JP3144880B2 - Method for producing three-way catalyst with excellent low-temperature activity - Google Patents

Method for producing three-way catalyst with excellent low-temperature activity

Info

Publication number
JP3144880B2
JP3144880B2 JP06127792A JP6127792A JP3144880B2 JP 3144880 B2 JP3144880 B2 JP 3144880B2 JP 06127792 A JP06127792 A JP 06127792A JP 6127792 A JP6127792 A JP 6127792A JP 3144880 B2 JP3144880 B2 JP 3144880B2
Authority
JP
Japan
Prior art keywords
weight
parts
catalyst
carrier
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06127792A
Other languages
Japanese (ja)
Other versions
JPH05220395A (en
Inventor
寛敏 藤川
裕久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP06127792A priority Critical patent/JP3144880B2/en
Publication of JPH05220395A publication Critical patent/JPH05220395A/en
Application granted granted Critical
Publication of JP3144880B2 publication Critical patent/JP3144880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は一酸化炭素(CO)、炭
化水素(HC)及び酸化窒素(NOx)の浄化能力に優
れた排気ガス浄化用三元触媒、特に自動車用ガソリンエ
ンジンなどにおいて、アイドリング時などの排ガス温度
が低い条件でも浄化活性を示す三元触媒と、その製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-way catalyst for purifying exhaust gas which is excellent in purifying carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOx), and particularly to a gasoline engine for automobiles. The present invention relates to a three-way catalyst that exhibits purification activity even under conditions of low exhaust gas temperature, such as during idling, and a method for producing the same.

【0002】[0002]

【従来の技術】排気ガス浄化用三元触媒としてはアルミ
ナ単体にPt、Rh、Pdなどの貴金属を担持した貴金
属触媒が実用化されて広く使用されている。また、希土
類金属、アルカリ土類金属及び遷移金属から構成される
ペロブスカイト型構造を有する複合酸化物は、CO、H
C及びNOxを浄化する安価な排気ガス浄化用三元触媒
として実用化が期待されている(特開昭59−8704
6号公報、特開昭60−82138号公報参照)。この
ペロブスカイト型複合酸化物はCO、HCの浄化能力は
優れているが、NOxの浄化能力がやや劣っており、自
動車排ガス用の三元触媒として実用に供するには十分で
ない。そこで、ペロブスカイト型複合酸化物触媒のNO
x浄化能力を高めるために、貴金属を共存させることも
提案されている(特開平1−168343号公報、特開
平2−90947号公報参照)。特に特開平2−909
47号公報にはpHを7〜10に調整した貴金属塩水溶
液をペロブスカイト型複合酸化物担体に含浸させ、乾燥
後、焼成する方法が記載されている。
2. Description of the Related Art As a three-way catalyst for purifying exhaust gas, a noble metal catalyst in which a noble metal such as Pt, Rh, or Pd is supported on alumina alone has been put to practical use and widely used. A composite oxide having a perovskite structure composed of a rare earth metal, an alkaline earth metal, and a transition metal includes CO, H
It is expected to be put to practical use as an inexpensive three-way exhaust gas purifying catalyst for purifying C and NOx (Japanese Patent Laid-Open No. 59-8704).
No. 6, JP-A-60-82138). This perovskite-type composite oxide has excellent purification ability of CO and HC, but slightly inferior purification ability of NOx, and is not sufficient for practical use as a three-way catalyst for automobile exhaust gas. Therefore, the NO of the perovskite-type composite oxide catalyst
It has also been proposed to coexist a noble metal in order to enhance the x purification ability (see JP-A-1-168343 and JP-A-2-90947). In particular, JP-A-2-909
No. 47 describes a method of impregnating a perovskite-type composite oxide carrier with an aqueous solution of a noble metal salt adjusted to a pH of 7 to 10, drying and firing.

【0003】[0003]

【発明が解決しようとする課題】これらの触媒は、自動
車のガソリンエンジンにおいて、走行時のような排ガス
温度が高い条件では優れた浄化活性を示すが、アイドリ
ング時などの排ガス温度が低い条件では十分な浄化活性
を示さない。排ガス規制強化にともなってそのような排
ガス温度が低い条件でも十分な浄化活性を示す触媒が望
まれている。本発明は排ガス温度が低い条件でも十分な
浄化活性を示す三元触媒を製造する方法を提供すること
を目的とするものである。
These catalysts exhibit excellent purification activity in a gasoline engine of an automobile under high exhaust gas temperature conditions such as during running, but they do not sufficiently exhibit low exhaust gas temperature conditions such as during idling. It does not show any purification activity. With the tightening of exhaust gas regulations, catalysts that exhibit sufficient purification activity even under such low exhaust gas temperature conditions are desired. An object of the present invention is to provide a method for producing a three-way catalyst exhibiting sufficient purification activity even under conditions of low exhaust gas temperature.

【0004】[0004]

【課題を解決するための手段】本発明では、pHを10
より大きく調整した貴金属塩水溶液を担体に含浸させ、
乾燥後、焼成する。貴金属はPd,Pt,Ru,Rh及
びIrからなる群より選ばれた1種又は2種以上の金属
であり、特にPdが好ましい。担体は、一般式Ln1-x
AxMO3(LnはCeを除く希土類金属、AはCe又
はアルカリ土類金属、MはMn,Fe,Co,Ni,C
u,Pd及びRuからなる遷移金属で、いずれも1種又
は2種以上、0<x<1)で示されるペロブスカイト型
構造の複合酸化物である。
According to the present invention, a pH of 10
Impregnate the carrier with a precious metal salt aqueous solution that has been adjusted to a greater extent,
After drying, bake. The noble metal is one or more metals selected from the group consisting of Pd, Pt, Ru, Rh and Ir, and Pd is particularly preferred. Carrier, one general formula Ln 1-x
AxMO 3 (Ln is a rare earth metal other than Ce, A is Ce or an alkaline earth metal, M is Mn, Fe, Co, Ni, C
A transition metal composed of u, Pd, and Ru, each of which is a composite oxide having a perovskite structure represented by 0 <x <1), one or two or more of them.

【0005】この触媒で高温においても浄化活性を維持
できるようにするためは、Ce及びZr、又はさらにC
e以外の希土類金属を含み少なくとも一部が複合酸化物
又は固溶体となっている耐熱性酸化物を助触媒としてさ
らに含ませる。担体100重量部に対して、貴金属換算
で0.2〜5.0重量部を含みpHが10より大きく調整
された貴金属塩水溶液を含浸させ、乾燥後250〜80
0℃の温度で焼成する。
[0005] In order that this catalyst can maintain the purifying activity even at a high temperature, Ce and Zr, or even C
As a co-catalyst, a heat-resistant oxide containing a rare earth metal other than e and at least a part of which is a complex oxide or a solid solution is further included. Impregnated with a noble metal salt aqueous solution containing 0.2 to 5.0 parts by weight of noble metal and having a pH adjusted to be greater than 10 with respect to 100 parts by weight of the carrier, and dried, and then dried to 250 to 80 parts by weight.
Bake at a temperature of 0 ° C.

【0006】水溶性貴金属塩としては、テトラアミンパ
ラジウムジクロライドPd(NH3)4Cl2やテトラアミ
ンパラジウム水酸塩Pd(NH3)4(OH)2などの塩基性
水溶液にアンモニア水や酸を添加してpH>10になる
ように調製して用いるか、PdCl2、PtCl2、Ru
Cl3・3H2Oなどの塩化物、Pd(NO3)2、Ru(NO
3)3、Rh(NO3)3などの硝酸塩、又はPd(NO2)2(N
3)2、Pt(NO2)2(NH3)2などのジニトロジアミン
塩などの酸性水溶液にアンモニア水を添加してpH>1
0になるように調製して用いる。
As the water-soluble noble metal salt, aqueous ammonia or acid is added to a basic aqueous solution such as tetraamine palladium dichloride Pd (NH 3 ) 4 Cl 2 or tetraamine palladium hydroxide Pd (NH 3 ) 4 (OH) 2. It is used by adjusting to pH> 10 or by adding PdCl 2 , PtCl 2 , Ru
Chlorides such as Cl 3 .3H 2 O, Pd (NO 3 ) 2 , Ru (NO
3 ) 3 , nitrate such as Rh (NO 3 ) 3 or Pd (NO 2 ) 2 (N
Ammonia water is added to an acidic aqueous solution such as a dinitrodiamine salt such as H 3 ) 2 or Pt (NO 2 ) 2 (NH 3 ) 2 to adjust pH> 1.
Prepare and use to be 0.

【0007】[0007]

【発明の効果】本発明の方法により製造される触媒はア
イドリング時などの排ガス温度が百数十〜二百数十℃の
低い条件においても浄化活性を示すことができる。ま
た、耐熱性酸化物をさらに含めた場合には、900℃以
上の高温でも耐久性のある触媒となる。
The catalyst produced by the method of the present invention can exhibit purification activity even when the exhaust gas temperature is as low as one hundred and several hundred to several hundred and several degrees Celsius during idling. When a heat-resistant oxide is further included, the catalyst becomes durable even at a high temperature of 900 ° C. or higher.

【0008】[0008]

【実施例】【Example】

(実施例1)硝酸パラジウム溶液(Pd分4.4重量
%)25重量部を純水1700重量部で希釈した。Pd
換算で1.1重量部となった。この溶液はpHが1.7で
あったので、アンモニア水を添加してpHが11.0と
なるように溶液を調製した。担体に用いるペロブスカイ
ト型複合酸化物と耐熱性酸化物は次のように作成した。
ペロブスカイト型複合酸化物を共沈法により作成するた
めに、硝酸ランタン103.9g、硝酸セリウム26.1
g、硝酸コバルト34.9g、硝酸鉄72.7gを純水に
溶解した水溶液0.3リットルと、中和共沈剤としての
炭酸ナトリウム50gを溶解した水溶液0.5リットル
とを用意し、中和共沈剤を先の水溶液に滴下し、共沈物
を得た。その共沈物を十分水洗し、濾過した後、真空乾
燥した。これを600℃で3時間大気中で焼成後、粉砕
し、その後、800℃で3時間大気中で焼成を行ない、
さらに粉砕してペロブスカイト型複合酸化物(La0.8
0.2)(Co0.4Fe0.6)O3の粉末を作成した。耐熱性
酸化物を作成するために、市販の高比表面積の酸化セリ
ウム粉末(CeO2比表面積170m2/g、純度99.
9%/TREO(全希土類酸化物))111.9gを用
意し、これにオキシ硝酸ジルコニウム(ZrO(NO3)2)
水溶液(液比重1.51、液中にZrO2換算で25.0
重量%含まれる)147.9g、及び硝酸イットリウム
(Y(NO3)3)水溶液(液比重1.62、液中にY23
算で21.7重量%含まれる)26.0gを加え、よく
撹拌して混合しながら110℃で10時間大気中で乾燥
した。その後、大気中で600℃で3時間焼成を行な
い、(Ce0.65Zr0.300.05)O2複合酸化物を約15
0g得た。
(Example 1) 25 parts by weight of a palladium nitrate solution (Pd content: 4.4% by weight) was diluted with 1700 parts by weight of pure water. Pd
It was 1.1 parts by weight in conversion. Since this solution had a pH of 1.7, aqueous ammonia was added to prepare a solution so that the pH became 11.0. The perovskite-type composite oxide and the heat-resistant oxide used for the carrier were prepared as follows.
In order to produce a perovskite-type composite oxide by a coprecipitation method, 103.9 g of lanthanum nitrate and 26.1 g of cerium nitrate were used.
g, 34.9 g of cobalt nitrate and 72.7 g of iron nitrate in pure water, 0.3 liter, and 0.5 liter of an aqueous solution of 50 g of sodium carbonate as a neutralizing coprecipitant were prepared. The coprecipitant was dropped into the above aqueous solution to obtain a coprecipitate. The coprecipitate was sufficiently washed with water, filtered, and dried under vacuum. This is fired at 600 ° C. for 3 hours in the air, and then pulverized, and then fired at 800 ° C. for 3 hours in the air.
Perovskite-type composite oxide was further pulverized (La 0. 8 C
e 0. 2) (Co 0 . 4 Fe 0. 6) to create a powder of O 3. In order to prepare a refractory oxide, a commercially available high specific surface area cerium oxide powder (CeO 2 specific surface area 170 m 2 / g, purity 99.
111.9 g of 9% / TREO (total rare earth oxide) was prepared, and zirconium oxynitrate (ZrO (NO 3 ) 2 ) was added thereto.
Aqueous solution (liquid specific gravity: 1.51, ZrO 2 conversion in liquid: 25.0)
147.9 g) and yttrium nitrate
26.0 g of (Y (NO 3 ) 3 ) aqueous solution (liquid specific gravity 1.62, contained in liquid 21.7% by weight in terms of Y 2 O 3 ) was added, and the mixture was stirred at 110 ° C. with good stirring. Dried in air for hours. Thereafter, conducted for 3 hours at 600 ° C. in air, (Ce 0. 65 Zr 0 . 30 Y 0. 05) the O 2 composite oxide of about 15
0 g was obtained.

【0009】スラリーコート担体を得るために、先のペ
ロブスカイト型複合酸化物(La0.8Ce0.2)(Co0.4
0.6)O3の50重量部と、耐熱性酸化物(Ce0.65Zr
0.300.05)O2の50重量部とを純水100重量部に加
え、ボールミルで12時間粉砕して得たスラリーをコー
ジェライト質の耐熱性ハニカム担体に流し込み、余部の
スラリーを空気流で吹き払い、乾燥(例えば130℃で
24時間)させた後、600℃で大気中3時間焼成して
ペロブスカイト型複合酸化物と耐熱性酸化物が均一にコ
ーティングされた担体を得た。上記パラジウム塩水溶液
(pH=11.0)を40℃に保温し、それに上記のコ
ーティング担体を含浸させて2時間保持し、パラジウム
を吸着させた。それを130℃で24時間乾燥し、大気
中で600℃で3時間焼成して実施例1の試料を得た。
[0009] In order to obtain a slurry coating carrier, previous perovskite-type composite oxide (La 0. 8 Ce 0. 2) (Co 0. 4 F
e 0. 6) 50 parts by weight of O 3 and, heat-resistant oxide (Ce 0. 65 Zr
0. 30 Y 0. 05) and 50 parts by weight of O 2 was added to 100 parts by weight of pure water, a slurry obtained by grinding for 12 hours in a ball mill for pouring a refractory honeycomb carrier cordierite, a slurry of Amarube After blown off with an air stream and dried (for example, at 130 ° C. for 24 hours), it was calcined at 600 ° C. for 3 hours in the air to obtain a carrier uniformly coated with a perovskite-type composite oxide and a heat-resistant oxide. The palladium salt aqueous solution (pH = 11.0) was kept warm at 40 ° C., impregnated with the above-mentioned coating carrier, and kept for 2 hours to adsorb palladium. It was dried at 130 ° C. for 24 hours and fired in air at 600 ° C. for 3 hours to obtain a sample of Example 1.

【0010】(実施例2)硝酸パラジウム溶液(Pd分
4.4重量%)40重量部を純水1700重量部で希釈
して、Pd換算で1.76重量部、pHが1.4の溶液を
得、これにアンモニア水を添加してpHが10.7とな
るように溶液を調製した。担体は、中和共沈法により作
成したペロブスカイト型複合酸化物(La0.8Sr0.2)
(Co0.4Fe0.6)O3の50重量部と、酸化セリウムに
ジルコニアを固溶させた耐熱性酸化物(Ce0.8Zr0.2)
2の20重量部とを用いて、実施例1と同様にしてコ
ージェライト質の耐熱性ハニカム担体にペロブスカイト
型複合酸化物と耐熱性酸化物が均一にコーティングされ
た担体を得た。この担体を上記のパラジウム塩水溶液
(pH=10.7)に含浸させ、実施例1と同様にして
パラジウムを吸着させ、乾燥後、大気中で250℃で3
時間焼成して実施例2の試料を得た。
Example 2 40 parts by weight of a palladium nitrate solution (4.4% by weight of Pd) were diluted with 1700 parts by weight of pure water to obtain a solution having a Pd equivalent of 1.76 parts by weight and a pH of 1.4. Was added thereto, and aqueous ammonia was added thereto to prepare a solution so that the pH became 10.7. Carrier, perovskite-type composite oxide was prepared by the neutralization coprecipitation (La 0. 8 Sr 0. 2)
(Co 0. 4 Fe 0. 6) 50 parts by weight of O 3 and, refractory oxide which was a solid solution of zirconia to ceria (Ce 0. 8 Zr 0. 2)
Using 20 parts by weight of O 2, a carrier in which a perovskite-type composite oxide and a heat-resistant oxide were uniformly coated on a cordierite-based heat-resistant honeycomb carrier was obtained in the same manner as in Example 1. This carrier was impregnated with the above aqueous solution of palladium salt (pH = 10.7), palladium was adsorbed in the same manner as in Example 1, dried, and dried at 250 ° C.
After firing for a time, a sample of Example 2 was obtained.

【0011】(実施例3)テトラアミンパラジウム硝酸
塩水溶液(Pd分4.6重量%溶液で、pH=8.5)2
3.9重量部(Pd換算で0.5重量部)に純水100重
量部を加え、アンモニア水を添加してpHが11.2と
なるように溶液を調製した。担体は、ペロブスカイト型
複合酸化物(La0.8Sr0.2)(Co0.4Fe0.6)O3の5
0重量部と、市販のSrZrO3の50重量部とを用い
て、実施例1と同様にしてコージェライト質の耐熱性ハ
ニカム担体にペロブスカイト型複合酸化物と耐熱性酸化
物が均一にコーティングされた担体を得た。この担体に
上記のパラジウム塩水溶液(pH=11.2)の全量を
含浸させ、乾燥後、大気中で600℃で3時間焼成して
実施例3の試料を得た。
Example 3 Tetraamine palladium nitrate aqueous solution (Pd content: 4.6% by weight, pH = 8.5) 2
100 parts by weight of pure water was added to 3.9 parts by weight (0.5 parts by weight in terms of Pd), and ammonia water was added to prepare a solution so that the pH became 11.2. Carrier, perovskite-type complex oxide (La 0. 8 Sr 0. 2) (Co 0. 4 Fe 0. 6) 5 of the O 3
Using 0 parts by weight and 50 parts by weight of commercially available SrZrO 3 , a perovskite-type composite oxide and a heat-resistant oxide were uniformly coated on a cordierite-based heat-resistant honeycomb carrier in the same manner as in Example 1. A carrier was obtained. This carrier was impregnated with the entire amount of the above-mentioned aqueous solution of palladium salt (pH = 11.2), dried, and calcined at 600 ° C. for 3 hours in the atmosphere to obtain a sample of Example 3.

【0012】(実施例4)テトラアミンパラジウムジク
ロライド水溶液(Pd分8.4重量%で、pH=8.7)
13重量部にアンモニア水を加え、イオン交換して塩素
イオンを取り除き、pHが12.0の水溶液127重量
部を得た。実施例1で用いたのと同じコーティング担体
を用意し、その担体に上記のパラジウム塩水溶液(pH
=12.0)の全量を含浸させ、乾燥後、大気中で25
0℃で3時間焼成して実施例4の試料を得た。
Example 4 Aqueous solution of tetraamine palladium dichloride (Pd content: 8.4% by weight, pH = 8.7)
Aqueous ammonia was added to 13 parts by weight, and ion exchange was performed to remove chlorine ions, thereby obtaining 127 parts by weight of an aqueous solution having a pH of 12.0. The same coating carrier as that used in Example 1 was prepared, and the above-mentioned aqueous solution of palladium salt (pH
= 12.0), dried and dried in air at 25
The sample of Example 4 was obtained by firing at 0 ° C. for 3 hours.

【0013】(実施例5)テトラアミンパラジウム硝酸
塩水溶液(Pd分4.6重量%)23.9重量部(Pd換
算で0.5重量部)に純水100重量部を加え、アンモ
ニア水を添加してpHが12.0となるように溶液を調
製した。担体は中和共沈法により作成したペロブスカイ
ト型複合酸化物(La0.9Ce0.1)(Co0.38Fe0.56
0.06)O3の50重量部と実施例1で用意した(Ce0.
65Zr0.300.05)O2とを用いて、実施例1と同様にし
てコージェライト質の耐熱性ハニカム担体にペロブスカ
イト型複合酸化物と耐熱性酸化物が均一にコーティング
された担体を得た。この担体に上記のパラジウム塩水溶
液(pH=12.0)の全量を含浸させ、乾燥後、大気
中250℃で3時間焼成して実施例5の試料を得た。
Example 5 100 parts by weight of pure water were added to 23.9 parts by weight (0.5 parts by weight in terms of Pd) of an aqueous solution of tetraamine palladium nitrate (Pd content: 4.6% by weight), and ammonia water was added. Then, a solution was prepared so that the pH became 12.0. Carrier perovskite-type composite oxide was prepared by neutralization coprecipitation (La 0. 9 Ce 0. 1) (Co 0. 38 Fe 0. 56 R
u 0. 06) 50 parts by weight of O 3 and was prepared in Example 1 (Ce 0.
65 Zr 0. 30 Y 0. 05) by using the O 2, perovskite-type composite oxide and refractory oxide in refractory honeycomb carrier cordierite in the same manner as in Example 1 was uniformly coated carrier I got The carrier was impregnated with the entire amount of the above-mentioned aqueous solution of palladium salt (pH = 12.0), dried, and calcined at 250 ° C. for 3 hours in the atmosphere to obtain a sample of Example 5.

【0014】(実施例6)ヘキサアンミンテトラクロラ
イド白金水溶液(Pt分1.45重量%)34.5重量部
(Pt換算で0.5重量部)に純水100重量部を加
え、アンモニア水を添加してpHが11.3となるよう
に溶液を調製した。担体はペロブスカイト型複合酸化物
(La0.8Sr0.2)(Co0.4Fe0.6)O380重量部と市
販のSrZrO320重量部とを用いて、実施例1と同
様にしてコージェライト質の耐熱性ハニカム担体にペロ
ブスカイト型複合酸化物と耐熱性酸化物が均一にコーテ
ィングされた担体を得た。この担体に上記の白金塩水溶
液(pH=11.3)の全量を含浸させ、乾燥後、大気
中600℃で3時間焼成して実施例6の試料を得た。
(Example 6) 100 parts by weight of pure water was added to 34.5 parts by weight (0.5 parts by weight in terms of Pt) of an aqueous solution of platinum platinum hexaammine (1.45% by weight of Pt), and ammonia water was added. A solution was prepared so that the pH was adjusted to 11.3 by addition. The carrier is a perovskite-type composite oxide
(La 0. 8 Sr 0. 2) (Co 0. 4 Fe 0. 6) O 3 80 parts by weight by using a commercially available SrZrO 3 20 parts by weight, heat resistance of cordierite in the same manner as in Example 1 A carrier in which a perovskite-type composite oxide and a heat-resistant oxide were uniformly coated on a porous honeycomb carrier was obtained. The carrier was impregnated with the entire amount of the above-mentioned aqueous solution of platinum salt (pH = 11.3), dried, and calcined at 600 ° C. for 3 hours in the atmosphere to obtain a sample of Example 6.

【0015】(比較例a)硝酸パラジウム水溶液にアン
モニア水を添加してpHを6.9に調整した点を除い
て、実施例1と同様にして比較例aの試料を得た。 (比較例b)硝酸パラジウム水溶液にアンモニア水を添
加してpHを8.5に調整した点を除いて、実施例1と
同様にして比較例bの試料を得た。 (比較例c)硝酸パラジウム水溶液にアンモニア水を添
加してpHを9.7に調整した点を除いて、実施例1と
同様にして比較例cの試料を得た。
Comparative Example a A sample of Comparative Example a was obtained in the same manner as in Example 1 except that the pH was adjusted to 6.9 by adding aqueous ammonia to an aqueous solution of palladium nitrate. (Comparative Example b) A sample of Comparative Example b was obtained in the same manner as in Example 1 except that the pH was adjusted to 8.5 by adding aqueous ammonia to an aqueous solution of palladium nitrate. (Comparative Example c) A sample of Comparative Example c was obtained in the same manner as in Example 1 except that the pH was adjusted to 9.7 by adding aqueous ammonia to an aqueous solution of palladium nitrate.

【0016】(比較例d)硝酸パラジウム溶液25重量
部を純水100重量部で希釈してpHが1.7の水溶液
を得た。担体はペロブスカイト型複合酸化物(La0.8
0.2)(Co0.4Fe0.6)O3の50重量部と市販のSr
ZrO3の50重量部とを用いて作成した実施例3と同
じコーティング担体を用いた。他の条件は実施例1と同
様にして比較例dの試料を得た。 (比較例e)広く実用化されている自動車用三元触媒で
あるPt−Rh/γ−Al23触媒を比較例eとした。
Pt−Rhの含有量は0.43重量部であった。これら
の結果を表1にまとめて示す。
Comparative Example d 25 parts by weight of a palladium nitrate solution was diluted with 100 parts by weight of pure water to obtain an aqueous solution having a pH of 1.7. Carrier perovskite complex oxide (La 0. 8 S
r 0. 2) (Co 0 . 4 Fe 0. 6) 50 parts by weight of O 3 and commercial Sr
The same coated carrier as in Example 3 prepared using 50 parts by weight of ZrO 3 was used. Other conditions were the same as in Example 1 to obtain a sample of Comparative Example d. Comparative Example e A comparative example e is a Pt-Rh / γ-Al 2 O 3 catalyst which is a widely used three-way catalyst for automobiles.
The Pt-Rh content was 0.43 parts by weight. These results are summarized in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】これらの実施例の試料と比較例の試料を用
いて、以下の条件で触媒活性を測定と耐久試験を行なっ
た。触媒活性の測定 ハニカム状(セル数300/inch2)コージェライト担
体に担持されたそれぞれの試料(直径30mm、長さ5
0mm)を下記のモデルガスにて活性を測定した。ガス
温度は触媒への入口ガス温度で示し、室温から昇温し、
NO、CO、HC(C36+C38)のそれぞれが初期
濃度の50%に低下した温度を50%浄化温度とする。
また、リッチガスとリーンガスはそれぞれ1秒毎に切り
換えた。触媒を通るガス流の空間速度(SV)は30,
000/時間とした。
Using the samples of these examples and the samples of the comparative examples, the catalytic activity was measured and the durability test was performed under the following conditions. Measurement of catalytic activity Each sample (diameter 30 mm, length 5 mm) supported on a honeycomb-shaped (cell number 300 / inch 2 ) cordierite carrier
0 mm) was measured for activity with the following model gas. The gas temperature is indicated by the temperature of the gas at the inlet to the catalyst.
The temperature at which each of NO, CO, and HC (C 3 H 6 + C 3 H 8 ) has decreased to 50% of the initial concentration is defined as a 50% purification temperature.
The rich gas and the lean gas were switched every one second. The space velocity (SV) of the gas stream through the catalyst is 30,
000 / hour.

【0019】 リッチガス リーンガス CO 2.6 % 0.7 % HC(C1換算濃度) 0.19% 0.19% H2 0.87% 0.23% CO2 8 % 8 % NO 0.17% 0.17% O2 0.65% 1.8 % H2O 10 % 10 % N2 残部 残部The rich lean CO 2.6% 0.7% HC (C 1 concentration in terms of) 0.19% 0.19% H 2 0.87 % 0.23% CO 2 8% 8% NO 0.17% 0.17% O 2 0.65% 1.8% H 2 O 10% 10% N 2 balance balance

【0020】耐久試験 上記のリッチガスとリーンガスを5秒毎に切り換えて9
00℃で30分、750℃で30分のサイクルを15回
繰り返して耐久試験を行なった。耐久試験後にも前記の
方法で触媒活性を測定した。耐久試験前の触媒活性の測
定結果と耐久試験後の触媒活性の試験結果を表2に示
す。
Endurance test The above rich gas and lean gas were switched every 5 seconds to 9
A durability test was performed by repeating a cycle of 00 ° C. for 30 minutes and 750 ° C. for 30 minutes 15 times. After the durability test, the catalytic activity was measured by the above method. Table 2 shows the measurement results of the catalyst activity before the durability test and the test results of the catalyst activity after the durability test.

【0021】[0021]

【表2】 [Table 2]

【0022】表1の結果から明らかなように、各実施例
では50%浄化温度が低く、各比較例では高い。
As is clear from the results in Table 1, the 50% purification temperature is low in each example, and high in each comparative example.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−144746(JP,A) 特開 昭62−269747(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 B01D 53/86 B01D 53/94 ────────────────────────────────────────────────── (5) References JP-A-56-144746 (JP, A) JP-A-62-269747 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 21/00-38/74 B01D 53/86 B01D 53/94

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 pHを10より大きく調整した貴金属塩
水溶液を一般式Ln 1-x AxMO 3 (LnはCeを除く希
土類金属、AはCe又はアルカリ土類金属、MはMn,
Fe,Co,Ni,Cu,Pd及びRuからなる遷移金
属で、いずれも1種又は2種以上、0<x<1)で示さ
れるペロブスカイト型構造の複合酸化物担体に含浸さ
せ、乾燥後、焼成することを特徴とする触媒の製造方
法。
1. An aqueous solution of a noble metal salt whose pH has been adjusted to be greater than 10 is prepared using a general formula Ln 1-x AxMO 3 (Ln is a diluent excluding Ce).
Earth metal, A is Ce or alkaline earth metal, M is Mn,
Transition gold composed of Fe, Co, Ni, Cu, Pd and Ru
Genus, one or more of which are represented by 0 <x <1)
A method for producing a catalyst, comprising impregnating a composite oxide carrier having a perovskite structure , drying and calcining.
【請求項2】 貴金属はPd,Pt,Ru,Rh及びI
rからなる群より選ばれた1種又は2種以上の金属であ
る請求項に記載の触媒の製造方法。
2. The noble metal is composed of Pd, Pt, Ru, Rh and I.
The method for producing a catalyst according to claim 1 , wherein the catalyst is one or more metals selected from the group consisting of r.
【請求項3】 貴金属はPdである請求項に記載の触
媒の製造方法。
3. The method according to claim 2 , wherein the noble metal is Pd.
【請求項4】 Ce及びZr、又はさらにCe以外の希
土類金属を含み少なくとも一部が複合酸化物又は固溶体
となっている耐熱性酸化物を助触媒としてさらに含ませ
る請求項に記載の触媒の製造方法。
4. The catalyst according to claim 1 , further comprising, as a co-catalyst , a heat-resistant oxide containing Ce and Zr or a rare earth metal other than Ce and at least a part of which is a complex oxide or a solid solution. Production method.
JP06127792A 1992-02-14 1992-02-14 Method for producing three-way catalyst with excellent low-temperature activity Expired - Fee Related JP3144880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06127792A JP3144880B2 (en) 1992-02-14 1992-02-14 Method for producing three-way catalyst with excellent low-temperature activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06127792A JP3144880B2 (en) 1992-02-14 1992-02-14 Method for producing three-way catalyst with excellent low-temperature activity

Publications (2)

Publication Number Publication Date
JPH05220395A JPH05220395A (en) 1993-08-31
JP3144880B2 true JP3144880B2 (en) 2001-03-12

Family

ID=13166557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06127792A Expired - Fee Related JP3144880B2 (en) 1992-02-14 1992-02-14 Method for producing three-way catalyst with excellent low-temperature activity

Country Status (1)

Country Link
JP (1) JP3144880B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE261772T1 (en) * 1997-08-04 2004-04-15 Teijin Ltd METHOD FOR PRODUCING AROMATIC CARBONATES
JP2001269578A (en) * 2000-01-19 2001-10-02 Toyota Motor Corp Exhaust gas cleaning catalyst
US7622418B2 (en) 2002-07-09 2009-11-24 Daihatsu Motor Company, Ltd. Method for producing exhaust gas purifying catalyst
JP4311918B2 (en) 2002-07-09 2009-08-12 ダイハツ工業株式会社 Method for producing perovskite complex oxide
JP4106989B2 (en) * 2002-07-12 2008-06-25 マツダ株式会社 Engine exhaust gas purification catalyst
JP4221496B2 (en) * 2003-03-26 2009-02-12 独立行政法人産業技術総合研究所 Composite oxide having n-type thermoelectric properties
JP4494068B2 (en) * 2004-03-31 2010-06-30 東京瓦斯株式会社 Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method
CN100368077C (en) * 2005-06-16 2008-02-13 南京工业大学 Catalyst for CO2 decomposition and preparantion process thereof
JP5216189B2 (en) * 2005-12-22 2013-06-19 株式会社キャタラー Exhaust gas purification catalyst
US9403151B2 (en) 2009-01-30 2016-08-02 Umicore Ag & Co. Kg Basic exchange for enhanced redox OS materials for emission control applications
BRPI0909377A2 (en) * 2008-03-27 2017-06-13 Umicore Ag & Co Kg continuous diesel soot control with minimal back pressure loss using conventional flow substrates and active direct soot oxidation catalyst disposed on them
US20090264283A1 (en) * 2008-04-16 2009-10-22 Basf Catalysts Llc Stabilized Iridium and Ruthenium Catalysts
CN104338410A (en) * 2013-08-02 2015-02-11 中国人民解放军63971部队 Low-resistance broad-spectrum air purification material and preparation method thereof

Also Published As

Publication number Publication date
JPH05220395A (en) 1993-08-31

Similar Documents

Publication Publication Date Title
JP7206045B2 (en) Nitrous oxide removal catalyst for exhaust system
JP4092441B2 (en) Exhaust gas purification catalyst
JP3144880B2 (en) Method for producing three-way catalyst with excellent low-temperature activity
JPH01139145A (en) Catalyst for controlling exhaust emission
JP2578219B2 (en) Method for producing exhaust gas purifying catalyst
JP2003033669A (en) Exhaust gas cleaning catalyst and method of manufacturing the same
JPH0780311A (en) Catalyst for purification of exhaust gas
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
JPH11217220A (en) Compound oxide, its production and exhaust gas-cleaning catalyst using the same
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH05253484A (en) Catalyst for cleaning exhaust gas and depositing method therefor
JPH0768175A (en) Catalyst for purification of exhaust gas
JP3229054B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3222184B2 (en) Method for producing exhaust gas purifying catalyst
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JP2734808B2 (en) Exhaust gas purification catalyst
JPH10192713A (en) Exhaust gas purifying catalyst and its use
JPH04122447A (en) Catalyst for cleaning exhaust gas
JPH07308578A (en) Exhaust gas purifying catalyst
JPH06210174A (en) Catalyst for purification of exhaust gas and its production
JPH06154606A (en) Catalyst for purification of exhaust gas
JPH0716466A (en) Catalyst for purification exhaust gas
JP2000271428A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning method
JPH06296869A (en) Catalyst for exhaust gas purification
JP2635689B2 (en) Method for producing exhaust gas purifying catalyst

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees