JPH0523593A - Exhaust emission control system - Google Patents

Exhaust emission control system

Info

Publication number
JPH0523593A
JPH0523593A JP3180861A JP18086191A JPH0523593A JP H0523593 A JPH0523593 A JP H0523593A JP 3180861 A JP3180861 A JP 3180861A JP 18086191 A JP18086191 A JP 18086191A JP H0523593 A JPH0523593 A JP H0523593A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
exhaust gas
palladium
inflow side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3180861A
Other languages
Japanese (ja)
Inventor
Eiichi Shiraishi
英市 白石
Hideyuki Baba
英幸 馬場
Kazuo Tsuchiya
一雄 土谷
Tomohisa Ohata
知久 大幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP3180861A priority Critical patent/JPH0523593A/en
Priority to CA002064977A priority patent/CA2064977C/en
Priority to US07/862,967 priority patent/US5260249A/en
Priority to AT92302928T priority patent/ATE149870T1/en
Priority to EP92302928A priority patent/EP0507590B1/en
Priority to DE69218017T priority patent/DE69218017T2/en
Priority to KR1019920005664A priority patent/KR960006924B1/en
Priority to BR929201213A priority patent/BR9201213A/en
Publication of JPH0523593A publication Critical patent/JPH0523593A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02T10/22

Abstract

PURPOSE:To enhance decontaminating performance for CO, HC and NOx and especially to remarkably enhance decontaminating performance for HC by adding alkaline earth metallic oxide to a palladium oxide catalyst and furthermore using cerium oxide and zirconium oxide. CONSTITUTION:A catalyst provided to the inflow side of exhaust gas is obtained by coating an integral structural body with a catalyst component constituted of palladium, alkaline earth metallic oxide, cerium oxide, zirconium oxide and refractory inorganic oxide. Further the catalyst provided to the outflow side of exhaust gas is obtained by coating the integral structural body with the catalyst component incorporating rhodium and platium or rhodium, platinum and palladium and also the refractory inorganic oxide. Three components of HC,CO and NOx can be simultaneously removed thereby at low temperature. Furthermore good ternary performance especially the purification performance of HC can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車等の内燃機関か
らの排気ガス中に含まれる有害成分である一酸化炭素
(CO)、炭化水素(HC)及び窒素酸化物(NOx)
を同時に除去する排気ガス浄化用触媒に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOx) which are harmful components contained in exhaust gas from internal combustion engines such as automobiles.
The present invention relates to an exhaust gas purifying catalyst that removes at the same time.

【0002】[0002]

【従来の技術】近年、低燃費化等により、排気ガス温度
の低下、現行よりさらに強化された排ガス規制、特にH
C規制が施行されつつある状況下で従来の三元触媒では
性能面で十分とは言い難い。
2. Description of the Related Art In recent years, due to lower fuel consumption, the temperature of exhaust gas has been lowered, and exhaust gas regulations have been strengthened more than ever, especially H
Under the situation where the C regulation is being enforced, it cannot be said that the performance of the conventional three-way catalyst is sufficient.

【0003】従来パラジウム触媒は高い耐熱性を有して
いることやエンジン排気ガスの酸化雰囲気(いわゆるリ
ーン;空気/燃料(A/F)が空気側大)におけるC
O,HCの高い浄化能を有することは、一般に知られて
いた。一方問題点として、エンジン排気ガスが還元雰囲
気(いわゆるリッチ;(A/F)が燃料側大)の場合、
HC浄化能は高いが、NOx浄化能が極めて低いことが
挙げられる。そのためリーン側のみでの使用、例えばい
わゆる酸化触媒として使用、又は高いNOx浄化能を有
するロジウムを上記パラジウムと組み合せて、CO,H
CおよびNOxを同時に浄化する三元触媒として用いら
れている。
Conventional palladium catalysts have high heat resistance and C in the oxidizing atmosphere of engine exhaust gas (so-called lean; air / fuel (A / F) is on the air side).
It was generally known that O and HC have high purification ability. On the other hand, as a problem, when the engine exhaust gas is in a reducing atmosphere (so-called rich; (A / F) is large on the fuel side),
Although it has a high HC purification capacity, it has a very low NOx purification capacity. Therefore, it is used only on the lean side, for example, as a so-called oxidation catalyst, or by combining rhodium having a high NOx purification ability with the above palladium, CO, H
It is used as a three-way catalyst that simultaneously purifies C and NOx.

【0004】しかし、ロジウムは、非常に高価であるた
めに、触媒成分中の使用量が減少、または使用しないこ
とが望まれているが、高いNOx浄化能を有するという
特徴を有するために、一酸化炭素(CO)、炭化水素
(HC)及び窒素酸化物(NOx)を同時に除去する排
気ガス浄化用触媒の成分としては、必須成分として不可
欠である。
However, since rhodium is very expensive, it is desirable that the amount of rhodium used in the catalyst component be reduced or not used. It is indispensable as an essential component of the exhaust gas purifying catalyst that simultaneously removes carbon oxide (CO), hydrocarbon (HC) and nitrogen oxide (NOx).

【0005】[0005]

【発明が解決しようとする課題】本発明は、排気ガス温
度が低下する状況下において、低温着火性を有し、さら
に排気ガス規制、特にHC規制が高まるなかで、燃料リ
ッチな雰囲気において排出されるHCの多い排気ガスを
浄化する性能が高く、かつ安価な触媒コンバータによる
排気ガス浄化システムが求められている。
DISCLOSURE OF THE INVENTION The present invention has a low temperature ignitability in a situation where the exhaust gas temperature is lowered, and is exhausted in a fuel-rich atmosphere while the exhaust gas regulation, particularly the HC regulation is increased. There is a demand for an exhaust gas purification system using a catalytic converter that has a high performance of purifying exhaust gas containing a large amount of HC and that is inexpensive.

【0006】[0006]

【課題を解決するための手段】本発明者らは、この課題
を解決するために鋭意研究の結果、パラジウム触媒にア
ルカリ土類金属酸化物を添加することにより、パラジウ
ムに直接作用し、その電荷状態を修飾させ、リッチ雰囲
気でのNOx浄化能を向上させることをみいだした。さ
らに、セリウム酸化物及びジルコニウム酸化物を用いる
ことにより、前記の効果はさらに向上し、かつ、燃料ガ
スが化学量論比(燃料ガスを完全燃焼させるのに必要な
空気量)近傍でもCO,HC及びNOx浄化能の向上が
見いだされた。
Means for Solving the Problems As a result of intensive research to solve this problem, the present inventors have found that by adding an alkaline earth metal oxide to a palladium catalyst, it directly acts on palladium and its charge It has been found that the condition is modified and the NOx purification capacity in a rich atmosphere is improved. Further, by using cerium oxide and zirconium oxide, the above-mentioned effect is further improved, and CO and HC are generated even in the vicinity of the stoichiometric ratio of the fuel gas (the amount of air required to completely burn the fuel gas). And, the improvement of NOx purification capacity was found.

【0007】本発明者らは、この知見を基に、排気ガス
流通下で、種々の触媒を複数個組み合せ検討した結果、
(A)排気ガス流入側の触媒と(B)排気ガス流出側の
触媒とからなり、(A)排気ガス流入側の触媒がパラジ
ウム、アルカリ土類金属酸化物、セリウム酸化物、ジル
コニウム酸化物及び耐火性無機酸化物(c)より構成さ
れる触媒成分を一体構造体に被覆したものであり、
(B)排気ガス流出側の触媒が貴金属として(a)ロジ
ウム及び白金、または(b)ロジウム、白金及びパラジ
ウム、並びに耐火性無機酸化物(d)を含有してなる触
媒成分を一体構造体に被覆したものであることを特徴と
する排気ガス浄化システムにより、CO、HC及びNO
xの浄化能の向上、特にHCの浄化能の著しい向上が見
出され本発明を完成するに到ったのである。以下に、更
に詳しく本発明に係る排気ガス浄化システム及びそれを
構成する触媒について説明する。
On the basis of this finding, the inventors of the present invention studied a combination of various catalysts under exhaust gas circulation, and as a result,
(A) Exhaust gas inflow side catalyst and (B) Exhaust gas outflow side catalyst, wherein (A) exhaust gas inflow side catalyst is palladium, alkaline earth metal oxide, cerium oxide, zirconium oxide and A monolithic structure coated with a catalyst component composed of a refractory inorganic oxide (c),
(B) A catalyst component on the exhaust gas outflow side contains a catalyst component containing (a) rhodium and platinum as noble metals, or (b) rhodium, platinum and palladium, and a refractory inorganic oxide (d) in an integral structure. With the exhaust gas purification system characterized by being coated, CO, HC and NO
The improvement of the purification ability of x, particularly the purification ability of HC was found, and the present invention was completed. Hereinafter, the exhaust gas purification system according to the present invention and the catalyst constituting the same will be described in more detail.

【0008】本発明に係る(A)排気ガス流入側に設置
する触媒は、パラジウム、アルカリ土類金属酸化物、セ
リウム酸化物、ジルコニウム酸化物及び耐火性無機酸化
物より構成される触媒成分を一体構造体に被覆したもの
である。
The catalyst (A) installed on the exhaust gas inflow side according to the present invention integrally comprises a catalyst component composed of palladium, alkaline earth metal oxide, cerium oxide, zirconium oxide and refractory inorganic oxide. The structure is coated.

【0009】パラジウムの使用量は触媒の使用条件によ
って異なるが、通常触媒1リットル当り、0.5〜30
g、好ましくは0.5〜25gである。パラジウムの量
が0.5未満である場合は、浄化能が低く、また30g
を越える場合は添加量に見合う性能の向上はみられない
ものである。
The amount of palladium used varies depending on the conditions under which the catalyst is used, but is usually 0.5 to 30 per liter of the catalyst.
g, preferably 0.5 to 25 g. If the amount of palladium is less than 0.5, the purification capacity is low, and 30g
If it exceeds the range, no improvement in performance commensurate with the amount added is seen.

【0010】パラジウムの担持される位置は、その使用
量及び使用条件によりことなるが、ジルコニウム酸化
物、セリウム酸化物又は耐火性無機酸化物に単独に又は
またがって担持されてなる。
The position on which palladium is carried depends on the amount and conditions of use, but it is carried on zirconium oxide, cerium oxide, or refractory inorganic oxide alone or straddling.

【0011】アルカリ土類金属酸化物としては、ベリリ
ウム酸化物、マグネシウム酸化物、カルシウム酸化物、
ストロンチウム酸化物及びバリウム酸化物が挙げられる
が、特にカルシウム酸化物、ストロンチウム酸化物及び
バリウム酸化物からなる群より選ばれた少なくとも一種
が好ましい。アルカリ土類金属酸化物の使用量は触媒1
リットル当り0.1〜50g、好ましくは0.5〜20
gである。0.1g未満であるときは、添加効果が少な
く、50gを超えるときは、添加に見合う効果が少な
い。
The alkaline earth metal oxides include beryllium oxide, magnesium oxide, calcium oxide,
Examples thereof include strontium oxide and barium oxide, but at least one selected from the group consisting of calcium oxide, strontium oxide and barium oxide is particularly preferable. The amount of alkaline earth metal oxide used is catalyst 1
0.1 to 50 g per liter, preferably 0.5 to 20
It is g. When it is less than 0.1 g, the effect of addition is small, and when it exceeds 50 g, the effect commensurate with the addition is small.

【0012】アルカリ土類金属酸化物は、セリウム酸化
物とジルコニウム酸化物、又は各酸化物の一方のみにセ
リウム・ジルコニウム複合酸化物又は耐火性無機酸化物
のいずれに担持されてもよい。さらに使用されるアルカ
リ土類金属酸化物は、酸化物自体を用いることもできる
し、その前駆体、例えば、有機塩、又は無機塩いずれで
も用いることができ、特に限定されない。
The alkaline earth metal oxide may be supported on either the cerium oxide and the zirconium oxide, or on either one of the oxides and the cerium-zirconium composite oxide or the refractory inorganic oxide. The alkaline earth metal oxide used may be either the oxide itself or a precursor thereof, for example, an organic salt or an inorganic salt, and is not particularly limited.

【0013】アルカリ土類金属酸化物とパラジウムの関
係は、それらの重量比(アルカリ土類金属酸化物/パラ
ジウム)で、1/100〜150/1、好ましくは、1
/100〜100/1である。1/100よりアルカリ
土類金属酸化物の量が少なくなると、三元性能が悪くな
り、特に、NO浄化率が劣り、150/1よりアルカリ
土類金属酸化物の量が多くなると添加効果は向上する
が、その他酸化物等の担持量、触媒の強度の関係によ
り、担持比率、担持量を制限される。
The relationship between the alkaline earth metal oxide and palladium is 1/100 to 150/1, preferably 1 in terms of their weight ratio (alkaline earth metal oxide / palladium).
/ 100 to 100/1. When the amount of the alkaline earth metal oxide is less than 1/100, the ternary performance is deteriorated, and in particular, the NO purification rate is poor, and when the amount of the alkaline earth metal oxide is more than 150/1, the addition effect is improved. However, the loading ratio and loading amount are limited depending on the relationship between the loading amount of oxides and the like and the strength of the catalyst.

【0014】セリウム酸化物とジルコニウム酸化物は、
各単独の混合物として用いても効果はある。さらに好ま
しくは、セリウム酸化物とジルコニウム酸化物は少なく
とも一部が複合酸化物、または固溶体として存在してい
る場合である。
Cerium oxide and zirconium oxide are
It is also effective when used as a single mixture. More preferably, at least a part of the cerium oxide and the zirconium oxide is present as a composite oxide or a solid solution.

【0015】その組成比がセリウム酸化物/ジルコニウ
ム酸化物で、100/2〜100/60(酸化物換算重
量比)、好ましくは100/4〜100/40である。
その組成比が、100/2よりセリウム酸化物が多くな
ると浄化性能が低く、100/60よりジルコニウム酸
化物が多くなると浄化性能の低くなる傾向となるもので
ある。
The composition ratio of cerium oxide / zirconium oxide is 100/2 to 100/60 (weight ratio in terms of oxide), preferably 100/4 to 100/40.
When the composition ratio of cerium oxide is more than 100/2, the purification performance is low, and when the zirconium oxide is more than 100/60, the purification performance tends to be low.

【0016】セリウム・ジルコニウム複合酸化物、及び
セリウム酸化物とジルコニウム酸化物の固溶体の調製方
法を次に示すが、上記の組成比であれば調製方法は特に
限定されない。
The method for preparing the cerium-zirconium composite oxide and the solid solution of the cerium oxide and the zirconium oxide will be described below, but the preparation method is not particularly limited as long as it has the above composition ratio.

【0017】市販のセリウム酸化物に水可溶性のジルコ
ニウム塩を担持する方法、水可溶性のセリウム塩、ジル
コニウム塩を混合乾燥後、焼成する方法、水可溶性のセ
リウム塩、ジルコニウム塩を混合後、耐火性無機酸化物
(c)に担持する方法あるいは、一体構造体に耐火性無
機酸化物(c)を塗布後、セリウム塩、ジルコニウム塩
溶液を浸漬する方法等が挙げられる。また用いるセリウ
ム、ジルコニウム各塩は特に限定されず、市販の硝酸
塩、酢酸塩、硫酸塩あるいは塩化物等が用いられる。
A method of supporting a water-soluble zirconium salt on a commercially available cerium oxide, a method of mixing and drying the water-soluble cerium salt and the zirconium salt, and a method of firing the mixture, a method of mixing the water-soluble cerium salt and the zirconium salt, and fire resistance. Examples thereof include a method of supporting the inorganic oxide (c) or a method of immersing a cerium salt or zirconium salt solution after applying the refractory inorganic oxide (c) to the integral structure. The cerium and zirconium salts used are not particularly limited, and commercially available nitrates, acetates, sulfates, chlorides and the like can be used.

【0018】耐火性無機酸化物(c)としては、活性ア
ルミナ、シリカ、チタニア等の高表面積を有するものが
挙げられるが特に活性アルミナが好ましい。上記した各
触媒成分はボールミル等を用いて水性スラリーとし、一
体構造体に塗布し、その後乾燥し、必要により焼成して
排気ガス流入側の完成触媒とする。
Examples of the refractory inorganic oxide (c) include those having a high surface area such as activated alumina, silica and titania, and activated alumina is particularly preferable. Each of the above catalyst components is made into an aqueous slurry by using a ball mill or the like, applied to an integral structure, then dried and, if necessary, fired to obtain a finished catalyst on the exhaust gas inflow side.

【0019】使用される耐火性無機酸化物(c)の量
は、好ましくは触媒1リットル当たり、50g〜300
g、さらに好ましくは、50g〜250gである。
The amount of refractory inorganic oxide (c) used is preferably from 50 g to 300 per liter of catalyst.
g, and more preferably 50 to 250 g.

【0020】本発明に係る(B)排気ガス流出側の触媒
は、貴金属として(a)ロジウム及び白金、または
(b)ロジウム、白金及びパラジウム、並びに耐火性無
機酸化物(d)を含有してなる触媒成分を一体構造体に
被覆したものである。
The (B) exhaust gas outflow side catalyst according to the present invention contains (a) rhodium and platinum, or (b) rhodium, platinum and palladium, and a refractory inorganic oxide (d) as a noble metal. Is a monolithic structure coated with the following catalyst component.

【0021】用いられる貴金属としては、(a)ロジウ
ム及び白金、または(b)ロジウム、白金及びパラジウ
ムであり、これらの使用量は、好ましくは触媒1リット
ル当たり0.1g〜10.0g、さらに好ましくは0.
3g〜5.0gである。0.1g未満である場合は、浄
化能が低く、10.0gを越える場合は、添加量に見合
う効果が少ないものである。
The noble metal used is (a) rhodium and platinum, or (b) rhodium, platinum and palladium, and the amount of these is preferably 0.1 g to 10.0 g, and more preferably 1 g per liter of the catalyst. Is 0.
It is 3 g to 5.0 g. If it is less than 0.1 g, the purifying ability is low, and if it exceeds 10.0 g, the effect commensurate with the added amount is small.

【0022】耐火性無機酸化物(d)としては、活性ア
ルミナ、シリカ、チタニア、セリウム酸化物、ジルコニ
ウム酸化物、アルカリ金属酸化物、アルカリ土類金属酸
化物、希土類金属酸化物、酸化鉄、酸化コバルト、酸化
ニッケル等が使用される。これらの酸化物のうち好まし
くは、活性アルミナ、セリウム酸化物、ジルコニウム酸
化物である。
Examples of the refractory inorganic oxide (d) include activated alumina, silica, titania, cerium oxide, zirconium oxide, alkali metal oxide, alkaline earth metal oxide, rare earth metal oxide, iron oxide, and oxide. Cobalt, nickel oxide, etc. are used. Of these oxides, activated alumina, cerium oxide, and zirconium oxide are preferable.

【0023】使用される耐火性無機酸化物(d)の量
は、好ましくは触媒1リットル当たり50g〜350
g、さらに好ましくは、50g〜300gである。
The amount of refractory inorganic oxide (d) used is preferably from 50 g to 350 per liter of catalyst.
g, and more preferably 50 g to 300 g.

【0024】(A)排気ガス流入側の触媒及び(B)排
気ガス流出側の触媒に使用される一体構造体としては、
通常、排気ガス浄化用触媒に使用される一体構造体であ
ればいずれのものでも良く、例えばハニカム型、コルゲ
ート型等の一体構造体が用いられ、その材質は、耐火性
を有するものであればいずれのものであってもよく、例
えばコージェライト等の耐火性を有するセラミックス
製、フェライト系ステンレス等金属製の一体構造体が用
いられる。
The integrated structure used for (A) the exhaust gas inflow side catalyst and (B) the exhaust gas outflow side catalyst is
Generally, any one-piece structure may be used as long as it is used for an exhaust gas purification catalyst, for example, a honeycomb-type, corrugated-type one-piece structure is used, and the material is fire resistant. Any of these may be used, and for example, an integrated structure made of fireproof ceramics such as cordierite or metal such as ferritic stainless steel is used.

【0025】(A)排気ガス流入側の触媒と(B)排気
ガス流出側の触媒の体積比は、好ましくは100:1〜
1:100、さらに好ましくは、50:1〜1:50で
ある。100:1より(A)排気ガス流入側の触媒の体
積が大きい場合、または1:100より(A)排気ガス
流入側の触媒の体積が小さい場合のいずれであっても組
合せの効果が少ないものである。
The volume ratio of (A) the exhaust gas inflow side catalyst to (B) the exhaust gas outflow side catalyst is preferably 100: 1 to 1: 1.
1: 100, more preferably 50: 1 to 1:50. If the volume of the catalyst on the exhaust gas inflow side (A) is larger than 100: 1, or if the volume of the catalyst on the (A) exhaust gas inflow side is smaller than 1: 100, the effect of the combination is small. Is.

【0026】(A)排気ガス流入側の触媒と(B)排気
ガス流出側の触媒は、同一の触媒コンバーター内に設置
することができるし、また排気管、触媒の搭載位置によ
り適宜、各々分離して設置することもできる。
The catalyst on the exhaust gas inflow side (A) and the catalyst on the exhaust gas outflow side (B) can be installed in the same catalytic converter, and are appropriately separated according to the exhaust pipe and the mounting position of the catalyst. It can also be installed.

【0027】(A)排気ガス流入側の触媒、(B)排気
ガス流出側の触媒とも各々1個である必要はなく、排気
管の形状、触媒の設置する場所、排気ガスの背圧の上昇
等に支障がないかぎり、(A)排気ガス流入側の触媒、
(B)排気ガス流出側の触媒とも各々複数個の触媒に分
割し使用ることもできる。
It is not necessary that each of (A) the exhaust gas inflow side catalyst and (B) the exhaust gas outflow side catalyst be one, and the shape of the exhaust pipe, the place where the catalyst is installed, and the exhaust gas back pressure increase. (A) Exhaust gas inflow side catalyst,
(B) The catalyst on the exhaust gas outflow side may be divided into a plurality of catalysts for use.

【0028】以下、実施例にて具体的に説明するが、本
発明の趣旨に反しない限りこれらの実施例に限定される
ことはない。
The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples unless it goes against the gist of the present invention.

【0029】[0029]

【実施例】【Example】

(実施例1) 排気ガス流入側触媒:市販の酸化セリウム(CeO2
比表面積149m2/g)にオキシ硝酸ジルコニル水溶液
をCeO2/ZrO2の比で10/1(CeO2とZrO2
の合計が100g)となるように混合し、乾燥後、50
0℃で1時間焼成して得た粉体200gと活性アルミナ
(γ・Al23、比表面積155m2/g)400g、酢
酸バリウム33.4g、及びパラジウム12g含有する
硝酸パラジウム水溶液を加え、ボールミルで湿式粉砕す
ることにより水性スラリーを調製した。このスラリーに
断面積1インチ平方当り400個のセルを有するコージ
ェライト製モノリス担体0.5lを浸漬し、取り出した
後、セル内の過剰スラリーを圧縮空気で吹き飛ばした後
乾燥、焼成し、完成触媒を得た。
(Example 1) Exhaust gas inflow side catalyst: commercially available cerium oxide (CeO 2 ,
An aqueous zirconyl oxynitrate solution having a specific surface area of 149 m 2 / g was used as a CeO 2 / ZrO 2 ratio of 10/1 (CeO 2 and ZrO 2).
So that the total amount is 100 g), and after drying, 50
200 g of powder obtained by firing at 0 ° C. for 1 hour and 400 g of activated alumina (γ · Al 2 O 3 , specific surface area of 155 m 2 / g), 33.4 g of barium acetate, and 12 g of palladium were added to the aqueous solution of palladium nitrate, An aqueous slurry was prepared by wet milling with a ball mill. 0.5 l of a cordierite monolithic carrier having 400 cells per 1 inch square in cross section was immersed in this slurry, taken out, and the excess slurry in the cells was blown off with compressed air, followed by drying and firing to obtain a finished catalyst. Got

【0030】排気ガス流出側触媒:白金3.33g含有
するジニトロジアミン白金の硝酸水溶液とロジウム0.
667g含有する硝酸ロジウムを活性アルミナ(γ・A
23、比表面積155m2/g)400gに含浸し、乾
燥後400℃で2時間焼成して得た粉体と市販の酸化セ
リウム(CeO2:比表面積149m2/g)200gを
ボールミルで湿式粉砕することにより水性スラリーを調
製した。このスラリーに断面積1インチ平方当り400
個のセルを有するコージェライト製モノリス担体0.5
リットルを浸漬し取り出した後、セル内の過剰スラリー
を圧縮空気で吹き飛ばした後乾燥、焼成し、完成触媒を
得た。
Exhaust gas outflow side catalyst: Nitric acid aqueous solution of dinitrodiamine platinum containing 3.33 g of platinum and rhodium
Rhodium nitrate containing 667 g was activated alumina (γ ・ A
l 2 O 3 and a specific surface area of 155 m 2 / g) 400 g were impregnated, dried and calcined at 400 ° C. for 2 hours, and a commercially available cerium oxide (CeO 2 : specific surface area 149 m 2 / g) 200 g was ball-milled. An aqueous slurry was prepared by wet milling with. This slurry has a cross-sectional area of 400 per square inch
Cordierite monolithic carrier with 0.5 cells 0.5
After immersing and taking out 1 liter, the excess slurry in the cell was blown off with compressed air, followed by drying and firing to obtain a finished catalyst.

【0031】(実施例2)実施例1において、排ガス流
入側触媒の酢酸バリウム33.4gを100.2gに変
えた以外は実施例1と同様にして完成触媒を得た。
(Example 2) A finished catalyst was obtained in the same manner as in Example 1 except that 33.4 g of barium acetate as the catalyst on the exhaust gas inflow side was changed to 100.2 g.

【0032】(実施例3)実施例1において、排ガス流
入側触媒の酢酸バリウム33.4gを1.66gに変え
た以外は実施例1と同様にして完成触媒を得た。
(Example 3) A finished catalyst was obtained in the same manner as in Example 1 except that 33.4 g of barium acetate as the exhaust gas inflow side catalyst was changed to 1.66 g.

【0033】(実施例4)実施例1において、排ガス流
入側触媒の酢酸バリウムを酢酸カルシウム56.4gに
変えた以外は実施例1と同様にして完成触媒を得た。
(Example 4) A completed catalyst was obtained in the same manner as in Example 1 except that 56.4 g of calcium acetate was used instead of barium acetate of the exhaust gas inflow side catalyst.

【0034】(実施例5)実施例1において、排ガス流
入側触媒の酢酸バリウムを酢酸ストロンチウム39.6
gに変えた以外は、実施例1と同様にして完成触媒を得
た。
(Embodiment 5) In Embodiment 1, barium acetate of the exhaust gas inflow side catalyst is replaced with strontium acetate 39.6.
A finished catalyst was obtained in the same manner as in Example 1 except that g was changed.

【0035】(実施例6)実施例1において、排ガス流
入側触媒のCeO2/ZrO2の比を10/1(CeO2
とZrO2の合計が60g)、かつ活性アルミナ540
g以外は、実施例1と同様にして完成触媒を得た。
Example 6 In Example 1, the ratio of CeO 2 / ZrO 2 of the exhaust gas inflow side catalyst was set to 10/1 (CeO 2
And ZrO 2 total 60 g), and activated alumina 540
A completed catalyst was obtained in the same manner as in Example 1 except for g.

【0036】(実施例7)実施例1において、排ガス流
入側触媒のCeO2/ZrO2の比を10/1(CeO2
とZrO2の合計が320g)、かつ活性アルミナ28
0gに変えた以外は実施例1と同様にして完成触媒を得
た。
Example 7 In Example 1, the ratio of CeO 2 / ZrO 2 of the exhaust gas inflow side catalyst was set to 10/1 (CeO 2
And ZrO 2 total 320 g), and activated alumina 28
A completed catalyst was obtained in the same manner as in Example 1 except that the amount was changed to 0 g.

【0037】(実施例8)実施例1において、排ガス流
入側触媒のCeO2/ZrO2の比を10/3(CeO2
とZrO2の合計が200g)に変えた以外は実施例1
と同様にして完成触媒を得た。
Example 8 In Example 1, the ratio of CeO 2 / ZrO 2 of the exhaust gas inflow side catalyst was set to 10/3 (CeO 2
Example 1 except that the total amount of ZrO 2 and ZrO 2 was changed to 200 g).
A completed catalyst was obtained in the same manner as in.

【0038】(実施例9)実施例1において、排ガス流
入側触媒のCeO2/ZrO2の比を25/1(CeO2
とZrO2の合計が100g)に変えた以外は実施例1
と同様にして完成触媒を得た。
Example 9 In Example 1, the ratio of CeO 2 / ZrO 2 of the exhaust gas inflow side catalyst was set to 25/1 (CeO 2
Example 1 except that the total of ZrO 2 and ZrO 2 was changed to 100 g).
A completed catalyst was obtained in the same manner as in.

【0039】(実施例10)実施例1において、排ガス
流入側触媒の酢酸バリウムを酢酸マグネシウム70.6
gに変えた以外は、実施例1と同様にして完成触媒を得
た。
(Example 10) In Example 1, barium acetate of the exhaust gas inflow side catalyst was replaced with magnesium acetate 70.6
A finished catalyst was obtained in the same manner as in Example 1 except that g was changed.

【0040】(実施例11)実施例1において、排ガス
流入側触媒のパラジウム12gを含有する硝酸パラジウ
ム水溶液をパラジウム4g含有する硝酸パラジウム水溶
液に変更する以外は実施例1と同様にして完成触媒を得
た。
(Example 11) A finished catalyst was obtained in the same manner as in Example 1 except that the palladium nitrate aqueous solution containing 12 g of palladium of the exhaust gas inflow side catalyst was changed to the palladium nitrate aqueous solution containing 4 g of palladium. It was

【0041】(実施例12)実施例1において、排ガス
流入側触媒のパラジウム12gを含有する硝酸パラジウ
ム水溶液をパラジウム32g含有する硝酸パラジウム水
溶液に変更する以外は実施例1と同様にして完成触媒を
得た。
(Example 12) A completed catalyst was obtained in the same manner as in Example 1 except that the palladium nitrate aqueous solution containing 12 g of palladium as the exhaust gas inflow side catalyst was changed to the palladium nitrate aqueous solution containing 32 g of palladium. It was

【0042】(実施例13)実施例1において、排ガス
流入側触媒のパラジウム12gを含有する硝酸パラジウ
ム水溶液をパラジウム80g含有する硝酸パラジウム水
溶液に変更する以外は実施例1と同様にして完成触媒を
得た。
(Example 13) A completed catalyst was obtained in the same manner as in Example 1 except that the palladium nitrate aqueous solution containing 12 g of palladium of the exhaust gas inflow side catalyst was changed to the palladium nitrate aqueous solution containing 80 g of palladium. It was

【0043】(実施例14)実施例1において、排ガス
流出側触媒の白金3.33gを、白金1.67g含有す
るジニトロジアミン白金の硝酸水溶液およびパラジウム
1.67g含有する硝酸パラジウムに変えた以外は実施
例1と同様にして完成触媒を得た。
Example 14 Except that 3.33 g of platinum of the exhaust gas outflow side catalyst was changed to nitric acid aqueous solution of dinitrodiamine platinum containing 1.67 g of platinum and palladium nitrate containing 1.67 g of palladium in Example 1. A completed catalyst was obtained in the same manner as in Example 1.

【0044】(比較例1)実施例1において、排ガス流
入側触媒を流出側触媒と同じものに変えた以外は実施例
1と同様にした。
(Comparative Example 1) The same procedure as in Example 1 was carried out except that the exhaust gas inflow side catalyst was changed to the same as the outflow side catalyst.

【0045】(比較例2)実施例1において、排ガス流
入側触媒の酢酸バリウムを除いた以外は実施例1と同様
にして完成触媒を得た。
(Comparative Example 2) A finished catalyst was obtained in the same manner as in Example 1 except that barium acetate as the exhaust gas inflow side catalyst was removed.

【0046】(比較例3)実施例1の排ガス流入側触媒
においてオキシ硝酸ジルコニルを除いた以外は実施例1
と同様にして完成触媒を得た。
(Comparative Example 3) Example 1 was repeated except that zirconyl oxynitrate was omitted from the exhaust gas inflow side catalyst of Example 1.
A completed catalyst was obtained in the same manner as in.

【0047】(比較例4)実施例1の排ガス流入側触媒
において、オキシ硝酸ジルコニルを除き、かつ酢酸バリ
ウムを除いた以外は実施例1と同様にして完成触媒を得
た。
Comparative Example 4 A finished catalyst was obtained in the same manner as in Example 1 except that zirconyl oxynitrate and barium acetate were removed from the exhaust gas inflow side catalyst of Example 1.

【0048】このようにして得られた実施例と比較例の
触媒1リットル当りの各触媒成分の担持量を表1に示し
た。
Table 1 shows the supported amounts of the respective catalyst components per liter of the catalysts of Examples and Comparative Examples thus obtained.

【0049】(実施例15)次に、実施例1から実施例
14までの触媒と、比較例1から4の触媒のエンジン耐
久走行後の触媒活性を調べた。
(Example 15) Next, the catalyst activities of the catalysts of Examples 1 to 14 and the catalysts of Comparative Examples 1 to 4 were examined after the running of the engine.

【0050】市販の電子制御方式のエンジン(8気筒4
400cc)を使用し、各触媒をエンジンの排気系に連設
して耐久テストを行なった。エンジンは、定常運転60
秒、減速6秒(減速時に燃料がカットされて、触媒は、
高温酸化雰囲気の厳しい条件にさらされる。)というモ
ード運転で運転し触媒入口ガス温度が定常運転時850
℃となる条件で50時間触媒をエージングした。
Commercially available electronically controlled engine (8 cylinders 4
400cc) was used, and each catalyst was connected to the exhaust system of the engine and a durability test was conducted. Engine is in steady operation 60
Second, deceleration 6 seconds (fuel is cut during deceleration, catalyst is
Exposed to the severe conditions of high temperature oxidizing atmosphere. ) Mode operation and the catalyst inlet gas temperature is 850 during steady operation
The catalyst was aged for 50 hours under the condition of the temperature.

【0051】エージング後の触媒性能の評価は、市販の
電子制御方式のエンジン(4気筒1800cc)を使用
し、各触媒を、エンジンの排気系に連設して行なった。
触媒の三元性能は触媒入口ガス温度400℃、空間速度
90,000hr~1の条件で評価した。この際、外部発振
器より1Hzサイン波型シグナルをエンジンのコントロ
ールユニットに導入して、空燃比(A/F)を±1.0
A/F、1Hzで振動させながら平均空燃比を連続的に
変化させ、この時の触媒入口及び出口ガス組成を同時に
分析して、平均空燃比がA/Fが15.1から14.1
までCO,HC及びNOの浄化能を求めた。
The catalyst performance after aging was evaluated by using a commercially available electronically controlled engine (four-cylinder 1800 cc) and connecting each catalyst to the exhaust system of the engine.
The three-way performance of the catalyst was evaluated under the conditions of a catalyst inlet gas temperature of 400 ° C. and a space velocity of 90,000 hr- 1 . At this time, a 1 Hz sine wave type signal was introduced from the external oscillator into the engine control unit to adjust the air-fuel ratio (A / F) to ± 1.0.
While oscillating at A / F and 1 Hz, the average air-fuel ratio is continuously changed, and the catalyst inlet and outlet gas compositions at this time are simultaneously analyzed, and the average air-fuel ratio A / F is 15.1 to 14.1.
Up to the purifying ability of CO, HC and NO.

【0052】上記のようにして求めたCO,HC及びN
Oの浄化率対入口空燃比をグラフにプロットして、三元
特性曲線を作成し、CO,NO浄化率曲線の交点(クロ
スオーバーポイントと呼ぶ)の浄化率と、その交点のA
/F値におけるHC浄化率さらに、A/Fが14.2
(エンジン排気ガスがリッチ)でのCO,HCおよびN
Oの浄化率を表2に示した。
CO, HC and N obtained as described above
The purification rate of O versus the inlet air-fuel ratio is plotted in a graph to create a ternary characteristic curve, and the purification rate at the intersection of the CO and NO purification rates curves (called a crossover point) and the intersection A
HC purification rate at / F value Further, A / F is 14.2
CO, HC and N in (rich engine exhaust gas)
The purification rate of O is shown in Table 2.

【0053】表2より、本発明に開示される触媒は、貴
金属として、ロジウムを含まずパラジウムのみで、C
O,HCおよびNOxの三成分を同時に除去できること
がわかる。
From Table 2, the catalyst disclosed in the present invention contains no palladium as the noble metal, only palladium and no C
It can be seen that the three components of O, HC and NOx can be removed simultaneously.

【0054】また、触媒の低温での浄化性能は、空燃比
を±0.5A/F(1Hz)の条件で振動させながら、
平均空燃比をA/Fに14.6に固定してエンジンを運
転し、エンジン排気系の触媒コンバータの前に熱交換器
を取り付けて、触媒入口ガス温度を200℃〜500℃
まで連続的に変化させ、触媒入口及び出口ガス組成を分
析して、CO,HC及びNOの浄化率を求めることによ
り評価した。上記の様にして求めた、CO,HC及びN
Oの浄化率50%での温度(ライトオフ温度)を測定し
て表2に示した。
Further, the purification performance of the catalyst at low temperature is as follows while vibrating the air-fuel ratio under the condition of ± 0.5 A / F (1 Hz).
The engine is operated with the average air-fuel ratio fixed at A / F of 14.6, a heat exchanger is installed in front of the catalytic converter of the engine exhaust system, and the catalyst inlet gas temperature is 200 ° C to 500 ° C.
Was continuously changed, the catalyst inlet and outlet gas compositions were analyzed, and the CO, HC, and NO purification rates were determined and evaluated. CO, HC and N determined as above
The temperature (light-off temperature) at a purification rate of O of 50% was measured and is shown in Table 2.

【0055】本発明に開示された触媒は低温で、HC,
CO及びNOの三成分を同時除去できる。さらに、良好
な三元性能、特にHC浄化能の向上が示される。
The catalysts disclosed in the present invention are
The three components of CO and NO can be removed simultaneously. Furthermore, a good ternary performance, in particular an improvement in the HC purification capacity, is shown.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大幡 知久 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒触媒研究所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tomohisa Ohata             Hyogo prefecture Himeji city             1 Inside Japan Catalyst Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (A)排気ガス流入側の触媒と(B)排
気ガス流出側の触媒とからなり、(A)排気ガス流入側
の触媒がパラジウム、アルカリ土類金属酸化物、セリウ
ム酸化物、ジルコニウム酸化物及び耐火性無機酸化物
(c)より構成される触媒成分を一体構造体に被覆した
ものであり、(B)排気ガス流出側の触媒が貴金属とし
て(a)ロジウム及び白金、または(b)ロジウム、白
金及びパラジウム、並びに耐火性無機酸化物(d)を含
有してなる触媒成分を一体構造体に被覆したものである
ことを特徴とする排気ガス浄化システム。
1. A catalyst comprising (A) an exhaust gas inflow side catalyst and (B) an exhaust gas outflow side catalyst, wherein (A) the exhaust gas inflow side catalyst is palladium, an alkaline earth metal oxide, or a cerium oxide. , A zirconium oxide and a refractory inorganic oxide (c) are coated on a monolithic structure, and (B) the exhaust gas outflow side catalyst has noble metals (a) rhodium and platinum, or (B) An exhaust gas purifying system characterized in that an integral structure is coated with a catalyst component containing rhodium, platinum and palladium, and a refractory inorganic oxide (d).
【請求項2】 (A)排気ガス流入側の触媒が、一体構
造体1リットル当りに対して、パラジウムが0.5〜3
0g、アルカリ土類金属酸化物が0.1〜50g、セリ
ウム酸化物が10〜100g、ジルコニウム酸化物が
0.1〜30g及び耐火性無機酸化物が10〜300g
を被覆したものである請求項1の触媒。
2. (A) The catalyst on the exhaust gas inflow side contains 0.5 to 3 palladium per liter of the integrated structure.
0 g, 0.1 to 50 g of alkaline earth metal oxide, 10 to 100 g of cerium oxide, 0.1 to 30 g of zirconium oxide, and 10 to 300 g of refractory inorganic oxide.
The catalyst according to claim 1, which is coated with.
【請求項3】 (A)排気ガス流入側の触媒に含有され
るセリウム酸化物とジルコニウム酸化物は少なくとも一
部が複合物又は固溶体として存在してなる請求項1の触
媒。
3. The catalyst according to claim 1, wherein at least a part of (A) the cerium oxide and the zirconium oxide contained in the catalyst on the exhaust gas inflow side is present as a complex or solid solution.
【請求項4】 セリウム酸化物とジルコニウム酸化物の
比(酸化物換算重量比)が100:2〜100:60で
ある請求項1又は3記載の触媒。
4. The catalyst according to claim 1, wherein the ratio of the cerium oxide to the zirconium oxide (weight ratio in terms of oxide) is 100: 2 to 100: 60.
JP3180861A 1991-04-05 1991-07-22 Exhaust emission control system Pending JPH0523593A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP3180861A JPH0523593A (en) 1991-07-22 1991-07-22 Exhaust emission control system
CA002064977A CA2064977C (en) 1991-04-05 1992-04-02 Catalyst for purifying exhaust gas
US07/862,967 US5260249A (en) 1991-04-05 1992-04-03 Catalyst for purifying automotive exhaust gas
AT92302928T ATE149870T1 (en) 1991-04-05 1992-04-03 CATALYST FOR PURIFYING EXHAUST GASES
EP92302928A EP0507590B1 (en) 1991-04-05 1992-04-03 Catalyst for purifying exhaust gas
DE69218017T DE69218017T2 (en) 1991-04-05 1992-04-03 Catalytic converter for cleaning exhaust gases
KR1019920005664A KR960006924B1 (en) 1991-04-05 1992-04-04 Catalyst for purifying exhaust gas
BR929201213A BR9201213A (en) 1991-04-05 1992-04-06 EXHAUST GAS PURIFYING CATALYST AND EXHAUST GAS PURIFYING SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3180861A JPH0523593A (en) 1991-07-22 1991-07-22 Exhaust emission control system

Publications (1)

Publication Number Publication Date
JPH0523593A true JPH0523593A (en) 1993-02-02

Family

ID=16090639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3180861A Pending JPH0523593A (en) 1991-04-05 1991-07-22 Exhaust emission control system

Country Status (1)

Country Link
JP (1) JPH0523593A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161311A (en) * 1993-06-25 2005-06-23 Engelhard Corp Layered catalyst composite
JP2006026635A (en) * 1993-04-28 2006-02-02 Nippon Shokubai Co Ltd Method of removing nitrogen oxides contained in exhaust gas
EP1674148A2 (en) 2004-12-27 2006-06-28 Cataler Corporation Exhaust gas purifying catalyst
JP2010184238A (en) * 1993-04-28 2010-08-26 Nippon Shokubai Co Ltd Method of removing nitrogen oxides in exhaust gas
US8071502B2 (en) 2005-05-24 2011-12-06 Cataler Corporation Exhaust gas purifying catalyst
JP2013256954A (en) * 2002-09-13 2013-12-26 Johnson Matthey Plc Compression ignition engine and exhaust system therefor
CN110152697A (en) * 2019-06-25 2019-08-23 无锡威孚环保催化剂有限公司 The preparation method of single coating gasoline car three-way catalyst

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026635A (en) * 1993-04-28 2006-02-02 Nippon Shokubai Co Ltd Method of removing nitrogen oxides contained in exhaust gas
JP2010184238A (en) * 1993-04-28 2010-08-26 Nippon Shokubai Co Ltd Method of removing nitrogen oxides in exhaust gas
JP2012236193A (en) * 1993-04-28 2012-12-06 Nippon Shokubai Co Ltd Method of removing nitrogen oxides in exhaust gas
JP2005161311A (en) * 1993-06-25 2005-06-23 Engelhard Corp Layered catalyst composite
JP2013256954A (en) * 2002-09-13 2013-12-26 Johnson Matthey Plc Compression ignition engine and exhaust system therefor
EP1674148A2 (en) 2004-12-27 2006-06-28 Cataler Corporation Exhaust gas purifying catalyst
JP2006181476A (en) * 2004-12-27 2006-07-13 Cataler Corp Catalyst for purifying exhaust gas
EP1674148A3 (en) * 2004-12-27 2009-03-04 Cataler Corporation Exhaust gas purifying catalyst
US7846863B2 (en) 2004-12-27 2010-12-07 Cataler Corporation Exhaust gas purifying catalyst
US8071502B2 (en) 2005-05-24 2011-12-06 Cataler Corporation Exhaust gas purifying catalyst
CN110152697A (en) * 2019-06-25 2019-08-23 无锡威孚环保催化剂有限公司 The preparation method of single coating gasoline car three-way catalyst

Similar Documents

Publication Publication Date Title
KR100241666B1 (en) Catalyst for purifying oxygen rich exhaust gas
JP3688871B2 (en) Exhaust gas purification catalyst
JP3235640B2 (en) Internal combustion engine exhaust gas purification catalyst
JPH08281107A (en) Catalyst for purifying exhaust gas
JP3272019B2 (en) Exhaust gas purification catalyst
JPH0547263B2 (en)
JP3264697B2 (en) Exhaust gas purification catalyst and purification system using the same
JPH0523593A (en) Exhaust emission control system
JP2698284B2 (en) Exhaust gas purification catalyst
JP2698302B2 (en) Exhaust gas purification catalyst
JP2755513B2 (en) Exhaust gas purification catalyst
JP3272015B2 (en) Exhaust gas purification catalyst
JP2690654B2 (en) Exhaust gas purification catalyst and purification system using the same
JP2690661B2 (en) Exhaust gas purification catalyst and purification system using the same
JP2786933B2 (en) Exhaust gas purification catalyst
JPH0549940A (en) Exhaust gas purifying device
JPS6214338B2 (en)
JPS6214337B2 (en)
JPH0523599A (en) Catalyst for decontaminating exhaust gas
JPH0857318A (en) Catalyst and method for purifying exhaust gas from lean burnengine
JP2698288B2 (en) Exhaust gas purification catalyst
JP3280277B2 (en) Exhaust gas purification catalyst
JP3264696B2 (en) Exhaust gas purification catalyst and purification system using the same
JP3347481B2 (en) Exhaust gas purification catalyst
JPH05200287A (en) Catalyst for purifying exhaust gas and purifying system constituted by using it