JPH11221466A - Catalyst for purifying exhaust gas and purification of exhaust gas - Google Patents

Catalyst for purifying exhaust gas and purification of exhaust gas

Info

Publication number
JPH11221466A
JPH11221466A JP10024515A JP2451598A JPH11221466A JP H11221466 A JPH11221466 A JP H11221466A JP 10024515 A JP10024515 A JP 10024515A JP 2451598 A JP2451598 A JP 2451598A JP H11221466 A JPH11221466 A JP H11221466A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
zeolite
gas purifying
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10024515A
Other languages
Japanese (ja)
Inventor
Masanori Kamikubo
真紀 上久保
Junichi Mine
純一 峰
Hiroshi Akama
弘 赤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10024515A priority Critical patent/JPH11221466A/en
Priority to DE69929396T priority patent/DE69929396T2/en
Priority to EP99300857A priority patent/EP0935055B1/en
Publication of JPH11221466A publication Critical patent/JPH11221466A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a catalyst for purifying exhaust gas which can improve an NOx purification capacity even in a low temperature area and in a low HC/NOx ratio and control deterioration even under high temperature hydrothermal conditions, and to provide a method for purifying exhaust gas. SOLUTION: A catalyst containing zeolite is arranged in a preceding stage to an exhaust gas flow, and a catalyst which consists of a first catalyst layer containing at least one component selected from the group consisting of platinum(Pt), palladium(Pd), and rhodium(Rh) and at least one component selected from the group consisting of alkali metals, alkaline earth metals, and rare earth metals, a second catalyst layer containing alumina and/or silica, and a third catalyst layer containing a copper (Cu) component and/or a cobalt (Co) component and in which the first, second, and third catalyst layers are overlaid in turn, is arranged in a succeeding stage to the exhaust gas flow. Appropriately, a catalyst for purifying exhaust gas is used for an internal combustion engine in which the air/fuel ratio of exhaust gas is at the lowest 14.7, an oxygen concentration is at the lowest 5%, and an HC/NOx ratio is at the highest 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気ガス浄化用触
媒及び排気ガス浄化方法に関し、特に酸素を過剰に含む
排気ガス中の窒素酸化物(NOx )を高効率で浄化する
排気ガス浄化触媒及び排気ガス浄化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst and an exhaust gas purifying method, and more particularly to an exhaust gas purifying catalyst for purifying nitrogen oxides (NO x ) in exhaust gas containing excess oxygen with high efficiency. And a method for purifying exhaust gas.

【0002】[0002]

【従来の技術】従来の自動車エンジン排気ガスのよう
に、酸化成分と還元成分がほぼ等しく含まれる排気ガス
を浄化するための触媒としては、通常三元触媒が広く用
いられている。これは、白金(Pt),パラジウム(P
d),ロジウム(Rh)等の貴金属成分やセリア(C
e)成分等の各種金属成分を担持した活性アルミナを主
成分とする触媒であり、排気ガス中の有害成分である炭
化水素(HC)類、一酸化炭素(CO)及びNOx を浄
化することができる。
2. Description of the Related Art A three-way catalyst is generally widely used as a catalyst for purifying an exhaust gas containing an oxidation component and a reduction component substantially equal to each other, such as a conventional automobile engine exhaust gas. These are platinum (Pt), palladium (P
d), noble metal components such as rhodium (Rh) and ceria (C
e) a catalyst composed mainly of supported activated alumina various metal components of the components or the like, to purify a harmful components hydrocarbons (HC) such in the exhaust gas, carbon monoxide (CO) and NO x Can be.

【0003】一方近年は、燃費向上、二酸化炭素の排出
量削減の観点から、理論空燃比より高い空燃比でも運転
することができるリーン・バーンエンジンが注目されて
いる。このようなエンジンの排気ガス(以下、「リーン
排気ガス」と称す)は、理論空燃比近傍で運転する従来
エンジンの排気ガス(以下、「ストイキ排気ガス」と称
す)に比較して、酸素含有率が高く、従来の三元触媒で
はNOx の浄化が不十分となる。そこで、リーン排気ガ
ス中のNOx を高効率で浄化できる新触媒が望まれてい
る。
On the other hand, in recent years, from the viewpoint of improving fuel efficiency and reducing carbon dioxide emissions, a lean burn engine that can be operated even at an air-fuel ratio higher than the stoichiometric air-fuel ratio has attracted attention. The exhaust gas of such an engine (hereinafter, referred to as "lean exhaust gas") has a higher oxygen content than the exhaust gas of a conventional engine operating near the stoichiometric air-fuel ratio (hereinafter, referred to as "stoichiometric exhaust gas"). rate is high, the purification of the NO x becomes insufficient in the conventional three-way catalyst. Therefore, new catalyst that can purify the NO x in lean exhaust gas with high efficiency is desired.

【0004】各種の金属成分をY型、L型、モルデナイ
ト、MFIゼオライト等のゼオライトに担持したゼオラ
イト系触媒は、リーン排気ガス中においてHC類の共存
下、NOx を比較的効率良く浄化できる能力を有してい
る。かかる金属成分としては、銅(Cu)、コバルト
(Co)、銀(Ag)、ニッケル(Ni)、鉄(Fe)
等の遷移金属成分や白金(Pt)等の貴金属成分も有効
であることが認められているが、特にCuを担持したC
u−ゼオライト系触媒が、高流速ガス条件下でも比較的
優れたNOx 浄化性能を示すため、自動車のような小型
移動発生源や定置型の自家発電用エンジン等の排気ガス
浄化への適用に期待が掛けられている。
[0004] Various metallic components Y type, L-type, mordenite, zeolite-supported zeolite-based catalyst such as MFI zeolite, the presence of HC classes in a lean exhaust gas, the ability to relatively efficiently purify NO x have. Such metal components include copper (Cu), cobalt (Co), silver (Ag), nickel (Ni), and iron (Fe).
And noble metal components such as platinum (Pt) have also been found to be effective.
u- zeolitic catalysts, to indicate a relatively good the NO x purification performance even at a high flow rate gas conditions, for application to the exhaust gas purification of small mobile sources and stationary private power generation engine such as an automobile Expectations are over.

【0005】しかし、金属成分を担持したゼオライト系
触媒には以下の問題点があった。即ち、従来のゼオライ
ト系触媒は、NOx を比較的効率良く浄化できる温度範
囲が狭く、特に150℃〜300℃の比較的低い温度領
域では充分なNOx 浄化能力が得られず、また、排気ガ
ス中にHC類が比較的少ない条件下、特に、NO x とH
C類が反応してNOx を窒素に転化するのに必要なHC
類量とNOx 量との比率(HC/NOx 比)が5〜6以
下となる条件下では、NOx 浄化能力が急激に低下して
しまう。一方、水蒸気を含む高温(600℃以上)の条
件(水熱条件)下では、極めて触媒劣化が大きいという
根本的な問題点があるため、リーン・バーン自動車から
の排気ガス浄化用触媒としては実用化に至っていないの
が現状である。
However, a zeolite-based metal component is supported.
The catalyst has the following problems. In other words, conventional zeorai
Catalyst is NOxTemperature range that can relatively efficiently purify
The surrounding area is narrow, especially the relatively low temperature range of 150 ° C to 300 ° C.
NO in the areaxPurification capacity cannot be obtained, and exhaust gas
Under relatively low levels of HCs, especially under NO xAnd H
C reacts and NOxNecessary to convert nitrogen into nitrogen
Classification and NOxRatio to the amount (HC / NOxRatio) is 5-6 or less
Under the conditions below, NOxPurification capacity has dropped sharply
I will. On the other hand, high temperature (600 ° C or higher)
Under conditions (hydrothermal conditions), catalyst degradation is extremely large
Because of a fundamental problem, lean burn
Has not yet been put into practical use as an exhaust gas purification catalyst
Is the current situation.

【0006】従って、上記低温度領域でのNOx 浄化能
力を向上させるため、例えばCu−ゼオライト系触媒層
の下層に貴金属触媒層を設けることにより、貴金属触媒
層での反応熱を利用し、より低温から上層のCu−ゼオ
ライト系触媒を作動させることが提案されている(特開
平1−127044号、特開平5−68888号)。
Accordingly, in order to improve the NO x purification ability in the low temperature region, for example, by providing a noble metal catalyst layer below the Cu-zeolite catalyst layer, the reaction heat of the noble metal catalyst layer is utilized. It has been proposed to operate the upper Cu-zeolite catalyst from a low temperature (Japanese Patent Application Laid-Open Nos. 1-127044 and 5-68888).

【0007】しかし、この場合には、下層の貴金属触媒
層における酸化反応熱のために、触媒劣化が大きくなっ
たり、さらには、貴金属触媒層の強い酸化活性のために
HCが優先的に酸化消費されるので、NOx 浄化率の低
下を招き、この影響は、Cu−ゼオライト系触媒層に貴
金属成分を共存させる場合(特開平1−31074号、
特開平5−168939号)には特に大きく発現する。
However, in this case, the heat of the oxidation reaction in the lower noble metal catalyst layer causes a large deterioration of the catalyst, and the strong oxidation activity of the noble metal catalyst layer causes the preferential oxidation and consumption of HC by the noble metal catalyst layer. , A decrease in the NO x purification rate is caused. This effect is caused by the coexistence of a noble metal component in the Cu-zeolite-based catalyst layer (JP-A-1-31074,
In Japanese Patent Application Laid-Open No. 5-168939, this is particularly large.

【0008】また、Pt系触媒を用いた場合には、20
0〜250℃の比較的低温域でもNOx を転化すること
ができるが、N2 への転化のみでなく、N2 Oの生成も
無視できず、環境への悪影響から、使用が困難な状況に
ある。
When a Pt-based catalyst is used, 20
Although NO x can be converted even in a relatively low temperature range of 0 to 250 ° C., not only conversion to N 2 but also generation of N 2 O cannot be ignored, and it is difficult to use because of adverse effects on the environment. It is in.

【0009】従って、Cu−ゼオライト系触媒やPt系
触媒等の従来の触媒においては、HC/NOx 比が低い
排気ガス条件では、NOx 浄化性能が不十分となり、そ
のため、還元剤となるHC類、アルコール類等を触媒入
り口に二次的に供給する浄化方法も提案されている。
Accordingly, in the conventional catalyst such as Cu- zeolite-based catalyst and Pt-based catalysts, in the low exhaust gas conditions HC / NO x ratio, NO x purifying performance becomes insufficient, and therefore, the reducing agent HC A purification method has also been proposed in which alcohols, alcohols, and the like are secondarily supplied to the catalyst inlet.

【0010】しかし、この場合、還元剤のタンクを車載
したり、燃料を還元剤に直接利用しなければならず、前
者の場合にはタンクの搭載場所や重量増の問題点、後者
の場合にはエンジンの燃費が犠牲になるという問題点が
生ずる。
However, in this case, it is necessary to mount a reducing agent tank on the vehicle or to directly use fuel as the reducing agent. A problem arises in that the fuel efficiency of the engine is sacrificed.

【0011】[0011]

【発明が解決しようとする課題】請求項1〜11記載の
発明の目的は、従来の触媒では十分な浄化能力を示すこ
とができなかった低温度領域及び低HC/NOx 比にお
いてもNOx 浄化性能を向上させることができ、かつ高
温水熱条件下においても触媒劣化を抑制することができ
る排気ガス浄化用触媒を提供するにある。
The purpose of the invention [0006] claims 1-11, wherein also NO x in the low temperature range and the low HC / NO x ratio in the conventional catalyst could not exhibit sufficient purification performance An object of the present invention is to provide an exhaust gas purifying catalyst capable of improving purification performance and suppressing catalyst deterioration even under high-temperature hydrothermal conditions.

【0012】また請求項12記載の説明の目的は、本発
明の排気ガス浄化用触媒のそのNO x 浄化作用が特に有
効に発現できる排気ガス浄化用触媒の浄化方法を提供す
るにある。
The purpose of the description of claim 12 is to provide
NO of the catalyst for purification of exhaust gas of Ming xEspecially effective
To provide a method for purifying an exhaust gas purifying catalyst that can be effectively used
In

【0013】[0013]

【課題を解決するための手段】請求項1記載の排気ガス
浄化用触媒は、ゼオライトを含む触媒を排気流れに対し
て前段に、白金(Pt)、パラジウム(Pd)及びロジ
ウム(Rh)から成る群より選ばれた1種以上の成分
と、アルカリ金属、アルカリ土類金属及び希土類金属か
ら成る群より選ばれた1種以上の成分とを含む第1触媒
層と、アルミナ及び/又はシリカを含む第2触媒層と、
銅(Cu)及び/又はコバルト(Co)成分を含有する
ゼオライトを含む第3触媒層とから成り、第1触媒層の
上に第2触媒層が、第2触媒層の上に第3触媒層を設け
てなる触媒を排気流れに対して後段に設置してなること
を特徴とする。
According to a first aspect of the present invention, there is provided an exhaust gas purifying catalyst comprising platinum (Pt), palladium (Pd), and rhodium (Rh) before a catalyst containing zeolite is disposed in front of an exhaust gas flow. A first catalyst layer containing one or more components selected from the group and one or more components selected from the group consisting of alkali metals, alkaline earth metals, and rare earth metals; and alumina and / or silica. A second catalyst layer,
A third catalyst layer containing a zeolite containing a copper (Cu) and / or cobalt (Co) component, a second catalyst layer on the first catalyst layer, and a third catalyst layer on the second catalyst layer. The catalyst provided with is provided at a stage subsequent to the exhaust gas flow.

【0014】請求項2記載の排気ガス浄化用触媒は、請
求項1記載の排気ガス浄化用触媒において、後段触媒の
第1触媒層が含有するアルカリ金属、アルカリ土類金属
及び希土類金属が、マグネシウム(Mg)、カルシウム
(Ca)、カリウム(K)、バリウム(Ba)、ランタ
ン(La)、ストロンチウム(Sr)、セシウム(C
s)、セリウム(Ce)であることを特徴とする。
According to a second aspect of the present invention, there is provided the exhaust gas purifying catalyst according to the first aspect, wherein the alkali metal, the alkaline earth metal and the rare earth metal contained in the first catalyst layer of the latter catalyst are magnesium. (Mg), calcium (Ca), potassium (K), barium (Ba), lanthanum (La), strontium (Sr), cesium (C
s) and cerium (Ce).

【0015】請求項3記載の排気ガス浄化用触媒は、請
求項1又は2記載の排気ガス浄化用触媒において、後段
触媒の第1触媒層が含有するアルカリ金属、アルカリ土
類金属及び希土類金属から成る群より選ばれた1種以上
の成分の含有量が、排気ガス浄化用触媒中の後段触媒1
Lあたり0.1モルを超えて0.6モル以下の範囲であ
ることを特徴とする。
According to a third aspect of the present invention, there is provided the exhaust gas purifying catalyst according to the first or second aspect, wherein the first, second, and third catalyst layers of the second-stage catalyst comprise an alkali metal, an alkaline earth metal, and a rare earth metal. The content of one or more components selected from the group consisting of:
It is characterized by a range of more than 0.1 mol per L and not more than 0.6 mol.

【0016】請求項4記載の排気ガス浄化用触媒は、請
求項1〜3いずれかの項記載の排気ガス浄化用触媒にお
いて、前段触媒中のゼオライトが、βゼオライト、Y型
ゼオライト、MFI型ゼオライト及びモルデナイトから
成る群より選ばれる少なくとも1種のゼオライトであっ
て、βゼオライトのシリカ/アルミナ比が20〜15
0、Y型ゼオライトのシリカ/アルミナ比が4〜50、
MFI型ゼオライトのシリカ/アルミナ比が20〜10
00、モルデナイトのシリカ/アルミナ比が9〜25で
あることを特徴とする。
According to a fourth aspect of the present invention, there is provided the exhaust gas purifying catalyst according to any one of the first to third aspects, wherein the zeolite in the first stage catalyst is β zeolite, Y type zeolite, MFI type zeolite. And mordenite, wherein the zeolite has a silica / alumina ratio of 20-15.
0, the Y / zeolite has a silica / alumina ratio of 4 to 50,
MFI zeolite having a silica / alumina ratio of 20 to 10
The mordenite has a silica / alumina ratio of 9 to 25.

【0017】請求項5記載の排気ガス浄化用触媒は、請
求項4記載の排気ガス浄化用触媒において、前段触媒中
のゼオライトの量が、前段触媒1Lあたり30〜300
gであることを特徴とする。
According to a fifth aspect of the present invention, there is provided the exhaust gas purifying catalyst according to the fourth aspect, wherein the amount of zeolite in the first stage catalyst is 30 to 300 per liter of the first stage catalyst.
g.

【0018】請求項6記載の排気ガス浄化用触媒は、請
求項4又は5記載の排気ガス浄化用触媒において、前段
触媒中のゼオライトが、銅(Cu)、コバルト(C
o)、鉄(Fe)及び/又はマンガン(Mn)から成る
群より選ばれる少なくとも1種を、1〜20重量%担持
することを特徴とする。
According to a sixth aspect of the present invention, there is provided the exhaust gas purifying catalyst according to the fourth or fifth aspect, wherein the zeolite in the pre-catalyst comprises copper (Cu), cobalt (C
o), at least one selected from the group consisting of iron (Fe) and / or manganese (Mn) is supported at 1 to 20% by weight.

【0019】請求項7記載の排気ガス浄化用触媒は、請
求項1〜6いずれかの項記載の排気ガス浄化用触媒にお
いて、後段触媒の第3触媒層中のCu及び/又はCo成
分を含有するゼオライトが、シリカ/アルミナ比20〜
80のMFIゼオライト及び/又はβゼオライトである
ことを特徴とする。
According to a seventh aspect of the present invention, there is provided the exhaust gas purifying catalyst according to any one of the first to sixth aspects, wherein a Cu and / or Co component in the third catalyst layer of the second stage catalyst is contained. Has a silica / alumina ratio of 20 to
80 MFI zeolite and / or β zeolite.

【0020】請求項8記載の排気ガス浄化用触媒は、請
求項7記載の排気ガス浄化用触媒において、後段触媒の
第3触媒層中のCu及び/又はCo成分の量が、後段触
媒1Lあたり0.05〜0.5モルの範囲であることを
特徴とする。
The exhaust gas purifying catalyst according to claim 8 is the exhaust gas purifying catalyst according to claim 7, wherein the amount of Cu and / or Co component in the third catalyst layer of the latter catalyst is less than 1 L of the latter catalyst. It is characterized by being in the range of 0.05 to 0.5 mol.

【0021】請求項9記載の排気ガス浄化用触媒は、請
求項8記載の排気ガス浄化用触媒において、第3触媒層
中のCu及び/又はCo成分を含有するゼオライトの量
が、後段触媒1Lあたり120g〜300gであること
を特徴とする。
The exhaust gas purifying catalyst according to a ninth aspect is the exhaust gas purifying catalyst according to the eighth aspect, wherein the amount of the zeolite containing Cu and / or Co component in the third catalyst layer is 1 L of the latter catalyst. 120 g to 300 g per unit.

【0022】請求項10記載の排気ガス浄化用触媒は、
請求項1〜9のいずれかの項記載の排気ガス浄化用触媒
において、第2触媒層のアルミナ及び/又はシリカの量
が、後段触媒1Lあたり20g〜100gであることを
特徴とする。
The exhaust gas purifying catalyst according to claim 10 is
The exhaust gas purifying catalyst according to any one of claims 1 to 9, wherein the amount of alumina and / or silica in the second catalyst layer is 20 g to 100 g per 1 L of the subsequent catalyst.

【0023】請求項11記載の排気ガス浄化用触媒は、
請求項1〜10のいずれかの項記載の排気ガス浄化用触
媒において、前段触媒と後段触媒との容量比が、1:1
〜1:7であることを特徴とする。
An exhaust gas purifying catalyst according to claim 11 is
The exhaust gas purifying catalyst according to any one of claims 1 to 10, wherein a volume ratio of the front catalyst and the rear catalyst is 1: 1.
1 : 1: 7.

【0024】請求項12記載の排気ガス浄化方法は、請
求項1〜11のいずれかの項記載の排気ガス浄化用触媒
を、排気ガスの空燃比(A/F)が14.7以上、酸素
濃度が5%以上で、かつ窒素酸化物と炭化水素が反応し
て窒素酸化物を窒素に転化するのに必要な炭化水素量と
窒素酸化物量の比率(=HC/NOx 比)が10以下の
内燃機関に用いることを特徴とする。
According to a twelfth aspect of the present invention, there is provided an exhaust gas purifying method according to any one of the first to eleventh aspects, wherein the exhaust gas purifying catalyst has an air-fuel ratio (A / F) of 14.7 or more, at a concentration of 5% or more, and the ratio of the amount of hydrocarbon and nitrogen oxide amount necessary to convert the nitrogen oxides and hydrocarbons react with nitrogen oxides into nitrogen (= HC / NO x ratio) of 10 or less It is characterized in that it is used for an internal combustion engine.

【0025】[0025]

【発明の実施の形態】本発明の排気ガス浄化用触媒中、
排気流れに対して前段に配置される触媒は、ゼオライト
を含む触媒である。かかる前段触媒中のゼオライトとし
ては、βゼオライト、Y型ゼオライト、MFI型ゼオラ
イト及びモルデナイトから成る群より選ばれる少なくと
も1種を用いることができ、特にY型ゼオライトとして
はUSY型ゼオライトを用いると、耐水熱性を更に向上
させることができるため好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the exhaust gas purifying catalyst of the present invention,
The catalyst arranged upstream of the exhaust stream is a catalyst containing zeolite. As the zeolite in the pre-stage catalyst, at least one selected from the group consisting of β zeolite, Y-type zeolite, MFI-type zeolite and mordenite can be used. In particular, when USY-type zeolite is used as Y-type zeolite, This is preferable because the heat property can be further improved.

【0026】HCトラップ材としてのこれらのゼオライ
トのシリカ/アルミナは、βゼオライトが20〜15
0、Y型ゼオライトが4〜50、MFI型ゼオライトが
20〜1000、モルデナイトが9〜25であることが
好ましく、シリカ/アルミナ比がこの範囲より小さいと
ゼオライトの骨格が不安定になり、一方シリカ/アルミ
ナ比がこの範囲より大きいとHC類を保持する力が弱く
なり、第3触媒層中のNOx 還元材が作動開始する温度
までHC類を蓄えることができなくなる。
The silica / alumina of these zeolites as the HC trap material has a β zeolite content of 20 to 15%.
0, the Y-type zeolite is preferably 4 to 50, the MFI-type zeolite is preferably 20 to 1000, and the mordenite is preferably 9 to 25. When the silica / alumina ratio is smaller than this range, the framework of the zeolite becomes unstable, while the silica / alumina ratio becomes unstable. If the / alumina ratio is greater than this range, the ability to retain HCs will be weak, and it will not be possible to store HCs until the temperature at which the NO x reducing material in the third catalyst layer starts operating.

【0027】その量は、前段触媒1Lあたり30〜30
0gが、熱容量が大きすぎず後段触媒の活性を妨げない
点から好ましい。
The amount is 30 to 30 per liter of the pre-stage catalyst.
0 g is preferred because the heat capacity is not too large and the activity of the latter catalyst is not hindered.

【0028】また、前段触媒中の上記ゼオライトは、C
u,Co,Fe及びMnから成る群より選ばれる少なく
とも1種を担持することが、前段触媒中のゼオライトか
らのHC脱離時のNOx 浄化性能を向上できるため好ま
しく、その量は、1〜20重量%が好ましい。この範囲
内では上記効果を有効に発揮させることができるからで
ある。
The zeolite in the pre-catalyst is C
It is preferable to carry at least one selected from the group consisting of u, Co, Fe and Mn because NO x purification performance at the time of desorbing HC from zeolite in the pre-stage catalyst can be improved. 20% by weight is preferred. This is because the above effect can be effectively exhibited within this range.

【0029】本発明の排気ガス浄化用触媒中の前段触媒
は、排気ガスが低温度領域にある時にHC類を効率よく
トラップし、NOx 還元材が作動する温度域になるとH
C類を供給してNOx の還元を促進する。特に排気ガス
流れに対して前段側に配置することによりHC類を効率
よく吸着し、排気ガス温度の上昇にともない吸着したH
C類をNOx 還元に必要な温度で一度に脱離させ、NO
x 浄化に用いることが可能となる。
The pre-catalyst for purifying exhaust gases in the catalyst of the present invention, the exhaust gas is the HC classes efficiently trapped when in the low temperature region, the temperature range where the NO x reduction material is activated H
By supplying C compound promotes the reduction of NO x. In particular, HCs are efficiently adsorbed by being disposed upstream of the exhaust gas flow, and H adsorbed as the exhaust gas temperature rises.
C is desorbed at once at the temperature required for NO x reduction, and NO
x It can be used for purification.

【0030】本発明の排気ガス浄化用触媒中の後段触媒
は、3層構造から成り、最下層となる第1触媒層は、P
t、Pd及びRhから成る群より選ばれた1種以上の成
分と、アルカリ金属、アルカリ土類金属及び希土類金属
から成る群より選ばれた1種以上の成分とを含む。
The second-stage catalyst in the exhaust gas purifying catalyst of the present invention has a three-layer structure.
It contains one or more components selected from the group consisting of t, Pd and Rh, and one or more components selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals.

【0031】前記Pt、Pd及びRhから成る群より選
ばれる1種以上の貴金属成分は、例えばPtとRh、P
dとRh、Pdのみ等の種々の組み合わせが可能であ
る。第1触媒層中にかかる貴金属成分を含有させること
により、酸化力を与え、リーン雰囲気で余分な還元ガス
成分を除去することにより、NOx 吸収作用を促進する
ことができる。
The at least one noble metal component selected from the group consisting of Pt, Pd and Rh is, for example, Pt, Rh, P
Various combinations such as only d, Rh, and Pd are possible. By containing the precious metal component according to the first catalyst layer, giving oxidizing power, by removing the excess reducing gas component in a lean atmosphere, it is possible to promote the absorption of NO x activity.

【0032】当該貴金属の含有量は、NOx 吸収能と三
元触媒性能が十分に得られれば特に限定されないが、
0.1gより少ないと十分な三元性能が得られず、10
gより多く使用しても有意な特性向上はみられない点か
ら、後段触媒1Lあたり0.1〜10gが好ましい。
The content of the noble metal, but of absorption of NO x performance and three-way catalyst performance is not particularly limited as long enough to obtain,
If the amount is less than 0.1 g, sufficient ternary performance cannot be obtained, and
The amount is preferably 0.1 to 10 g per 1 L of the latter-stage catalyst, since no significant improvement in properties is observed even when the amount is more than g.

【0033】また上記第1触媒層中には、アルカリ金
属、アルカリ土類金属及び希土類金属成分を後段触媒1
Lあたり0.1モルを超えて0.6モル以下の範囲で含
有することが好ましい。カルカリ金属としてはカリウ
ム、リチウム、ナトリウムが、特にナトリウムが、アル
カリ土類金属としてはバリウムストロンチウム、カルシ
ウム、マグネシウムが、希土類金属としては、Y,L
a,Cs,Ce,Pr,Nd,Pm,Smが、特にC
s,Ceを用いることが好適である。
The first catalyst layer contains an alkali metal, an alkaline earth metal and a rare earth metal component in the latter catalyst 1.
It is preferable to contain the compound in a range of more than 0.1 mol and not more than 0.6 mol per L. Potassium, lithium, and sodium, particularly sodium, are alkaline metals; barium strontium, calcium, and magnesium are alkaline earth metals; and Y and L are rare earth metals.
a, Cs, Ce, Pr, Nd, Pm, Sm
It is preferable to use s, Ce.

【0034】その量は後段触媒1Lあたり0.1モル以
下だとNOx 吸収量が不十分となり、0.6モルを超え
ると上記貴金属の効果が打ち消されるため、0.1モル
を超えて0.6モル以下であることが好ましい。
If the amount is less than 0.1 mol per 1 L of the latter catalyst, the NO x absorption becomes insufficient, and if it exceeds 0.6 mol, the effect of the above-mentioned noble metal is negated. It is preferably at most 0.6 mol.

【0035】本発明に用いる第1の触媒は、ハニカム状
で使用するのが好ましい。このハニカム材料としては、
一般にコージェライト質のものが広く用いられている
が、これに限定されるものではなく、金属材料からなる
ハニカム担体も有効であり、また触媒粉末そのものをハ
ニカム状に形成することもできる。車には、触媒の形状
をハニカム状とすることにより、触媒と排気ガスとの接
触面積が大きくなり、圧力損失も抑えられるため、振動
があり、かつ限られた空間内で多量の排気ガスを処理す
ることが要求される自動車用触媒として用いる場合に極
めて有利となる。
The first catalyst used in the present invention is preferably used in a honeycomb form. As this honeycomb material,
Generally, cordierite is widely used, but is not limited thereto. A honeycomb carrier made of a metal material is also effective, and the catalyst powder itself can be formed in a honeycomb shape. In a car, by making the shape of the catalyst into a honeycomb shape, the contact area between the catalyst and the exhaust gas is increased and the pressure loss is suppressed, so that there is vibration and a large amount of exhaust gas is limited in a limited space. This is extremely advantageous when used as a catalyst for automobiles requiring processing.

【0036】かかる第1触媒層は、貴金属成分と、アル
カリ金属、アルカリ土類金属及び希土類金属から成る群
より選ばれた1種以上の成分とを共存させることによ
り、NOx を酸化してより反応性の高いNOx 種に転換
する機能を有し、後述する第3触媒層のNOx 還元材の
低温活性を促進させる。
The first catalyst layer oxidizes NO x by coexisting a noble metal component and at least one component selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals. It has the function of converting to highly reactive NO x species, and promotes the low-temperature activity of the NO x reducing material of the third catalyst layer described later.

【0037】本発明の排気ガス浄化用触媒中の後段触媒
は、前記第1触媒層の上に、隔離層としてのアルミナ及
び/又はシリカを含む第2触媒層が設けられる。かかる
アルミナ及び/又はシリカには貴金属成分は含まれな
い。かかるアルミナ及び/又はシリカを触媒中に含有さ
せることにより、第1触媒層や第3触媒層に中の活性成
分の熱的安定性を向上させ、高い耐久性を実現すること
ができる。
In the second stage catalyst in the exhaust gas purifying catalyst of the present invention, a second catalyst layer containing alumina and / or silica as an isolation layer is provided on the first catalyst layer. Such alumina and / or silica do not contain any precious metal components. By including such alumina and / or silica in the catalyst, the thermal stability of the active component in the first and third catalyst layers can be improved, and high durability can be realized.

【0038】即ち第1触媒層である貴金属含有触媒層
と、第3触媒層であるNOx 還元材層とが直接接触する
と活性成分同士の反応が生じ、触媒劣化の面で必ずしも
好ましくない場合があるため、第2触媒層は隔離層とし
ての機能を有する。
That is, when the noble metal-containing catalyst layer as the first catalyst layer and the NO x reducing material layer as the third catalyst layer come into direct contact, a reaction between the active components occurs, which is not always preferable in terms of catalyst deterioration. Therefore, the second catalyst layer has a function as an isolation layer.

【0039】その量は、後段触媒1Lあたり20〜10
0gが、隔離層として少なすぎず好ましい。100gを
超えると、第1触媒層へのガスの拡散がされにくくな
る。
The amount is 20 to 10 per liter of the latter-stage catalyst.
0 g is not too small and is preferred as the separating layer. If it exceeds 100 g, diffusion of the gas into the first catalyst layer becomes difficult.

【0040】更に本発明の排気ガス浄化用触媒中の後段
触媒は、前記第2触媒層の上に、Cu及び/又はCo成
分を含有するゼオライトを含む第3触媒層を有する。
Further, the latter catalyst in the exhaust gas purifying catalyst of the present invention has a third catalyst layer containing zeolite containing a Cu and / or Co component on the second catalyst layer.

【0041】Cu及び/又はCo成分を含有するゼオラ
イトとしては、MFI型ゼオライト、Y型ゼオライト、
モルデナイト、フェリエライト、β型ゼオライト等を用
いることができるが、特にMFI型ゼオライトやβゼオ
ライトが、高いNOx 浄化性能を有する点で好ましい。
Examples of zeolites containing Cu and / or Co components include MFI-type zeolites, Y-type zeolites,
Mordenite, ferrierite, β-zeolite and the like can be used, but MFI-zeolite and β-zeolite are particularly preferred in that they have high NO x purification performance.

【0042】また、Cu及び/又はCo成分と含有する
ゼオライトのシリカ/アルミナ比は20〜80が好まし
く、シリカ/アルミナ比がこの範囲より小さいとゼオラ
イト骨格が不安定になると同時にイオン交換で担持され
る成分(Cu及び/又はCo)の量が過剰となり、分散
性が低下して活性点1点あたりの活性が急激に低下する
とともに、活性点同士の凝集が起こりやすく、いわゆる
シンタリングによる劣化が進みやすくなり、一方シリカ
/アルミナ比がこの範囲より大きいと活性点の数が少な
すぎて十分な活性が得られない。
Further, the silica / alumina ratio of the zeolite containing the Cu and / or Co component is preferably 20 to 80. If the silica / alumina ratio is smaller than this range, the zeolite skeleton becomes unstable and is supported by ion exchange. In addition, the amount of the components (Cu and / or Co) becomes excessive, the dispersibility is reduced, the activity per active point is rapidly reduced, and aggregation between the active sites is likely to occur. On the other hand, if the silica / alumina ratio is larger than this range, the number of active sites is too small to obtain sufficient activity.

【0043】担持されるCu及び/又はCo成分は、リ
ーン排気ガス中のNOx 浄化機能を有する。その量は、
後段触媒1Lあたり0.05〜0.5モルの範囲で含有
されることが好ましい。この範囲内であると、熱による
シンタリングもおこりにくいからである。
[0043] Cu and / or Co component to be supported has the NO x purification function in a lean exhaust gas. The amount is
It is preferable to contain it in the range of 0.05 to 0.5 mol per 1 L of the latter catalyst. This is because sintering due to heat is less likely to occur within this range.

【0044】かかる第3触媒層の全コート量は、後段触
媒1Lあたり120〜300gが好ましい。第3触媒層
のコート量がこの範囲より少ないと高SV下での活性が
不十分となり、逆にこの範囲より多すぎると、第1層、
第2層への反応分子の拡散を妨げたり、圧力損失が大き
くなるなどの悪影響が生じる。
The total coating amount of the third catalyst layer is preferably 120 to 300 g per 1 L of the latter catalyst. If the coating amount of the third catalyst layer is less than this range, the activity under high SV becomes insufficient, and if it is more than this range, the first layer,
Adverse effects such as hindering diffusion of reactive molecules into the second layer and increasing pressure loss occur.

【0045】かかる第3層は、前段触媒から脱離してき
たHC類を用いて、排気ガスが低温度領域にある時にH
C類を効率よくトラップし、NOx 還元材が作動する温
度域になるとHC類を供給してNOx の還元を促進す
る。特に、HC類のトラップ材とNOx 還元材とを均一
に混ぜ込むことにより、HC類をNOx 還元に、より効
率的に使用することが可能になる。
The third layer uses HCs desorbed from the pre-catalyst to form H 3 when the exhaust gas is in a low temperature range.
The C class efficiently trap, and supplies the HC classes when the NO x reduction material is a temperature range to operate to promote the reduction of NO x. In particular, the way to push mixing uniformly and trap material and the NO x reduction material HC classes, the HC classes in the NO x reduction, it is possible to more efficiently use.

【0046】本発明の排気ガス浄化用触媒中の後段触媒
は、上記3層から成り、その組み合わせ方は、NOx
元を含む第3触媒層を最表面に、貴金属成分を含む第1
触媒層を最下層に配置し、NOx 還元材層と貴金属触媒
層を隔離する第2層をその間に配置する。このような触
媒層の配置とすることにより、第1層でHCを還元剤と
して、働きやすい形に活性化し、第3層で活性化された
HCとNOx を効率よく反応させる。
The latter-stage catalyst in the exhaust gas purifying catalyst of the present invention comprises the above three layers, and the combination thereof is such that the third catalyst layer containing NO x reduction is provided on the outermost surface and the first catalyst containing noble metal components
A catalyst layer disposed on the bottom layer, arranged between them a second layer that isolates the the NO x reduction material layer and the precious metal catalyst layer. With this arrangement of the catalyst layer, as a reducing agent HC in the first layer, and activated to work convenient form, an activated HC and NO x efficiently react in the third layer.

【0047】また、前段触媒及び後段触媒中の第1触媒
層は、高温水熱条件下で劣化した第3触媒層のNOx
化能及びHC類吸着とその改質作用を補うため、触媒全
体として高温水熱条件による触媒劣化が抑えることがで
きる。
[0047] The first catalyst layer of the front catalyst and in the rear catalyst, since the NO x oxidation ability and HC such adsorption of the third catalyst layer deteriorates under high temperature hydrothermal conditions and compensate for the reforming action, the total catalyst As a result, catalyst deterioration due to high-temperature hydrothermal conditions can be suppressed.

【0048】本発明の排気ガス浄化用触媒は、上記前段
触媒と後段触媒とを排気流れに対して組み合わせて用い
る。上記前段触媒を排気流れに対して前段側に配置する
ことにより、HC類を効率良く吸着し、排気ガス温度の
上昇にともない吸着したHCをNOx 還元に必要な温度
で一度に脱離させNOx 浄化に用いることが可能であ
り、上記後段触媒を排気流れに対して前段触媒の後方に
位置させることにより、前段触媒から脱離して出てきた
HC類を用いてNOx の還元を効率良く実施することが
できる。
In the exhaust gas purifying catalyst of the present invention, the above-mentioned first-stage catalyst and second-stage catalyst are used in combination with respect to the exhaust gas flow. By arranging the pre-catalyst on the pre-stage side with respect to the exhaust gas flow, HCs are efficiently adsorbed, and the adsorbed HCs are desorbed at once at a temperature required for NO x reduction with an increase in the exhaust gas temperature. it is possible to use the x purification, by positioning the rear of the front catalyst and the rear catalyst against the exhaust flow, efficiently reducing of the NO x using the HC classes that came out desorbed from the pre-catalyst Can be implemented.

【0049】前段触媒と後段触媒とのその容量比は、
1:1〜1:7が好ましく、この範囲内で組み合わせる
と特にNOx 浄化性能が向上する。即ち、1:1より小
さいとHCトラップ効果が有効に発現せず、1:7より
大きいと前段触媒の熱容量が大きすぎ、後段触媒のNO
x 還元における低温活性をかえって阻害する。
The volume ratio of the former catalyst and the latter catalyst is:
The ratio is preferably from 1: 1 to 1: 7, and when combined within this range, the NO x purification performance is particularly improved. That is, if the ratio is smaller than 1: 1, the HC trapping effect is not effectively exhibited, and if the ratio is larger than 1: 7, the heat capacity of the front-stage catalyst is too large, and the NO.
Inhibits the low temperature activity in x reduction.

【0050】本発明で用いる各種ゼオライトは、水熱処
理、再合成等によって結晶性を高めることより安定化
し、耐熱性、耐久性の高い触媒が得られるので、水熱処
理や再合成等を行って用いることが好ましい。
The various zeolites used in the present invention are stabilized by increasing the crystallinity by hydrothermal treatment, resynthesis, etc., and a catalyst having high heat resistance and durability can be obtained. Is preferred.

【0051】本発明に用いる触媒調整用金属原料化合物
としては、無機酸塩、炭酸塩、アンモニウム塩、有機酸
塩、ハロゲン化物、酸化物、ナトリウム塩及びアンミン
錯化合物等を組み合わせて使用することができるが、特
に水溶性の塩を使用することが触媒性能を向上させる観
点から好ましい。貴金属の担持法としては特殊な方法に
限定されず、成分の著しい偏在を伴わない限り、公知の
蒸発乾固法、沈殿法、含浸法、イオン交換法等の種々の
方法を用いることがでる。特にゼオライトへの担持に
は、金属の分散性確保の点からイオン交換法が好まし
い。
As the metal raw material compound for catalyst preparation used in the present invention, inorganic acid salts, carbonates, ammonium salts, organic acid salts, halides, oxides, sodium salts, ammine complex compounds and the like can be used in combination. Although it is possible, it is particularly preferable to use a water-soluble salt from the viewpoint of improving the catalyst performance. The method of supporting the noble metal is not limited to a special method, and various methods such as a known evaporation and drying method, a precipitation method, an impregnation method, and an ion exchange method can be used as long as no significant uneven distribution of components is involved. In particular, the ion-exchange method is preferably used for loading on zeolite from the viewpoint of ensuring metal dispersibility.

【0052】イオン交換法、含浸法による場合、金属原
料は溶液で用いることが多いため、その溶液に酸あるい
は塩基を添加して、pHを調節することもできる。pH
を調節することにより、更に、金属の担持状態も制御で
き、耐熱性を確保できる。
In the case of the ion exchange method or the impregnation method, since the metal raw material is often used in a solution, the pH can be adjusted by adding an acid or a base to the solution. pH
By adjusting the value, the state of supporting the metal can be further controlled, and the heat resistance can be ensured.

【0053】このようにして得られる本発明に用いる触
媒を各々粉砕してスラリーとし、触媒担体にコートし
て、400〜900℃の温度で焼成することにより、本
発明の排気ガス浄化用触媒を得ることができる。
The thus obtained catalyst used in the present invention is pulverized into a slurry, coated on a catalyst carrier, and calcined at a temperature of 400 to 900 ° C. to obtain the exhaust gas purifying catalyst of the present invention. Obtainable.

【0054】本発明の排気ガス浄化用触媒は、ハニカム
形状で用いることが好ましく、この場合触媒担体として
は、公知の触媒担体の中から適宜選択して使用すること
ができ、例えば耐火性材料からなるモノリス構造を有す
るハニカム担体やメタル担体等が挙げられ、該担持にゼ
オライト系触媒を塗布して用いる。
The exhaust gas purifying catalyst of the present invention is preferably used in a honeycomb shape. In this case, the catalyst carrier can be appropriately selected from known catalyst carriers and used, for example, from a refractory material. A honeycomb carrier or a metal carrier having a monolith structure is used, and a zeolite-based catalyst is applied to the carrier and used.

【0055】この触媒担体の形状は、特に制限されない
が、通常はハニカム形状で使用することが好ましく、こ
のハニカム材料としては、一般に例えばセラミック等の
コージェライト質のものが多く用いられるが、フェライ
ト系ステンレス等の金属材料からなるハニカムを用いる
ことも可能であり、更には触媒粉末そのものをハニカム
形状に成形しても良い。触媒の形状をハニカム状とする
ことにより、触媒と排気ガスの接触面積が大きくなり、
圧力損失も抑えられるため、振動がありかつ限られた空
間内で多量の排気ガスを処理することが要求される自動
車用触媒等として用いるのに好適である。
Although the shape of the catalyst carrier is not particularly limited, it is usually preferable to use a honeycomb shape. As the honeycomb material, cordierite materials such as ceramics are generally used, but ferrite-based materials are generally used. It is also possible to use a honeycomb made of a metal material such as stainless steel, and further, the catalyst powder itself may be formed into a honeycomb shape. By making the shape of the catalyst a honeycomb shape, the contact area between the catalyst and the exhaust gas increases,
Since the pressure loss is also suppressed, it is suitable for use as a catalyst for automobiles or the like which requires vibration and is required to process a large amount of exhaust gas in a limited space.

【0056】本発明の排気ガス浄化用触媒は、その使用
条件を特に限定されないが、高効率の浄化性能を発現さ
せるために、特に、空燃比(A/F)が14.7以上の
リーン条件で運転される内燃機関の排気系に本発明の排
気ガス浄化用触媒を設置し、酸素濃度が5%以上で、か
つ窒素酸化物と炭化水素が反応して窒素酸化物を窒素に
転化するのに必要な炭化水素量と窒素酸化物量の比率
(=HC/NOx 比)が10以下の排気ガスを流通、接
触させることが好ましい。これは、酸素濃度が低く、炭
化水素量が多すぎると、触媒表面上へのコーキングが起
こりやすく、触媒劣化が促進されるからであり、従っ
て、前記排気ガス条件の範囲で使用することにより触媒
が長時間の使用にも十分に耐えられ、高い浄化性能を維
持できるのである。
The use conditions of the exhaust gas purifying catalyst of the present invention are not particularly limited. However, in order to exhibit high-efficiency purifying performance, the exhaust gas purifying catalyst is preferably used under an air-fuel ratio (A / F) of 14.7 or more. The exhaust gas purifying catalyst of the present invention is installed in an exhaust system of an internal combustion engine operated at a temperature of 5% or more, and nitrogen oxides and hydrocarbons react to convert nitrogen oxides to nitrogen. It is preferable that an exhaust gas having a ratio of the amount of hydrocarbon and the amount of nitrogen oxide (= HC / NO x ratio) of 10 or less be passed and contacted. This is because if the oxygen concentration is low and the amount of hydrocarbons is too large, coking on the catalyst surface is likely to occur, and catalyst deterioration is promoted. Can withstand long-term use and maintain high purification performance.

【0057】[0057]

〔実施例1〕[Example 1]

(A)前段触媒の形成 SiO2 /Al2 3 モル比が約25のH型βゼオライ
トをアルミナゾル及び水と混合し、磁性ボールミルポッ
トで20分間粉砕してスラリーとした。このようにして
得られたスラリーを1平方インチ断面当たり約400個
の流路を持つコージェライト質ハニカム担体1.0Lに
塗布し、150℃で熱風乾燥した後、500℃で1時間
焼成して、コート量約150g/Lの前段触媒を得た。
(A) Formation of Pre-Catalyst H-type zeolite having an SiO 2 / Al 2 O 3 molar ratio of about 25 was mixed with alumina sol and water, and ground in a magnetic ball mill pot for 20 minutes to form a slurry. The slurry thus obtained is applied to 1.0 L of cordierite-based honeycomb carrier having about 400 channels per square inch cross section, dried with hot air at 150 ° C., and fired at 500 ° C. for 1 hour. And a pre-stage catalyst having a coating amount of about 150 g / L.

【0058】(B)後段触媒の形成 (1)第1触媒層の形成 ジニトロジアンミン白金水溶液中に活性アルミナ粉末を
添加して良く攪拌した後、乾燥器中120℃で8時間乾
燥し、次いで空気気流中500℃で2時間焼成し、Pt
が約1.0重量%担持されたPt−活性アルミナ粉末を
得た。この触媒粉末に硝酸酸性アルミナゾル及び水を磁
性ボールミルポット中で加え、約20分間混合・粉砕し
て、Pt−活性アルミナのスラリーを得た。アルミナゾ
ルの添加量は5重量%とした。このようにして得られた
スラリーを、1平方インチ断面当たり約400個の流路
を持つコージェライト質ハニカム担体1.0Lに塗布
し、150℃で熱風乾燥した後、500℃で1時間焼成
して、コート量約35g/Lのハニカム触媒を得た。
(B) Formation of Second-Stage Catalyst (1) Formation of First Catalyst Layer After adding activated alumina powder to an aqueous solution of dinitrodiammineplatinum and stirring well, the mixture was dried in a dryer at 120 ° C. for 8 hours and then air Bake at 500 ° C for 2 hours in air stream, Pt
Was obtained, whereby about 1.0% by weight of Pt-activated alumina powder was obtained. A nitric acid-alumina sol and water were added to the catalyst powder in a magnetic ball mill pot, mixed and pulverized for about 20 minutes to obtain a slurry of Pt-activated alumina. The addition amount of alumina sol was 5% by weight. The thus obtained slurry was applied to 1.0 L of cordierite-based honeycomb carrier having about 400 channels per square inch cross section, dried with hot air at 150 ° C., and fired at 500 ° C. for 1 hour. Thus, a honeycomb catalyst having a coating amount of about 35 g / L was obtained.

【0059】該ハニカム触媒を、酢酸カルシウム、酢酸
バリウム及び硝酸ランタンを含む混合水溶液に浸漬した
後、120℃で乾燥し、次いで500℃で1時間焼成し
て、Ca,Ba及びLaを、得られた上記ハニカム触媒
中それぞれ0.1モル、0.15モル及び0.1モル含
有した第1触媒層をコートしたハニカム触媒A1を得
た。
The honeycomb catalyst was immersed in a mixed aqueous solution containing calcium acetate, barium acetate and lanthanum nitrate, dried at 120 ° C., and calcined at 500 ° C. for 1 hour to obtain Ca, Ba and La. Thus, a honeycomb catalyst A1 coated with the first catalyst layer containing 0.1 mol, 0.15 mol and 0.1 mol of the above-mentioned honeycomb catalyst, respectively, was obtained.

【0060】(2) 第2触媒層の形成 γ−アルミナを主成分とする活性アルミナ粉末にアルミ
ナゾル及び水を磁性ボールミルポット中で加え、約20
分間混合・粉砕してスラリーを得た。この時のアルミナ
ゾルの添加量は、Al2 3 として5重量%とした。こ
のようにして得られたスラリーを、上記(1) で得られた
ハニカム触媒A1に塗布し、150℃の熱風乾燥に続
き、500℃で1時間焼成して、コート量約55g/L
の第2触媒層を有するハニカム触媒A2を得た。
(2) Formation of the second catalyst layer Alumina sol and water were added to activated alumina powder containing γ-alumina as a main component in a magnetic ball mill pot, and the mixture was added for about 20 minutes.
The mixture was mixed and crushed for minutes to obtain a slurry. At this time, the addition amount of the alumina sol was 5% by weight as Al 2 O 3 . The slurry obtained in this manner is applied to the honeycomb catalyst A1 obtained in the above (1), dried at 150 ° C. with hot air, baked at 500 ° C. for 1 hour, and coated at about 55 g / L.
The honeycomb catalyst A2 having the second catalyst layer was obtained.

【0061】(3) 第3触媒層の形成 濃度0.17M/Lの硝酸銅及び硝酸コバルト混合水溶
液(Cu:Co=8.2)中に、SiO2 /Al2 3
モル比が約35のNH4 型MFIゼオライトの粉末を添
加して良く攪拌し、次いで濾過することにより固液を分
離した。上記攪拌・濾過操作を3回繰り返すことによ
り、Cu及びCoをイオン交換担持したMFIゼオライ
ト触媒ケーキを得た。この触媒ケーキを乾燥器中、12
0℃で24時間以上乾燥し、次いで電気炉を用い、大気
雰囲気下600℃で4時間焼成することにより、Cuを
3.9重量%、Coを0.8重量%担持したCu−Co
−MFIゼオライト触媒粉末を得た。
(3) Formation of Third Catalyst Layer SiO 2 / Al 2 O 3 was added to a 0.17 M / L copper nitrate / cobalt nitrate mixed aqueous solution (Cu: Co = 8.2).
A powder of NH 4 type MFI zeolite having a molar ratio of about 35 was added, stirred well, and then filtered to separate a solid and a liquid. By repeating the above-mentioned stirring / filtration operation three times, an MFI zeolite catalyst cake carrying Cu and Co on ion exchange was obtained. This catalyst cake is placed in a dryer for 12 hours.
By drying at 0 ° C. for 24 hours or more, and then baking at 600 ° C. for 4 hours in an air atmosphere using an electric furnace, Cu-Co carrying 3.9% by weight of Cu and 0.8% by weight of Co
-An MFI zeolite catalyst powder was obtained.

【0062】かかる触媒粉末とSiO2 /Al2 3
ル比が約25のH型βゼオライトとを2:1の割合でア
ルミナゾル及び水と混合し、磁性ボールミルポット中で
20分間粉砕してスラリーとした。このスラリーを上記
ハニカム触媒体A2にコーティングし、乾燥器中120
℃で8時間乾燥し、次いで空気気流中450℃で1時間
焼成することにより、後段触媒を得た。該第3触媒層の
コート量は約300g/Lであった。
The catalyst powder and H-type β zeolite having a SiO 2 / Al 2 O 3 molar ratio of about 25 were mixed with alumina sol and water at a ratio of 2: 1 and pulverized in a magnetic ball mill pot for 20 minutes to obtain a slurry. And This slurry was coated on the above-mentioned honeycomb catalyst body A2 and dried in a dryer.
C. for 8 hours and then calcined at 450.degree. C. for 1 hour in an air stream to obtain a second-stage catalyst. The coating amount of the third catalyst layer was about 300 g / L.

【0063】(C)前段触媒と後段触媒との組み合わせ 得られた上記前段触媒と後段触媒との容量比が1:3に
なるように、前段触媒と後段触媒とを変化させて組み合
わせ、本発明の排気ガス浄化用触媒を得た。
(C) Combination of Pre-Catalyst and Post-Catalyst The pre-catalyst and the post-catalyst are changed and combined so that the obtained volume ratio of the pre-catalyst and the post-catalyst is 1: 3. Was obtained.

【0064】〔実施例2〕後段触媒の第3触媒層中のN
4 型MFIゼオライト粉末を、SiO2 /Al 2 3
モル比が約42のNH4 型βゼオライトに代えた以外は
実施例1と同様にして、本発明の排気ガス浄化用触媒を
得た。
Example 2 N in the third catalyst layer of the latter catalyst
HFourType MFI zeolite powder is converted to SiOTwo/ Al TwoOThree
NH with a molar ratio of about 42FourExcept that it was replaced with β-zeolite
In the same manner as in Example 1, the exhaust gas purifying catalyst of the present invention
Obtained.

【0065】〔実施例3〕前段触媒のH型βゼオライト
粉末を、SiO2 /Al2 3 モル比が約30のNH4
型Y型ゼオライトに代えた以外は実施例1と同様にし
て、本発明の排気ガス浄化用触媒を得た。
Example 3 The H-type β zeolite powder of the pre-catalyst was mixed with NH 4 having a SiO 2 / Al 2 O 3 molar ratio of about 30.
An exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 1 except that the type Y zeolite was used instead.

【0066】〔実施例4〕後段触媒の第1触媒層中のP
t(1.0重量%)をPd−Rh(1.2重量%−0.
2重量%)に代えた以外は実施例1と同様にして、本発
明の排気ガス浄化用触媒を得た。
Example 4 P in the first catalyst layer of the latter catalyst
t (1.0% by weight) was converted to Pd-Rh (1.2% by weight-0.1%).
2% by weight) to obtain an exhaust gas purifying catalyst of the present invention in the same manner as in Example 1.

【0067】〔実施例5〕後段触媒の第1触媒層中のC
a1.0モル、Ba0.15モル及びLa0.1モル
を、Mg0.01モル、Ba0.1モル、K0.01モ
ルに代えた以外は実施例1と同様にして、本発明の排気
ガス浄化用触媒を得た。
Example 5 C in the first catalyst layer of the latter catalyst
a for the purification of exhaust gas of the present invention in the same manner as in Example 1 except that a1.0 mol, 0.15 mol of Ba and 0.1 mol of La were changed to 0.01 mol of Mg, 0.1 mol of Ba and 0.01 mol of K. A catalyst was obtained.

【0068】〔実施例6〕後段触媒の第1触媒層中のC
a1.0モル、Ba0.15モル及びLa0.1モル
を、Ba0.2モル、Sr0.05モル、Cs0.04
モル、Ce0.29モルに代えた以外は実施例1と同様
にして、本発明の排気ガス浄化用触媒を得た。
Example 6 C in the first catalyst layer of the latter catalyst
a1.0 mol, 0.15 mol of Ba and 0.1 mol of La were converted to 0.2 mol of Ba, 0.05 mol of Sr, and 0.04 mol of Cs0.04 mol.
In the same manner as in Example 1 except that the mol and Ce were changed to 0.29 mol, an exhaust gas purifying catalyst of the present invention was obtained.

【0069】〔実施例7〕後段触媒の第3触媒中のNH
4 型MFIゼオライト粉末を、SiO2 /Al23
ル比が約24のH型MFIゼオライトにかえた以外は実
施例1と同様にして、本発明の排気ガス浄化用触媒を得
た。
Example 7 NH in the third catalyst of the latter catalyst
An exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 1 except that the 4- type MFI zeolite powder was changed to an H-type MFI zeolite having a SiO 2 / Al 2 O 3 molar ratio of about 24.

【0070】〔実施例8〕後段触媒の第3触媒層中のN
4 型MFIゼオライト粉末を、SiO2 /Al 2 3
モル比が約76のH型MFIゼオライトにかえた以外は
実施例1と同様にして、本発明の排気ガス浄化用触媒を
得た。
Example 8 N in the third catalyst layer of the latter catalyst
HFourType MFI zeolite powder is converted to SiOTwo/ Al TwoOThree
Except that the molar ratio was changed to H-form MFI zeolite of about 76
In the same manner as in Example 1, the exhaust gas purifying catalyst of the present invention
Obtained.

【0071】〔実施例9〕後段触媒の第2触媒層の活性
アルミナ粉末をシリカ粉末にかえた以外は実施例1と同
様にして、本発明の排気ガス浄化用触媒を得た。
Example 9 An exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 1 except that the activated alumina powder in the second catalyst layer of the latter catalyst was changed to silica powder.

【0072】〔実施例10〕前段触媒中のH型βゼオラ
イト粉末を、SiO2 /Al2 3 モル比が約35のH
型MFIゼオライトに代えた以外は実施例1と同様にし
て、本発明の排気ガス浄化用触媒を得た。
[0072] Example 10 a H type β-zeolite powder in the pre-catalyst, SiO 2 / Al 2 O 3 molar ratio of about 35 H
An exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 1 except that the type MFI zeolite was used.

【0073】〔実施例11〕前段触媒中のH型βゼオラ
イト粉末を、SiO2 /Al2 3 モル比が約15のH
型モルデナイトに代えた以外は実施例1と同様にして、
本発明の排気ガス浄化用触媒を得た。
[Example 11] The H-type β zeolite powder in the pre-catalyst was converted to a H 2 powder having a SiO 2 / Al 2 O 3 molar ratio of about 15
Except having replaced with the mordenite type, it carried out similarly to Example 1, and
An exhaust gas purifying catalyst of the present invention was obtained.

【0074】〔実施例12〕前段触媒中のH型βゼオラ
イト粉末を、SiO2 /Al2 3 モル比が約25のH
型βゼオライトとSiO2 /Al2 3 モル比が約70
0のH型MFIゼオライトとが1:1の比率で混合され
ているゼオライト粉末に代えた以外は実施例1と同様に
して、本発明の排気ガス浄化用触媒を得た。
[Example 12] The H-type β zeolite powder in the pre-stage catalyst was mixed with H 2 having a SiO 2 / Al 2 O 3 molar ratio of about 25.
Β-zeolite and SiO 2 / Al 2 O 3 molar ratio of about 70
Exhaust gas purification catalyst of the present invention was obtained in the same manner as in Example 1 except that zeolite powder in which H-type MFI zeolite 0 was mixed at a ratio of 1: 1 was used.

【0075】〔実施例13〕前段触媒中のH型βゼオラ
イト粉末を、SiO2 /Al2 3 モル比が約25のH
型βゼオライトと、SiO2 /Al2 3 モル比が約7
00のH型MFIゼオライトと、SiO2 /Al2 3
モル比が約30のH型Y型ゼオライトとが2:1:1の
比率で混合されているゼオライト粉末に代えた以外は実
施例1と同様にして、本発明の排気ガス浄化用触媒を得
た。
[Example 13] The H-type β zeolite powder in the pre-stage catalyst was mixed with H 2 having a SiO 2 / Al 2 O 3 molar ratio of about 25.
Type β zeolite and a SiO 2 / Al 2 O 3 molar ratio of about 7
00 H-type MFI zeolite and SiO 2 / Al 2 O 3
Exhaust gas purification catalyst of the present invention was obtained in the same manner as in Example 1 except that zeolite powder in which H-type zeolite having a molar ratio of about 30 was mixed at a ratio of 2: 1: 1 was used. Was.

【0076】〔実施例14〕前段触媒のコート量を15
0g/Lから40g/Lに代えた以外は実施例1と同様
にして、本発明の排気ガス浄化用触媒を得た。
Example 14 The coating amount of the first-stage catalyst was set to 15
An exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 1 except that the amount was changed from 0 g / L to 40 g / L.

【0077】〔実施例15〕前段触媒のコート量を15
0g/Lから300g/Lに代えた以外は実施例1と同
様にして、本発明の排気ガス浄化用触媒を得た。
Example 15 The coating amount of the first-stage catalyst was set to 15
An exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 1 except that the amount was changed from 0 g / L to 300 g / L.

【0078】〔実施例16〕前段触媒と後段触媒との容
量比を1:1にした以外は実施例1と同様にして、本発
明の排気ガス浄化用触媒を得た。
Example 16 An exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 1 except that the volume ratio of the former catalyst to the latter catalyst was 1: 1.

【0079】〔実施例17〕前段触媒と後段触媒との容
量比を1:5にした以外は実施例1と同様にして、本発
明の排気ガス浄化用触媒を得た。
Example 17 An exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 1 except that the volume ratio between the former catalyst and the latter catalyst was 1: 5.

【0080】〔実施例18〕前段触媒のH型βゼオライ
ト粉末に、リン酸銅水溶液を用いて5重量%の銅を担持
したこと以外は実施例1と同様にして、本発明の排気ガ
ス浄化用触媒を得た。
Example 18 Exhaust gas purification of the present invention was carried out in the same manner as in Example 1 except that 5% by weight of copper was supported on the H-type zeolite powder of the first-stage catalyst using an aqueous copper phosphate solution. A catalyst was obtained.

【0081】〔実施例19〕前段触媒のH型βゼオライ
ト粉末に、リン酸鉄水溶液を用いて5重量%の鉄を担持
したこと以外は実施例1と同様にして、本発明の排気ガ
ス浄化用触媒を得た。
Example 19 Exhaust gas purification of the present invention was carried out in the same manner as in Example 1 except that 5% by weight of iron was supported on the H-type β zeolite powder of the pre-catalyst using an aqueous solution of iron phosphate. A catalyst was obtained.

【0082】〔実施例20〕前段触媒のH型βゼオライ
ト粉末に、ピロリン酸マンガン水溶液を用いて5重量%
のマンガンを担持したこと以外は実施例1と同様にし
て、本発明の排気ガス浄化用触媒を得た。
Example 20 5% by weight of manganese pyrophosphate aqueous solution was added to H-type β zeolite powder of the pre-stage catalyst.
Except that manganese was supported, an exhaust gas purifying catalyst of the present invention was obtained in the same manner as in Example 1.

【0083】〔実施例21〕前段触媒のH型ゼオライト
粉末に、リン酸コバルト水溶液を用いて5重量%のコバ
ルトを担持したこと以外は実施例1と同様にして、本発
明の排気ガス浄化用触媒を得た。
Example 21 The exhaust gas purifying method of the present invention was carried out in the same manner as in Example 1 except that 5% by weight of cobalt was supported on the H-type zeolite powder of the first-stage catalyst using an aqueous solution of cobalt phosphate. A catalyst was obtained.

【0084】〔比較例1〕前段触媒を設けずに後段触媒
のみを用いる以外は実施例1と同様にして、排気ガス浄
化用触媒を得た。
Comparative Example 1 An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that only the latter-stage catalyst was used without providing the former-stage catalyst.

【0085】〔比較例2〕Mg0.01モル、Ba0.
1モル、K0.01モルを、Mg0.03モル、Ba
0.04モル、K0.01モルに代えた以外は実施例5
と同様にして、排気ガス浄化用触媒を得た。
Comparative Example 2 Mg of 0.01 mol, BaO.
1 mol, 0.01 mol of K, 0.03 mol of Mg, Ba
Example 5 except for changing to 0.04 mol and K0.01 mol
In the same manner as in the above, an exhaust gas purifying catalyst was obtained.

【0086】〔比較例3〕Ba0.2モル、Sr0.0
5モル、Cs0.04モル、Ce0.29モルを、Ba
0.3モル、Sr0.02モル、Cs0.3モル、Ce
0.01モルに代えた以外は実施例6と同様にして、排
気ガス浄化用触媒を得た。
[Comparative Example 3] Ba 0.2 mol, Sr 0.0
5 mol, Cs 0.04 mol, Ce 0.29 mol
0.3 mol, Sr 0.02 mol, Cs 0.3 mol, Ce
An exhaust gas purifying catalyst was obtained in the same manner as in Example 6, except that the amount was changed to 0.01 mol.

【0087】〔比較例4〕後段触媒の第3触媒層のコー
ト量を100g/Lに代えた以外は実施例1と同様にし
て、排気ガス浄化用触媒を得た。
Comparative Example 4 An exhaust gas purifying catalyst was obtained in the same manner as in Example 1, except that the coating amount of the third catalyst layer of the latter catalyst was changed to 100 g / L.

【0088】〔比較例5〕後段触媒の第3触媒層のコー
ト量を350g/Lに代えた以外は実施例1と同様にし
て、排気ガス浄化用触媒を得た。
Comparative Example 5 An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that the coating amount of the third catalyst layer of the latter catalyst was changed to 350 g / L.

【0089】〔比較例6〕前段触媒のコート量を20g
/Lに代えた以外は実施例1と同様にして、排気ガス浄
化用触媒を得た。
[Comparative Example 6] The coating amount of the former catalyst was 20 g.
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that / L was changed.

【0090】〔比較例7〕前段触媒のコート量を350
g/Lに代えた以外は実施例1と同様にして、排気ガス
浄化用触媒を得た。
[Comparative Example 7] The coating amount of the former catalyst was 350
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that g / L was used.

【0091】〔比較例8〕前段触媒のH型βゼオライト
のSiO2 /Al2 3 モル比を約10に代えた以外は
実施例1と同様にして排気ガス浄化用触媒を得た。
Comparative Example 8 An exhaust gas purifying catalyst was obtained in the same manner as in Example 1, except that the molar ratio of SiO 2 / Al 2 O 3 of the H-type zeolite in the pre-stage catalyst was changed to about 10.

【0092】〔比較例9〕前段触媒のH型βゼオライト
のSiO2 /Al2 3 モル比を、約200に代えた以
外は実施例1と同様にして、排気ガス浄化用触媒を得
た。
Comparative Example 9 An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that the molar ratio of SiO 2 / Al 2 O 3 of the H-type β zeolite as the pre-stage catalyst was changed to about 200. .

【0093】〔比較例10〕前段触媒のNH4 型Y型ゼ
オライトのSiO2 /Al2 3 モル比を約1.5に代
えた以外は実施例3と同様にして、排気ガス浄化用触媒
を得た。
Comparative Example 10 Exhaust gas purification catalyst was prepared in the same manner as in Example 3 except that the molar ratio of SiO 2 / Al 2 O 3 of the NH 4 type Y zeolite of the pre-stage catalyst was changed to about 1.5. I got

【0094】〔比較例11〕前段触媒のH型MFIゼオ
ライトのSiO2 /Al2 3 モル比を、約10に代え
た以外は実施例10と同様にして、排気ガス浄化用触媒
を得た。
Comparative Example 11 An exhaust gas purifying catalyst was obtained in the same manner as in Example 10 except that the molar ratio of SiO 2 / Al 2 O 3 of the H-type MFI zeolite as the pre-stage catalyst was changed to about 10. .

【0095】〔比較例12〕前段触媒のH型モルデナイ
トのSiO2 /Al2 3 モル比を約7に代えた以外は
実施例11と同様にして、排気ガス浄化用触媒を得た。
Comparative Example 12 An exhaust gas purifying catalyst was obtained in the same manner as in Example 11 except that the molar ratio of SiO 2 / Al 2 O 3 in the H-type mordenite of the pre-stage catalyst was changed to about 7.

【0096】〔比較例13〕前段触媒と後段触媒との容
量比を2:1にした以外は実施例1と同様にして、排気
ガス浄化用触媒を得た。
Comparative Example 13 An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that the volume ratio between the former catalyst and the latter catalyst was changed to 2: 1.

【0097】〔比較例14〕前段触媒と後段触媒との容
量比を1:7にした以外は実施例1と同様にして、排気
ガス浄化用触媒を得た。
[Comparative Example 14] An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that the capacity ratio between the former catalyst and the latter catalyst was 1: 7.

【0098】〔比較例15〕後段触媒の第3層触媒層の
NH4 型MFIゼオライトのSiO2 /Al2 3モル
比を約17に代えた以外は実施例1と同様にして排気ガ
ス浄化用触媒を得た。
Comparative Example 15 Exhaust gas purification was carried out in the same manner as in Example 1 except that the molar ratio of SiO 2 / Al 2 O 3 of the NH 4 type MFI zeolite in the third catalyst layer of the latter catalyst was changed to about 17. A catalyst was obtained.

【0099】〔比較例16〕後段触媒の第3層触媒層の
NH4 型MFIゼオライトのSiO2 /Al2 3モル
比を約82に代えた以外は実施例1と同様にして排気ガ
ス浄化用触媒を得た。
Comparative Example 16 Exhaust gas purification was carried out in the same manner as in Example 1 except that the molar ratio of SiO 2 / Al 2 O 3 of the NH 4 type MFI zeolite of the third catalyst layer of the latter catalyst was changed to about 82. A catalyst was obtained.

【0100】上記実施例1〜21及び比較例1〜16で
得られた排気ガス浄化用触媒の組成を表1〜表4に示
す。
The compositions of the exhaust gas purifying catalysts obtained in Examples 1 to 21 and Comparative Examples 1 to 16 are shown in Tables 1 to 4.

【0101】[0101]

【表1】 [Table 1]

【0102】[0102]

【表2】 [Table 2]

【0103】[0103]

【表3】 [Table 3]

【0104】[0104]

【表4】 [Table 4]

【0105】試験例 上記実施例1〜21及び比較例1〜16で得られた排気
ガス浄化用触媒の触媒性能を以下に示す方法により評価
した。
Test Example The catalytic performance of the exhaust gas purifying catalysts obtained in Examples 1 to 21 and Comparative Examples 1 to 16 was evaluated by the following method.

【0106】触媒性能試験例1 各排気ガス浄化用触媒を、4気筒2.5Lディーゼルエ
ンジンが設置されたエンジンダイナモ装置の排気系に組
み込み、630℃×30時間の急速耐久処理を行った。
次いで、4気筒2.5Lディーゼルエンジンが設置され
たエンジンダイナモ装置の排気系に、耐久処理を行った
後の前記排気ガス浄化用触媒を組み込み、触媒入口温度
を100℃〜500℃まで昇温する時のNOx 転化性能
を測定した。前記100℃〜500℃までの昇温速度を
約30℃/分とし、排気ガス中の平均HC/NOx 比を
2.8、ガス空間速度を後段触媒に対して45000h
-1とした。
Catalyst Performance Test Example 1 Each exhaust gas purifying catalyst was incorporated into the exhaust system of an engine dynamo apparatus equipped with a 4-cylinder 2.5-liter diesel engine, and subjected to a rapid endurance treatment at 630 ° C. × 30 hours.
Next, the exhaust gas purifying catalyst after the endurance treatment is incorporated into an exhaust system of an engine dynamo device equipped with a 4-cylinder 2.5L diesel engine, and the catalyst inlet temperature is raised to 100 ° C to 500 ° C. The NO x conversion performance at the time was measured. The rate of temperature rise from 100 ° C. to 500 ° C. was about 30 ° C./min, the average HC / NO x ratio in the exhaust gas was 2.8, and the gas space velocity was 45000 h with respect to the subsequent catalyst.
It was set to -1 .

【0107】上記エンジンダイナモ装置は、エンジンマ
ニホールドと触媒との間に設けたノズルから軽油を注入
することにより、排気ガス中のHC/NOx 比を変化さ
せることができるものである。
The above engine dynamo device can change the HC / NO x ratio in the exhaust gas by injecting light oil from a nozzle provided between the engine manifold and the catalyst.

【0108】NOx 転化性能は、触媒入口NOx 濃度と
出口NOx 濃度を、HORIBA製作所製MEXA−6
000SHにより同時に測定し、以下の式により決定し
た。
The NO x conversion performance was determined by measuring the concentration of NO x at the inlet and the concentration of NO x at the outlet of the catalyst, MEXA-6 manufactured by HORIBA, Ltd.
000SH and were determined by the following equation.

【0109】[0109]

【数1】 (Equation 1)

【0110】得られた触媒活性評価を表5に示す。Table 5 shows the obtained catalyst activity evaluations.

【0111】[0111]

【表5】 [Table 5]

【0112】実施例の触媒は比較例の触媒に比べて明ら
かにNOx 浄化率が高く、実施例のものは、低温域での
HC類を効率良くトラップし、かつ昇温過程でHCを高
効率で利用しているために、優れたNOx 浄化効率を示
すと考えられる。
[0112] Catalyst examples are clearly higher the NO x purification rate than the catalyst of Comparative Example, those of the embodiment, the HC such a low temperature range to efficiently trap and high and HC in temperature rising process It is considered that since it is used for efficiency, it exhibits excellent NO x purification efficiency.

【0113】また、アルカリ金属、アルカリ土類金属及
び希土類金属の担持量やゼオライトのシリカ/アルミナ
比が本発明の範囲を外れると、それぞれ後段触媒の第1
層及び第3層の上記機能が低減し、特に、前段触媒と後
段触媒の第3層ゼオライトのシリカ/アルミナ比は触媒
性能への影響が大きいことがわかる。更に前段触媒と後
段触媒の第3層のコート量も、触媒性能への影響が大き
いことが明確となり、触媒性能を向上させるためには、
前段触媒へのCu,Co,Fe及びMnから成る群より
選ばれる少なくとも1種の担持が特に効果的である。
If the supported amount of alkali metal, alkaline earth metal and rare earth metal and the silica / alumina ratio of the zeolite are out of the range of the present invention, the first catalyst of the second-stage catalyst may be used.
It can be seen that the above functions of the layer and the third layer are reduced, and the silica / alumina ratio of the third layer zeolite of the former catalyst and the latter catalyst has a great influence on the catalytic performance. Further, it is clear that the coating amount of the third layer of the first catalyst and the second catalyst has a large effect on the catalyst performance. In order to improve the catalyst performance,
It is particularly effective to carry at least one selected from the group consisting of Cu, Co, Fe and Mn on the pre-catalyst.

【0114】[0114]

【発明の効果】請求項1〜11いずれかの項記載の排気
ガス浄化用触媒は、150℃以下の低温度領域を含み、
かつ低いHC/NOx 比条件下においても排気ガス浄
化、特にNOx の浄化が高効率で実施できるため、環境
汚染が少なく、経済性(燃費)に優れた自動車を提供す
ることができる。
The exhaust gas purifying catalyst according to any one of claims 1 to 11 includes a low temperature region of 150 ° C. or less,
And also the exhaust gas purification at low HC / NO x ratio conditions, because in particular can be carried out in the purification of the NO x is high efficiency, can be environmental pollution less provides excellent automobile economy (fuel consumption).

【0115】また、請求項12記載の排気ガス浄化方法
は、上記本発明の排気ガス浄化用触媒の、低温度領域及
び低HC/NOx 比条件下においてもNOx 浄化作用
を、特に効率良く発現させることができる。
[0115] Furthermore, exhaust gas purification method according to claim 12, wherein the exhaust gas purifying catalyst of the present invention, the the NO x purification action even in a low temperature region and a low HC / NO x ratio conditions may particularly efficient Can be expressed.

フロントページの続き (51)Int.Cl.6 識別記号 FI F01N 3/28 301 B01D 53/36 102B Continued on the front page (51) Int.Cl. 6 Identification code FI F01N 3/28 301 B01D 53/36 102B

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 ゼオライトを含む触媒を排気流れに対し
て前段に、白金(Pt)、パラジウム(Pd)及びロジ
ウム(Rh)から成る群より選ばれた1種以上の成分
と、アルカリ金属、アルカリ土類金属及び希土類金属か
ら成る群より選ばれた1種以上の成分とを含む第1触媒
層と、アルミナ及び/又はシリカを含む第2触媒層と、
銅(Cu)及び/又はコバルト(Co)成分を含有する
ゼオライトを含む第3触媒層とから成り、第1触媒層の
上に第2触媒層が、第2触媒層の上に第3触媒層を設け
てなる触媒を排気流れに対して後段に設置してなること
を特徴とする排気ガス浄化用触媒。
1. A catalyst containing zeolite, which is provided in advance of an exhaust stream with one or more components selected from the group consisting of platinum (Pt), palladium (Pd) and rhodium (Rh), an alkali metal and an alkali. A first catalyst layer containing at least one component selected from the group consisting of earth metals and rare earth metals, a second catalyst layer containing alumina and / or silica,
A third catalyst layer containing a zeolite containing a copper (Cu) and / or cobalt (Co) component, a second catalyst layer on the first catalyst layer, and a third catalyst layer on the second catalyst layer. An exhaust gas purifying catalyst comprising: a catalyst provided with a gas turbine disposed downstream of an exhaust gas flow.
【請求項2】 後段触媒の第1触媒層が含有するアルカ
リ金属、アルカリ土類金属及び希土類金属は、マグネシ
ウム(Mg)、カルシウム(Ca)、カリウム(K)、
バリウム(Ba)、ランタン(La)、ストロンチウム
(Sr)、セシウム(Cs)、セリウム(Ce)である
ことを特徴とする請求項1記載の排気ガス浄化用触媒。
2. The alkali metal, alkaline earth metal and rare earth metal contained in the first catalyst layer of the latter catalyst are magnesium (Mg), calcium (Ca), potassium (K),
The exhaust gas purifying catalyst according to claim 1, wherein the catalyst is barium (Ba), lanthanum (La), strontium (Sr), cesium (Cs), or cerium (Ce).
【請求項3】 後段触媒の第1触媒層が含有するアルカ
リ金属、アルカリ土類金属及び希土類金属から成る群よ
り選ばれた1種以上の成分の含有量は、後段触媒1Lあ
たり0.1モルを超えて0.6モル以下の範囲であるこ
とを特徴とする請求項1又は2記載の排気ガス浄化用触
媒。
3. The content of at least one component selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals contained in the first catalyst layer of the latter catalyst is 0.1 mol per 1 L of the latter catalyst. 3. The exhaust gas purifying catalyst according to claim 1, wherein the range is more than 0.6 mol and less.
【請求項4】 前段触媒中のゼオライトは、βゼオライ
ト、Y型ゼオライト、MFI型ゼオライト及びモルデナ
イトから成る群より選ばれる少なくとも1種のゼオライ
トであって、βゼオライトのシリカ/アルミナ比は20
〜150、Y型ゼオライトのシリカ/アルミナ比は4〜
50、MFI型ゼオライトのシリカ/アルミナ比は20
〜1000、モルデナイトのシリカ/アルミナ比は9〜
25であることを特徴とする請求項1〜3いずれかの項
記載の排気ガス浄化用触媒。
4. The zeolite in the pre-stage catalyst is at least one zeolite selected from the group consisting of β zeolite, Y zeolite, MFI zeolite and mordenite, and the β zeolite has a silica / alumina ratio of 20.
~ 150, silica / alumina ratio of Y type zeolite is 4 ~
50, silica / alumina ratio of MFI type zeolite is 20
~ 1000, mordenite silica / alumina ratio is 9 ~
The exhaust gas purifying catalyst according to any one of claims 1 to 3, wherein the catalyst is 25.
【請求項5】 前段触媒中のゼオライトの量は、前段触
媒1Lあたり30〜300gであることを特徴とする請
求項4記載の排気ガス浄化用触媒。
5. The exhaust gas purifying catalyst according to claim 4, wherein the amount of zeolite in the pre-catalyst is 30 to 300 g per liter of the pre-catalyst.
【請求項6】 前段触媒中のゼオライトは、銅(C
u)、コバルト(Co)、鉄(Fe)及び/又はマンガ
ン(Mn)から成る群より選ばれる少なくとも1種を、
1〜20重量%担持することを特徴とする請求項4又は
5記載の排気ガス浄化用触媒。
6. The zeolite in the pre-catalyst is copper (C
u), cobalt (Co), iron (Fe) and / or manganese (Mn), at least one selected from the group consisting of:
6. The exhaust gas purifying catalyst according to claim 4, wherein the catalyst is loaded at 1 to 20% by weight.
【請求項7】 後段触媒の第3触媒層中のCu及び/又
はCo成分を含有するゼオライトは、シリカ/アルミナ
比が20〜80のMFIゼオライト及び/又はβゼオラ
イトであることを特徴とする請求項1〜6いずれかの項
記載の排気ガス浄化用触媒。
7. The zeolite containing Cu and / or Co component in the third catalyst layer of the latter catalyst is an MFI zeolite and / or β zeolite having a silica / alumina ratio of 20 to 80. Item 7. An exhaust gas purifying catalyst according to any one of Items 1 to 6.
【請求項8】 後段触媒の第3触媒層中のCu及び/又
はCo成分の量は、後段触媒1Lあたり0.05〜0.
5モルの範囲であることを特徴とする請求項7記載の排
気ガス浄化用触媒。
8. The amount of the Cu and / or Co component in the third catalyst layer of the second catalyst is 0.05 to 0.1 / L per 1 L of the second catalyst.
The exhaust gas purifying catalyst according to claim 7, wherein the amount is within a range of 5 mol.
【請求項9】 第3触媒層中のCu及び/又はCo成分
を含有するゼオライトの量は、後段触媒1Lあたり12
0g〜300gであることを特徴とする請求項8記載の
排気ガス浄化用触媒。
9. The amount of zeolite containing a Cu and / or Co component in the third catalyst layer is 12 per 1 L of the latter catalyst.
The exhaust gas purifying catalyst according to claim 8, wherein the weight is 0 g to 300 g.
【請求項10】 第2触媒層のアルミナ及び/又はシリ
カの量は、後段触媒1Lあたり20g〜100gである
ことを特徴とする請求項1〜9いずれかの項記載の排気
ガス浄化用触媒。
10. The exhaust gas purifying catalyst according to claim 1, wherein the amount of alumina and / or silica in the second catalyst layer is 20 g to 100 g per liter of the second-stage catalyst.
【請求項11】 前段触媒と後段触媒との容量比は、
1:1〜1:7であることを特徴とする請求項1〜10
いずれかの項記載の排気ガス浄化用触媒。
11. The volume ratio between the first-stage catalyst and the second-stage catalyst is as follows:
11. 1 to 1: 7.
An exhaust gas purifying catalyst according to any one of the preceding claims.
【請求項12】 請求項1〜11のいずれかの項記載の
排気ガス浄化用触媒を、排気ガスの空燃比(A/F)が
14.7以上、酸素濃度が5%以上で、かつ窒素酸化物
と炭化水素が反応して窒素酸化物を窒素に転化するのに
必要な炭化水素量と窒素酸化物量の比率(=HC/NO
x 比)が10以下の内燃機関に用いることを特徴とする
排気ガス浄化方法。
12. An exhaust gas purifying catalyst according to claim 1, wherein the exhaust gas has an air-fuel ratio (A / F) of 14.7 or more, an oxygen concentration of 5% or more, and nitrogen. The ratio of the amount of hydrocarbons and the amount of nitrogen oxides necessary for the oxides and hydrocarbons to react and convert nitrogen oxides to nitrogen (= HC / NO
(x ratio) of 10 or less for an internal combustion engine.
JP10024515A 1998-02-05 1998-02-05 Catalyst for purifying exhaust gas and purification of exhaust gas Withdrawn JPH11221466A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10024515A JPH11221466A (en) 1998-02-05 1998-02-05 Catalyst for purifying exhaust gas and purification of exhaust gas
DE69929396T DE69929396T2 (en) 1998-02-05 1999-02-05 Process for the purification of high-oxygen exhaust gases
EP99300857A EP0935055B1 (en) 1998-02-05 1999-02-05 Method for purifying oxygen rich exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10024515A JPH11221466A (en) 1998-02-05 1998-02-05 Catalyst for purifying exhaust gas and purification of exhaust gas

Publications (1)

Publication Number Publication Date
JPH11221466A true JPH11221466A (en) 1999-08-17

Family

ID=12140320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10024515A Withdrawn JPH11221466A (en) 1998-02-05 1998-02-05 Catalyst for purifying exhaust gas and purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPH11221466A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455463B1 (en) 2001-03-13 2002-09-24 Delphi Technologies, Inc. Alkaline earth/transition metal lean NOx catalyst
US6576587B2 (en) 2001-03-13 2003-06-10 Delphi Technologies, Inc. High surface area lean NOx catalyst
US6624113B2 (en) 2001-03-13 2003-09-23 Delphi Technologies, Inc. Alkali metal/alkaline earth lean NOx catalyst
US6670296B2 (en) 2001-01-11 2003-12-30 Delphi Technologies, Inc. Alumina/zeolite lean NOx catalyst
US6756336B2 (en) 2002-02-01 2004-06-29 Cataler Corporation Catalyst for purifying exhaust gases
US6864213B2 (en) 2001-03-13 2005-03-08 Delphi Technologies, Inc. Alkaline earth / rare earth lean NOx catalyst
JP2006507926A (en) * 2002-11-27 2006-03-09 ボルボ テクノロジー コーポレイション Catalyst unit for the reduction of Nox compounds
US7084086B2 (en) 2002-02-01 2006-08-01 Cataler Corporation Catalyst for purifying exhaust gases
US7431895B2 (en) 2000-11-06 2008-10-07 Umicore Ag & Co. Kg Exhaust gas treatment unit for the selective catalytic reduction of nitrogen oxides under lean exhaust gas conditions and a process for the treatment of exhaust gases
JP2021523829A (en) * 2018-05-21 2021-09-09 ヒソン カタリスツ コーポレイション Zeolites with improved heat resistance and catalyst composites using them
JP2023035716A (en) * 2021-09-01 2023-03-13 本田技研工業株式会社 Exhaust gas cleaning apparatus, and exhaust gas cleaning method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7431895B2 (en) 2000-11-06 2008-10-07 Umicore Ag & Co. Kg Exhaust gas treatment unit for the selective catalytic reduction of nitrogen oxides under lean exhaust gas conditions and a process for the treatment of exhaust gases
US6670296B2 (en) 2001-01-11 2003-12-30 Delphi Technologies, Inc. Alumina/zeolite lean NOx catalyst
US6576587B2 (en) 2001-03-13 2003-06-10 Delphi Technologies, Inc. High surface area lean NOx catalyst
US6624113B2 (en) 2001-03-13 2003-09-23 Delphi Technologies, Inc. Alkali metal/alkaline earth lean NOx catalyst
US6455463B1 (en) 2001-03-13 2002-09-24 Delphi Technologies, Inc. Alkaline earth/transition metal lean NOx catalyst
US6864213B2 (en) 2001-03-13 2005-03-08 Delphi Technologies, Inc. Alkaline earth / rare earth lean NOx catalyst
EP2322267A1 (en) 2002-02-01 2011-05-18 Cataler Corporation Catalyst for purifying exhaust gases
US7084086B2 (en) 2002-02-01 2006-08-01 Cataler Corporation Catalyst for purifying exhaust gases
US6756336B2 (en) 2002-02-01 2004-06-29 Cataler Corporation Catalyst for purifying exhaust gases
JP2006507926A (en) * 2002-11-27 2006-03-09 ボルボ テクノロジー コーポレイション Catalyst unit for the reduction of Nox compounds
JP4838997B2 (en) * 2002-11-27 2011-12-14 ボルボ テクノロジー コーポレイション Catalyst unit for the reduction of Nox compounds
JP2021523829A (en) * 2018-05-21 2021-09-09 ヒソン カタリスツ コーポレイション Zeolites with improved heat resistance and catalyst composites using them
JP2023035716A (en) * 2021-09-01 2023-03-13 本田技研工業株式会社 Exhaust gas cleaning apparatus, and exhaust gas cleaning method

Similar Documents

Publication Publication Date Title
JP4092441B2 (en) Exhaust gas purification catalyst
US6214307B1 (en) Exhaust gas purifying catalyst and exhaust gas purifying method
CN113507980B (en) Lean NO x Trapping catalyst
EP0935055B1 (en) Method for purifying oxygen rich exhaust gas
JPH11300211A (en) Catalyst for and method of cleaning exhaust gas
JPH11104493A (en) Catalyst for purifying exhaust gas and its use
JPH11221466A (en) Catalyst for purifying exhaust gas and purification of exhaust gas
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
JP3407901B2 (en) Exhaust gas purifying catalyst, method for producing the catalyst, and method for purifying exhaust gas
JPH10192713A (en) Exhaust gas purifying catalyst and its use
JP3493879B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH08281110A (en) Catalyst for purifying exhaust gas and its production
JPH09220470A (en) Catalyst for purification of exhaust gas
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JP4501166B2 (en) Exhaust gas purification system
JPH07308578A (en) Exhaust gas purifying catalyst
JPH11226402A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
JPH11226415A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
JP4290391B2 (en) Method and apparatus for catalytic removal of nitrogen oxides
JPH08281111A (en) Catalyst for purifying exhaust gas and its production
JP2000015104A (en) Catalyst for purification of exhaust gas and purification of exhaust gas
JP3477982B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3721112B2 (en) Method for catalytic reduction of nitrogen oxides and catalyst therefor
JPH11138005A (en) Exhaust gas purification catalyst and production of the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405