を行い触媒貴金属担持チタニアコートコーディエラ
イトDPFの1個あたりの吸水量を求めた。After the obtained catalyst precious metal-supporting titania coat cordierite DPF was immersed in deionized water,
Suction was performed to determine the amount of water absorbed per one piece of the catalyst precious metal-supporting titania coat cordierite DPF.
【0060】得られた吸水量の半分量の脱イオン水に酢
酸バリウム、硝酸リチウム、酢酸カリウムを溶解させ、
その溶解液に触媒貴金属担持チタニアコートコーディエ
ライトDPFを一方の端面からのみ浸漬させた。このと
き、溶解液は、一方の端面からDPF担体の軸方向の長
さの1/2までの部分に浸漬された。その後、250℃
で1時間乾燥し、ついで500℃で1時間焼成すること
で実施例2の排ガス浄化用触媒を得た。実施例2の排ガ
ス浄化用触媒のNOx吸蔵材量は三次元構造体1個あた
りバリウムで13.5g、リチウムで1.4g、カリウ
ムで3.8gであった。Barium acetate, lithium nitrate and potassium acetate were dissolved in deionized water in an amount half the water absorption obtained,
The catalyst precious metal-supporting titania coat cordierite DPF was immersed in the solution only from one end surface. At this time, the dissolution liquid was immersed in a portion from one end surface to half the axial length of the DPF carrier. After that, 250 ℃
It was dried for 1 hour and then calcined at 500 ° C. for 1 hour to obtain an exhaust gas purifying catalyst of Example 2. The NOx storage material amount of the exhaust gas purifying catalyst of Example 2 was 13.5 g for barium, 1.4 g for lithium, and 3.8 g for potassium per one three-dimensional structure.
【0061】(実施例3)実施例3の排ガス浄化用触媒
は、担持層がH型モルデナイトよりなるゼオライトによ
り形成された以外は、実施例2と同様な排ガス浄化用触
媒である。(Example 3) The exhaust gas purifying catalyst of Example 3 is the same exhaust gas purifying catalyst as that of Example 2 except that the supporting layer is formed of zeolite composed of H-type mordenite.
【0062】なお、実施例3は、H型モルデナイトより
なるゼオライト100重量部を脱イオン水87重量部に
分散させ、さらに、シリカゾル63重量部を添加し、湿
式粉砕してゼオライトスラリーを、チタニアスラリーに
替えて製造された排ガス浄化用触媒である。In Example 3, 100 parts by weight of H-type mordenite zeolite was dispersed in 87 parts by weight of deionized water, 63 parts by weight of silica sol was further added, and the mixture was wet pulverized to prepare a zeolite slurry of titania slurry. It is a catalyst for purifying exhaust gas manufactured in place of.
【0063】実施例3の排ガス浄化用触媒において、ゼ
オライト量はDPF担体1リットルあたり100gであ
り、触媒貴金属量がDPF担体1リットルあたり白金で
5g、ロジウムで0.1gであった。また、NOx吸蔵
材量はDPF担体1個あたりバリウムで13.5g、リ
チウムで1.4g、カリウムで3.8gであった。In the exhaust gas-purifying catalyst of Example 3, the amount of zeolite was 100 g per liter of DPF carrier, and the amount of noble metal catalyst was 5 g of platinum and 0.1 g of rhodium per liter of DPF carrier. The amount of NOx storage material was 13.5 g for barium, 1.4 g for lithium, and 3.8 g for potassium per DPF carrier.
【0064】(実施例4)実施例4の排ガス浄化用触媒
は、DPF担体に替えてセル数が62個/cm2(40
0個/inch2)のオープンフローのガス流通セルを
有する12.9センチ径×15.0センチ長さの円筒状
のコーディエライト製ハニカム担体を用い、かつNOx
吸蔵還元部にさらにカリウムを担持させた以外は、実施
例1と同様な排ガス浄化用触媒である。(Example 4) The exhaust gas purifying catalyst of Example 4 has a cell number of 62 cells / cm 2 (40
0x / inch 2 ) using a cylindrical cordierite honeycomb carrier having a diameter of 12.9 cm and a length of 15.0 cm having an open flow gas flow cell, and NOx
The catalyst for purifying exhaust gas is the same as in Example 1, except that potassium is further supported in the storage reduction section.
【0065】また、実施例4の排ガス浄化用触媒は、実
施例1および2の製造方法と同様にして製造した。The exhaust gas-purifying catalyst of Example 4 was manufactured in the same manner as in the manufacturing method of Examples 1 and 2.
【0066】実施例4の排ガス浄化用触媒におけるアル
ミナ量は、ハニカム担体1リットルあたり100gであ
り、触媒貴金属量はハニカム担体1リットルあたり白金
で5g、ロジウムで0.1gであった。また、NOx吸
蔵材量は、ハニカム担体1個あたりバリウムで13.5
g、リチウムで1.4g、カリウムで3.8gであっ
た。The amount of alumina in the exhaust gas purifying catalyst of Example 4 was 100 g per liter of the honeycomb carrier, and the amount of catalytic noble metal was 5 g of platinum and 0.1 g of rhodium per liter of the honeycomb carrier. The amount of NOx storage material is 13.5 barium per honeycomb carrier.
g, lithium was 1.4 g, and potassium was 3.8 g.
【0067】(実施例5)まず、酢酸バリウム29.5
重量部を脱イオン水200重量部に溶解させ、この溶液
に100重量部のアルミナ粉末を投入し、1時間攪拌し
た後250℃で12時間乾燥させ、500℃で1時間焼
成してバリウム担持アルミナ粉末を調製した。Example 5 First, barium acetate 29.5
Part by weight is dissolved in 200 parts by weight of deionized water, 100 parts by weight of alumina powder is added to this solution, stirred for 1 hour, dried at 250 ° C. for 12 hours, calcined at 500 ° C. for 1 hour, and barium-loaded alumina. A powder was prepared.
【0068】このバリウム担持アルミナ粉末100重量
部を脱イオン水140重量部に分散させ、ついで、硝酸
アルミニウム9水和物19重量部とコンディア製アルミ
ナ水和物3重量部を添加し、湿式粉砕してバリウムアル
ミナスラリーを調製した。100 parts by weight of this barium-supported alumina powder was dispersed in 140 parts by weight of deionized water, and then 19 parts by weight of aluminum nitrate 9-hydrate and 3 parts by weight of alumina hydrate manufactured by Condia were added and wet-milled. To prepare a barium alumina slurry.
【0069】得られたバリウムアルミナスラリーを、セ
ル数が47個/cm2(約300個/inch2)のウォ
ールフローの直径12.9センチ×軸方向の長さ15.
0センチの円筒状のコーディエライト製DPF担体に塗
布し、250℃で1時間乾燥し、ついで500℃で1時
間焼成してバリウムアルミナコートコーディエライトD
PFを得た。The barium-alumina slurry thus obtained was used to obtain a wall flow having a cell number of 47 cells / cm 2 (approximately 300 cells / inch 2 ) having a diameter of 12.9 cm and an axial length of 15.
Barium-alumina-coated cordierite D was coated on a 0 cm cylindrical DPF carrier made of cordierite, dried at 250 ° C for 1 hour, and then baked at 500 ° C for 1 hour.
PF was obtained.
【0070】得られたバリウムアルミナコートコーディ
エライトDPFのバリウムアルミナ量は、DPF担体1
リットルあたり50gであった。The amount of barium alumina in the obtained barium alumina-coated cordierite DPF was determined by the DPF carrier 1
It was 50 g per liter.
【0071】つづいて、アルミナ粉末100重量部を脱
イオン水140重量部に分散させ、ついでアルミナ換算
で3重量部のアルミナゾルを添加し、湿式粉砕してアル
ミナスラリーを調製した。Subsequently, 100 parts by weight of alumina powder was dispersed in 140 parts by weight of deionized water, and then 3 parts by weight of alumina sol in terms of alumina was added and wet pulverized to prepare an alumina slurry.
【0072】調製されたアルミナスラリーを、バリウム
アルミナコートコーディエライトDPFに塗布し、多層
アルミナコートコーディエライトDPFを得た。ここ
で、上層にもうけられたアルミナ量は、DPF担体1リ
ットルあたり50gであった。The prepared alumina slurry was applied to barium alumina-coated cordierite DPF to obtain a multilayer alumina-coated cordierite DPF. Here, the amount of alumina deposited in the upper layer was 50 g per liter of the DPF carrier.
【0073】その後、多層アルミナコートコーディエラ
イトDPFに白金硝酸塩水溶液を含浸させ、250℃で
1時間乾燥後、硝酸ロジウム水溶液を含浸させ、250
℃で1時間乾燥させ、実施例5の排ガス浄化用触媒を得
た。実施例5の排ガス浄化用触媒における触媒貴金属量
は、DPF担体1リットルあたり、白金で5g、ロジウ
ムで0.1gであった。Then, the multilayer alumina-coated cordierite DPF was impregnated with an aqueous solution of platinum nitrate, dried at 250 ° C. for 1 hour, and then impregnated with an aqueous solution of rhodium nitrate to give 250
After drying at 0 ° C. for 1 hour, an exhaust gas purifying catalyst of Example 5 was obtained. The catalyst noble metal amounts in the exhaust gas purifying catalyst of Example 5 were 5 g of platinum and 0.1 g of rhodium per liter of DPF carrier.
【0074】(実施例6)実施例6の排ガス浄化用触媒
は、酸化触媒部とNOx吸蔵還元部とがそれぞれ異なる
担体上にもうけられた排ガス浄化用触媒である。(Embodiment 6) The exhaust gas purifying catalyst of Embodiment 6 is an exhaust gas purifying catalyst in which an oxidation catalyst portion and a NOx storage reduction portion are provided on different carriers.
【0075】詳しくは、実施例6の排ガス浄化用触媒
は、セル数が62個/cm2(約400個/inc
h2)、直径12.9センチ、軸方向の長さが7.5セ
ンチの円筒状のハニカム構造体上に酸化触媒部のみが形
成された酸化触媒と、セル数が47個/cm2(約30
0個/inch2)、直径12.9センチ、軸方向の長
さが7.5センチの円筒状のハニカム構造体上にNOx
吸蔵還元部のみが形成されたNOx吸蔵還元触媒と、か
らなり、酸化触媒部とNOx吸蔵還元部のそれぞれが実
施例1の酸化触媒部とNOx吸蔵還元部と同様な触媒で
ある。Specifically, the exhaust gas-purifying catalyst of Example 6 had a cell number of 62 cells / cm 2 (about 400 cells / inc).
h 2 ), a diameter of 12.9 cm, an axial length of 7.5 cm, and an oxidation catalyst in which only an oxidation catalyst portion is formed on a cylindrical honeycomb structure, and the number of cells is 47 cells / cm 2 ( About 30
0x / inch 2 ), diameter 12.9 cm, axial length 7.5 cm, and NOx on a cylindrical honeycomb structure.
An NOx storage reduction catalyst in which only the storage reduction section is formed, and the oxidation catalyst section and the NOx storage reduction section are the same catalysts as the oxidation catalyst section and the NOx storage reduction section of the first embodiment.
【0076】より詳しくは、実施例6の排ガス浄化用触
媒は、セル数が62個/cm2のハニカム構造体の表面
にアルミナがコートされ、このアルミナに触媒貴金属が
担持されてなる酸化触媒と、セル数が62個/cm2の
ハニカム構造体の表面にアルミナがコートされ、このア
ルミナに触媒貴金属とバリウム、リチウムが担持された
NOx吸蔵還元触媒と、からなる。More specifically, the exhaust gas purifying catalyst of Example 6 was an oxidation catalyst in which the surface of a honeycomb structure having 62 cells / cm 2 was coated with alumina, and the alumina was loaded with a catalytic noble metal. The surface of a honeycomb structure having a cell number of 62 cells / cm 2 is coated with alumina, and this alumina comprises a NOx storage reduction catalyst in which a catalytic noble metal, barium, and lithium are carried.
【0077】この酸化触媒とNOx吸蔵還元触媒は、実
施例1の酸化触媒部とNOx吸蔵還元部のそれぞれの製
造方法と同様の方法により製造された。The oxidation catalyst and the NOx occlusion reduction catalyst were produced by the same method as the method for producing the oxidation catalyst part and the NOx occlusion reduction part of Example 1.
【0078】実施例6の排ガス浄化用触媒は、酸化触媒
が前段にNOx吸蔵還元触媒が後段に近接して配された
状態で同一容器内に保持されて用いられる。The exhaust gas purifying catalyst of Example 6 is used by being held in the same container in a state where the oxidation catalyst is arranged in the front stage and the NOx storage reduction catalyst is arranged in close proximity to the rear stage.
【0079】実施例6の排ガス浄化用触媒は、酸化触媒
が高密度な担体に形成されていることで、後段に配され
たNOx吸蔵還元触媒における触媒反応が促進される。
すなわち、酸化触媒における触媒反応は発熱反応である
ため、高密度な酸化触媒により排ガスが浄化されるとき
に発熱を生じる。酸化触媒において発生した熱は、後段
に位置するNOx吸蔵還元触媒に伝導し、この熱がNO
x吸蔵還元触媒での触媒反応を促進するようになる。In the exhaust gas purifying catalyst of Example 6, the oxidation catalyst is formed on the high-density carrier, so that the catalytic reaction in the NOx storage reduction catalyst arranged in the subsequent stage is promoted.
That is, since the catalytic reaction in the oxidation catalyst is an exothermic reaction, heat is generated when the exhaust gas is purified by the high-density oxidation catalyst. The heat generated in the oxidation catalyst is transferred to the NOx storage reduction catalyst located in the subsequent stage, and this heat is converted into NO.
x The catalytic reaction of the occlusion reduction catalyst is promoted.
【0080】(比較例)比較例は、従来のNOx吸蔵還
元材が触媒金属と混在した状態で担持された排ガス浄化
用触媒である。Comparative Example A comparative example is an exhaust gas purifying catalyst in which a conventional NOx storage-reducing material is carried in a state of being mixed with a catalyst metal.
【0081】まず、アルミナ粉末100重量部を脱イオ
ン水140重量部に分散させ、ついで硝酸アルミニウム
9水和物19重量部とアルミナ水和物3重量部を添加
し、湿式粉砕してアルミナスラリーを調製した。First, 100 parts by weight of alumina powder was dispersed in 140 parts by weight of deionized water, 19 parts by weight of aluminum nitrate 9 hydrate and 3 parts by weight of alumina hydrate were added, and wet pulverized to obtain an alumina slurry. Prepared.
【0082】得られたアルミナスラリーを、セル数が4
7個/cm2(約300個/inch2)のウォールフロ
ーの直径12.9センチ、軸方向の長さが15.0セン
チの円筒状のコーディエライト製DPF担体に塗布し、
250℃で1時間乾燥し、ついで500℃で1時間焼成
してアルミナコートコーディエライトDPFが得られ
た。ここで、アルミナコートコーディエライトDPFに
担持されたアルミナ量は、DPF担体1リットルあたり
50gであった。The obtained alumina slurry had a cell number of 4
7 pieces / cm 2 (about 300 pieces / inch 2 ) of wall flow having a diameter of 12.9 cm and an axial length of 15.0 cm are applied to a cylindrical cordierite DPF carrier,
It was dried at 250 ° C. for 1 hour and then calcined at 500 ° C. for 1 hour to obtain an alumina-coated cordierite DPF. Here, the amount of alumina supported on the alumina-coated cordierite DPF was 50 g per liter of the DPF carrier.
【0083】アルミナコートコーディエライトDPF
に、白金硝酸塩水溶液を含浸させ、250℃で1時間乾
燥後、硝酸ロジウム水溶液を含浸させ、250℃で1時
間乾燥させ、触媒貴金属担持アルミナコートコーディエ
ライトDPFを得た。貴金属担持アルミナコートコーデ
ィエライトDPFの触媒貴金属量は、DPF担体1リッ
トルあたり白金で5g、ロジウムで0.1gであった。Alumina-coated cordierite DPF
Was impregnated with an aqueous solution of platinum nitrate, dried at 250 ° C. for 1 hour, then impregnated with an aqueous solution of rhodium nitrate and dried at 250 ° C. for 1 hour to obtain a catalyst noble metal-supported alumina-coated cordierite DPF. The catalyst noble metal amount of the noble metal-supported alumina-coated cordierite DPF was 5 g of platinum and 0.1 g of rhodium per liter of DPF carrier.
【0084】触媒貴金属担持アルミナコートコーディエ
ライトDPFを脱イオン水中に浸漬した後に、吸引を行
い貴金属担持アルミナコートコーディエライトDPFの
1個あたりの吸水量を求めた。The catalyst noble metal-supported alumina-coated cordierite DPF was immersed in deionized water and then suctioned to determine the amount of water absorbed per noble metal-supported alumina-coated cordierite DPF.
【0085】求められた吸水量の脱イオン水に酢酸バリ
ウム、硝酸リチウム、硝酸カリウムを溶解させ、その溶
解液に貴金属担持アルミナコートコーディエライトDP
Fを浸漬させた。この浸漬は、貴金属担持アルミナコー
トコーディエライトDPFの両端面から全体に溶解液を
浸漬させることでなされた。その後、250℃で1時間
乾燥し、ついで500℃で1時間焼成して比較例の排ガ
ス浄化用触媒を得た。比較例の排ガス浄化用触媒のNO
x吸蔵材量はDPF担体1個あたりバリウムで26.9
g、リチウムで2.7g、カリウムで7.7gであっ
た。Barium acetate, lithium nitrate and potassium nitrate were dissolved in deionized water having the determined water absorption amount, and noble metal-supported alumina-coated cordierite DP was dissolved in the solution.
F was immersed. This immersion was performed by immersing the solution from the both end surfaces of the noble metal-supported alumina-coated cordierite DPF. Then, it was dried at 250 ° C. for 1 hour and then calcined at 500 ° C. for 1 hour to obtain an exhaust gas purifying catalyst of a comparative example. NO of the exhaust gas purifying catalyst of the comparative example
x The amount of storage material is 26.9 for barium per DPF carrier.
g, lithium 2.7 g, potassium 7.7 g.
【0086】(評価)実施例1〜6および比較例の触媒
の評価として、ディーゼルエンジンからの排ガスを実際
に浄化させて浄化性能の測定を行った。(Evaluation) As an evaluation of the catalysts of Examples 1 to 6 and Comparative Example, the exhaust gas from the diesel engine was actually purified and the purification performance was measured.
【0087】なお、浄化性能の評価は、それぞれの触媒
を耐久(劣化)させた状態で行われた。この耐久(劣
化)は、オーブンを用いて650℃で50時間の焼成を
施すことでなされた。The purification performance was evaluated in a state where each catalyst was made durable (deteriorated). This durability (deterioration) was performed by baking at 650 ° C. for 50 hours using an oven.
【0088】そして、過給機付き直接噴射式ディーゼル
エンジン(4気筒、2000cc)を用い、触媒床温が
100℃から450℃まで昇温する運転条件でディーゼ
ルエンジンを作動させ、触媒床温が300℃のときの炭
化水素(HC)、一酸化炭素(CO)、窒素酸化物(N
Ox)の濃度を測定し、浄化率を求めた。なお、実施例
1〜6の多段型排ガス浄化用触媒においては、排ガス流
の上流側に酸化触媒部が位置する状態で排ガスの浄化が
行われた。また、それぞれの成分の濃度の測定は、堀場
製作所製ガス分析機(MEXA9100)を用いて行わ
れた。なお、ディーゼルエンジンの運転は、回転数を2
100rpmで一定に保持し、触媒昇温が100〜45
0℃になるように負荷(トルク)を変化させることでな
された。ここで、実施例6の触媒では、二つのハニカム
担体が同一容器内に近接した状態で配された構造である
ことから、二つの触媒部の触媒床温がほぼ一致する。こ
のことから、実施例6の触媒床温には、一方のハニカム
担体触媒の触媒床温が用いられた。A direct injection diesel engine with a supercharger (4 cylinders, 2000 cc) was used, and the diesel engine was operated under operating conditions in which the catalyst bed temperature rose from 100 ° C. to 450 ° C. Hydrocarbon (HC), carbon monoxide (CO), nitrogen oxides (N
The concentration of Ox) was measured to obtain the purification rate. In addition, in the multistage exhaust gas purifying catalysts of Examples 1 to 6, the exhaust gas was purified in a state where the oxidation catalyst portion was located on the upstream side of the exhaust gas flow. The concentration of each component was measured using a gas analyzer (MEXA9100) manufactured by Horiba Ltd. The diesel engine is operated at a rotational speed of 2
The temperature is kept constant at 100 rpm and the catalyst temperature rise is 100 to 45
It was done by changing the load (torque) so that it became 0 ° C. Here, in the catalyst of Example 6, since the two honeycomb carriers are arranged in the same container in a close state, the catalyst bed temperatures of the two catalyst parts are substantially the same. From this, the catalyst bed temperature of Example 6 was the catalyst bed temperature of one of the honeycomb-supported catalysts.
【0089】また、浄化率の測定は、触媒の入口と出口
の両端でのガス濃度を測定し、入りガス濃度とでガス濃
度から浄化率を求めた。Further, the purification rate was measured by measuring the gas concentration at both ends of the catalyst inlet and outlet and determining the purification rate from the gas concentration with the incoming gas concentration.
【0090】また、この試験において排出される粒子状
物質(PM)濃度を、小型トンネル希釈採取法により測
定した。また、この測定値から粒子状物質の浄化率を計
算した。それぞれの浄化率の測定結果を表1に示した。Further, the concentration of particulate matter (PM) discharged in this test was measured by the small tunnel dilution sampling method. Moreover, the purification rate of the particulate matter was calculated from the measured values. Table 1 shows the measurement results of the respective purification rates.
【0091】[0091]
【表1】 [Table 1]
【0092】表1において、HC、COおよびNOxの
浄化率は、浄化率(%)={(入りガス成分濃度
(%))−(出ガス成分濃度(%))}×100/(入
りガス成分濃度(%))で、PM浄化率は、浄化率
(%)={(入りガスPM質量(mg))−(出ガスP
M質量(mg))}×100/(入りガスPM質量(m
g))により得られた。In Table 1, the purification rates of HC, CO and NOx are as follows: Purification rate (%) = {(inlet gas component concentration (%))-(outlet gas component concentration (%))} × 100 / (inlet gas In the component concentration (%)), the PM purification rate is the purification rate (%) = {(inlet gas PM mass (mg))-(outlet gas P
M mass (mg)} × 100 / (containing gas PM mass (m
g)).
【0093】表1より、実施例1〜6の排ガス浄化用触
媒は、比較例の排ガス浄化用触媒と比較して、HC、C
O、NOxのいずれの浄化率も高くなっている。すなわ
ち、実施例1〜6の排ガス浄化用触媒は、酸化触媒部と
NOx吸蔵還元部とが分離してもうけられているため、
酸化触媒部に担持された触媒貴金属がNOx吸蔵還元材
による酸化機能の低下を受けないため、酸化性能が損な
われることなく高いNOx吸蔵還元性能を有する排ガス
浄化用触媒となっている。From Table 1, the exhaust gas purifying catalysts of Examples 1 to 6 are higher in HC and C than the exhaust gas purifying catalysts of Comparative Examples.
The purification rates of both O and NOx are high. That is, in the exhaust gas purifying catalysts of Examples 1 to 6, since the oxidation catalyst portion and the NOx storage reduction portion are provided separately,
Since the catalytic noble metal carried on the oxidation catalyst portion is not deteriorated in the oxidation function by the NOx storage reduction material, the exhaust gas purifying catalyst has high NOx storage reduction performance without impairing the oxidation performance.
【0094】[0094]
【発明の効果】本発明の排ガス浄化用触媒は、三次元構
造体上に酸化触媒部とNOx吸蔵還元部とを有すること
で、酸化触媒部の第一触媒金属とNOx吸蔵還元部のN
Ox吸蔵還元材とが接触しなくなり、第一触媒金属が酸
化機能の低下を生じなくなっている。すなわち、本発明
の排ガス浄化用触媒は、酸化触媒部が排ガスを酸化浄化
し、NOx吸蔵還元部がNOxを吸蔵還元により浄化す
る。この結果、本発明の排ガス浄化用触媒は、高い酸化
性能およびNOx吸蔵還元性能を有する触媒となってい
る。The exhaust gas purifying catalyst of the present invention has the oxidation catalyst part and the NOx storage reduction part on the three-dimensional structure, so that the first catalyst metal of the oxidation catalyst part and the Nx storage reduction part of the NOx storage reduction part.
The Ox storage reduction material does not come into contact with the first catalyst metal, and the oxidation function of the first catalyst metal does not deteriorate. That is, in the exhaust gas purifying catalyst of the present invention, the oxidation catalyst unit oxidizes and purifies the exhaust gas, and the NOx storage reduction unit purifies NOx by storage reduction. As a result, the exhaust gas purifying catalyst of the present invention is a catalyst having high oxidation performance and NOx storage reduction performance.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/08 F01N 3/10 A 3/10 3/24 E 3/24 3/28 301C 3/28 301 B01D 46/42 B // B01D 46/42 53/36 102B 104A 104B (72)発明者 沖 大祐 静岡県小笠郡大東町千浜7800番地 株式会 社キャタラー内 Fターム(参考) 3G090 AA01 AA02 AA03 BA01 EA01 EA05 3G091 AA02 AA12 AA17 AA18 AB02 AB06 AB09 AB13 BA00 BA14 BA15 BA19 GA06 GA20 GB01W GB01X GB02Y GB05W GB06W GB07W GB10X GB16X GB17X HA11 4D048 AA06 AA13 AA14 AA18 AB01 AB05 AB07 BA03X BA06Y BA07X BA08Y BA10X BA11Y BA14X BA15X BA19Y BA30X BA31Y BA33X BA34Y BA39Y BA41X BB02 BB14 BB16 CC32 CC47 EA04 4D058 JA32 JB06 MA44 SA08 4G069 AA03 BA01A BA01B BA02A BA04A BA04B BA05A BA07A BA13A BA13B BA17 BB04A BB04B BC01A BC03B BC04B BC08A BC13B BC32A BC33A BC43A BC71A BC71B BC72A BC74A BC75A BC75B CA03 CA09 CA18 EA18 EA19 EA27 EB12Y EB14Y EC28 EC29 EE09 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F01N 3/08 F01N 3/10 A 3/10 3/24 E 3/24 3/28 301C 3/28 301 B01D 46/42 B // B01D 46/42 53/36 102B 104A 104B (72) Inventor Daisuke Oki 7800, Chihama, Daito-cho, Ogasa-gun, Shizuoka Prefecture F-term (reference) 3G090 AA01 AA02 AA03 BA01 EA01 EA05 3G091 AA02 AA12 AA17 AA18 AB02 AB06 AB09 AB13 BA00 BA14 BA15 BA19 GA06 GA20 GB01W GB01X GB02Y GB05W GB06W GB07W GB10X GB16X GB17X HA11 4D048 AA06 AA13 BA34 BA31 BA31 BA31 BA33 BA08 BA31 BA03 BA08BA30 BA08 BA31 BA08BA30 BA08BA30 BA08BA03 BA08X BB14 BB16 CC32 CC47 EA04 4D058 JA32 JB06 MA44 SA08 4G069 AA03 BA01A BA01B BA02A BA04A BA04B BA05A BA07A BA13A BA13B BA17 BB04A BB04B BC01A BC03B BC04B BC08A BC13B BC32A BC33A BC43A BC71A BC71B BC72A BC74A BC75A BC75B CA03 CA09 CA18 EA18 EA19 EA27 EB12Y EB14Y EC28 EC29 EE09
Claims (10)
る第一担持層部と、該第一担持層部に担持された第一触
媒金属と、を有する酸化触媒部と、 該三次元構造体上にもうけられた第二無機酸化物よりな
る第二担持層部と、該第二担持層部に担持された第二触
媒金属と、該第二担持層部に担持されたNOx吸蔵還元
材と、を有するNOx吸蔵還元部と、を有することを特
徴とする排ガス浄化用触媒。1. A three-dimensional structure having fire resistance, a first support layer part made of a first inorganic oxide provided on the three-dimensional structure, and a first support layer part supported on the first support layer part. An oxidation catalyst part having one catalytic metal, a second supporting layer part made of a second inorganic oxide provided on the three-dimensional structure, and a second catalytic metal supported on the second supporting layer part. An exhaust gas purifying catalyst comprising: a NOx storage-reduction portion having the NOx storage-reduction material supported on the second support layer portion.
元部は、前記三次元構造体上で排ガスの流れ方向に並ん
だ状態でもうけられた請求項1記載の排ガス浄化用触
媒。2. The exhaust gas purifying catalyst according to claim 1, wherein the oxidation catalyst portion and the NOx storage reduction portion are provided in a state of being arranged on the three-dimensional structure in a flow direction of exhaust gas.
とが、前記三次元構造体上で積層してもうけられた請求
項1記載の排ガス浄化用触媒。3. The exhaust gas purifying catalyst according to claim 1, wherein the oxidation catalyst portion and the NOx storage reduction portion are stacked on the three-dimensional structure.
カ、チタニア、ジルコニア、セリア、ゼオライトの少な
くとも一種よりなる請求項1記載の排ガス浄化用触媒。4. The exhaust gas-purifying catalyst according to claim 1, wherein the first inorganic oxide comprises at least one of alumina, silica, titania, zirconia, ceria, and zeolite.
h、Ag、Au、Irの少なくとも一種よりなる請求項
1記載の排ガス浄化用触媒。5. The first catalytic metal is Pt, Pd, R
The exhaust gas purifying catalyst according to claim 1, comprising at least one of h, Ag, Au, and Ir.
カ、チタニア、ジルコニア、セリア、ゼオライトの少な
くとも一種よりなる請求項1記載の排ガス浄化用触媒。6. The exhaust gas purifying catalyst according to claim 1, wherein the second inorganic oxide is at least one of alumina, silica, titania, zirconia, ceria, and zeolite.
h、Ag、Au、Irの少なくとも一種よりなる請求項
1記載の排ガス浄化用触媒。7. The second catalyst metal is Pt, Pd, R
The exhaust gas purifying catalyst according to claim 1, comprising at least one of h, Ag, Au, and Ir.
属、アルカリ土類金属より選ばれる少なくとも一種より
なる請求項1記載の排ガス浄化用触媒。8. The exhaust gas-purifying catalyst according to claim 1, wherein the NOx storage-reducing material comprises at least one selected from alkali metals and alkaline earth metals.
ハニカムあるいはウォールフローのDPFである請求項
記載の排ガス浄化用触媒。9. The exhaust gas purifying catalyst according to claim 1, wherein the three-dimensional structure is an open flow honeycomb or a wall flow DPF.
るいはメタルよりなる請求項1記載の排ガス浄化用触
媒。10. The exhaust gas purifying catalyst according to claim 1, wherein the three-dimensional structure is made of ceramics or metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001276852A JP2003080081A (en) | 2001-09-12 | 2001-09-12 | Catalyst for cleaning exhaust gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001276852A JP2003080081A (en) | 2001-09-12 | 2001-09-12 | Catalyst for cleaning exhaust gas |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012239834A Division JP5604497B2 (en) | 2012-10-31 | 2012-10-31 | Exhaust gas purification catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003080081A true JP2003080081A (en) | 2003-03-18 |
Family
ID=19101493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001276852A Pending JP2003080081A (en) | 2001-09-12 | 2001-09-12 | Catalyst for cleaning exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003080081A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007083114A (en) * | 2005-09-20 | 2007-04-05 | Univ Of Tokyo | Exhaust gas purifying catalyst |
JP2007144285A (en) * | 2005-11-25 | 2007-06-14 | Mitsubishi Heavy Ind Ltd | Exhaust gas-purifying catalyst and its manufacturing method, and exhaust gas purifier |
JP2007313451A (en) * | 2006-05-26 | 2007-12-06 | Toyota Central Res & Dev Lab Inc | Structure for clarifying diesel exhaust gas and method for clarifying exhaust gas by using the same |
JP2008510605A (en) * | 2004-08-21 | 2008-04-10 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | Catalyst coated particle filter, process for its production and use thereof |
JP2008151100A (en) * | 2006-12-20 | 2008-07-03 | Toyota Motor Corp | Exhaust emission control device |
JP2009138645A (en) * | 2007-12-06 | 2009-06-25 | Mitsubishi Motors Corp | Exhaust emission control device |
KR101459848B1 (en) | 2012-12-13 | 2014-11-07 | 현대자동차주식회사 | Diesel oxidation catalyst |
CN110546356A (en) * | 2017-04-26 | 2019-12-06 | 株式会社科特拉 | Exhaust gas purification system and self-propelled vehicle |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH078755A (en) * | 1993-06-25 | 1995-01-13 | Toyota Central Res & Dev Lab Inc | Exhaust gas purification device |
JPH07132226A (en) * | 1993-11-10 | 1995-05-23 | Toyota Motor Corp | Catalyst for purifying exhaust gas |
JPH0871371A (en) * | 1994-09-02 | 1996-03-19 | Toyota Motor Corp | Purification of exhaust gas |
JPH08141394A (en) * | 1994-11-25 | 1996-06-04 | Toyota Central Res & Dev Lab Inc | Catalyst for purifying exhaust gas |
JPH08168675A (en) * | 1994-12-16 | 1996-07-02 | Toyota Motor Corp | Catalyst for purifying exhaust gas |
JPH09215922A (en) * | 1996-02-09 | 1997-08-19 | Toyota Motor Corp | Catalyst for purifying exhaust gas |
JPH09253454A (en) * | 1996-03-19 | 1997-09-30 | Toyota Motor Corp | Catalyst for purifying exhaust gas |
JP2716205B2 (en) * | 1989-05-08 | 1998-02-18 | 株式会社日本触媒 | Exhaust gas purification catalyst |
JPH10151353A (en) * | 1996-09-26 | 1998-06-09 | Mazda Motor Corp | Exhaust gas purifying catalyst |
JPH11138005A (en) * | 1997-11-11 | 1999-05-25 | Nissan Motor Co Ltd | Exhaust gas purification catalyst and production of the same |
WO2001012320A1 (en) * | 1999-08-13 | 2001-02-22 | Johnson Matthey Public Limited Company | Catalytic wall-flow filter |
-
2001
- 2001-09-12 JP JP2001276852A patent/JP2003080081A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2716205B2 (en) * | 1989-05-08 | 1998-02-18 | 株式会社日本触媒 | Exhaust gas purification catalyst |
JPH078755A (en) * | 1993-06-25 | 1995-01-13 | Toyota Central Res & Dev Lab Inc | Exhaust gas purification device |
JPH07132226A (en) * | 1993-11-10 | 1995-05-23 | Toyota Motor Corp | Catalyst for purifying exhaust gas |
JPH0871371A (en) * | 1994-09-02 | 1996-03-19 | Toyota Motor Corp | Purification of exhaust gas |
JPH08141394A (en) * | 1994-11-25 | 1996-06-04 | Toyota Central Res & Dev Lab Inc | Catalyst for purifying exhaust gas |
JPH08168675A (en) * | 1994-12-16 | 1996-07-02 | Toyota Motor Corp | Catalyst for purifying exhaust gas |
JPH09215922A (en) * | 1996-02-09 | 1997-08-19 | Toyota Motor Corp | Catalyst for purifying exhaust gas |
JPH09253454A (en) * | 1996-03-19 | 1997-09-30 | Toyota Motor Corp | Catalyst for purifying exhaust gas |
JPH10151353A (en) * | 1996-09-26 | 1998-06-09 | Mazda Motor Corp | Exhaust gas purifying catalyst |
JPH11138005A (en) * | 1997-11-11 | 1999-05-25 | Nissan Motor Co Ltd | Exhaust gas purification catalyst and production of the same |
WO2001012320A1 (en) * | 1999-08-13 | 2001-02-22 | Johnson Matthey Public Limited Company | Catalytic wall-flow filter |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008510605A (en) * | 2004-08-21 | 2008-04-10 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | Catalyst coated particle filter, process for its production and use thereof |
KR101273228B1 (en) * | 2004-08-21 | 2013-06-11 | 우미코레 아게 운트 코 카게 | Catalytically coated particle filter and method for producing the same and its use |
JP4497315B2 (en) * | 2005-09-20 | 2010-07-07 | 国立大学法人 東京大学 | Exhaust gas purification catalyst |
JP2007083114A (en) * | 2005-09-20 | 2007-04-05 | Univ Of Tokyo | Exhaust gas purifying catalyst |
JP2007144285A (en) * | 2005-11-25 | 2007-06-14 | Mitsubishi Heavy Ind Ltd | Exhaust gas-purifying catalyst and its manufacturing method, and exhaust gas purifier |
JP2007313451A (en) * | 2006-05-26 | 2007-12-06 | Toyota Central Res & Dev Lab Inc | Structure for clarifying diesel exhaust gas and method for clarifying exhaust gas by using the same |
JP4661690B2 (en) * | 2006-05-26 | 2011-03-30 | 株式会社豊田中央研究所 | Diesel exhaust gas purification structure and exhaust gas purification method using the same |
JP2008151100A (en) * | 2006-12-20 | 2008-07-03 | Toyota Motor Corp | Exhaust emission control device |
JP2009138645A (en) * | 2007-12-06 | 2009-06-25 | Mitsubishi Motors Corp | Exhaust emission control device |
KR101459848B1 (en) | 2012-12-13 | 2014-11-07 | 현대자동차주식회사 | Diesel oxidation catalyst |
CN110546356A (en) * | 2017-04-26 | 2019-12-06 | 株式会社科特拉 | Exhaust gas purification system and self-propelled vehicle |
CN110546356B (en) * | 2017-04-26 | 2021-08-06 | 株式会社科特拉 | Exhaust gas purification system and self-propelled vehicle |
US11118495B2 (en) | 2017-04-26 | 2021-09-14 | Cataler Corporation | Exhaust gas-purifying system and automotive vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4682151B2 (en) | Exhaust gas purification catalyst | |
JP6312210B2 (en) | Internal combustion engine exhaust gas purification method | |
JP6213508B2 (en) | Catalytic converter | |
US6613299B2 (en) | Catalyzed diesel particulate matter exhaust filter | |
KR101006220B1 (en) | Catalyst for exhaust gas purification | |
JP3391878B2 (en) | Exhaust gas purification catalyst | |
JPH0653229B2 (en) | Exhaust gas purification catalyst | |
JP6865664B2 (en) | Oxidation catalyst device for exhaust gas purification | |
JP4716087B2 (en) | Exhaust gas purification catalyst | |
JP4923412B2 (en) | Exhaust gas purification catalyst | |
JP4746264B2 (en) | Exhaust gas purification catalyst and exhaust gas purification device for internal combustion engine | |
JP2021079313A (en) | Catalyst for cleaning exhaust gas | |
JP2001079402A (en) | Exhaust gas cleaning catalyst and its production | |
JPH11276907A (en) | Catalyst for purifying exhaust gas and its production | |
JP2003080081A (en) | Catalyst for cleaning exhaust gas | |
JP5604497B2 (en) | Exhaust gas purification catalyst | |
JP2003135976A (en) | Catalyst for automobile | |
JP2006068722A (en) | Catalyst for cleaning exhaust gas, production method therefor, exhaust gas cleaning material, and exhaust gas cleaning system | |
JP4413366B2 (en) | Exhaust gas purification catalyst | |
JP4459346B2 (en) | Exhaust gas purification catalyst | |
JPH10165817A (en) | Catalyst for cleaning of exhaust gas | |
JP3626999B2 (en) | Exhaust gas purification material and exhaust gas purification method | |
JP4503314B2 (en) | Exhaust gas purification catalyst | |
JP5558013B2 (en) | Exhaust purification catalyst and exhaust treatment apparatus using the same | |
JP2003024795A (en) | Catalyst for cleaning exhaust gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080626 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100729 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110830 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111028 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120731 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121031 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20121107 |