JPH0547263B2 - - Google Patents

Info

Publication number
JPH0547263B2
JPH0547263B2 JP61299948A JP29994886A JPH0547263B2 JP H0547263 B2 JPH0547263 B2 JP H0547263B2 JP 61299948 A JP61299948 A JP 61299948A JP 29994886 A JP29994886 A JP 29994886A JP H0547263 B2 JPH0547263 B2 JP H0547263B2
Authority
JP
Japan
Prior art keywords
catalyst
rhodium
zirconia
supported
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61299948A
Other languages
Japanese (ja)
Other versions
JPS63156545A (en
Inventor
Shinya Kitaguchi
Kazuo Tsucha
Tomohisa Oohata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP61299948A priority Critical patent/JPS63156545A/en
Priority to US07/134,363 priority patent/US4904633A/en
Priority to EP19930201246 priority patent/EP0558159A3/en
Priority to KR1019870014488A priority patent/KR930000917B1/en
Priority to EP87311178A priority patent/EP0272136B1/en
Priority to DE3751403T priority patent/DE3751403T2/en
Publication of JPS63156545A publication Critical patent/JPS63156545A/en
Priority to KR1019920016764A priority patent/KR930000918B1/en
Publication of JPH0547263B2 publication Critical patent/JPH0547263B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は排気ガス浄化用触媒に関するものであ
る。詳しく述べると本発明は自動車等の内燃機関
からの排ガス中に含まれる有害成分である炭化水
素(HC)、一酸化炭素(CO)および窒素酸化物
(NOx)を同時に除去する排気ガス浄化用触媒に
関するものであり、特に高温酸化雰囲気のような
厳しい条件下で使用されても優れた耐久性を有し
かつ上記有害成分に対し低温での高い浄化能を有
する排気ガス浄化用触媒に関するものである。 〔従来の技術〕 従来、排気ガス浄化用触媒においては、活性ア
ルミナ等の高表面積の耐火性無機酸化物上に貴金
属をできるだけ分散させて担持し、その際希土類
元素、ジルコニア、アルカリ土類金属等を触媒組
成物中に添加して触媒の耐久性を向上させないし
維持しようという努力がなされている。 しかしながら、高表面積のアルミナ等に貴金属
を高分散に担持した触媒は、初期活性は高いが高
温酸化雰囲気のような厳しい条件に曝されると貴
金属の粒子成長や担体物質との相互作用を起し大
きな活性劣化を起すという問題があつた。 又、特公昭57−29215号、特開昭57−153737号
においてアルミナ及びジルコニアを含有する被覆
層を担体に形成せしめた後に貴金属を担持する方
法が提案されているが、いずれの場合も貴金属の
大部分または1部が実質的にはアルミナに高分散
に担持され上記と同様な結果となり十分な効果は
期待されない。しかも被覆層中に酸化セリウムが
存在する場合には酸化セリウム上に担持されたロ
ジウムはその相互作用により高温酸化雰囲気のよ
うな厳しい条件に曝されると失活することは明ら
かである。 又、貴金属特にロジウムと相互作用しない担体
物質としてジルコニア(米国特許第4233189号)
またはアルフアアルミナ(米国特許第4172047号)
が本分野で提案されている。しかし、ジルコニア
やアルフアアルミナは通常低表面積であり、これ
にロジウムを担持した場合は初期活性が悪く、耐
久後の低温での浄化能も十分なものが得られない
という欠点が指摘される。 〔問題点を解決するための手段〕 かくして本発明者らは鋭意研究の結果、高表面
積で微粒子状のジルコニア上に貴金属を分散性よ
く担持することにより高温下および低温での高い
初期活性を有し、そしてジルコニア上へ貴金属が
安定に担持されかつ耐火性無機酸化物及び希土類
酸化物を貴金属担持ジルコニア粒子間に介在せし
めることによりジルコニア微粒子そのものの粒子
成長を抑制し、高温酸化雰囲気のような厳しい条
件下で使用されても優れたた耐久性を有すること
を見出し、本発明を完成するに至つたのである。 すなわち、本発明は以下の如く特定されてな
る。 (1) ロジウムまたはロジウムと白金および/また
はパラジウムを含有してなる白金族金属を、少
なくとも10m2/gの比表面積を有し、かつ一次
粒子が2000Å以下の平均粒径を有するジルコニ
ア粉末上に担持せしめてなる白金族金属担持ジ
ルコニアを含有し、かつ耐火性無機酸化物及び
希土類酸化物を含有してなる触媒組成物を一体
構造体を有するハニカム担体に被覆せしめてな
ることを特徴とする排気ガス浄化用触媒。 (2) ロジウムまたはロジウムと白金および/また
はパラジウムを含有してなる白金族金属を0.5
〜30重量%の範囲の組成となるようにジルコニ
ア粉末に担持することを特徴とする上記(1)記載
の触媒。 (3) 該ジルコニア粉末の含有量が触媒組成物の
0.5〜50重量%の範囲であることを特徴とする
上記(1)または(2)記載の触媒。 (4) 該耐火性無機酸化物が活性アルミナであるこ
とを特徴とする上記(1)記載の触媒。 (5) 該希土類酸化物が酸化セリウムであることを
特徴とする上記(1)記載の触媒。 〔作用〕 本発明における触媒組成物とはロジウムを含有
した白金族金属を担持せしめたジルコニア及び無
機耐火性酸化物、希土類酸化物よりなる。 本発明に使用するジルコニアは少なくとも10
m2/g、好ましくは60〜100m2/gの比表面積を
有しかつ一次粒子が2000Å以下、好ましくは500
Å以下の平均粒径を有するものであり、市販のも
のを使用しても良く、またはジルコニウム塩の水
溶液をアンモニア等で中和し水洗後乾燥焼成する
方法等によつても調製されうるものである。 ジルコニアの使用量は触媒組成物の0.5〜50重
量%で可能であるが0.5〜10重量%の使用量で十
分な発明の効果が発揮されうる。使用するジルコ
ニア量が触媒組成物の50重量%を越えるとジルコ
ニア粒子同志に粒子成長が促進され活性低下の原
因となる。ジルコニアに担持せしめる白金族金属
はロジウムを必須とし、また、これに白金あるい
はパラジウムを共存させることにより更に高温耐
久後の低温活性の向上が見られる。ロジウムと共
存させる白金およびパラジウムの合計重量比は
1/5〜5の割合で担持するのが好ましく、貴金
属担持ジルコニア中に、これら貴金属は合計で
0.5〜30重量%の範囲で担持される。 なお、白金族金属は全量をジルコニアに担持さ
せる必要はなく一部の白金族金属はアルミナ等の
無機酸化物や、酸化セリウム、酸化ランタンなど
希土類酸化物のいずれに担持しても良く、一方、
単独に白金ブラツクなど貴金属ブラツクとして触
媒組成物中に含有させても良い。ジルコニアへの
貴金属担持方法は通常法でよく特定はされない。
ロジウム源としては、塩化ロジウム、硝酸ロジウ
ム硫酸ロジウム等、白金あるいはパラジウム源と
しては塩化白金酸、ジニトロジアンミン白金、塩
化パラジウム、硝酸パラジウム等を、水溶液やア
ルコール性溶液の形で使用でき、2種以上の白金
族金属をジルコニアに担持する場合は各々別々に
含浸しても良く、同時に含浸させても良い。その
後乾燥焼成することによつてジルコニア上に担持
される。 本発明に使用される耐火性無機酸化物としては
上記ジルコニアの他にアルミナ、シリカ、チタニ
ア、マグネシアなどが挙げられるがアルミナ特に
活性アルミナの使用が好ましい。アルミナの結晶
形としては、γ、δ、θ、α、χ、κ、ηのいず
れの形でも使用可能である。耐火性無機酸化物
は、そのまま触媒組成物中に含有させても良いが
希土類金属及びクロム、マンガン、鉄、コバル
ト、ニツケル、ジルコニウム等の卑金属元素を酸
化物の形でアルミナ等に0.1〜30重量%担持含有
させることにより更に浄化能の向上が見られる。 又、希土類酸化物としてはセリウム、ランタ
ン、ネオジム等の各酸化物が挙げられるが特に酸
化セリウムの使用が好ましい。 前記のように希土類酸化物はアルミナ等の耐火
性無酸化物に0.1〜30重量%の範囲で担持しても
良いが酸化物、炭酸化物、水酸化物等の形で焼成
時あるいは使用時に、酸化物の形態になるものを
触媒組成物中に含有させても良い。後者の場合は
酸化物として触媒組成物中に5〜80%含有させる
ことができる。 本発明においては、白金族金属とくにロジウム
を含有する白金族金属が高表面積でかつきわめて
こまかい微粒子からなるジルコニア上に安定に担
持されているため、担体物質、希土類酸化物及び
卑金属酸化物等との相互作用による悪影響が抑え
られ従来より多量の希土類酸化物及び卑金属酸化
物を触媒組成物中に含有させることができ、上記
した如き触媒の耐久性及び浄化能を向上させるこ
とが可能となつた。 このようにして得られた白金族金属とくにロジ
ウム含有白金族金属担持ジルコニア及び希土類酸
化物、耐火性無機酸化物をボールミル等を用いて
水性スラリーとし一体構造を有するハニカム担体
にウオツユコートして、その後乾燥し必要により
焼成して完成触媒とする。本発明で使用される一
体構造を有するハニカム担体とはコージエライ
ト、ムライト、α−アルミナ等のセラミツク担体
及びステンレスまたはFe−Cr−Al合金等のメタ
ルモノリス担体のことをいう。 以下、実施例にて本発明を更に詳細に説明する
が、本発明はこれら実施例のみに限定されるもの
ではないことは言うまでもない。 実施例 1 比表面70m2/g、平均粒径200Åを有するジル
コニア(第一稀元素化学製)10.0gをロジウム
0.3gを含有する塩化ロジウム水溶液に含浸して
120℃で12時間乾燥した。その後空気中500℃で1
時間焼成して2.9重量%Rh含有ジルコニア粉体を
調製した。次に白金1.5gを含有する塩化白金酸
水溶液を比表面積150m2/gの活性アルミナ150g
に含浸して120℃で12時間乾燥してその後空気中
500℃で1時間焼成してPt含有アルミナ粉体を得
た。このようにして得られた2種類の粉体及び市
販の酸化セリウム粉体75gをボールミルで20時間
湿式粉砕することにより水性スラリーを調製し
た。断面積1インチ平方当り約400個のガス流通
セルを有する外径33mmφ、長さ76mmLのコージエ
ライト製モノリス担体を上記スラリーに浸漬し取
り出した後セル内の過剰スラリーを圧縮空気でブ
ローしてその後140℃で3時間乾燥して触媒Aを
得た。蛍光X線で測定した結果、触媒Aは
Pt0.056gおよびRh0.011gを触媒1個当り含有し
ていた。 実施例 2 実施例1で用いたのと同様のジルコニア粉末
15.0gをロジウム0.3gを含有する塩化ロジウム
水溶液と白金1.5g含有する塩化白金酸水溶液の
混合液に含浸して120℃で12時間乾燥し、その後
空気中500℃で1時間焼成して1.8重量%Rhおよ
び8.9重量%Pt含有ジルコニア粉体を調製した。
上記粉体と実施例1で用いたのと同様の活性アル
ミナ145gおよび酸化セリウム75gをボールミル
で20時間湿式粉砕して水性スラリーを調製し、実
施例1と同様にして触媒Bを得た。触媒Bは
Pt0.052gおよびRh0.010gを触媒1個当り含有し
ていた。 実施例 3 実施例2において活性アルミナの代わりに硝酸
第2鉄25.3gを純水100gに溶解しこれを活性ア
ルミナ140gに含浸させてその後乾燥焼成して得
た粉体(鉄含有活性アルミナ)を使用した以外は
実施例2と同様な方法で触媒Cを得た。触媒Cは
Pt0.054gおよびRh0.011gを触媒1個当り含有し
ていた。 比較例 1 実施例1で使用したのと同様の活性アルミナ
160gと酸化セリウム75gとをボールミルで20時
間湿式粉砕することにより水性スラリーを調製
し、実施例1と同様にしてコージエライト製モノ
リス担体にウオツユコートした後140℃で3時間
乾燥しその後空気中500℃で1時間焼成した。こ
のように処理したモノリス担体を塩化白金酸及び
塩化ロジウムの混合水溶液に浸漬し乾燥後空気中
400℃で1時間焼成して触媒を得た。触媒は
Pt0.055gおよびRh0.011gを触媒1個当り含有し
ていた。 比較例 2 実施例1で使用したのと同様の活性アルミナ
120gと市販のジルコニア粉末120gをボールミル
で20時間湿式粉砕することにより水性スラリーを
調製し、実施例1と同様にしてコージエライト製
モノリス担体にウオツシユコートした後140℃で
3時間乾燥しその後空気中500℃で1時間焼成し
た。このようにして処理したモノリス担体を塩化
白金酸及び塩化ロジウムの混合水溶液に浸漬し、
乾燥後空気中400℃で1時間焼成して触媒を得
た。触媒はPt0.056gおよびRh0.011gを触媒1
個当り含有していた。 実施例 4 比表面積90m2/g、平均粒径150Åを有するジ
ルコニア(第一稀元素化学製)12.0gをロジウム
が0.35g含有される硝酸ロジウム水溶液及びパラ
ジウムが3.15g含有される硝酸パラジウム水溶液
の混合溶液に含浸して120℃で12時間乾燥しその
後空気中500℃で1時間焼成して2.3重量%Rhお
よび20.3重量%Pd含有ジルコニア粉体を調製し
た。 次に硝酸セリウム56.1gと硝酸第2鉄32.2gを
純水200gに溶解し比表面積100m2/gの活性アル
ミナ200gと混合して120℃で12時間乾燥しその後
空気中700℃で1時間焼成してCeO2およびFe2O2
含有アルミナ粉体を得た。このようにして得た2
種類の粉体をボールミルで20時間湿式粉砕するこ
とにより水性スラリーを調製した。得られたスラ
リーを実施例1と同様にしてコージエライト製モ
ノリス担体にウオツシユコートしその後140℃で
3時間乾燥して触媒Dを得た。触媒DはPd0.120
gおよびRh0.013gを触媒1個当り含有してい
た。 実施例 5 実施例4で使用したのと同様のジルコニア12.0
gをロジウムが0.35g含有される硝酸ロジウム水
溶液及びパラジウムが0.35g含有される硝酸パラ
ジウム水溶液の混合溶液に含浸して120℃で12時
間乾燥しその後空気中500℃で1時間焼成して2.8
重量%Rhおよび2.8重量%Pd含有ジルコニア粉体
を調製した。 次に硝酸セリウム56.1gと硝酸第2鉄32.2gを
純水200gに溶解した水溶液およびパラジウムを
2.8g含有する硝酸パラジウム水溶液の混合溶液
を比表面積100m2/gの活性アルミナ200gと混合
して120℃で12時間乾燥後空気中600℃で1時間焼
成した。このようにして得た2種類の粉体をボー
ルミルで20時間湿式粉砕することにより水性スラ
リーを調製し実施例1と同様にして触媒Eを得
た。触媒EはPd0.121gおよびRh0.013gを触媒
1個当り含有していた。 実施例 6 実施例4と同様にして得た2.3重量%Rhおよび
20.3重量%Pd含有ジルコニア粉体と比表面積90
m2/gの活性アルミナ150g及び酸化セリウム80
gをボールミルで20時間湿式粉砕して水性スラリ
ーを調製し、実施例1と同様にして触媒Fを得
た。触媒FはPd0.115gおよびRh0.012gを触媒
1個当り含有していた。 比較例 3 硝酸セリウム56、1gと硝酸第2鉄32.2gを純
水200gに溶解し比表面積100m2/gの活性アルミ
ナ200gと混合して120℃で12時間乾燥し、その後
空気中700℃で1時間焼成した。上記粉体をボー
ルミルで20時間湿式粉砕することにより水性スラ
リーを調製し、実施例1と同様にしてコージエラ
イト製モノリス担体にウオツシユコートした後
140℃で3時間乾燥しその後空気中500℃で1時間
焼成した。このように処理したモノリス担体を塩
化パラジウム及び塩化ロジウムの混合水溶液に浸
漬し乾燥後空気中で400℃で1時間焼成して触媒
を得た。触媒はPd0.123gおよびRh0.013g
を触媒1個当り含有していた。 比較例 4 市販のジルコニアを1000℃で10時間焼成して比
表面積5m2/g、平均粒径5000Åの粉体を得た。
上記ジルコニアを使用した以外は実施例4と同様
な方法で触媒を得た。触媒はPd0.120gおよ
びRh0.013gを触媒1個当り含有していた。 〔発明の効果〕 実施例1から3までの触媒と比較例1及び2の
触媒の新品時及び電気炉エージング後における触
媒性能を調べた。電気炉エージングは空気中900
℃で20時間という非常に厳しい高温酸化雰囲気で
行なつた。 触媒性能の評価は電子制御方式のエンジン(4
気筒1800c.c.)を用いて行ない触媒入口ガス温度を
200℃から450℃まで熱交換器によつて連続的に変
化させて、CO、HC及びNOxの浄化率を調べた。
この際の空間速度(S.V.)は90000hr-1であり、
平均空燃比をA/F=14.6に設定し±0.5A/F、
1Hzで振動させながらエンジンを運転した。CO、
HC及びNOxの浄化率が50%になる触媒入口ガス
温度(T50)を第1表に示した。 又、実施例1から3までの触媒と比較例1及び
2の触媒のエンジン耐久走行後における触媒性能
を調べた。耐久エンジンは電子制御方式のエンジ
ン(8気筒4400c.c.)を使用し定常運転60秒、減速
6秒(減速時には燃料がカツトされて触媒は高温
酸化雰囲気に曝される)というモード運転で運転
し触媒温度が定常運転で850℃となる条件で50時
間触媒をエージングした。 エンジン耐久走行後の触媒性能評価は前記と同
じ方法で行ない、その結果を第2表に示した。 次に実施例4から6までの触媒と比較例3から
4までの触媒の新品時とエンジン耐久50時間後に
おける触媒性能を調べた。耐久エンジンは電子制
御方式のエンジン(6気筒2400c.c.)を使用した。
耐久条件は2次空気を導入して、空燃比がA/F
=14.5〜17.5まで変化するに酸素不足雰囲気
(rich)と酸素過剰雰囲気(Lean)を30秒毎に繰
り返すモード耐久を行ない触媒温度は最大950℃
に達していた。 触媒性能の評価は耐久に使用した同一エンジン
でA/F=14.6、SV=約14万hr-1でHC、CO及
びNOの浄化率を調べた。新品時においては触媒
入口温度500℃で評価を行ない、耐久後について
は触媒入口温度500℃及び700℃で評価を行ない、
結果を第3および4表に示した。 以上の結果より高表面積及び微粒子のジルコニ
アに白金族金属を担持した実施例1〜3および4
〜6の触媒はすぐれた初期性能を有し高温酸化雰
囲気のような厳しい耐久条件に曝されてもすぐれ
た耐久性をもつ触媒であることは明らかである。
[Industrial Application Field] The present invention relates to an exhaust gas purifying catalyst. Specifically, the present invention provides an exhaust gas purification catalyst that simultaneously removes hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx), which are harmful components contained in exhaust gas from internal combustion engines such as automobiles. In particular, it relates to an exhaust gas purifying catalyst that has excellent durability even when used under harsh conditions such as high-temperature oxidizing atmospheres, and has a high purification ability at low temperatures for the above-mentioned harmful components. . [Prior art] Conventionally, in exhaust gas purification catalysts, noble metals are supported on a refractory inorganic oxide with a high surface area such as activated alumina in a dispersed manner as much as possible, and rare earth elements, zirconia, alkaline earth metals, etc. Efforts have been made to improve or maintain the durability of catalysts by adding them to catalyst compositions. However, catalysts with highly dispersed noble metals supported on high surface area alumina etc. have high initial activity, but when exposed to harsh conditions such as high-temperature oxidizing atmospheres, noble metal particles grow and interact with the support material. There was a problem in that it caused a large deterioration in activity. In addition, Japanese Patent Publication No. 57-29215 and Japanese Patent Application Laid-open No. 57-153737 propose a method in which a coating layer containing alumina and zirconia is formed on a support and then a precious metal is supported, but in both cases, the precious metal is Most or a part of it is substantially highly dispersedly supported on alumina, resulting in the same results as above, and sufficient effects are not expected. Moreover, when cerium oxide is present in the coating layer, it is clear that rhodium supported on the cerium oxide is deactivated when exposed to severe conditions such as a high temperature oxidizing atmosphere due to the interaction between the rhodium and the cerium oxide. Also, zirconia (US Pat. No. 4,233,189) is used as a carrier material that does not interact with noble metals, especially rhodium.
or alpha alumina (U.S. Patent No. 4172047)
have been proposed in this field. However, it has been pointed out that zirconia and alpha alumina usually have a low surface area, and when rhodium is supported on them, the initial activity is poor and the purification ability at low temperatures after durability is not sufficient. [Means for Solving the Problems] As a result of intensive research, the present inventors have found that by supporting a noble metal with good dispersion on fine-grained zirconia with a high surface area, it has high initial activity at high and low temperatures. The precious metal is stably supported on the zirconia, and by interposing the refractory inorganic oxide and rare earth oxide between the precious metal-supported zirconia particles, the particle growth of the zirconia fine particles themselves is suppressed, and even in harsh conditions such as high-temperature oxidizing atmospheres. They discovered that it has excellent durability even when used under various conditions, leading to the completion of the present invention. That is, the present invention is specified as follows. (1) Rhodium or a platinum group metal containing rhodium and platinum and/or palladium is deposited on zirconia powder having a specific surface area of at least 10 m 2 /g and primary particles having an average particle size of 2000 Å or less. An exhaust gas comprising a honeycomb carrier having an integral structure coated with a catalyst composition containing platinum group metal-supported zirconia and also containing a refractory inorganic oxide and a rare earth oxide. Catalyst for gas purification. (2) 0.5% of a platinum group metal containing rhodium or rhodium and platinum and/or palladium;
The catalyst according to (1) above, wherein the catalyst is supported on zirconia powder so as to have a composition in the range of 30% by weight. (3) The content of the zirconia powder in the catalyst composition
The catalyst according to (1) or (2) above, characterized in that the content is in the range of 0.5 to 50% by weight. (4) The catalyst according to (1) above, wherein the refractory inorganic oxide is activated alumina. (5) The catalyst according to (1) above, wherein the rare earth oxide is cerium oxide. [Function] The catalyst composition in the present invention is composed of zirconia supporting a platinum group metal containing rhodium, an inorganic refractory oxide, and a rare earth oxide. The zirconia used in the present invention is at least 10
m 2 /g, preferably 60 to 100 m 2 /g, and the primary particles are 2000 Å or less, preferably 500 Å or less
It has an average particle size of Å or less, and may be commercially available, or may be prepared by neutralizing an aqueous solution of zirconium salt with ammonia or the like, washing with water, drying and firing, etc. be. The amount of zirconia used can range from 0.5 to 50% by weight of the catalyst composition, but sufficient effects of the invention can be exhibited with an amount of 0.5 to 10% by weight. If the amount of zirconia used exceeds 50% by weight of the catalyst composition, particle growth among zirconia particles will be promoted, causing a decrease in activity. The platinum group metal supported on zirconia requires rhodium, and by coexisting with platinum or palladium, the low-temperature activity after high-temperature durability is further improved. It is preferable that the total weight ratio of platinum and palladium coexisting with rhodium is 1/5 to 5.
It is supported in a range of 0.5 to 30% by weight. Note that the entire amount of platinum group metals does not need to be supported on zirconia, and some platinum group metals may be supported on either inorganic oxides such as alumina or rare earth oxides such as cerium oxide or lanthanum oxide.
It may be contained alone in the catalyst composition as a noble metal black such as platinum black. The method of supporting noble metals on zirconia is a conventional method and is not well specified.
Rhodium sources include rhodium chloride, rhodium nitrate, rhodium sulfate, etc. Platinum or palladium sources include chloroplatinic acid, dinitrodiammine platinum, palladium chloride, palladium nitrate, etc., and two or more types can be used in the form of an aqueous solution or an alcoholic solution. When supporting platinum group metals on zirconia, they may be impregnated separately or simultaneously. Thereafter, it is supported on zirconia by drying and firing. In addition to the above-mentioned zirconia, examples of the refractory inorganic oxide used in the present invention include alumina, silica, titania, magnesia, etc., and use of alumina, particularly activated alumina, is preferred. Any of γ, δ, θ, α, χ, κ, and η crystal forms of alumina can be used. The refractory inorganic oxide may be contained in the catalyst composition as it is, but rare earth metals and base metal elements such as chromium, manganese, iron, cobalt, nickel, and zirconium may be added to alumina etc. in the form of oxides of 0.1 to 30% by weight. Further improvement in purification ability can be seen by carrying %. Examples of rare earth oxides include oxides of cerium, lanthanum, neodymium, etc., and use of cerium oxide is particularly preferred. As mentioned above, rare earth oxides may be supported in a range of 0.1 to 30% by weight on a refractory non-oxide such as alumina, but they may be supported in the form of oxides, carbonates, hydroxides, etc. during firing or use. An oxide in the form of an oxide may be included in the catalyst composition. In the latter case, it can be contained in the catalyst composition in an amount of 5 to 80% as an oxide. In the present invention, platinum group metals, especially rhodium-containing platinum group metals, are stably supported on zirconia having a high surface area and consisting of extremely fine particles, so that they can be easily bonded to support materials, rare earth oxides, base metal oxides, etc. It has become possible to contain larger amounts of rare earth oxides and base metal oxides in the catalyst composition than before by suppressing the adverse effects caused by interactions, and it has become possible to improve the durability and purification ability of the catalyst as described above. The thus obtained platinum group metals, especially rhodium-containing platinum group metal-supported zirconia, rare earth oxides, and refractory inorganic oxides are made into an aqueous slurry using a ball mill, etc., and coated in water on a honeycomb carrier having an integral structure, and then dried. Then, if necessary, it is calcined to obtain a finished catalyst. The honeycomb carrier having an integral structure used in the present invention refers to a ceramic carrier such as cordierite, mullite, α-alumina, etc., and a metal monolith carrier such as stainless steel or Fe-Cr-Al alloy. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but it goes without saying that the present invention is not limited only to these Examples. Example 1 10.0 g of zirconia (manufactured by Daiichi Kigenso Kagaku) having a specific surface of 70 m 2 /g and an average particle size of 200 Å was added to rhodium.
Impregnated with rhodium chloride aqueous solution containing 0.3g
It was dried at 120°C for 12 hours. Then 1 in air at 500℃
A zirconia powder containing 2.9% by weight of Rh was prepared by firing for a period of time. Next, a chloroplatinic acid aqueous solution containing 1.5 g of platinum was added to 150 g of activated alumina with a specific surface area of 150 m 2 /g.
impregnated with water, dried at 120℃ for 12 hours, and then exposed to air.
Pt-containing alumina powder was obtained by firing at 500°C for 1 hour. An aqueous slurry was prepared by wet-pulverizing the two powders thus obtained and 75 g of commercially available cerium oxide powder in a ball mill for 20 hours. A cordierite monolithic carrier with an outer diameter of 33 mmφ and a length of 76 mm L having approximately 400 gas flow cells per square inch of cross-sectional area was immersed in the above slurry, taken out, and then the excess slurry in the cells was blown with compressed air. Catalyst A was obtained by drying at ℃ for 3 hours. As a result of measuring with fluorescent X-rays, catalyst A is
Each catalyst contained 0.056 g of Pt and 0.011 g of Rh. Example 2 Zirconia powder similar to that used in Example 1
15.0g was impregnated in a mixture of a rhodium chloride aqueous solution containing 0.3g of rhodium and a chloroplatinic acid aqueous solution containing 1.5g of platinum, dried at 120°C for 12 hours, and then calcined in air at 500°C for 1 hour to give a weight of 1.8g. A zirconia powder containing % Rh and 8.9 wt % Pt was prepared.
The above powder, 145 g of activated alumina similar to those used in Example 1, and 75 g of cerium oxide were wet-milled in a ball mill for 20 hours to prepare an aqueous slurry, and catalyst B was obtained in the same manner as in Example 1. Catalyst B is
Each catalyst contained 0.052 g of Pt and 0.010 g of Rh. Example 3 In Example 2, instead of activated alumina, a powder (iron-containing activated alumina) obtained by dissolving 25.3 g of ferric nitrate in 100 g of pure water, impregnating 140 g of activated alumina, and then drying and firing it was used. Catalyst C was obtained in the same manner as in Example 2, except that the catalyst C was used. Catalyst C is
Each catalyst contained 0.054 g of Pt and 0.011 g of Rh. Comparative Example 1 Activated alumina similar to that used in Example 1
An aqueous slurry was prepared by wet-pulverizing 160 g of cerium oxide and 75 g of cerium oxide for 20 hours in a ball mill, and water-coated onto a cordierite monolith carrier in the same manner as in Example 1. The slurry was then dried at 140°C for 3 hours, and then heated at 500°C in air. It was baked for 1 hour. The monolithic support thus treated was immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride, dried, and then exposed to air.
A catalyst was obtained by calcining at 400°C for 1 hour. The catalyst is
Each catalyst contained 0.055 g of Pt and 0.011 g of Rh. Comparative Example 2 Activated alumina similar to that used in Example 1
An aqueous slurry was prepared by wet-pulverizing 120 g of commercially available zirconia powder in a ball mill for 20 hours, and was wash coated on a cordierite monolith support in the same manner as in Example 1, dried at 140°C for 3 hours, and then dried in air. It was baked at 500°C for 1 hour. The monolithic support thus treated is immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride,
After drying, the mixture was calcined in air at 400°C for 1 hour to obtain a catalyst. The catalyst is Pt0.056g and Rh0.011g as catalyst 1.
Contains per piece. Example 4 A rhodium nitrate aqueous solution containing 0.35 g of rhodium and a palladium nitrate aqueous solution containing 3.15 g of palladium were used. A zirconia powder containing 2.3% Rh and 20.3% Pd by weight was prepared by impregnating it with the mixed solution, drying it at 120°C for 12 hours, and then calcining it in air at 500°C for 1 hour. Next, 56.1 g of cerium nitrate and 32.2 g of ferric nitrate were dissolved in 200 g of pure water, mixed with 200 g of activated alumina with a specific surface area of 100 m 2 /g, dried at 120°C for 12 hours, and then calcined in air at 700°C for 1 hour. CeO2 and Fe2O2
An alumina-containing powder was obtained. Obtained in this way 2
An aqueous slurry was prepared by wet milling different powders in a ball mill for 20 hours. The obtained slurry was wash-coated onto a monolithic cordierite carrier in the same manner as in Example 1, and then dried at 140°C for 3 hours to obtain catalyst D. Catalyst D is Pd0.120
g and Rh0.013 g per catalyst. Example 5 Zirconia 12.0 similar to that used in Example 4
impregnated in a mixed solution of a rhodium nitrate aqueous solution containing 0.35 g of rhodium and a palladium nitrate aqueous solution containing 0.35 g of palladium, dried at 120°C for 12 hours, and then calcined in air at 500°C for 1 hour.
A zirconia powder containing wt% Rh and 2.8 wt% Pd was prepared. Next, an aqueous solution of 56.1 g of cerium nitrate and 32.2 g of ferric nitrate dissolved in 200 g of pure water and palladium were added.
A mixed solution of an aqueous palladium nitrate solution containing 2.8 g was mixed with 200 g of activated alumina having a specific surface area of 100 m 2 /g, dried at 120°C for 12 hours, and then calcined in air at 600°C for 1 hour. The two types of powder thus obtained were wet-milled in a ball mill for 20 hours to prepare an aqueous slurry, and catalyst E was obtained in the same manner as in Example 1. Catalyst E contained 0.121 g of Pd and 0.013 g of Rh per catalyst. Example 6 2.3% by weight Rh obtained in the same manner as in Example 4 and
Zirconia powder containing 20.3% Pd and specific surface area 90
m 2 /g activated alumina 150g and cerium oxide 80g
Aqueous slurry was prepared by wet-pulverizing g in a ball mill for 20 hours, and catalyst F was obtained in the same manner as in Example 1. Catalyst F contained 0.115 g of Pd and 0.012 g of Rh per catalyst. Comparative Example 3 56.1 g of cerium nitrate and 32.2 g of ferric nitrate were dissolved in 200 g of pure water, mixed with 200 g of activated alumina with a specific surface area of 100 m 2 /g, dried at 120°C for 12 hours, and then dried in air at 700°C. It was baked for 1 hour. An aqueous slurry was prepared by wet-pulverizing the above powder in a ball mill for 20 hours, and the slurry was wash-coated onto a cordierite monolith carrier in the same manner as in Example 1.
It was dried at 140°C for 3 hours and then fired in air at 500°C for 1 hour. The monolithic support thus treated was immersed in a mixed aqueous solution of palladium chloride and rhodium chloride, dried, and then calcined in air at 400° C. for 1 hour to obtain a catalyst. Catalyst is Pd0.123g and Rh0.013g
per catalyst. Comparative Example 4 Commercially available zirconia was fired at 1000° C. for 10 hours to obtain powder with a specific surface area of 5 m 2 /g and an average particle size of 5000 Å.
A catalyst was obtained in the same manner as in Example 4 except that the above zirconia was used. The catalyst contained 0.120 g Pd and 0.013 g Rh per catalyst. [Effects of the Invention] The catalyst performance of the catalysts of Examples 1 to 3 and the catalysts of Comparative Examples 1 and 2 was investigated when they were new and after aging in an electric furnace. Electric furnace aging in air 900
The experiment was carried out in a very harsh high-temperature oxidizing atmosphere at ℃ for 20 hours. The catalyst performance was evaluated using an electronically controlled engine (4
cylinder (1800c.c.) to control the catalyst inlet gas temperature.
The purification efficiency of CO, HC and NOx was investigated by continuously changing the temperature from 200°C to 450°C using a heat exchanger.
The space velocity (SV) at this time is 90000hr -1 ,
Set the average air-fuel ratio to A/F = 14.6, ±0.5A/F,
The engine was operated while vibrating at 1Hz. C.O.
Table 1 shows the catalyst inlet gas temperature (T50) at which the purification rate of HC and NOx becomes 50%. In addition, the catalyst performance of the catalysts of Examples 1 to 3 and the catalysts of Comparative Examples 1 and 2 after running the engine for durability was investigated. The durable engine uses an electronically controlled engine (8 cylinders 4400 c.c.) and operates in a mode of steady operation for 60 seconds and deceleration for 6 seconds (during deceleration, fuel is cut off and the catalyst is exposed to a high temperature oxidizing atmosphere). The catalyst was aged for 50 hours under conditions such that the catalyst temperature was 850°C during steady operation. Catalyst performance evaluation after engine endurance running was conducted in the same manner as described above, and the results are shown in Table 2. Next, the catalyst performance of the catalysts of Examples 4 to 6 and Comparative Examples 3 to 4 was examined when they were new and after 50 hours of engine durability. The endurance engine used was an electronically controlled engine (6 cylinders 2400 c.c.).
The durability conditions are that secondary air is introduced and the air-fuel ratio is A/F.
= 14.5 to 17.5, the mode durability is carried out in which oxygen deficient atmosphere (rich) and oxygen rich atmosphere (lean) are repeated every 30 seconds, and the catalyst temperature is up to 950℃
had reached. For evaluation of catalyst performance, the purification rate of HC, CO, and NO was examined using the same engine used for endurance testing with A/F = 14.6 and SV = approximately 140,000 hr -1 . When new, the evaluation is performed at a catalyst inlet temperature of 500℃, and after durability, evaluation is performed at a catalyst inlet temperature of 500℃ and 700℃.
The results are shown in Tables 3 and 4. From the above results, Examples 1 to 3 and 4 in which platinum group metals were supported on zirconia with a high surface area and fine particles.
It is clear that the catalysts No. 6 to 6 have excellent initial performance and excellent durability even when exposed to severe durability conditions such as high temperature oxidizing atmosphere.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 ロジウムまたはロジウムと白金および/また
はパラジウムを含有してなる白金族金属を、少な
くとも10m2/gの比表面積を有し、かつ一次粒子
が2000Å以下の平均粒径を有するジルコニア粉末
上に担持せしめてなる白金族金属担持ジルコニア
を含有し、かつ耐火性無機酸化物及び希土類酸化
物を含有してなる触媒組成物を一体構造体を有す
るハニカム担体に被覆せしめてなることを特徴と
する排気ガス浄化用触媒。 2 ロジウムまたはロジウムと白金および/また
はパラジウムを含有してなる白金族金属を0.5〜
30重量%の範囲の組成となるようにジルコニア粉
末に担持することを特徴とする特許請求の範囲1
記載の触媒。 3 該ジルコニア粉末の含有量が触媒組成物の
0.5〜50重量%の範囲であることを特徴とする特
許請求の範囲1または2記載の触媒。 4 該耐火性無機酸化物が活性アルミナであるこ
とを特徴とする特許請求の範囲1記載の触媒。 5 該希土類酸化物が酸化セリウムであることを
特徴とする特許請求の範囲1記載の触媒。
[Claims] 1. Rhodium or a platinum group metal containing rhodium and platinum and/or palladium, which has a specific surface area of at least 10 m 2 /g and whose primary particles have an average particle size of 2000 Å or less A honeycomb carrier having an integral structure is coated with a catalyst composition containing platinum group metal-supported zirconia supported on zirconia powder, and also containing a refractory inorganic oxide and a rare earth oxide. Characteristic exhaust gas purification catalyst. 2 Rhodium or a platinum group metal containing rhodium and platinum and/or palladium from 0.5 to
Claim 1, characterized in that the zirconia powder is supported on the zirconia powder so as to have a composition in the range of 30% by weight.
Catalysts as described. 3 The content of the zirconia powder in the catalyst composition is
Catalyst according to claim 1 or 2, characterized in that the content is in the range of 0.5 to 50% by weight. 4. The catalyst according to claim 1, wherein the refractory inorganic oxide is activated alumina. 5. The catalyst according to claim 1, wherein the rare earth oxide is cerium oxide.
JP61299948A 1986-12-18 1986-12-18 Catalyst for purifying exhaust gas Granted JPS63156545A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61299948A JPS63156545A (en) 1986-12-18 1986-12-18 Catalyst for purifying exhaust gas
US07/134,363 US4904633A (en) 1986-12-18 1987-12-17 Catalyst for purifying exhaust gas and method for production thereof
EP19930201246 EP0558159A3 (en) 1986-12-18 1987-12-18 Catalyst for purifying exhaust gas and method for production thereof
KR1019870014488A KR930000917B1 (en) 1986-12-18 1987-12-18 Catalyst for purifying exhaust gas and method for its production
EP87311178A EP0272136B1 (en) 1986-12-18 1987-12-18 Catalyst for purifying exhaust gas and method for its production
DE3751403T DE3751403T2 (en) 1986-12-18 1987-12-18 Exhaust gas purification catalyst and process for its manufacture.
KR1019920016764A KR930000918B1 (en) 1986-12-18 1992-09-15 Catalyst for purifying exhaust gas and method for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61299948A JPS63156545A (en) 1986-12-18 1986-12-18 Catalyst for purifying exhaust gas

Publications (2)

Publication Number Publication Date
JPS63156545A JPS63156545A (en) 1988-06-29
JPH0547263B2 true JPH0547263B2 (en) 1993-07-16

Family

ID=17878888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61299948A Granted JPS63156545A (en) 1986-12-18 1986-12-18 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS63156545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103410A (en) * 2003-09-30 2005-04-21 Tokyo Roki Co Ltd Exhaust gas cleaning catalyst

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2848970B2 (en) * 1990-12-21 1999-01-20 日本碍子株式会社 Honeycomb heater and catalytic converter
JP3688871B2 (en) 1997-11-20 2005-08-31 ダイハツ工業株式会社 Exhaust gas purification catalyst
JPH11267503A (en) * 1998-03-20 1999-10-05 Toyota Motor Corp Catalyst for cleaning exhaust gas
US6576200B1 (en) 1998-08-28 2003-06-10 Daihatsu Motor Co., Ltd. Catalytic converter for automotive pollution control, and oxygen-storing complex oxide used therefor
JP2000167402A (en) 1998-12-09 2000-06-20 Daihatsu Motor Co Ltd Catalyst for purification of exhaust gas
JP4382180B2 (en) * 1998-11-06 2009-12-09 株式会社キャタラー Exhaust gas purification catalyst
US6464946B1 (en) 1999-05-07 2002-10-15 Daihatsu Motor Co., Ltd. Catalytic converter for cleaning exhaust gas
US6261989B1 (en) 1999-05-19 2001-07-17 Daihatsu Motor Co., Ltd. Catalytic converter for cleaning exhaust gas
JP4389159B2 (en) * 2004-03-03 2009-12-24 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP2007105632A (en) * 2005-10-13 2007-04-26 Nissan Motor Co Ltd Exhaust gas cleaning catalyst
JP4674264B2 (en) * 2009-07-31 2011-04-20 株式会社キャタラー Exhaust gas purification catalyst
JP5827477B2 (en) * 2011-03-10 2015-12-02 株式会社エフ・シー・シー Catalyst production method
US10247071B2 (en) * 2014-09-05 2019-04-02 Basf Corporation Titania-doped zirconia as platinum group metal support in catalysts for treatment of combustion engine exhausts streams

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282641A (en) * 1986-06-02 1987-12-08 Nissan Motor Co Ltd Production of catalyst for purifying exhaust gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282641A (en) * 1986-06-02 1987-12-08 Nissan Motor Co Ltd Production of catalyst for purifying exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103410A (en) * 2003-09-30 2005-04-21 Tokyo Roki Co Ltd Exhaust gas cleaning catalyst

Also Published As

Publication number Publication date
JPS63156545A (en) 1988-06-29

Similar Documents

Publication Publication Date Title
JP2659796B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH0547263B2 (en)
JPH05237390A (en) Catalyst for purification of exhaust gas
JPH05200294A (en) Catalyst for purifying exhaust gas and purification system with the same used therefor
JPH09313938A (en) Catalyst for cleaning exhaust gas
JPH09248462A (en) Exhaust gas-purifying catalyst
JPH0578378B2 (en)
JP2698284B2 (en) Exhaust gas purification catalyst
JP3299286B2 (en) Exhaust gas purification catalyst
JP2755513B2 (en) Exhaust gas purification catalyst
JPS6214338B2 (en)
JPH0523593A (en) Exhaust emission control system
JP3272015B2 (en) Exhaust gas purification catalyst
JPS6214337B2 (en)
JP2690661B2 (en) Exhaust gas purification catalyst and purification system using the same
JPH06154606A (en) Catalyst for purification of exhaust gas
JP2786933B2 (en) Exhaust gas purification catalyst
JP2837864B2 (en) Exhaust gas purifying catalyst for purifying exhaust gas from internal combustion engines using alcohol as fuel
JPH0578379B2 (en)
JPH0573463B2 (en)
JPH0549940A (en) Exhaust gas purifying device
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst
JP2635689B2 (en) Method for producing exhaust gas purifying catalyst
JP2698288B2 (en) Exhaust gas purification catalyst
JPH0573464B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term