JP2021016854A - Catalyst for exhaust purification - Google Patents
Catalyst for exhaust purification Download PDFInfo
- Publication number
- JP2021016854A JP2021016854A JP2019209684A JP2019209684A JP2021016854A JP 2021016854 A JP2021016854 A JP 2021016854A JP 2019209684 A JP2019209684 A JP 2019209684A JP 2019209684 A JP2019209684 A JP 2019209684A JP 2021016854 A JP2021016854 A JP 2021016854A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- oxide particles
- particles
- gas purification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 436
- 238000000746 purification Methods 0.000 title claims abstract description 176
- 239000002245 particle Substances 0.000 claims abstract description 233
- 230000003647 oxidation Effects 0.000 claims abstract description 134
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 134
- 229910000428 cobalt oxide Inorganic materials 0.000 claims abstract description 50
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims abstract description 50
- 229910044991 metal oxide Inorganic materials 0.000 claims description 50
- 150000004706 metal oxides Chemical class 0.000 claims description 50
- 229910000510 noble metal Inorganic materials 0.000 claims description 33
- 230000005484 gravity Effects 0.000 claims description 20
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 14
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 14
- 239000006104 solid solution Substances 0.000 claims description 10
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 5
- RCFVMJKOEJFGTM-UHFFFAOYSA-N cerium zirconium Chemical compound [Zr].[Ce] RCFVMJKOEJFGTM-UHFFFAOYSA-N 0.000 claims description 5
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 185
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 185
- 239000007789 gas Substances 0.000 abstract description 165
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 abstract description 77
- 229930195733 hydrocarbon Natural products 0.000 abstract description 33
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 33
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 29
- 238000012360 testing method Methods 0.000 description 68
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 34
- 230000000052 comparative effect Effects 0.000 description 29
- 239000008188 pellet Substances 0.000 description 27
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 22
- 230000000694 effects Effects 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 17
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 14
- 150000003839 salts Chemical class 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000007423 decrease Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 9
- 229910002651 NO3 Inorganic materials 0.000 description 9
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 9
- 229910052763 palladium Inorganic materials 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 150000001868 cobalt Chemical class 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000007873 sieving Methods 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 4
- 229910021446 cobalt carbonate Inorganic materials 0.000 description 4
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 4
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 4
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 4
- 229940044175 cobalt sulfate Drugs 0.000 description 4
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 4
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 4
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 description 4
- 235000013365 dairy product Nutrition 0.000 description 4
- 239000002923 metal particle Substances 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 239000010948 rhodium Substances 0.000 description 4
- GPKIXZRJUHCCKX-UHFFFAOYSA-N 2-[(5-methyl-2-propan-2-ylphenoxy)methyl]oxirane Chemical compound CC(C)C1=CC=C(C)C=C1OCC1OC1 GPKIXZRJUHCCKX-UHFFFAOYSA-N 0.000 description 3
- 238000004438 BET method Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000000975 co-precipitation Methods 0.000 description 3
- 238000000635 electron micrograph Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000010970 precious metal Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 235000010724 Wisteria floribunda Nutrition 0.000 description 2
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(2+);cobalt(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- OEGRMQDPYRYLFV-UHFFFAOYSA-N [Co+2].O.O.O.O.O.O.[N+](=O)([O-])[O-].[Co+2].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-] Chemical compound [Co+2].O.O.O.O.O.O.[N+](=O)([O-])[O-].[Co+2].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-] OEGRMQDPYRYLFV-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical group O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、三元触媒を含有する排ガス浄化触媒に関する。 The present invention relates to an exhaust gas purification catalyst containing a three-way catalyst.
自動車エンジン等の内燃機関から排出されるガス中の一酸化炭素(CO)及び炭化水素(HC)を酸化すると同時に、窒素酸化物(NOx)を還元できる排ガス浄化触媒として、金属酸化物からなる触媒担体に貴金属を担持した、いわゆる三元触媒が知られている。しかしながら、この三元触媒は、低温での排ガス浄化活性が低いため、エンジンの始動時のように触媒入りガス温度が低い場合には、排ガスが十分に浄化されずに排出されるという問題があった。 A catalyst made of metal oxide as an exhaust gas purification catalyst that can oxidize carbon monoxide (CO) and hydrocarbon (HC) in gas emitted from internal combustion engines such as automobile engines and at the same time reduce nitrogen oxides (NOx). A so-called three-way catalyst in which a noble metal is supported on a carrier is known. However, since this three-way catalyst has low exhaust gas purification activity at low temperatures, there is a problem that the exhaust gas is not sufficiently purified and is discharged when the temperature of the gas containing the catalyst is low, such as when starting an engine. It was.
そこで、特開2009−7942号公報(特許文献1)には、排ガス流路に設けられた三元触媒よりも排ガス流れの上流側にCO酸化触媒を、下流側にHCトラップ触媒を設けた排ガス浄化触媒装置が提案されている。この排ガス浄化触媒装置においては、低温でも高い触媒活性を示すCO酸化触媒が三元触媒よりも排ガス流れの上流側に設けられているため、触媒入りガス温度が低い段階からCOの浄化が可能となり、また、COの浄化により発生した反応熱により三元触媒の入ガス温度が高くなり、三元触媒が活性化されるため、HC及びNOxも十分に浄化される。しかしながら、前記排ガス浄化触媒装置においては、CO酸化触媒と三元触媒とが直列に配置されているため、三元触媒のみが配置されている場合に比べて、排ガス浄化触媒装置の規模が大きくなるという問題があった。 Therefore, Japanese Patent Application Laid-Open No. 2009-7942 (Patent Document 1) describes an exhaust gas in which a CO oxidation catalyst is provided on the upstream side of the exhaust gas flow and an HC trap catalyst is provided on the downstream side of the three-way catalyst provided in the exhaust gas flow path. Purification catalyst devices have been proposed. In this exhaust gas purification catalyst device, a CO oxidation catalyst showing high catalytic activity even at a low temperature is provided on the upstream side of the exhaust gas flow from the three-way catalyst, so that CO can be purified from the stage where the temperature of the gas containing the catalyst is low. In addition, the reaction heat generated by the purification of CO raises the gas input temperature of the three-way catalyst and activates the three-way catalyst, so that HC and NOx are also sufficiently purified. However, in the exhaust gas purification catalyst device, since the CO oxidation catalyst and the three-way catalyst are arranged in series, the scale of the exhaust gas purification catalyst device is larger than that in the case where only the three-way catalyst is arranged. There was a problem.
また、特表平10−504370号公報(特許文献2)には、CO酸化触媒と炭化水素酸化触媒とを備える排気装置が記載されており、さらに、三元触媒を備えることが好ましいこと、並びに、前記CO酸化触媒として、白金及び/又はパラジウムを含むものが好ましいことも記載されている。しかしながら、白金及び/又はパラジウムを含むCO酸化触媒を配合した排ガス浄化触媒は、コストが高くなるという問題があった。 Further, Japanese Patent Application Laid-Open No. 10-504370 (Patent Document 2) describes an exhaust device including a CO oxidation catalyst and a hydrocarbon oxidation catalyst, and more preferably, a three-way catalyst is provided. It is also described that the CO oxidation catalyst containing platinum and / or palladium is preferable. However, the exhaust gas purification catalyst containing a CO oxidation catalyst containing platinum and / or palladium has a problem of high cost.
さらに、特開2006−289213号公報(特許文献3)には、担体に複数の貴金属粒子が担持され、前記貴金属粒子の平均粒径及び平均粒子間距離が特定の範囲内にある排ガス浄化触媒が記載されており、これにより、高温環境下における貴金属粒子の凝集が抑制され、高い触媒活性が得られることも記載されている。しかしながら、貴金属粒子の平均粒径や平均粒子間距離を特定の範囲内に調整しても、触媒入りガス温度が低温の段階においては十分な触媒活性を得ることは困難であった。 Further, Japanese Patent Application Laid-Open No. 2006-289213 (Patent Document 3) describes an exhaust gas purification catalyst in which a plurality of noble metal particles are supported on a carrier and the average particle size and the average inter-particle distance of the noble metal particles are within a specific range. It is also described that this suppresses the aggregation of precious metal particles in a high temperature environment and obtains high catalytic activity. However, even if the average particle size of the noble metal particles and the distance between the average particles are adjusted within a specific range, it is difficult to obtain sufficient catalytic activity at the stage where the temperature of the gas containing the catalyst is low.
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、触媒入りガス温度が低温の段階から、一酸化炭素(CO)、炭化水素(HC)及び窒素酸化物(NOx)の浄化が可能であり、かつ、より安価な排ガス浄化触媒を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and purifies carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOx) from the stage where the catalyst-containing gas temperature is low. It is an object of the present invention to provide an exhaust gas purification catalyst which is possible and cheaper.
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、三元触媒に、コバルト酸化物粒子を含有するCO酸化触媒を配合することによって、触媒入りガス温度が低温の段階から、一酸化炭素(CO)、炭化水素(HC)及び窒素酸化物(NOx)の浄化が可能であり、かつ、より安価な排ガス浄化触媒が得られることを見出し、本発明を完成するに至った。 As a result of diligent research to achieve the above object, the present inventors have added a CO oxidation catalyst containing cobalt oxide particles to the three-way catalyst so that the temperature of the gas containing the catalyst is low. We have found that it is possible to purify carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOx), and that a cheaper exhaust gas purification catalyst can be obtained, and have completed the present invention.
すなわち、本発明の排ガス浄化触媒は、コバルト酸化物粒子を含有するCO酸化触媒と、三元触媒とを含有することを特徴とするものである。 That is, the exhaust gas purification catalyst of the present invention is characterized by containing a CO oxidation catalyst containing cobalt oxide particles and a three-way catalyst.
このような排ガス浄化触媒においては、前記CO酸化触媒の重心間距離の平均値が400μm以下であることが好ましい。また、前記CO酸化触媒が、前記コバルト酸化物粒子と、ジルコニウム酸化物粒子、セリウム酸化物粒子、セリウム−ジルコニウム固溶体酸化物粒子、及びアルミニウム酸化物粒子からなる群から選択される少なくとも1種の他の金属酸化物粒子とを含有するものであることが好ましく、前記コバルト酸化物粒子が前記他の金属酸化物粒子に担持されていることがより好ましい。 In such an exhaust gas purification catalyst, the average value of the distance between the centers of gravity of the CO oxidation catalyst is preferably 400 μm or less. Further, the CO oxidation catalyst is at least one other selected from the group consisting of the cobalt oxide particles, zirconium oxide particles, cerium oxide particles, cerium-zirconium solid solution oxide particles, and aluminum oxide particles. It is preferable that it contains the metal oxide particles of the above, and it is more preferable that the cobalt oxide particles are supported by the other metal oxide particles.
また、本発明の排ガス浄化触媒において、前記三元触媒としては、金属酸化物からなる触媒担体と該触媒担体に担持された貴金属とを含有するものが挙げられる。さらに、前記CO酸化触媒と前記三元触媒との質量比(CO酸化触媒/三元触媒)としては、1/5〜5/1が好ましい。 Further, in the exhaust gas purification catalyst of the present invention, examples of the three-way catalyst include those containing a catalyst carrier made of a metal oxide and a noble metal supported on the catalyst carrier. Further, the mass ratio of the CO oxidation catalyst to the three-way catalyst (CO oxidation catalyst / three-way catalyst) is preferably 1/5 to 5/1.
なお、本発明において、前記CO酸化触媒の重心間距離の平均値は、以下の方法により求められるものである。すなわち、先ず、本発明の排ガス浄化触媒について、エネルギー分散型X線分析装置(EDS)を備える走査型電子顕微鏡(SEM)を用いてSEM−EDS分析を行い、コバルトマッピング画像を取得する。次に、得られたコバルトマッピング画像について、画像解析処理ソフト(例えば、米国国立衛生研究所(NIH)にて開発された「imageJ」)を用いて8bitで二値化処理を行い、得られた二値化画像について、50pix以上を閾値として粒子検出処理を行った後、黒色領域をCO酸化触媒、白色領域を三元触媒としてマスク処理を行う。15個以上のCO酸化触媒(黒色領域)が分散した画像について、画像解析ソフト(例えば、旭化成エンジニアリング株式会社製「A像くん(R)」)の分散度計測機能を用いてCO酸化触媒(黒色領域)の重心間距離を計測し、その平均値を算出する。 In the present invention, the average value of the distance between the centers of gravity of the CO oxidation catalyst is obtained by the following method. That is, first, the exhaust gas purification catalyst of the present invention is subjected to SEM-EDS analysis using a scanning electron microscope (SEM) equipped with an energy dispersive X-ray analyzer (EDS), and a cobalt mapping image is acquired. Next, the obtained cobalt mapping image was binarized at 8 bits using image analysis processing software (for example, "imageJ" developed by the National Institute of Public Health (NIH)), and obtained. The binarized image is subjected to particle detection processing with a threshold value of 50 pix or more, and then mask processing is performed with the black region as a CO oxidation catalyst and the white region as a three-way catalyst. For images in which 15 or more CO oxidation catalysts (black regions) are dispersed, use the dispersion measurement function of image analysis software (for example, "A image-kun (R)" manufactured by Asahi Kasei Engineering Co., Ltd.) to use the CO oxidation catalyst (black region). Measure the distance between the centers of gravity of the area) and calculate the average value.
また、本発明の排ガス浄化触媒を用いることによって、触媒入りガス温度が低温の段階から、一酸化炭素(CO)、炭化水素(HC)及び窒素酸化物(NOx)の浄化が可能となる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明の排ガス浄化触媒は、コバルト酸化物粒子を含有するCO酸化触媒と、三元触媒とを含有するものである。前記コバルト酸化物粒子を含有するCO酸化触媒は、低温でも高い酸化触媒活性を示すため、触媒入りガス温度が低温の段階から、前記CO酸化触媒によるCO及びHCの浄化が可能となると推察される。また、CO及びHCは酸化されることによって浄化されるが、このとき、反応熱が発生し、この反応熱が三元触媒の温度を上昇させるため、触媒入りガス温度が低温の段階から、前記三元触媒が活性化され、NOxの浄化が可能となると推察される。 Further, the reason why carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NOx) can be purified from the stage where the temperature of the gas containing the catalyst is low by using the exhaust gas purification catalyst of the present invention is Although it is not always clear, the present inventors infer as follows. That is, the exhaust gas purification catalyst of the present invention contains a CO oxidation catalyst containing cobalt oxide particles and a three-way catalyst. Since the CO oxidation catalyst containing the cobalt oxide particles exhibits high oxidation catalytic activity even at a low temperature, it is presumed that CO and HC can be purified by the CO oxidation catalyst from the stage where the temperature of the gas containing the catalyst is low. .. Further, CO and HC are purified by being oxidized. At this time, heat of reaction is generated, and this heat of reaction raises the temperature of the three-way catalyst. Therefore, from the stage where the temperature of the gas containing the catalyst is low, the above. It is presumed that the three-way catalyst is activated and NOx can be purified.
本発明によれば、触媒入りガス温度が低温の段階から、一酸化炭素(CO)、炭化水素(HC)及び窒素酸化物(NOx)の浄化が可能であり、かつ、より安価な排ガス浄化触媒を得ることが可能となる。 According to the present invention, it is possible to purify carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOx) from the stage where the temperature of the gas containing the catalyst is low, and the exhaust gas purification catalyst is cheaper. Can be obtained.
以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail according to its preferred embodiment.
本発明の排ガス浄化触媒は、コバルト酸化物粒子を含有するCO酸化触媒と、三元触媒とを含有するものである。三元触媒にコバルト酸化物粒子を含有するCO酸化触媒を配合することによって、触媒入りガス温度が低温の段階から、CO、HC及びNOxの浄化が可能となる。 The exhaust gas purification catalyst of the present invention contains a CO oxidation catalyst containing cobalt oxide particles and a three-way catalyst. By blending a CO oxidation catalyst containing cobalt oxide particles with a three-way catalyst, CO, HC and NOx can be purified from the stage where the temperature of the gas containing the catalyst is low.
(CO酸化触媒)
本発明に用いられるCO酸化触媒は、コバルト酸化物粒子を含有するものである。このコバルト酸化物粒子は低温でのCO酸化活性に優れており、例えば、エンジン始動時等の触媒入りガス温度が低い段階であってもCO及びHCを十分に浄化することができる。また、このとき発生する反応熱により、後述する三元触媒の温度を上昇させ、三元触媒の活性を早期に発現させることができる。
(CO oxidation catalyst)
The CO oxidation catalyst used in the present invention contains cobalt oxide particles. The cobalt oxide particles are excellent in CO-oxidizing activity at low temperatures, and can sufficiently purify CO and HC even at a stage where the temperature of the catalyst-containing gas is low, such as when starting an engine. In addition, the heat of reaction generated at this time can raise the temperature of the three-way catalyst, which will be described later, so that the activity of the three-way catalyst can be expressed at an early stage.
このようなコバルト酸化物粒子としては、例えば、四酸化三コバルト(Co3O4)粒子、酸化コバルト(CoO)粒子、三酸化二コバルト(Co2O3)粒子が挙げられる。これらのコバルト酸化物粒子は1種を単独で使用しても2種以上を併用してもよい。また、これらのコバルト酸化物粒子のうち、コバルトの酸化状態が変化しやすいという観点から、四酸化三コバルト(Co3O4)粒子、酸化コバルト(CoO)粒子が好ましい。 Examples of such cobalt oxide particles include tricobalt tetroxide (Co 3 O 4 ) particles, cobalt oxide (Co O) particles, and dicobalt tricobalt (Co 2 O 3 ) particles. These cobalt oxide particles may be used alone or in combination of two or more. Further, among these cobalt oxide particles, tricobalt tetraoxide (Co 3 O 4 ) particles and cobalt oxide (Co O) particles are preferable from the viewpoint that the oxidation state of cobalt is easily changed.
前記コバルト酸化物粒子の平均粒子径としては、1〜500nmが好ましく、5〜100nmがより好ましい。前記コバルト酸化物粒子の平均粒子径が前記下限未満になると、熱による前記コバルト酸化物粒子の粒成長が顕著になる傾向にあり、他方、前記上限を超えると、CO酸化触媒における活性点数が不足する傾向にある。なお、前記コバルト酸化物粒子の平均粒子径は、XRD測定により得られるX線回折パターンにおける前記コバルト酸化物粒子に起因するピークの半値幅からシェラーの式により求めることができる。 The average particle size of the cobalt oxide particles is preferably 1 to 500 nm, more preferably 5 to 100 nm. When the average particle size of the cobalt oxide particles is less than the lower limit, the grain growth of the cobalt oxide particles due to heat tends to be remarkable, while when the average particle size exceeds the upper limit, the number of active points in the CO oxidation catalyst is insufficient. Tend to do. The average particle size of the cobalt oxide particles can be obtained from the half width of the peak caused by the cobalt oxide particles in the X-ray diffraction pattern obtained by the XRD measurement by Scheller's formula.
また、前記コバルト酸化物粒子の比表面積としては、5〜100m2/gが好ましく、5〜75m2/gがより好ましい。前記コバルト酸化物粒子の比表面積が前記下限未満になると、CO酸化触媒の活性が低下する傾向にあり、他方、前記上限を超えると、熱による前記コバルト酸化物粒子の比表面積の減少が顕著になる傾向にある。なお、前記コバルト酸化物粒子の比表面積は、BET法により求めることができる。 As the specific surface area of the cobalt oxide particles is preferably 5~100m 2 / g, 5~75m 2 / g is more preferable. When the specific surface area of the cobalt oxide particles is less than the lower limit, the activity of the CO oxidation catalyst tends to decrease, while when the specific surface area exceeds the upper limit, the specific surface area of the cobalt oxide particles is significantly reduced by heat. It tends to be. The specific surface area of the cobalt oxide particles can be determined by the BET method.
前記CO酸化触媒は、前記コバルト酸化物粒子に加えて、ジルコニウム酸化物粒子(ZrO2粒子)、セリウム酸化物粒子(CeO2粒子)、セリウム−ジルコニウム固溶体酸化物粒子(CeO2−ZrO2粒子)、及びアルミニウム酸化物粒子(Al2O3粒子)からなる群から選択される少なくとも1種の他の金属酸化物粒子を更に含んでいてもよい。このような他の金属酸化物粒子を前記コバルト酸化物粒子と併用することによって、前記コバルト酸化物粒子を高分散状態に保持することができる。また、これらの他の金属酸化物粒子のうち、前記コバルト酸化物粒子と過剰な相互作用を起こさないという観点から、ジルコニウム酸化物粒子(ZrO2粒子)、セリウム酸化物粒子(CeO2粒子)、セリウム−ジルコニウム固溶体酸化物粒子(CeO2−ZrO2粒子)が好ましく、ZrO2粒子がより好ましい。 The CO oxidation catalyst, in addition to the cobalt oxide particles, zirconium oxide particles (ZrO 2 particles), cerium oxide particles (CeO 2 particles), cerium - zirconium solid solution oxide particles (CeO 2 -ZrO 2 particles) , And at least one other metal oxide particle selected from the group consisting of aluminum oxide particles (Al 2 O 3 particles) may be further contained. By using such other metal oxide particles in combination with the cobalt oxide particles, the cobalt oxide particles can be maintained in a highly dispersed state. Among these other metal oxide particles, zirconium oxide particles (ZrO 2 particles), cerium oxide particles (CeO 2 particles), and the like, from the viewpoint of not causing excessive interaction with the cobalt oxide particles. cerium - zirconium solid solution oxide particles (CeO 2 -ZrO 2 particles) are preferred, ZrO 2 particles is more preferable.
また、前記CO酸化触媒において、前記コバルト酸化物粒子は、前記他の金属酸化物粒子と単に物理的に混合されているだけでもよいが、前記コバルト酸化物粒子がより高分散状態に保持されるという観点から、前記他の金属酸化物粒子に担持されていることが好ましい。 Further, in the CO oxidation catalyst, the cobalt oxide particles may be simply physically mixed with the other metal oxide particles, but the cobalt oxide particles are maintained in a higher dispersed state. From the viewpoint, it is preferable that the particles are supported by the other metal oxide particles.
前記他の金属酸化物粒子の平均粒子径としては、5〜200nmが好ましく、10〜200nmがより好ましい。前記他の金属酸化物粒子の平均粒子径が前記下限未満になると、熱により前記他の金属酸化物粒子自体が粒成長する傾向にあり、他方、前記上限を超えると、前記コバルト酸化物粒子を高分散状態に保持することが困難となる傾向にある。なお、前記他の金属酸化物粒子の平均粒子径は、XRD測定により得られるX線回折パターンにおける前記他の金属酸化物粒子に起因するピークの半値幅からシェラーの式により求めることができる。 The average particle size of the other metal oxide particles is preferably 5 to 200 nm, more preferably 10 to 200 nm. When the average particle size of the other metal oxide particles is less than the lower limit, the other metal oxide particles themselves tend to grow due to heat, while when the upper limit is exceeded, the cobalt oxide particles are grown. It tends to be difficult to maintain a highly dispersed state. The average particle size of the other metal oxide particles can be obtained by Scheller's formula from the half-value width of the peak caused by the other metal oxide particles in the X-ray diffraction pattern obtained by the XRD measurement.
また、前記他の金属酸化物粒子の比表面積としては、10〜200m2/gが好ましく、20〜150m2/gがより好ましい。前記他の金属酸化物粒子の比表面積が前記下限未満になると、前記コバルト酸化物粒子を高分散状態に保持する能力が低下する傾向にあり、他方、前記上限を超えると、熱により前記他の金属酸化物粒子自体の比表面積が減少する傾向にある。なお、前記他の金属酸化物粒子の比表面積は、BET法により求めることができる。 As the specific surface area of the other metal oxide particles, preferably 10~200m 2 / g, 20~150m 2 / g is more preferable. When the specific surface area of the other metal oxide particles is less than the lower limit, the ability to hold the cobalt oxide particles in a highly dispersed state tends to decrease, while when the specific surface area exceeds the upper limit, the other metal oxide particles are heated. The specific surface area of the metal oxide particles themselves tends to decrease. The specific surface area of the other metal oxide particles can be determined by the BET method.
前記CO酸化触媒において、前記コバルト酸化物粒子の含有量としては、CO酸化触媒全体に対して、5〜95質量%が好ましく、10〜90質量%がより好ましい。前記コバルト酸化物粒子の含有量が前記下限未満になると、前記CO酸化触媒の活性が低くなり、触媒入りガス温度が低い段階ではCO及びHCの浄化が十分に進行しない傾向にある。また、浄化による反応熱が十分に発生しないため、三元触媒の温度が上昇せず、触媒入りガス温度が低い段階でのNOxの浄化も十分に進行しない傾向にある。その結果、CO、HC及びNOxの50%浄化温度が十分に低下しない傾向にある。他方、前記コバルト酸化物粒子の含有量が前記上限を超えると、前記コバルト酸化物粒子を高分散状態に保持することが困難となる傾向にある。 In the CO oxidation catalyst, the content of the cobalt oxide particles is preferably 5 to 95% by mass, more preferably 10 to 90% by mass, based on the entire CO oxidation catalyst. When the content of the cobalt oxide particles is less than the lower limit, the activity of the CO oxidation catalyst is lowered, and the purification of CO and HC tends not to proceed sufficiently at the stage where the temperature of the gas containing the catalyst is low. Further, since the reaction heat due to purification is not sufficiently generated, the temperature of the three-way catalyst does not rise, and the purification of NOx at the stage where the temperature of the gas containing the catalyst is low tends not to proceed sufficiently. As a result, the 50% purification temperature of CO, HC and NOx tends not to be sufficiently lowered. On the other hand, when the content of the cobalt oxide particles exceeds the upper limit, it tends to be difficult to keep the cobalt oxide particles in a highly dispersed state.
このようなCO酸化触媒の調製方法としては特に制限はなく、公知の含浸法や共沈法を採用することができる。例えば、コバルトの塩(例えば、炭酸コバルト、硝酸コバルト、塩化コバルト、硫酸コバルト)を含有する水溶液に、必要に応じて前記他の金属酸化物粒子を浸漬し、得られた水溶液を加熱して溶媒(水)を除去した後、生成した固体成分を大気中で焼成することによって、前記コバルト酸化物粒子(好ましくは、前記他の金属酸化物粒子に担持された前記コバルト酸化物粒子)からなるCO酸化触媒を得ることができる。また、コバルトの塩(例えば、炭酸コバルト、硝酸コバルト、塩化コバルト、硫酸コバルト)と、必要に応じて前記他の金属の塩(例えば、炭酸塩、硝酸塩、塩化物、硫酸塩)とを含有する水溶液に、酸(例えば、炭酸、硝酸、塩酸、硫酸)を滴下してコバルトの塩と前記他の金属の塩とを共沈させた後、加熱により溶媒(水)を除去し、得られた固体成分を大気中で焼成することによっても、前記コバルト酸化物粒子(好ましくは、前記コバルト酸化物粒子と前記他の金属酸化物粒子との共沈物)からなるCO酸化触媒を得ることができる。 The method for preparing such a CO oxidation catalyst is not particularly limited, and a known impregnation method or coprecipitation method can be adopted. For example, the other metal oxide particles are immersed in an aqueous solution containing a cobalt salt (for example, cobalt carbonate, cobalt nitrate, cobalt chloride, cobalt sulfate) as needed, and the obtained aqueous solution is heated to provide a solvent. CO composed of the cobalt oxide particles (preferably the cobalt oxide particles supported on the other metal oxide particles) by firing the produced solid component in the air after removing (water). An oxidation catalyst can be obtained. It also contains a cobalt salt (eg, cobalt carbonate, cobalt nitrate, cobalt chloride, cobalt sulfate) and, if necessary, salts of the other metals (eg, carbonate, nitrate, chloride, sulfate). An acid (for example, carbon dioxide, nitric acid, hydrochloric acid, sulfuric acid) was added dropwise to the aqueous solution to co-precipitate the cobalt salt and the salt of the other metal, and then the solvent (water) was removed by heating to obtain the product. By firing the solid component in the air, a CO oxidation catalyst composed of the cobalt oxide particles (preferably a co-deposit of the cobalt oxide particles and the other metal oxide particles) can be obtained. ..
(三元触媒)
本発明に用いられる三元触媒としては、CO、HC及びNOxの浄化に用いられるものであれば特に制限はなく、例えば、金属酸化物からなる触媒担体に貴金属が担持された公知の三元触媒が挙げられる。
(Three-way catalyst)
The three-way catalyst used in the present invention is not particularly limited as long as it is used for purifying CO, HC and NOx. For example, a known three-way catalyst in which a noble metal is supported on a catalyst carrier made of a metal oxide. Can be mentioned.
前記金属酸化物としては特に制限はなく、例えば、アルミニウム酸化物(Al2O3)、セリウム酸化物(CeO2)、ジルコニウム酸化物(ZrO2)、セリウム−ジルコニウム固溶体酸化物(CeO2−ZrO2)が挙げられる。これらの金属酸化物は1種を単独で使用しても2種以上を併用してもよい。また、これらの金属酸化物のうち、耐熱性の観点から、アルミニウム酸化物(Al2O3)、ジルコニウム酸化物(ZrO2)が好ましく、Al2O3がより好ましい。 The metal oxide is not particularly limited, and for example, aluminum oxide (Al 2 O 3 ), cerium oxide (CeO 2 ), zirconium oxide (ZrO 2 ), and cerium-zirconium solid solution oxide (CeO 2- ZrO). 2 ) can be mentioned. These metal oxides may be used alone or in combination of two or more. Among these metal oxides, aluminum oxide (Al 2 O 3 ) and zirconium oxide (ZrO 2 ) are preferable, and Al 2 O 3 is more preferable, from the viewpoint of heat resistance.
このような金属酸化物からなる触媒担体の平均粒子径としては、5〜100nmが好ましく、5〜50nmがより好ましい。前記触媒担体の平均粒子径が前記下限未満になると、耐熱性が不足する傾向にあり、他方、前記上限を超えると、貴金属を高分散に担持できない傾向にある。なお、前記触媒担体の平均粒子径は、XRD測定により得られるX線回折パターンにおける前記触媒担体に起因するピークの半値幅からシェラーの式により求めることができる。 The average particle size of the catalyst carrier made of such a metal oxide is preferably 5 to 100 nm, more preferably 5 to 50 nm. When the average particle size of the catalyst carrier is less than the lower limit, the heat resistance tends to be insufficient, while when the average particle size exceeds the upper limit, the noble metal tends to be unable to be supported in a high dispersion. The average particle size of the catalyst carrier can be obtained by Scheller's formula from the half-value width of the peak caused by the catalyst carrier in the X-ray diffraction pattern obtained by the XRD measurement.
また、前記触媒担体の比表面積としては、5〜200m2/gが好ましく、20〜150m2/gがより好ましい。前記触媒担体の比表面積が前記下限未満になると、貴金属を高分散に担持できない傾向にあり、他方、前記上限を超えると、熱により前記金属酸化物自体が粒成長する傾向にある。なお、前記触媒担体の比表面積は、BET法により求めることができる。 As the specific surface area of the catalyst support, preferably 5~200m 2 / g, 20~150m 2 / g is more preferable. When the specific surface area of the catalyst carrier is less than the lower limit, the noble metal tends to be unable to be supported in a high dispersion, while when the specific surface area exceeds the upper limit, the metal oxide itself tends to grow grains by heat. The specific surface area of the catalyst carrier can be determined by the BET method.
さらに、本発明の排ガス浄化触媒において、前記CO酸化触媒に前記他の金属酸化物粒子が含まれる場合、前記触媒担体を構成する金属酸化物は、前記他の金属酸化物粒子と別個独立したものであってもよいし、前記他の金属酸化物粒子であってもよい。すなわち、前者の場合、本発明の排ガス浄化触媒は、前記他の金属酸化物粒子と前記コバルト酸化物粒子(好ましくは、前記他の金属酸化物粒子に担持された前記コバルト酸化物粒子)とを含有するCO酸化触媒と、前記金属酸化物からなる触媒担体に前記貴金属が担持された三元触媒とを含有するものである。一方、後者の場合、本発明の排ガス浄化触媒は、前記他の金属酸化物粒子と前記コバルト酸化物粒子(好ましくは、前記他の金属酸化物粒子に担持された前記コバルト酸化物粒子)とを含有し、さらに、前記他の金属酸化物粒子に担持された前記貴金属を含有するものである。 Further, in the exhaust gas purification catalyst of the present invention, when the CO oxidation catalyst contains the other metal oxide particles, the metal oxide constituting the catalyst carrier is separate from the other metal oxide particles. It may be the above-mentioned other metal oxide particles. That is, in the former case, the exhaust gas purification catalyst of the present invention comprises the other metal oxide particles and the cobalt oxide particles (preferably the cobalt oxide particles supported on the other metal oxide particles). It contains a CO oxidation catalyst and a ternary catalyst in which the noble metal is supported on a catalyst carrier made of the metal oxide. On the other hand, in the latter case, the exhaust gas purification catalyst of the present invention comprises the other metal oxide particles and the cobalt oxide particles (preferably the cobalt oxide particles supported on the other metal oxide particles). It contains the noble metal and is further supported on the other metal oxide particles.
前記貴金属としては特に制限はなく、例えば、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)が挙げられる。これらの貴金属は1種を単独で使用しても2種以上を併用してもよい。また、これらの貴金属のうち、CO、HC及びNOxを効率よく浄化できるという観点から、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)が好ましい。 The noble metal is not particularly limited, and examples thereof include platinum (Pt), palladium (Pd), rhodium (Rh), and iridium (Ir). These precious metals may be used alone or in combination of two or more. Of these precious metals, platinum (Pt), palladium (Pd), and rhodium (Rh) are preferable from the viewpoint of efficiently purifying CO, HC, and NOx.
前記貴金属の平均粒子径としては、1〜100nmが好ましく、2〜50nmがより好ましい。前記貴金属の平均粒子径が前記下限未満になると、熱により前記貴金属自体が粒成長する傾向にあり、他方、前記上限を超えると、三元触媒における活性点数が不足する傾向にある。なお、前記貴金属の平均粒子径は、TEM像において貴金属粒子を無作為に抽出して粒子径を測定し、それらを平均することにより求めることができる。 The average particle size of the noble metal is preferably 1 to 100 nm, more preferably 2 to 50 nm. When the average particle size of the noble metal is less than the lower limit, the noble metal itself tends to grow due to heat, while when it exceeds the upper limit, the number of active points in the three-way catalyst tends to be insufficient. The average particle size of the noble metal can be obtained by randomly extracting the noble metal particles in the TEM image, measuring the particle size, and averaging them.
前記三元触媒において、前記貴金属の含有量(担持量)としては、前記触媒担体100質量部に対して、0.01〜4質量部が好ましく、0.1〜1質量部がより好ましい。前記貴金属の含有量が前記下限未満になると、前記三元触媒における活性点数が不足し、NOxの浄化が十分に進行しない傾向にある。他方、前記上限を超えると、浄化性能が飽和する傾向にある。 In the three-way catalyst, the content (supported amount) of the noble metal is preferably 0.01 to 4 parts by mass, more preferably 0.1 to 1 part by mass with respect to 100 parts by mass of the catalyst carrier. When the content of the noble metal is less than the lower limit, the number of active points in the three-way catalyst is insufficient, and the purification of NOx tends not to proceed sufficiently. On the other hand, if the upper limit is exceeded, the purification performance tends to be saturated.
このような三元触媒の調製方法としては特に制限はなく、公知の含浸法や共沈法を採用することができる。例えば、前記貴金属の塩(例えば、炭酸塩、硝酸塩、塩化物、硫酸塩)を含有する水溶液に前記金属酸化物を浸漬し、得られた水溶液を加熱して溶媒(水)を除去した後、生成した固体成分を大気中で焼成することによって、前記金属酸化物からなる触媒担体に前記貴金属が担持された三元触媒を得ることができる。また、前記貴金属の塩(例えば、炭酸塩、硝酸塩、塩化物、硫酸塩)と前記金属の塩(例えば、炭酸塩、硝酸塩、塩化物、硫酸塩)とを含有する水溶液に、酸(例えば、炭酸、硝酸、塩酸、硫酸)を滴下して前記貴金属の塩と前記金属の塩とを共沈させた後、加熱により溶媒(水)を除去し、得られた固体成分を大気中で焼成することによっても、前記金属酸化物からなる触媒担体に前記貴金属が担持された三元触媒を得ることができる。 The method for preparing such a three-way catalyst is not particularly limited, and a known impregnation method or coprecipitation method can be adopted. For example, the metal oxide is immersed in an aqueous solution containing a salt of the noble metal (for example, carbonate, nitrate, chloride, sulfate), and the obtained aqueous solution is heated to remove the solvent (water). By calcining the produced solid component in the air, a ternary catalyst in which the noble metal is supported on a catalyst carrier made of the metal oxide can be obtained. Further, an acid (for example, carbonate) is added to an aqueous solution containing the salt of the noble metal (for example, carbonate, nitrate, chloride, sulfate) and the salt of the metal (for example, carbonate, nitrate, chloride, sulfate). (Carbonate, nitrate, hydrochloric acid, sulfate) is added dropwise to co-precipitate the noble metal salt and the metal salt, and then the solvent (water) is removed by heating, and the obtained solid component is fired in the air. This also makes it possible to obtain a ternary catalyst in which the noble metal is supported on a catalyst carrier made of the metal oxide.
〔排ガス浄化触媒〕
本発明の排ガス浄化触媒は、前記CO酸化触媒と前記三元触媒とを含有するものである。このような本発明の排ガス浄化触媒は、少なくとも耐久試験前において、触媒入りガス温度が低温の段階から、良好なCO、HC及びNOxの浄化性能を示す。また、このような排ガス浄化触媒の調製方法としては特に制限はなく、例えば、前記CO酸化触媒と前記三元触媒とを攪拌して物理混合する方法が挙げられる。また、このようにようにして得られる前記CO酸化触媒と前記三元触媒との混合物を加圧成形した後、得られた成形体を粉砕・篩分けして触媒ペレットを形成してもよい。
[Exhaust gas purification catalyst]
The exhaust gas purification catalyst of the present invention contains the CO oxidation catalyst and the three-way catalyst. Such an exhaust gas purification catalyst of the present invention exhibits good CO, HC and NOx purification performance from the stage where the temperature of the gas containing the catalyst is low, at least before the durability test. The method for preparing such an exhaust gas purification catalyst is not particularly limited, and examples thereof include a method of stirring and physically mixing the CO oxidation catalyst and the three-way catalyst. Further, after the mixture of the CO oxidation catalyst and the three-way catalyst obtained in this manner is pressure-molded, the obtained molded product may be pulverized and sieved to form catalyst pellets.
また、本発明の排ガス浄化触媒の他の調製方法としては、例えば、コバルトの塩(例えば、炭酸コバルト、硝酸コバルト、塩化コバルト、硫酸コバルト)と前記貴金属の塩(例えば、炭酸塩、硝酸塩、塩化物、硫酸塩)とを含有する水溶液に、前記他の金属酸化物粒子を浸漬し、得られた水溶液を加熱して溶媒(水)を除去した後、生成した固体成分を大気中で焼成することによって、前記他の金属酸化物粒子と前記他の金属酸化物粒子に担持された前記コバルト酸化物粒子とを含有し、さらに、前記他の金属酸化物粒子に担持された前記貴金属を含有する本発明の排ガス浄化触媒を得ることができる。さらに、コバルトの塩(例えば、炭酸コバルト、硝酸コバルト、塩化コバルト、硫酸コバルト)と、前記貴金属の塩(例えば、炭酸塩、硝酸塩、塩化物、硫酸塩)と、前記他の金属の塩(例えば、炭酸塩、硝酸塩、塩化物、硫酸塩)とを含有する水溶液に、酸(例えば、炭酸、硝酸、塩酸、硫酸)を滴下してコバルトの塩と前記貴金属の塩と前記他の金属の塩とを共沈させた後、加熱により溶媒(水)を除去し、得られた固体成分を大気中で焼成することによっても、前記他の金属酸化物粒子と前記他の金属酸化物粒子に担持された前記コバルト酸化物粒子とを含有し、さらに、前記他の金属酸化物粒子に担持された前記貴金属を含有する本発明の排ガス浄化触媒を得ることができる。 In addition, as another method for preparing the exhaust gas purification catalyst of the present invention, for example, a cobalt salt (for example, cobalt carbonate, cobalt nitrate, cobalt chloride, cobalt sulfate) and a salt of the noble metal (for example, carbonate, nitrate, chloride) are used. The other metal oxide particles are immersed in an aqueous solution containing a substance (sulfate), the obtained aqueous solution is heated to remove the solvent (water), and then the produced solid component is fired in the atmosphere. Thereby, the other metal oxide particles and the cobalt oxide particles supported on the other metal oxide particles are contained, and further, the noble metal supported on the other metal oxide particles is contained. The exhaust gas purification catalyst of the present invention can be obtained. Further, a cobalt salt (eg, cobalt carbonate, cobalt nitrate, cobalt chloride, cobalt sulfate), a salt of the noble metal (eg, carbonate, nitrate, chloride, sulfate) and a salt of the other metal (eg, salt). , Carbonate, Nitrate, Chloride, Sulfate) by dropping an acid (eg, carbonic acid, nitric acid, hydrochloric acid, sulfate) into a cobalt salt, the noble metal salt, and the other metal salt. The solvent (water) is removed by heating after co-precipitation, and the obtained solid component is also supported on the other metal oxide particles and the other metal oxide particles by firing in the air. It is possible to obtain the exhaust gas purification catalyst of the present invention containing the above-mentioned cobalt oxide particles and further containing the above-mentioned noble metal supported on the above-mentioned other metal oxide particles.
本発明の排ガス浄化触媒においては、前記CO酸化触媒の重心間距離の平均値が400μm以下であることが好ましく、100μm以下であることがより好ましく、50μm以下であることが更に好ましい。前記CO酸化触媒の重心間距離の平均値が前記範囲内にある排ガス浄化触媒は、耐久試験前だけでなく、耐久試験後においても、触媒入りガス温度が低温の段階から、良好なCO、HC及びNOxの浄化性能を示すのに対して、前記CO酸化触媒の重心間距離の平均値が前記上限を超える排ガス浄化触媒は、耐久試験後において、触媒入りガス温度が低温の段階でのCO、HC及びNOxの浄化性能が低下する傾向にある。この理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、前記CO酸化触媒と前記三元触媒とを含有する排ガス浄化触媒においては、前記CO酸化触媒においてCO及びHCの浄化により発生した反応熱が前記三元触媒に伝達される。このとき、前記CO酸化触媒の重心間距離の平均値が前記範囲内にある排ガス浄化触媒においては、発生した反応熱の多くが前記三元触媒に伝達されるため、前記三元触媒の温度上昇が大きく、耐久試験により三元触媒が熱劣化(例えば、貴金属が粒成長)した場合でも、前記三元触媒の大きな温度上昇によって、触媒入りガス温度が低い段階でのNOxの浄化性能の大幅な低下が抑制されると推察される。一方、前記CO酸化触媒の重心間距離の平均値が前記上限を超える排ガス浄化触媒においては、前記CO酸化触媒から前記三元触媒に伝達される反応熱が少なく、前記三元触媒の温度上昇は小さいと推察される。耐久試験前においては、前記三元触媒が熱劣化していないため、前記三元触媒の温度上昇が小さくても、触媒入りガス温度が低い段階から、良好なNOxの浄化性能を示すのに対して、耐熱試験により三元触媒が熱劣化(例えば、貴金属が粒成長)した場合には、前記三元触媒の小さな温度上昇では、触媒入りガス温度が低い段階でのNOxの浄化性能の大幅な低下を十分に抑制することができないと推察される。 In the exhaust gas purification catalyst of the present invention, the average value of the distance between the centers of gravity of the CO oxidation catalyst is preferably 400 μm or less, more preferably 100 μm or less, and further preferably 50 μm or less. The exhaust gas purification catalyst in which the average value of the distance between the centers of gravity of the CO oxidation catalyst is within the above range has good CO and HC from the stage where the temperature of the catalyst-containing gas is low not only before the durability test but also after the durability test. And NOx purification performance, whereas the exhaust gas purification catalyst in which the average value of the distance between the centers of gravity of the CO oxidation catalyst exceeds the upper limit is CO, at the stage where the catalyst-containing gas temperature is low after the durability test. The purification performance of HC and NOx tends to decrease. The reason for this is not always clear, but the present inventors speculate as follows. That is, in the exhaust gas purification catalyst containing the CO oxidation catalyst and the three-way catalyst, the reaction heat generated by the purification of CO and HC in the CO oxidation catalyst is transferred to the three-way catalyst. At this time, in the exhaust gas purification catalyst in which the average value of the distance between the centers of gravity of the CO oxidation catalyst is within the above range, most of the generated reaction heat is transferred to the three-way catalyst, so that the temperature of the three-way catalyst rises. Even if the three-way catalyst is thermally deteriorated (for example, grain growth of noble metal) by the durability test, the NOx purification performance at the stage where the temperature of the catalyst-containing gas is low is significantly due to the large temperature rise of the three-way catalyst. It is presumed that the decline will be suppressed. On the other hand, in the exhaust gas purification catalyst in which the average value of the distance between the centers of gravity of the CO oxidation catalyst exceeds the upper limit, the reaction heat transferred from the CO oxidation catalyst to the three-way catalyst is small, and the temperature rise of the three-way catalyst is high. It is presumed to be small. Before the durability test, since the three-way catalyst has not been thermally deteriorated, even if the temperature rise of the three-way catalyst is small, good NOx purification performance is exhibited from the stage where the temperature of the catalyst-containing gas is low. When the three-way catalyst is thermally deteriorated (for example, grain growth of noble metal) by the heat resistance test, a small temperature rise of the three-way catalyst causes a large NOx purification performance at a stage where the temperature of the catalyst-containing gas is low. It is presumed that the decline cannot be sufficiently suppressed.
なお、前記CO酸化触媒の重心間距離の平均値の下限としては特に制限はないが、前記CO酸化触媒に含まれるコバルトにより前記貴金属がカバーリングされること或いは前記貴金属の粒子粗大化が促進されることによって浄化性能が低下することを防ぐという観点から、0.1μm以上が好ましく、0.5μm以上がより好ましい。 The lower limit of the average value of the distance between the centers of gravity of the CO oxidation catalyst is not particularly limited, but the cobalt contained in the CO oxidation catalyst covers the noble metal or promotes particle coarsening of the noble metal. From the viewpoint of preventing the purification performance from being deteriorated, 0.1 μm or more is preferable, and 0.5 μm or more is more preferable.
本発明の排ガス浄化触媒において、前記CO酸化触媒と前記三元触媒との質量比としては、CO酸化触媒/三元触媒=1/5〜5/1が好ましく、1/2〜2/1がより好ましい。CO酸化触媒と三元触媒との質量比が前記下限未満になると、前記CO酸化触媒の触媒量が少なく、触媒入りガス温度が低い段階ではCO及びHCの浄化が十分に進行しない傾向にある。また、浄化による反応熱が十分に発生しないため、三元触媒の温度が上昇せず、触媒入りガス温度が低い段階でのNOxの浄化も十分に進行しない傾向にある。その結果、CO、HC及びNOxの50%浄化温度が十分に低下しない傾向にある。他方、前記上限を超えると、前記三元触媒の触媒量が少なく、NOxの浄化が十分に進行しないため、NOxの50%浄化温度が十分に低下しない傾向にある。 In the exhaust gas purification catalyst of the present invention, the mass ratio of the CO oxidation catalyst to the three-way catalyst is preferably CO oxidation catalyst / three-way catalyst = 1/5 to 5/1, preferably 1/2 to 2/1. More preferred. When the mass ratio of the CO oxidation catalyst to the three-way catalyst is less than the lower limit, the amount of the catalyst of the CO oxidation catalyst is small, and the purification of CO and HC tends not to proceed sufficiently at the stage where the temperature of the gas containing the catalyst is low. Further, since the reaction heat due to purification is not sufficiently generated, the temperature of the three-way catalyst does not rise, and the purification of NOx at the stage where the temperature of the gas containing the catalyst is low tends not to proceed sufficiently. As a result, the 50% purification temperature of CO, HC and NOx tends not to be sufficiently lowered. On the other hand, when the upper limit is exceeded, the amount of the catalyst of the three-way catalyst is small and the purification of NOx does not proceed sufficiently, so that the 50% purification temperature of NOx tends not to be sufficiently lowered.
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.
(実施例1)
〔CO酸化触媒の調製〕
四酸化三コバルト(Co3O4)と酸化ジルコニウム(ZrO2)との質量比がCo3O4:ZrO2=5:95となるように、硝酸コバルト六水和物(Co(NO3)2・6H2O、99.5%、富士フィルム和光純薬株式会社製)1.81gをイオン交換水50mlに溶解して調製したCo(NO3)2水溶液に酸化ジルコニウム粒子(ZrO2、第一稀元素化学工業株式会社製「RC−100」、比表面積:100m2/g)9.5gを浸漬してZrO2粒子にCo(NO3)2水溶液を含浸させた後、200℃に設定したホットプレート上で溶媒(水)を蒸発させ、さらに、大気中、400℃で5時間焼成して、ZrO2粒子上にCo3O4粒子が担持したCO酸化触媒粒子を得た。
(Example 1)
[Preparation of CO oxidation catalyst]
Cobalt cobalt nitrate hexahydrate (Co (NO 3 )) so that the mass ratio of tricobalt tetraoxide (Co 3 O 4 ) to zirconium oxide (ZrO 2 ) is Co 3 O 4 : ZrO 2 = 5: 95. 2 · 6H 2 O, 99.5% , Fuji film manufactured by Wako pure Chemical Industries, Ltd.) 1.81 g was prepared by dissolving in ion-exchanged water 50ml Co (NO 3) 2 aqueous solution of zirconium oxide particles (ZrO 2, the "RC-100" manufactured by Ichiraku Element Chemical Industry Co., Ltd., specific surface area: 100 m 2 / g) 9.5 g is immersed to impregnate ZrO 2 particles with a Co (NO 3 ) 2 aqueous solution, and then set at 200 ° C. The solvent (water) was evaporated on the hot plate, and further fired in the air at 400 ° C. for 5 hours to obtain CO oxidation catalyst particles in which Co 3 O 4 particles were carried on ZrO 2 particles.
〔三元触媒の調製〕
パラジウム(Pd)と酸化アルミニウム(Al2O3)との質量比がPd:Al2O3=0.5:100となるように、硝酸パラジウム(Pd(NO3)2)溶液(田中貴金属工業株式会社製)0.61gをイオン交換水50mlで希釈した溶液に酸化アルミニウム粒子(Al2O3、Sasol社製「PURALOX TH100−L1」、BET比表面積:100m2/g)10gを浸漬してAl2O3粒子にPd(NO3)2溶液を含浸させた後、200℃に設定したホットプレート上で溶媒を蒸発させ、さらに、大気中、400℃で5時間焼成して、Al2O3粒子上にPd粒子が担持した三元触媒粒子を得た。
[Preparation of three-way catalyst]
Palladium nitrate (Pd (NO 3 ) 2 ) solution (Tanaka Kikinzoku Kogyo) so that the mass ratio of palladium (Pd) to aluminum oxide (Al 2 O 3 ) is Pd: Al 2 O 3 = 0.5: 100. 10 g of aluminum oxide particles (Al 2 O 3 , "PURALOX TH100-L1" manufactured by Sasol, BET specific surface area: 100 m 2 / g) is immersed in a solution obtained by diluting 0.61 g of (manufactured by Co., Ltd.) with 50 ml of ion-exchanged water. After impregnating Al 2 O 3 particles with a Pd (NO 3 ) 2 solution, the solvent is evaporated on a hot plate set at 200 ° C., and the mixture is further fired in the air at 400 ° C. for 5 hours to obtain Al 2 O. Pd particles was obtained a three-way catalyst particles supported on 3 particles.
〔排ガス浄化触媒の調製〕
前記CO酸化触媒粒子0.75gと前記三元触媒粒子0.75gとを乳鉢で10分間攪拌して物理混合を行った。得られた混合物を1000kg/cm2の圧力で加圧成形した後、得られた成形体を粉砕・篩分けして粒径0.5〜1.0mmの排ガス浄化触媒ペレットを作製した。
[Preparation of exhaust gas purification catalyst]
0.75 g of the CO oxidation catalyst particles and 0.75 g of the three-way catalyst particles were stirred in a mortar for 10 minutes for physical mixing. The obtained mixture was pressure-molded at a pressure of 1000 kg / cm 2 , and then the obtained molded product was pulverized and sieved to prepare an exhaust gas purification catalyst pellet having a particle size of 0.5 to 1.0 mm.
(実施例2)
CO酸化触媒粒子におけるCo3O4とZrO2との質量比をCo3O4:ZrO2=10:90に変更した以外は実施例1と同様にして排ガス浄化触媒ペレットを作製した。
(Example 2)
Exhaust gas purification catalyst pellets were prepared in the same manner as in Example 1 except that the mass ratio of Co 3 O 4 and ZrO 2 in the CO oxidation catalyst particles was changed to Co 3 O 4 : ZrO 2 = 10: 90.
(実施例3)
CO酸化触媒粒子におけるCo3O4とZrO2との質量比をCo3O4:ZrO2=33:67に変更した以外は実施例1と同様にして排ガス浄化触媒ペレットを作製した。
(Example 3)
Exhaust gas purification catalyst pellets were prepared in the same manner as in Example 1 except that the mass ratio of Co 3 O 4 and ZrO 2 in the CO oxidation catalyst particles was changed to Co 3 O 4 : ZrO 2 = 33: 67.
(実施例4)
CO酸化触媒粒子におけるCo3O4とZrO2との質量比をCo3O4:ZrO2=50:50に変更した以外は実施例1と同様にして排ガス浄化触媒ペレットを作製した。
(Example 4)
Exhaust gas purification catalyst pellets were prepared in the same manner as in Example 1 except that the mass ratio of Co 3 O 4 and ZrO 2 in the CO oxidation catalyst particles was changed to Co 3 O 4 : ZrO 2 = 50: 50.
(比較例1)
前記CO酸化触媒粒子の代わりに、酸化アルミニウム粒子(Al2O3、Sasol社製「PURALOX TH100−L1」、BET比表面積:100m2/g)0.75gを用いた以外は実施例1と同様にして排ガス浄化触媒ペレットを作製した。
(Comparative Example 1)
Same as Example 1 except that 0.75 g of aluminum oxide particles (Al 2 O 3 , "PURALOX TH100-L1" manufactured by Sasol, BET specific surface area: 100 m 2 / g) was used instead of the CO oxidation catalyst particles. To prepare exhaust gas purification catalyst pellets.
(比較例2)
前記CO酸化触媒粒子を用いず、前記三元触媒粒子の量を1.5gに変更した以外は実施例1と同様にして排ガス浄化触媒ペレットを作製した。
(Comparative Example 2)
Exhaust gas purification catalyst pellets were produced in the same manner as in Example 1 except that the CO oxidation catalyst particles were not used and the amount of the three-way catalyst particles was changed to 1.5 g.
(比較例3)
前記三元触媒粒子の代わりに、酸化アルミニウム粒子(Al2O3、Sasol社製「PURALOX TH100−L1」、BET比表面積:100m2/g)0.75gを用いた以外は実施例3と同様にして排ガス浄化触媒ペレットを作製した。
(Comparative Example 3)
Same as Example 3 except that 0.75 g of aluminum oxide particles (Al 2 O 3 , "PURALOX TH100-L1" manufactured by Sasol, BET specific surface area: 100 m 2 / g) was used instead of the three-way catalyst particles. To prepare exhaust gas purification catalyst pellets.
<耐久試験>
得られた排ガス浄化触媒ペレット(粒径:0.5〜1.0mm)1.5gを石英ガラス管に充填し、水素含有ガス(H2(2%)+N2(残部))と酸素含有ガス(O2(1%)+N2(残部))とを5分間ごとに切替えながら流量0.5L/minで流通させ、800℃で5時間の耐久試験を行った。
<Durability test>
1.5 g of the obtained exhaust gas purification catalyst pellet (particle size: 0.5 to 1.0 mm) was filled in a quartz glass tube, and hydrogen-containing gas (H 2 (2%) + N 2 (remaining)) and oxygen-containing gas. (O 2 (1%) + N 2 (remaining portion)) was circulated at a flow rate of 0.5 L / min while switching every 5 minutes, and a durability test was conducted at 800 ° C. for 5 hours.
<排ガス浄化触媒の性能評価試験>
耐久試験前又は耐久試験後の排ガス浄化触媒ペレット(粒径:0.5〜1.0mm)1.5gを充填した触媒層を固定床流通反応装置(ベスト測器株式会社製「CATA−5000−8」)にセットした。この触媒層にストイキモデルガス(CO(1.00%)+C3H6(1200ppmC)+NO(1200ppm)+O2(6200ppm)+CO2(10.0%)+N2(残部))を流量7L/minで供給し、触媒入りガス温度を100℃から400℃まで25℃/minの昇温速度で上昇させながら、触媒出ガス中のCO濃度、C3H6濃度及びNO濃度を測定し、各触媒入りガス温度におけるCO、C3H6及びNOの浄化率を算出した。図1A〜図1Cは、実施例1〜4及び比較例1〜3で得られた耐久試験前の排ガス浄化触媒ペレットの触媒入りガス温度とCO、C3H6及びNOの浄化率との関係を示すグラフである。また、耐久試験前及び耐久試験後の排ガス浄化触媒ペレットの触媒入りガス温度とCO、C3H6及びNOの浄化率との関係を示すグラフに基づいて、CO、C3H6及びNOの浄化率が50%となる温度(50%浄化温度)を求めた。その結果を表1及び図2A〜図2Cに示す。なお、図2A〜図2C中の棒グラフは、左側が耐久試験前の結果であり、右側が耐久試験後の結果である。
<Performance evaluation test of exhaust gas purification catalyst>
A catalyst layer filled with 1.5 g of exhaust gas purification catalyst pellets (particle size: 0.5 to 1.0 mm) before or after the durability test is fixed to the bed distribution reactor (Best Instruments Co., Ltd. "CATA-5000-" 8 ”) was set. A flow rate of 7 L / min of stoichiometric gas (CO (1.00%) + C 3 H 6 (1200 ppm C) + NO (1200 ppm) + O 2 (6200 ppm) + CO 2 (10.0%) + N 2 (remaining)) is applied to this catalyst layer. in supplying, while entering the catalyst gas temperature was increased at a heating rate of 25 ° C. / min from 100 ° C. to 400 ° C., measured CO concentration, C 3 H 6 concentration and NO concentration of the catalyst exiting gas, the catalyst CO in incoming gas temperature to calculate the purification ratio of C 3 H 6 and NO. Figure 1A~-1C, entering the catalyst gas temperature and CO in the exhaust gas purifying catalyst pellets before the durability test obtained in Examples 1-4 and Comparative Examples 1-3, the relationship between the purification rate of C 3 H 6 and NO It is a graph which shows. Further, based on the graph shown entering the catalyst gas temperature and CO in the exhaust gas purifying catalyst pellets before and after the durability test and durability test, the relationship between the C 3 H 6 and NO purification rate, CO, of the C 3 H 6 and NO The temperature at which the purification rate was 50% (50% purification temperature) was determined. The results are shown in Table 1 and FIGS. 2A to 2C. In the bar graphs in FIGS. 2A to 2C, the left side is the result before the durability test, and the right side is the result after the durability test.
表1及び図2A〜図2Bに示したように、本発明にかかるCO酸化触媒を含有する耐久試験前の排ガス浄化触媒(実施例1〜4及び比較例3)は、本発明にかかるCO酸化触媒を含まない耐久試験前の排ガス浄化触媒(比較例1〜2)に比べて、CO及びC3H6の50%浄化温度が低くなることがわかった。これは、本発明にかかるCO酸化触媒が三元触媒に比べて低温でのCO及びC3H6の浄化が可能であったためと考えられる。また、実施例1〜4の結果から明らかなように、Co3O4の担持量が多くなるにつれて、CO及びC3H6の50%浄化温度が低くなる傾向にあることがわかった。 As shown in Table 1 and FIGS. 2A to 2B, the exhaust gas purification catalyst (Examples 1 to 4 and Comparative Example 3) containing the CO oxidation catalyst according to the present invention before the durability test is the CO oxidation according to the present invention. It was found that the purification temperature of CO and C 3 H 6 was 50% lower than that of the exhaust gas purification catalyst (Comparative Examples 1 and 2) before the durability test containing no catalyst. It is considered that this is because the CO oxidation catalyst according to the present invention was able to purify CO and C 3 H 6 at a lower temperature than the three-way catalyst. Further, as is clear from the results of Examples 1 to 4, it was found that the 50% purification temperature of CO and C 3 H 6 tends to decrease as the amount of Co 3 O 4 supported increases.
また、図1Cに示したように、三元触媒を含有する耐久試験前の排ガス浄化触媒(実施例1〜4及び比較例1〜2)は400℃未満の温度でほぼ100%のNOの浄化が可能であったのに対して、三元触媒を含まない耐久試験前の排ガス浄化触媒(比較例3)は400℃以下ではNOの浄化が困難であった。この結果は、NOの浄化が三元触媒上で進行していることを示している。 Further, as shown in FIG. 1C, the exhaust gas purification catalysts (Examples 1 to 4 and Comparative Examples 1 and 2) containing the three-way catalyst before the durability test purify almost 100% of NO at a temperature of less than 400 ° C. However, it was difficult to purify NO in the exhaust gas purification catalyst (Comparative Example 3) before the durability test, which did not contain a three-way catalyst, at 400 ° C. or lower. This result indicates that the purification of NO is proceeding on the three-way catalyst.
さらに、表1及び図2Cに示したように、本発明にかかるCO酸化触媒と三元触媒とを含有する耐久試験前の排ガス浄化触媒(実施例1〜4)は、三元触媒を含有し、本発明にかかるCO酸化触媒を含まない耐久試験前の排ガス浄化触媒(比較例1〜2)に比べて、NOの50%浄化温度が低くなることがわかった。これは、本発明にかかるCO酸化触媒上でのCO及びC3H6の浄化が触媒入りガス温度が低い段階から開始したことにより、その浄化により発生した反応熱が三元触媒の温度を上昇させ、その結果、触媒入りガス温度が低い段階から、温度が上昇した三元触媒上でNOの浄化が開始したためと考えられる。一方、CO酸化触媒を含まない場合(比較例1〜2)には、浄化による反応熱が発生せず、三元触媒の温度が上昇しないため、触媒入りガス温度が低い段階では、三元触媒上でNOの浄化が開始しなかったことによると考えられる。また、CO酸化触媒のみの場合(比較例3)には、NOの50%浄化温度が著しく高くなることがわかった。 Further, as shown in Table 1 and FIG. 2C, the exhaust gas purification catalyst (Examples 1 to 4) containing the CO oxidation catalyst and the three-way catalyst according to the present invention before the durability test contains the three-way catalyst. It was found that the purification temperature of NO was 50% lower than that of the exhaust gas purification catalyst (Comparative Examples 1 and 2) before the durability test, which did not contain the CO oxidation catalyst according to the present invention. This is because the purification of CO and C 3 H 6 on the CO oxidation catalyst according to the present invention was started from the stage where the temperature of the gas containing the catalyst was low, and the reaction heat generated by the purification increased the temperature of the three-way catalyst. As a result, it is probable that the purification of NO was started on the three-way catalyst whose temperature had risen from the stage where the temperature of the catalyst-containing gas was low. On the other hand, when the CO oxidation catalyst is not contained (Comparative Examples 1 and 2), the reaction heat due to purification is not generated and the temperature of the three-way catalyst does not rise. Therefore, when the temperature of the gas containing the catalyst is low, the three-way catalyst is used. It is probable that the purification of NO did not start above. It was also found that the 50% purification temperature of NO was significantly increased in the case of using only the CO oxidation catalyst (Comparative Example 3).
また、表1及び図2Cに示した実施例1〜4の結果から明らかなように、Co3O4の担持量が多くなるにつれて、NOの50%浄化温度が低くなる傾向にあることがわかった。これは、Co3O4の担持量が多くなるにつれて、CO酸化触媒上でのCO及びC3H6の浄化が、触媒入りガス温度がより低い段階から開始したことにより、その浄化により発生した反応熱が三元触媒の温度を上昇させ、その結果、触媒入りガス温度がより低い段階から、温度が上昇した三元触媒上でNOの浄化が開始したためと考えられる。 Further, as is clear from the results of Examples 1 to 4 shown in Table 1 and FIG. 2C, it was found that the 50% purification temperature of NO tends to decrease as the amount of Co 3 O 4 supported increases. It was. This was caused by the purification of CO and C 3 H 6 on the CO oxidation catalyst started from the stage where the temperature of the catalyst-containing gas was lower as the amount of supported Co 3 O 4 increased. It is probable that the heat of reaction raised the temperature of the three-way catalyst, and as a result, the purification of NO started on the three-way catalyst whose temperature had risen from the stage where the temperature of the gas containing the catalyst was lower.
さらに、表1及び図2A〜図2Cに示したように、これらの傾向は、耐久試験後の排ガス浄化触媒においても認められ、CO酸化触媒による効果、三元触媒による効果、及びCO酸化触媒と三元触媒とを混合することによる効果は、耐久試験後においても維持されていることが確認された。 Furthermore, as shown in Table 1 and FIGS. 2A to 2C, these tendencies were also observed in the exhaust gas purification catalyst after the durability test, and the effect of the CO oxidation catalyst, the effect of the three-way catalyst, and the CO oxidation catalyst. It was confirmed that the effect of mixing with the three-way catalyst was maintained even after the durability test.
(実施例5)
〔CO酸化触媒の調製〕
CO酸化触媒粒子におけるCo3O4とZrO2との質量比をCo3O4:ZrO2=10:90に変更した以外は実施例1と同様にしてZrO2粒子上にCo3O4粒子が担持したCO酸化触媒粒子を調製し、このCO酸化触媒粒子を粒子径が75μm以下となるように、乳鉢で粉砕した後、篩分けにより整粒した。
(Example 5)
[Preparation of CO oxidation catalyst]
The mass ratio of Co 3 O 4 and ZrO 2 in the CO oxidation catalyst particles Co 3 O 4: ZrO 2 = 10: was changed to 90 in the same manner as in Example 1 on the ZrO 2 grains Co 3 O 4 particles The CO oxidation catalyst particles carried by the above were prepared, and the CO oxidation catalyst particles were pulverized in a dairy pot so that the particle size was 75 μm or less, and then sized by sieving.
〔三元触媒の調製〕
実施例1と同様にしてAl2O3粒子上にPd粒子が担持した三元触媒粒子(Pd:Al2O3=0.5:100(質量比))を調製し、この三元触媒粒子を粒子径が75μm以下となるように、乳鉢で粉砕した後、篩分けにより整粒した。
[Preparation of three-way catalyst]
In the same manner as in Example 1, three-way catalyst particles (Pd: Al 2 O 3 = 0.5: 100 (mass ratio)) in which Pd particles are supported on Al 2 O 3 particles are prepared, and these three-way catalyst particles are prepared. Was crushed in a dairy pot so that the particle size was 75 μm or less, and then sized by sieving.
〔排ガス浄化触媒の調製〕
前記CO酸化触媒粒子(粒子径:75μm以下)0.75gと前記三元触媒粒子(粒子径:75μm以下)0.75gとを用いた以外は実施例1と同様にして粒径0.5〜1.0mmの排ガス浄化触媒ペレットを作製した。
[Preparation of exhaust gas purification catalyst]
The particle size is 0.5 to 0.5 as in Example 1 except that 0.75 g of the CO oxidation catalyst particles (particle size: 75 μm or less) and 0.75 g of the three-way catalyst particles (particle size: 75 μm or less) are used. A 1.0 mm exhaust gas purification catalyst pellet was prepared.
(実施例6)
〔CO酸化触媒の調製〕
CO酸化触媒粒子におけるCo3O4とZrO2との質量比をCo3O4:ZrO2=10:90に変更した以外は実施例1と同様にしてZrO2粒子上にCo3O4粒子が担持したCO酸化触媒粒子を調製し、このCO酸化触媒粒子を粒子径が75μm以下となるように、乳鉢で粉砕した後、篩分けにより整粒した。
(Example 6)
[Preparation of CO oxidation catalyst]
The mass ratio of Co 3 O 4 and ZrO 2 in the CO oxidation catalyst particles Co 3 O 4: ZrO 2 = 10: was changed to 90 in the same manner as in Example 1 on the ZrO 2 grains Co 3 O 4 particles The CO oxidation catalyst particles carried by the above were prepared, and the CO oxidation catalyst particles were pulverized in a dairy pot so that the particle size was 75 μm or less, and then sized by sieving.
〔三元触媒の調製〕
パラジウム(Pd)と酸化ジルコニウム(ZrO2)との質量比がPd:ZrO2=0.5:100となるように、硝酸パラジウム(Pd(NO3)2)溶液(田中貴金属工業株式会社製)0.61gをイオン交換水50mlで希釈した溶液に酸化ジルコニウム粒子(ZrO2、第一稀元素化学工業株式会社製「RC−100」、BET比表面積:100m2/g)10.0gを浸漬してZrO2粒子にPd(NO3)2溶液を含浸させた後、200℃に設定したホットプレート上で溶媒を蒸発させ、さらに、大気中、400℃で5時間焼成して、ZrO2粒子上にPd粒子が担持した三元触媒粒子を調製した。この三元触媒粒子を粒子径が75μm以下となるように、乳鉢で粉砕した後、篩分けにより整粒した。
[Preparation of three-way catalyst]
Palladium nitrate (Pd (NO 3 ) 2 ) solution (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) so that the mass ratio of palladium (Pd) and zirconium oxide (ZrO 2 ) is Pd: ZrO 2 = 0.5: 100. 10.0 g of zirconium oxide particles (ZrO 2 , "RC-100" manufactured by Daiichi Rare Element Chemical Industry Co., Ltd., BET specific surface area: 100 m 2 / g) was immersed in a solution obtained by diluting 0.61 g with 50 ml of ion-exchanged water. After impregnating the ZrO 2 particles with the Pd (NO 3 ) 2 solution, the solvent is evaporated on a hot plate set at 200 ° C., and further, the ZrO 2 particles are baked in the air at 400 ° C. for 5 hours to be placed on the ZrO 2 particles. A ternary catalyst particle carrying Pd particles was prepared. The three-way catalyst particles were crushed in a mortar so that the particle size was 75 μm or less, and then sized by sieving.
〔排ガス浄化触媒の調製〕
前記CO酸化触媒粒子(粒子径:75μm以下)1.0gと前記三元触媒粒子(粒子径:75μm以下)1.0gとを用いた以外は実施例1と同様にして粒径0.5〜1.0mmの排ガス浄化触媒ペレットを作製した。
[Preparation of exhaust gas purification catalyst]
The particle size is 0.5 to 0.5 as in Example 1 except that 1.0 g of the CO oxidation catalyst particles (particle size: 75 μm or less) and 1.0 g of the three-way catalyst particles (particle size: 75 μm or less) are used. A 1.0 mm exhaust gas purification catalyst pellet was prepared.
(実施例7)
CO酸化触媒粒子及び三元触媒粒子の粒子径が25μm以下となるように粉砕、整粒した以外は実施例6と同様にして粒径0.5〜1.0mmの排ガス浄化触媒ペレットを作製した。
(Example 7)
Exhaust gas purification catalyst pellets having a particle size of 0.5 to 1.0 mm were prepared in the same manner as in Example 6 except that the CO oxidation catalyst particles and the three-way catalyst particles were pulverized and sized so as to have a particle size of 25 μm or less. ..
(実施例8)
〔排ガス浄化触媒の調製〕
パラジウム(Pd)と四酸化三コバルト(Co3O4)と酸化ジルコニウム(ZrO2)との質量比がPd:Co3O4:ZrO2=0.5:10:90となるように、硝酸パラジウム(Pd(NO3)2)溶液(田中貴金属工業株式会社製)0.61gと硝酸コバルト六水和物(Co(NO3)2・6H2O、99.5%、富士フィルム和光純薬株式会社製)1.81gとをイオン交換水50mlに溶解し、さらにイオン交換水50mlを添加して調製したPd(NO3)2とCo(NO3)2とを含有する水溶液に、酸化ジルコニウム粒子(ZrO2、第一稀元素化学工業株式会社製「RC−100」、比表面積:100m2/g)20.0gを浸漬してZrO2粒子にPd(NO3)2とCo(NO3)2とを含有する水溶液を含浸させた後、200℃に設定したホットプレート上で溶媒を蒸発させ、さらに、大気中、400℃で5時間焼成して、ZrO2粒子上にPd粒子とCo3O4粒子が担持した排ガス浄化触媒粒子を調製した。この排ガス浄化触媒粒子を粒子径が75μm以下となるように、乳鉢で粉砕した後、篩分けにより整粒した。
(Example 8)
[Preparation of exhaust gas purification catalyst]
Nitrate so that the mass ratio of palladium (Pd), tricobalt tetraoxide (Co 3 O 4 ) and zirconium oxide (ZrO 2 ) is Pd: Co 3 O 4 : ZrO 2 = 0.5: 10: 90. palladium (Pd (NO 3) 2) solution (Tanaka Kikinzoku Co., Ltd.) 0.61 g and cobalt nitrate hexahydrate (Co (NO 3) 2 · 6H 2 O, 99.5%, Fuji film Wako pure Chemical Zirconium oxide was added to an aqueous solution containing Pd (NO 3 ) 2 and Co (NO 3 ) 2 prepared by dissolving 1.81 g of (manufactured by Co., Ltd.) in 50 ml of ion-exchanged water and further adding 50 ml of ion-exchanged water. Immerse 20.0 g of particles (ZrO 2 , "RC-100" manufactured by Daiichi Rare Element Chemical Industry Co., Ltd., specific surface area: 100 m 2 / g) in ZrO 2 particles with Pd (NO 3 ) 2 and Co (NO 3). ) After impregnating with an aqueous solution containing 2 and, the solvent is evaporated on a hot plate set at 200 ° C., and further fired in the air at 400 ° C. for 5 hours to obtain Pd particles and Co on ZrO 2 particles. Exhaust gas purification catalyst particles carried by 3 O 4 particles were prepared. The exhaust gas purification catalyst particles were crushed in a mortar so that the particle size was 75 μm or less, and then sized by sieving.
得られた排ガス浄化触媒粒子(粒子径:75μm以下)を1000kg/cm2の圧力で加圧成形した後、得られた成形体を粉砕・篩分けして粒径0.5〜1.0mmの排ガス浄化触媒ペレットを作製した。 The obtained exhaust gas purification catalyst particles (particle size: 75 μm or less) were pressure-molded at a pressure of 1000 kg / cm 2 , and then the obtained molded body was pulverized and sieved to have a particle size of 0.5 to 1.0 mm. Exhaust gas purification catalyst pellets were prepared.
(実施例9)
CO酸化触媒粒子及び三元触媒粒子の粒子径が0.5〜1.0mmとなるように粉砕、整粒した以外は実施例6と同様にして粒子径が0.5〜1.0mmのCO酸化触媒粒子及び三元触媒粒子をそれぞれ調製した。前記CO酸化触媒粒子0.75gと前記三元触媒粒子0.75gとを乳鉢で10分間攪拌して物理混合を行い、粒径0.5〜1.0mmの排ガス浄化触媒ペレットを作製した。
(Example 9)
CO having a particle size of 0.5 to 1.0 mm in the same manner as in Example 6 except that the CO oxidation catalyst particles and the three-way catalyst particles were pulverized and sized so as to have a particle size of 0.5 to 1.0 mm. Oxidation catalyst particles and three-way catalyst particles were prepared, respectively. 0.75 g of the CO oxidation catalyst particles and 0.75 g of the three-way catalyst particles were stirred in a dairy pot for 10 minutes and physically mixed to prepare exhaust gas purification catalyst pellets having a particle size of 0.5 to 1.0 mm.
(比較例4)
前記CO酸化触媒粒子の代わりに、粒子径が75μm以下となるように粉砕、整粒したセリア−ジルコニア固溶体粒子(CeO2−ZrO2(CZ)、ソルベイ・スペシャルケム・ジャパン株式会社製CeO2−ZrO2複合酸化物、BET比表面積:60m2/g)1.0gを用いた以外は実施例5と同様にして粒径0.5〜1.0mmの排ガス浄化触媒ペレットを作製した。
(Comparative Example 4)
Instead of the CO oxidation catalyst particles, ceria-zirconia solid solution particles (CeO 2- ZrO 2 (CZ)) crushed and sized so that the particle size is 75 μm or less, CeO 2- manufactured by Solvay Special Chem Japan Co., Ltd. Exhaust gas purification catalyst pellets having a particle size of 0.5 to 1.0 mm were prepared in the same manner as in Example 5 except that 1.0 g of ZrO 2 composite oxide and BET specific surface area: 60 m 2 / g) were used.
(比較例5)
前記CO酸化触媒粒子の代わりに、粒子径が75μm以下となるように粉砕、整粒した酸化ジルコニウム粒子(ZrO2、第一稀元素化学工業株式会社製「RC−100」、BET比表面積:100m2/g)1.0gを用いた以外は実施例6と同様にして粒径0.5〜1.0mmの排ガス浄化触媒ペレットを作製した。
(Comparative Example 5)
Instead of the CO oxidation catalyst particles, zirconium oxide particles crushed and sized so that the particle size is 75 μm or less (ZrO 2 , “RC-100” manufactured by Daiichi Rare Element Chemical Industry Co., Ltd., BET specific surface area: 100 m Exhaust gas purification catalyst pellets having a particle size of 0.5 to 1.0 mm were prepared in the same manner as in Example 6 except that 2 / g) 1.0 g was used.
(比較例6)
前記三元触媒粒子の代わりに、粒子径が75μm以下となるように粉砕、整粒した酸化ジルコニウム粒子(ZrO2、第一稀元素化学工業株式会社製「RC−100」、BET比表面積:100m2/g)1.0gを用いた以外は実施例6と同様にして粒径0.5〜1.0mmの排ガス浄化触媒ペレットを作製した。
(Comparative Example 6)
Instead of the three-way catalyst particles, zirconium oxide particles crushed and sized so that the particle size is 75 μm or less (ZrO 2 , “RC-100” manufactured by Daiichi Rare Element Chemical Industry Co., Ltd., BET specific surface area: 100 m Exhaust gas purification catalyst pellets having a particle size of 0.5 to 1.0 mm were prepared in the same manner as in Example 6 except that 2 / g) 1.0 g was used.
<耐久試験>
得られた排ガス浄化触媒ペレット(粒径:0.5〜1.0mm)1.5gを石英ガラス管に充填し、水素含有ガス(H2(2%)+N2(残部))と酸素含有ガス(O2(1%)+N2(残部))とを5分間ごとに切替えながら流量0.5L/minで流通させ、800℃で5時間の耐久試験を行った。
<Durability test>
1.5 g of the obtained exhaust gas purification catalyst pellet (particle size: 0.5 to 1.0 mm) was filled in a quartz glass tube, and hydrogen-containing gas (H 2 (2%) + N 2 (remaining)) and oxygen-containing gas. (O 2 (1%) + N 2 (remaining portion)) was circulated at a flow rate of 0.5 L / min while switching every 5 minutes, and a durability test was conducted at 800 ° C. for 5 hours.
<CO酸化触媒の重心間距離の測定>
耐久試験後の排ガス浄化触媒ペレット(粒径:0.5〜1.0mm)を一部採取して硬化性樹脂(エポキシ樹脂)に埋没させ、表面を研磨して触媒ペレットの断面を露出させ、さらに、露出した触媒ペレットの断面を鏡面研磨した。得られた研磨断面をエネルギー分散型X線分析装置(EDS、株式会社堀場製作所製「X−maxN」、有効素子面積:50mm2)を備える走査型電子顕微鏡(SEM、株式会社日立ハイテクノロジーズ製「SU3500」)を用いて観察(倍率:400倍(実施例9は40倍))してSEM−EDS分析(EDSのスイープ回数(積算回数):20回)を行い、コバルトマッピング画像を取得した。得られたコバルトマッピング画像について、画像解析処理ソフト(米国国立衛生研究所(NIH)にて開発された「imageJ」)を用いて8bitで二値化処理を行い、得られた二値化画像について、50pix以上を閾値として粒子検出処理を行った後、黒色領域をCO酸化触媒、白色領域を三元触媒としてマスク処理を行った。図3A〜図3Cに、実施例6、8、9で得られた排ガス浄化触媒ペレットについてのマスク処理後の二値化画像(CO酸化触媒分散画像)を示す。このCO酸化触媒分散画像について、15個以上のCO酸化触媒(黒色領域)を対象として、画像解析ソフト(旭化成エンジニアリング株式会社製「A像くん(R)」)の分散度計測機能を用いてCO酸化触媒(黒色領域)の重心間距離を計測し、その平均値を算出した。その結果を表2に示す。なお、図3A〜図3C中の実線は、CO酸化触媒(黒色領域)の重心を結んだ直線であり、この直線の長さを重心間距離として計測した。
<Measurement of the distance between the centers of gravity of the CO oxidation catalyst>
A part of the exhaust gas purification catalyst pellet (particle size: 0.5 to 1.0 mm) after the durability test is sampled and embedded in a curable resin (epoxy resin), and the surface is polished to expose the cross section of the catalyst pellet. Further, the cross section of the exposed catalyst pellet was mirror-polished. The obtained polished cross section is subjected to an energy dispersive X-ray analyzer (EDS, "X-max N " manufactured by Horiba Seisakusho Co., Ltd., effective element area: 50 mm 2 ) and a scanning electron microscope (SEM, manufactured by Hitachi High Technologies Co., Ltd.). Observation using "SU3500") (magnification: 400 times (40 times in Example 9)) was performed and SEM-EDS analysis (EDS sweep count (integration count): 20 times) was performed to obtain a cobalt mapping image. .. The obtained cobalt-mapped image was binarized in 8 bits using image analysis processing software (“imageJ” developed by the National Institutes of Health (NIH)), and the obtained binarized image was obtained. After performing the particle detection treatment with 50 pix or more as the threshold value, the black region was used as a CO oxidation catalyst and the white region was used as a three-way catalyst for mask treatment. 3A to 3C show binarized images (CO oxidation catalyst dispersion images) of the exhaust gas purification catalyst pellets obtained in Examples 6, 8 and 9 after mask treatment. Regarding this CO oxidation catalyst dispersion image, CO is used for 15 or more CO oxidation catalysts (black area) by using the dispersion degree measurement function of image analysis software ("A image-kun (R)" manufactured by Asahi Kasei Engineering Co., Ltd.). The distance between the centers of gravity of the oxidation catalyst (black region) was measured, and the average value was calculated. The results are shown in Table 2. The solid line in FIGS. 3A to 3C is a straight line connecting the centers of gravity of the CO oxidation catalyst (black region), and the length of this straight line was measured as the distance between the centers of gravity.
<排ガス浄化触媒の性能評価試験>
耐久試験前又は耐久試験後の排ガス浄化触媒ペレット(粒径:0.5〜1.0mm)1.5gを充填した触媒層を固定床流通反応装置(モデルガス発生装置:ベスト測器株式会社製「CATA−5000−SP」、ガス分析計:ベスト測器株式会社製「BEX5900C−SP」)にセットした。この触媒層にストイキモデルガス(CO(1.00%)+C3H6(1200ppmC)+NO(1200ppm)+O2(6200ppm)+CO2(10.0%)+N2(残部))を流量10L/minで供給し、触媒入りガス温度を100℃から450℃まで25℃/minの昇温速度で上昇させながら、触媒出ガス中のCO濃度、C3H6濃度及びNO濃度を測定し、各触媒入りガス温度におけるCO、C3H6及びNOの浄化率を算出した。耐久試験前及び耐久試験後の排ガス浄化触媒ペレットの触媒入りガス温度とCO、C3H6及びNOの浄化率との関係を示すグラフに基づいて、CO、C3H6及びNOの浄化率が50%となる温度(50%浄化温度)を求めた。その結果を表2及び図4A〜図4Cに示す。なお、図4A〜図4C中の棒グラフは、左側が耐久試験前の結果であり、右側が耐久試験後の結果である。
<Performance evaluation test of exhaust gas purification catalyst>
A catalyst layer filled with 1.5 g of exhaust gas purification catalyst pellets (particle size: 0.5 to 1.0 mm) before or after the durability test is fixed. Bed flow reactor (model gas generator: manufactured by Best Instruments Co., Ltd.) It was set in "CATA-5000-SP", gas analyzer: "BEX5900C-SP" manufactured by Best Instruments Co., Ltd.). A flow rate of stoichiometric gas (CO (1.00%) + C 3 H 6 (1200 ppm C) + NO (1200 ppm) + O 2 (6200 ppm) + CO 2 (10.0%) + N 2 (remaining)) is applied to this catalyst layer at a flow rate of 10 L / min. in supplying, while entering the catalyst gas temperature was increased at a heating rate of 25 ° C. / min from 100 ° C. to 450 ° C., measured CO concentration, C 3 H 6 concentration and NO concentration of the catalyst exiting gas, the catalyst CO in incoming gas temperature to calculate the purification ratio of C 3 H 6 and NO. Entering the catalyst gas temperature and CO in the exhaust gas purifying catalyst pellets before and after the durability test and durability test, based on the graph showing the relationship between the purification rate of C 3 H 6 and NO, CO, purification rate of C 3 H 6 and NO The temperature at which is 50% (50% purification temperature) was determined. The results are shown in Table 2 and FIGS. 4A to 4C. In the bar graphs in FIGS. 4A to 4C, the left side is the result before the durability test, and the right side is the result after the durability test.
表2及び図4A〜図4Bに示したように、本発明にかかるCO酸化触媒を含有する耐久試験前の排ガス浄化触媒(実施例5)は、前記CO酸化触媒の代わりに酸化触媒や酸素吸放出材として高い活性を有するセリア−ジルコニア固溶体を含有する耐久試験前の排ガス浄化触媒(比較例4)に比べて、CO及びC3H6の50%浄化温度が低くなることがわかった。これは、本発明にかかるCO酸化触媒がセリア−ジルコニア固溶体に比べて低温でのCO及びC3H6の浄化が可能であったためと考えられる。また、この傾向は、耐久試験後の排ガス浄化触媒においても認められ、CO酸化触媒による効果は耐久試験後においても維持されていることが確認された。 As shown in Table 2 and FIGS. 4A to 4B, the exhaust gas purification catalyst (Example 5) containing the CO oxidation catalyst according to the present invention before the durability test has an oxidation catalyst or oxygen absorption instead of the CO oxidation catalyst. It was found that the purification temperature of CO and C 3 H 6 was 50% lower than that of the exhaust gas purification catalyst (Comparative Example 4) before the durability test, which contained a solid solution of ceria-zirconia having high activity as a release material. It is considered that this is because the CO oxidation catalyst according to the present invention was able to purify CO and C 3 H 6 at a lower temperature than the ceria-zirconia solid solution. In addition, this tendency was also observed in the exhaust gas purification catalyst after the durability test, and it was confirmed that the effect of the CO oxidation catalyst was maintained even after the durability test.
さらに、表2及び図4Cに示したように、本発明にかかるCO酸化触媒と三元触媒とを含有する耐久試験前の排ガス浄化触媒(実施例5)は、前記CO酸化触媒の代わりにセリア−ジルコニア固溶体を含有する耐久試験前の排ガス浄化触媒(比較例4)に比べて、NOの50%浄化温度が低くなることがわかった。これは、本発明にかかるCO酸化触媒を含有する排ガス浄化触媒(実施例5)においては、前記CO酸化触媒上でのCO及びC3H6の浄化が触媒入りガス温度が低い段階から開始したことにより、その浄化により発生した反応熱が三元触媒の温度を上昇させ、その結果、触媒入りガス温度が低い段階から、温度が上昇した三元触媒上でNOの浄化が開始したのに対して、前記CO酸化触媒の代わりにセリア−ジルコニア固溶体を含有する排ガス浄化触媒(比較例4)においては、浄化による反応熱が発生せず、三元触媒の温度が上昇しないため、触媒入りガス温度が低い段階では、三元触媒上でNOの浄化が開始しなかったことによると考えられる。また、この傾向は、耐久試験後の排ガス浄化触媒においても認められ、CO酸化触媒と三元触媒とを混合することによる効果は耐久試験後においても維持されていることが確認された。 Further, as shown in Table 2 and FIG. 4C, the exhaust gas purification catalyst (Example 5) containing the CO oxidation catalyst and the three-way catalyst according to the present invention before the durability test is ceria instead of the CO oxidation catalyst. -It was found that the purification temperature of NO was 50% lower than that of the exhaust gas purification catalyst (Comparative Example 4) containing the zirconia solid solution before the durability test. This is because, in the exhaust gas purification catalyst containing the CO oxidation catalyst (Example 5) according to the present invention, the purification of CO and C 3 H 6 on the CO oxidation catalyst was started from the stage where the temperature of the catalyst-containing gas was low. As a result, the reaction heat generated by the purification raises the temperature of the three-way catalyst, and as a result, NO purification starts on the three-way catalyst whose temperature has risen from the stage where the temperature of the gas containing the catalyst is low. In the exhaust gas purification catalyst (Comparative Example 4) containing a solid solution of ceria-zirconia instead of the CO oxidation catalyst, the reaction heat due to purification is not generated and the temperature of the three-way catalyst does not rise, so that the gas temperature containing the catalyst At the low stage, it is considered that NO purification did not start on the three-way catalyst. In addition, this tendency was also observed in the exhaust gas purification catalyst after the durability test, and it was confirmed that the effect of mixing the CO oxidation catalyst and the three-way catalyst was maintained even after the durability test.
また、表2及び図4A〜図4Cに示したように、三元触媒の担体としてZrO2を用いた場合においても、Al2O3を用いた場合と同様に、本発明にかかるCO酸化触媒を含有する耐久試験前の排ガス浄化触媒(実施例6)は、本発明にかかるCO酸化触媒を含まない耐久試験前の排ガス浄化触媒(比較例5)に比べて、CO、C3H6及びNOの50%浄化温度が低くなることがわかった。さらに、三元触媒の担体としてZrO2を用いた場合(実施例6)には、Al2O3を用いた場合(実施例5)と同等以上のCO、C3H6及びNOの低温浄化性能が得られることがわかった。また、これらの傾向は、耐久試験後の排ガス浄化触媒においても認められ、CO酸化触媒による効果、三元触媒による効果、及びCO酸化触媒と三元触媒とを混合することによる効果は、耐久試験後においても維持されていることが確認された。 Further, as shown in Table 2 and FIGS. 4A to 4C, even when ZrO 2 is used as the carrier of the three-way catalyst, the CO oxidation catalyst according to the present invention is used as in the case where Al 2 O 3 is used. The exhaust gas purification catalyst before the durability test (Example 6) containing the above has CO, C 3 H 6 and CO, C 3 H 6 and as compared with the exhaust gas purification catalyst before the durability test (Comparative Example 5) containing the CO oxidation catalyst according to the present invention. It was found that the purification temperature of NO was lowered by 50%. Furthermore, when ZrO 2 is used as the carrier of the three-way catalyst (Example 6), low-temperature purification of CO, C 3 H 6 and NO equal to or higher than that when Al 2 O 3 is used (Example 5). It turned out that performance can be obtained. In addition, these tendencies are also observed in the exhaust gas purification catalyst after the durability test, and the effect of the CO oxidation catalyst, the effect of the three-way catalyst, and the effect of mixing the CO oxidation catalyst and the three-way catalyst are the durability test. It was confirmed that it was maintained even afterwards.
さらに、表2及び図4A〜図4Cに示したように、CO酸化触媒の重心間距離の平均値が所定の範囲を超える排ガス浄化触媒(実施例9)は、CO酸化触媒の重心間距離の平均値が所定の範囲内にある排ガス浄化触媒(実施例6〜8)に比べて、耐久試験前においては、CO、C3H6及びNOの50%浄化温度が同程度であったが、耐久試験後においては、CO、C3H6及びNOの50%浄化温度が高くなることがわかった。これは、CO酸化触媒の重心間距離の平均値が所定の範囲を超える耐久試験後の排ガス浄化触媒(実施例9)のNOの50%浄化温度が本発明にかかるCO酸化触媒を含まない耐久試験後の排ガス浄化触媒(比較例5)のNOの50%浄化温度と同程度であることから、CO酸化触媒の重心間距離の平均値が所定の範囲を超える耐久試験後の排ガス浄化触媒(実施例9)においては、CO酸化触媒と三元触媒との混合による効果が十分に得られていないためと考えられる。すなわち、CO酸化触媒の重心間距離の平均値が所定の範囲内にある排ガス浄化触媒(実施例6〜8)においては、前記CO酸化触媒上でCO及びC3H6の浄化により発生した反応熱の三元触媒への伝達量が多いため、耐久試験によって三元触媒が熱劣化しても、伝達された反応熱によって三元触媒の温度が十分に上昇し、三元触媒の活性の低下が十分に抑制されると考えられる。一方、CO酸化触媒の重心間距離の平均値が所定の範囲を超える排ガス浄化触媒(実施例9)においては、CO酸化触媒と三元触媒との距離が長くなるため、前記CO酸化触媒上で発生した反応熱の三元触媒への伝達量が少なくなると考えられる。その結果、耐久試験前においては、三元触媒が熱劣化していないため、CO酸化触媒から三元触媒への熱の伝達量が少なくても、三元触媒の活性の低下は抑制されるが、耐久試験により三元触媒が熱劣化した場合には、CO酸化触媒から三元触媒への熱の伝達量が少ないため、三元触媒の温度が上昇せず、三元触媒の活性が低下したと考えられる。 Further, as shown in Table 2 and FIGS. 4A to 4C, the exhaust gas purification catalyst (Example 9) in which the average value of the distance between the centers of gravity of the CO oxidation catalyst exceeds a predetermined range is the distance between the centers of gravity of the CO oxidation catalyst. compared to an exhaust gas purifying catalyst having an average value is within a predetermined range (examples 6-8), before the durability test, CO, but 50% purification temperature of C 3 H 6 and NO were comparable, in after the durability test, CO, be 50% purification temperature of C 3 H 6 and NO increases were found. This is because the 50% purification temperature of NO of the exhaust gas purification catalyst (Example 9) after the durability test in which the average value of the distance between the centers of gravity of the CO oxidation catalyst exceeds a predetermined range does not include the CO oxidation catalyst according to the present invention. Since it is about the same as the 50% purification temperature of NO of the exhaust gas purification catalyst (Comparative Example 5) after the test, the exhaust gas purification catalyst after the durability test (the average value of the distance between the centers of gravity of the CO oxidation catalyst exceeds a predetermined range). In Example 9), it is considered that the effect of mixing the CO oxidation catalyst and the three-way catalyst is not sufficiently obtained. That is, in the exhaust gas purification catalyst (Examples 6 to 8) in which the average value of the distance between the centers of gravity of the CO oxidation catalyst is within a predetermined range, the reaction generated by the purification of CO and C 3 H 6 on the CO oxidation catalyst. Since the amount of heat transferred to the three-way catalyst is large, even if the three-way catalyst is thermally deteriorated by the durability test, the temperature of the three-way catalyst rises sufficiently due to the transferred reaction heat, and the activity of the three-way catalyst decreases. Is considered to be sufficiently suppressed. On the other hand, in the exhaust gas purification catalyst (Example 9) in which the average value of the distance between the centers of gravity of the CO oxidation catalyst exceeds a predetermined range, the distance between the CO oxidation catalyst and the three-way catalyst becomes long, so that the CO oxidation catalyst is used. It is considered that the amount of the generated reaction heat transferred to the three-way catalyst is reduced. As a result, before the durability test, the three-way catalyst is not thermally deteriorated, so that even if the amount of heat transferred from the CO oxidation catalyst to the three-way catalyst is small, the decrease in the activity of the three-way catalyst is suppressed. When the three-way catalyst was thermally deteriorated by the durability test, the amount of heat transferred from the CO oxidation catalyst to the three-way catalyst was small, so the temperature of the three-way catalyst did not rise and the activity of the three-way catalyst decreased. it is conceivable that.
以上説明したように、本発明によれば、触媒入りガス温度が低温の段階から、一酸化炭素(CO)、炭化水素(HC)及び窒素酸化物(NOx)の浄化が可能となる。 As described above, according to the present invention, it is possible to purify carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NOx) from the stage where the temperature of the gas containing the catalyst is low.
したがって、本発明の排ガス浄化触媒は、自動車エンジン等の内燃機関から排出される、一酸化炭素(CO)、炭化水素(HC)及び窒素酸化物(NOx)を含有する排ガスを浄化するための触媒等として有用である。 Therefore, the exhaust gas purification catalyst of the present invention is a catalyst for purifying exhaust gas containing carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOx) emitted from an internal combustion engine such as an automobile engine. It is useful as such.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019133718 | 2019-07-19 | ||
JP2019133718 | 2019-07-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021016854A true JP2021016854A (en) | 2021-02-15 |
JP7310564B2 JP7310564B2 (en) | 2023-07-19 |
Family
ID=74563451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019209684A Active JP7310564B2 (en) | 2019-07-19 | 2019-11-20 | Exhaust gas purification catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7310564B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09220470A (en) * | 1996-02-16 | 1997-08-26 | Nissan Motor Co Ltd | Catalyst for purification of exhaust gas |
WO2009078246A1 (en) * | 2007-12-14 | 2009-06-25 | Nissan Motor Co., Ltd. | Purification catalyst |
JP2018507102A (en) * | 2015-02-05 | 2018-03-15 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Three-way catalyst |
-
2019
- 2019-11-20 JP JP2019209684A patent/JP7310564B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09220470A (en) * | 1996-02-16 | 1997-08-26 | Nissan Motor Co Ltd | Catalyst for purification of exhaust gas |
WO2009078246A1 (en) * | 2007-12-14 | 2009-06-25 | Nissan Motor Co., Ltd. | Purification catalyst |
JP2018507102A (en) * | 2015-02-05 | 2018-03-15 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Three-way catalyst |
Non-Patent Citations (1)
Title |
---|
M. SKOGLUNDH ET AL.: ""Cobalt-promoted palladium as a three-way catalyst"", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. Vol. 7, No. 3-4, JPN6023006973, January 1996 (1996-01-01), pages 299 - 319, ISSN: 0004995035 * |
Also Published As
Publication number | Publication date |
---|---|
JP7310564B2 (en) | 2023-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101010070B1 (en) | Exhaust gas purifying catalyst and method for producing the same | |
JP5216189B2 (en) | Exhaust gas purification catalyst | |
JP2006043654A (en) | Exhaust gas purifying catalyst and production method therefor | |
US8133839B2 (en) | Exhaust gas-purifying catalyst | |
JP6567168B2 (en) | Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification apparatus using the same | |
JP2017192935A (en) | Catalyst for exhaust purification, exhaust purifying method, and exhaust purifying system | |
WO2017073527A1 (en) | Exhaust gas purifying catalyst and method for producing same, and exhaust gas purification device using same | |
JP5332131B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP2005000830A (en) | Catalyst for purifying exhaust gas | |
JP5018882B2 (en) | Catalyst carrier and exhaust gas purification catalyst | |
US8097556B2 (en) | Exhaust gas-purifying catalyst and method of manufacturing the same | |
JP5827567B2 (en) | Method for producing catalyst carrier or catalyst | |
JP2007105632A (en) | Exhaust gas cleaning catalyst | |
JP4655436B2 (en) | Method for treating exhaust gas purification catalyst | |
JP7310564B2 (en) | Exhaust gas purification catalyst | |
US20190193065A1 (en) | Method for producing exhaust gas purifying catalyst and exhaust gas purifying catalyst | |
JP2020131086A (en) | Exhaust gas purifying catalyst | |
JPH07256105A (en) | Catalyst for purification of exhaust gas | |
JP2011136257A (en) | Catalyst carrier for purifying exhaust gas and catalyst for purifying exhaust gas using the catalyst carrier | |
JP2013180928A (en) | Composite material of zirconia and ceria, method for producing the same, and catalyst containing the same | |
JP4329607B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP6851225B2 (en) | Exhaust gas purification catalyst, its manufacturing method, and exhaust gas purification equipment using it | |
JP2006341152A (en) | Catalyst carrier manufacturing method and manufacturing method of exhaust gas purifying catalyst | |
JP2003245554A (en) | Hydrogen generating catalyst | |
JP3488999B2 (en) | Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230407 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230619 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7310564 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |