JPS6214337B2 - - Google Patents

Info

Publication number
JPS6214337B2
JPS6214337B2 JP58081650A JP8165083A JPS6214337B2 JP S6214337 B2 JPS6214337 B2 JP S6214337B2 JP 58081650 A JP58081650 A JP 58081650A JP 8165083 A JP8165083 A JP 8165083A JP S6214337 B2 JPS6214337 B2 JP S6214337B2
Authority
JP
Japan
Prior art keywords
catalyst
supported
rhodium
platinum
neodymia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58081650A
Other languages
Japanese (ja)
Other versions
JPS59209646A (en
Inventor
Tetsutsugu Ono
Shoichi Ichihara
Tomohisa Oohata
Sadao Terui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP58081650A priority Critical patent/JPS59209646A/en
Priority to CA000453322A priority patent/CA1213874A/en
Priority to EP84104977A priority patent/EP0125565B1/en
Priority to US06/606,612 priority patent/US4504598A/en
Priority to DE8484104977T priority patent/DE3484324D1/en
Publication of JPS59209646A publication Critical patent/JPS59209646A/en
Publication of JPS6214337B2 publication Critical patent/JPS6214337B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02T10/22

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は排気ガス浄化用ハニカム触媒に関する
ものである。詳しく述べると排気ガス中に含まれ
る有害成分である炭化水素(以下HCとする)、一
酸化炭素(以下COとする)および窒素酸化物
(以下NOxとする)を除去するためのハニカム触
媒に関するものであり、さらに詳しく述べると本
発明は、内燃機関が空気対燃料比の化学量論的当
量点近辺で燃焼せしめられて運転される際、安定
してその排ガス中のHC、COおよびNOxを同時
に、実質的に無害化でき、かつ800℃以上の高温
に曝されても劣化が少ない排気ガス浄化用高温耐
久型モノリス触媒に関するものである。 内燃機関の排気ガス中のHC、COおよびNOx3
成分を1個の触媒コンバーターで同時除去するた
めの触媒、いわゆる三元触媒は53年規制対策車の
一部に装着され、最近では燃費改良対策のためも
あつて、三元触媒装着車が増加している。この場
合触媒の装着位置は床下が多く、他にエンジンの
マニホールド直下に装着するケースもある。 この三元触媒コンバーターを装備したエンジン
は化学量論的な空燃比(A/F)近辺で運転され
た時、上記3成分を最も効果的に浄化した排ガス
を排出するが、さらに三元触媒をより効果的に作
用させるため、燃料を噴射ポンプで一定A/Fを
保つように供給する電子制御燃料噴射装置の他
に、ベンチユリー気化器を用いて空燃比を制御す
る方式を採用する。しかし制御方式によつては
A/Fが化学量論的な当量点からかなり広いA/
F範囲に触媒が曝される場合があり、また加減速
等の急激な運転の変化の場合にはハニカム触媒の
温度急上昇による熔融を防止するため、燃料供給
が一部または全部カツトされ、大巾にリーン雰囲
気にさらされる場合もある。 すなわち、三元触媒は常に理想的なA/F運転
時の排ガスに曝されるわけでなく、この様な条件
下で触媒が高温に曝される場合には触媒中に含ま
れる成分特にロジウムと白金は熱的劣化を受け易
い。従つて広いA/F運転条件下でも安定した浄
化性能を示し、劣化の少ない三元触媒が望まれる
ことになる。また床下付近に塔載される三元触媒
に関しては温度がエンジン位置塔載と比べて相対
的に低いため触媒容量を大きくしたり、貴金属担
持量を増やす等して性能を上げる必要がありコス
コ高になる欠点がある。 そこでエンジン直下の高い温度域で三元触媒が
使用出来れば反応速度が高いため触媒容量がコン
パクトに出来る利点がありコスト的に有利であ
る。従つて800〜1000℃の高温で劣化せず安定し
て使用出来る三元触媒が望まれていた。 本発明は800℃以上の高温下A/Fの広い範囲
で安定して高いCO、HCおよびNOx3成分の浄化
性能を示す触媒組成物を提供することを目的とす
る。 本発明は従つて以下の如く特定することが出来
るものである。 (1) 一体構造を有するハニカム担体に、活性アル
ミナ、セリア、ネオジミア、ジルコニアおよ
び、鉄酸化物およびニツケル酸化物よりなる群
から選ばれた少なくとも1種さらに白金および
パラジウムよりなる群から選ばれた少なくとも
1種およびロジウムを担持せしめてなる排ガス
中の炭化水素、一酸化炭素および窒素酸化物の
同時浄化に用いられる触媒であつて、担体1
当り、活性アルミナ50〜200g、セリア5〜30
g、ネオジミア2〜15g、ジルコニア1〜8
g、鉄酸化物Fe2O3として0〜5g、ニツケル
酸化物NiOとして0〜10g(ただしFe2O3
NiOとして0.5〜10g)、さらに白金およびパラ
ジウムよりなる白金族金属は合計で0.1〜10g
の範囲およびロジウムが0.1〜10gの範囲担持
せしめられてなり、さらにセリア含量がネオジ
ミア含量よりもまたジルコニア含量よりも多
く、かつネオジミア含量は鉄酸化物とニツケル
酸化物の合計含量より多く担持せしめられてな
ることを特徴とする排気ガス浄化用ハニカム触
媒。 本発明において使用される一体構造を有するハ
ニカム担体としては通常セラミツクハニカム担体
と称されるものであればよく、とくにコージエラ
イト、ムライト、αアルミナ、ジルコニア、チタ
ニア、リン酸チタン、アルミニウムチタネート、
ペタライト、スポジユメン、アルミノ・シリケー
ト、珪酸マグネシウムなどを材料とするハニカム
担体が好ましく、中でもコージエライト質のもの
が特に内燃機関用として好ましい。その他ステン
レス製またはフエクラロイなどの酸化抵抗性の耐
熱金属を用いて一体構造体としたものも使用され
る。これらモノリス担体は、押出成型法や、シー
ト状素子を巻き固める方法で製造されたもので、
そのガス通過口(セル型状)も6角、4角、3角
さらにコルゲーシヨン型のいずれでも採用しう
る。セル密度(セル数/単位断面積)は150〜600
セル/inch2であれば十分に使用可能で好結果を
与える。 本発明において用いる活性アルミナとしては比
表面積50〜180m2/gの活性アルミナが好まし
く、そして水酸化アルミニウム、ベーマイトおよ
び凝ベイマイト状態の水和アルミナもハニカム担
体に担持したのち焼成して前記活性アルミナとな
りうるものは使用可能であつて、完成触媒中のア
ルミナの結晶形としてγ、δ、θ、χ、κ、ηと
なりうるものが使用可能である。これらのうち特
に好ましいアルミナは比表面積70〜160m2/gの
γおよびδ形の活性アルミナであり、完成触媒1
当り50〜200gの間の量で担持される。 セリウム源としては硝酸セリウム、酢酸セリウ
ム、蓚酸セリウム、炭酸セリウム、水酸化セリウ
ム、酸化セリウムが好ましく用いられる。 ネオジム源としては同じく硝酸ネオジム、酢酸
ネオジム、蓚酸ネオジム、炭酸ネオジム、水酸化
ネオジム、酸化ネオジムが好ましく用いられる。 ジルコニウム源としては硝酸ジルコニル、酢酸
ジルコニル、水酸化ジルコニル、酸化ジルコニウ
ムが好ましく用いられる。 鉄源としては硝酸鉄、水酸化鉄、酸化鉄、蓚酸
鉄、蓚酸鉄アンモニウムが好ましく用いられる。 ニツケル源としては硝酸ニツケル、酢酸ニツケ
ル、炭酸ニツケル、水酸化ニツケル、酸化ニツケ
ルが好ましく用いられる。 本発明に使用するセリウム、ネオジム、ジルコ
ニウム、鉄、ニツケルの含量は、ハニカム担体1
当り、セリアとして5〜30g、ネオジミアとし
て2〜15g、ジルコニアとして1〜8g、酸化鉄
がFe2O3として0〜5g、酸化ニツケルがNiOと
して0〜10g(ただしFe2O3+NiOとして0.5〜10
gとする)の範囲であり、さらにセリア含量とし
てはネオジミア含量よりもまたジルコニアよりも
多く、ネオジミア含量は酸化鉄および酸化ニツケ
ルの合計含量より多いことが好ましい。 この量関係を特定する理由はネオジミア及びジ
ルコニアをセリアより少くかつネオジミアを酸化
鉄および/または酸化ニツケルより多く含有させ
ることにより特にA/Fの燃料リツチ側のいわゆ
る酸素の少ない還元雰囲気におけるCOおよび
NOxの浄化特性を向上させかつ800℃以上の高温
に曝されても劣化を少くすることが出来、更に
A/Fの当量点付近のNOx、COおよびHCの活性
を向上させて、800℃以上の高温に曝されかつエ
ンジンの雰囲気変化にも劣化することが少なく出
来るためである。そして、以上の特性の保有と同
時にA/Fの燃料のリーン側の酸化雰囲気での
CO、HC酸化活性も充分保持させ、かくしてNOx
の浄化特性をそこなうことなく、当量点付近の高
活性とA/Fの広い範囲で安定した活性を維持す
ることが出来る。 従つて上記で特定したような範囲内に上記金属
酸化物を含有させることが完成触媒の高温での使
用の際の劣化を防止するのに重要となる。また本
発明の触媒を構成する以上の基本元素の他にラン
タン、プラセオジムを共に用いることが出来る
が、これらの使用量はネオジムの使用量以下とす
ることが望ましい。 本発明に用いる白金族金属は上記したようにロ
ジウムを必須とし、また白金および/またはパラ
ジウムを使用するが白金族金属の使用量はそれぞ
れ触媒1当り0.1〜10gの間で使われ、RhとPt
および/またはPdの比は1:100から1:1の間
で使うことが出来る。 本発明による触媒の製造方法としては、例えば
次の方法により実施される。 (1) 一体構造を有するハニカム担体にまず、通常
の方法により活性アルミナを担持させた後、セ
リウム、ネオジム、ジルコニウムおよび鉄およ
び/またはニツケルの可溶性塩を水溶液にして
担持させ、乾燥、焼成し、最後に白金族金属の
可溶性塩の水溶液を担持させ乾燥、焼成又は還
元焼成して完成触媒とする。 (2) 一体構造を有するハニカム担体に、活性アル
ミナにセリウム、ネオジム、ジルコニウムおよ
び鉄および/またはニツケルの可溶性塩または
微粉末状の水酸化物や酸化物等の水溶液または
水性分散液を添加混合し、乾燥、焼成し、再度
これを水性スラリー化したものを担持させ、乾
燥、焼成した後、最後に白金族金属の可溶性塩
の水溶液を担持させ乾燥、焼成または還元焼成
して完成触媒とする。 (3) 一体構造を有するハニカム担体に、活性アル
ミナにセリウム、ネオジム、ジルコニウムおよ
び鉄および/またはニツケルおよび白金族金属
の可溶性塩または微粉末状の水酸化物や酸化物
等の水溶液または水性分散液を添加混合し、乾
燥、焼成して後、再度スラリー化したものを担
持させ次いで乾燥或は必要により焼成して完成
触媒とする。 (4) 一体構造を有するハニカム担体に、活性アル
ミナにセリウム、ネオジム、ジルコニウムおよ
び鉄および/またはニツケルの可溶性塩または
微粉末状の水酸化物や酸化物等の水溶液または
水性分散液を添加混合し乾燥、焼成して固定化
した後、さらに白金族金属の可溶性塩の水溶液
を混合し、乾燥、焼成または還元焼成して後、
再びスラリー化したものを担持させ、次いで乾
燥或は必要により焼成して完成触媒とする。 これらの製造方法において、乾燥は200℃以下
で、焼成は200〜900℃の間で実施されるが、焼成
は好ましくは400〜800℃の間で行う。これらの製
法のうち特に好ましい態様は(3)、(4)である。 以下実施例にて本発明を更に詳細に説明するが
本発明はこれら実施例のみに限定されるものでな
いことは言うまでもない。 実施例 1 市販コージエライト質モノリス担体(N−
COR社製)を用いて、触媒を調製した。モノリ
ス担体は、断面で1インチ平方当り約300個のガ
ス流通セルを有し、外径33mmφ、長さ76mmLの円
筒状に切つたもので約65mlの体積を有した。 硝酸セリウム〔Ce(NO33・6H2O〕17.6g、
硝酸第2鉄〔Fe(NO33・9H2O〕20.2g、硝酸
ジルコニル〔ZrO(NO32〕5.6g、硝酸ネオジム
〔Nd(NO33・6H2O〕13.0gを100mlの水に溶解
し、さらに硝酸ロジウム水溶液〔Rh(NO33
nH2O〕(Rh=50g/)を2.3ml、及びジニト
ロ・ジアミノ白金〔Pt(NH32(NO22〕の硝酸水
溶液(Pt=100g/)11.2ml加え撹拌した。こ
の水溶液に表面積120m2/g、平均粒径50μの活
性アルミナ粉末120gを撹拌しながら加え、充分
に混合した後、150℃×5時間乾燥し、さらに電
気炉で2時間で600℃まで昇温し、この温度で2
時間焼成を続け、しかる後徐々に冷却して炉から
取出した。これを希硝酸水と共にボール・ミルで
30時間混式粉砕しコーテイング用スラリーを調製
した。このコーテイング用スラリーに前記ハニカ
ム型担体を30秒間浸漬し、その後スラリーより取
り出し、セル内の過剰スラリーを圧縮空気でブロ
ーして、全てのセルの目詰りを除去した。この触
媒を140℃×5時間乾燥器で乾燥し完全触媒とし
た。 なお、この触媒のコーテイング量を測定したと
ころ140g/−触媒であつた。又総担持量に対
する比率は重量でほゞAl2O3/CeO2/Fe2O3
ZrO2/Nd2O3=120/7/4/3/5であつた。
白金、ロジウムについてはPt=1.12g/−触
媒、Rh=0.11g/−触媒(以下同様に表現す
る)それぞれ担持していた。 実施例 2 実施例1と同様な手法で組成の異る触媒を調製
した。即ち、硝酸セリウム、硝酸第2鉄、硝酸ジ
ルコニル、硝酸ネオジムと活性アルミナ粉末の量
比を変えた。又、貴金属源としてジニトロ・ジア
ミノ白金のかわりに塩化白金酸〔H2PtCl6〕、硝
酸ロジウム水溶液のかわりに塩化ロジウム水溶液
〔RhCl3・nH2O〕を用いて完成触媒とした。この
触媒のコーテイング量を測定したところ146g/
−触媒であつた。又総担持量に対する比率は
ほゞAl2O3/CeO2/Fe2O3/ZrO2/Nd2O3
120/15/3/2/5であつた。白金、ロジウム
についてはPt=1.12g/、Rh=0.11g/担持
していた。 実施例 3 酢酸セリウム〔Ce(CH3COO)3〕18.4g、、酸
化鉄粉末〔Fe2O3〕2g、酢酸ジルコニル〔ZrO
(CH3COO)2〕9.1g、酢酸ネオジム〔Nd
(CH3COO)3〕15.3gを100mlの水に溶解した。こ
の水溶液に活性アルミナ粉末120gを撹拌しなが
ら加えた。充分に混合した後、150℃×5時間乾
燥し、さらに電気炉で600℃×2時間焼成した。 一方、硝酸ロジウム水溶液(Rh=50g/)
2.3ml及びジニトロ・ジアミノ白金の硝酸水溶液
(Pt=100g/)を11.2mlを加え、水で希釈して
150mlとし、前記粉体を撹拌しながら投入し、60
分間そのまま撹拌を続けた。しかる後、実施例1
と同様の手法により、乾燥、焼成、スラリー化し
て完成触媒を調製した。この触媒のコーテイング
量を測定したところ146g/であつて、又、総
担持量に対する比率はほゞAl2O3/CeO2
Fe2O3/ZrO2/Nd2O3=120/10/2/5/8で
あつた。白金、ロジウムについてはPt=1.12g/
、Rh=0.11g/担持していた。 実施例 4 実施例1と同様の手法により、ニツケルあるい
はランタンを添加した。即ち、セリウム、鉄、ジ
ルコン、ネオジムの硝酸塩と硝酸ニツケル〔Ni
(NO32・6H2O〕あるいは硝酸ランタン〔La
(NO33・6H2O〕を同時に溶解して仕込んで完成
触媒とした。触媒組成は以下に示す。
The present invention relates to a honeycomb catalyst for exhaust gas purification. Specifically, it relates to a honeycomb catalyst for removing harmful components contained in exhaust gas, such as hydrocarbons (hereinafter referred to as HC), carbon monoxide (hereinafter referred to as CO), and nitrogen oxides (hereinafter referred to as NOx). More specifically, the present invention stably simultaneously removes HC, CO, and NOx from the exhaust gas when the internal combustion engine is operated with combustion near the stoichiometric equivalence point of the air-to-fuel ratio. This invention relates to a high-temperature durable monolithic catalyst for exhaust gas purification that is substantially harmless and exhibits little deterioration even when exposed to high temperatures of 800°C or higher. HC, CO and NOx3 in exhaust gas from internal combustion engines
Catalysts that simultaneously remove components using a single catalytic converter, so-called three-way catalysts, are installed in some cars that comply with the 1953 regulations, and recently, the number of cars equipped with three-way catalysts has increased, partly as a measure to improve fuel efficiency. are doing. In this case, the catalyst is often installed under the floor, and in some cases it is installed directly under the engine manifold. When an engine equipped with this three-way catalytic converter is operated near the stoichiometric air-fuel ratio (A/F), it will emit exhaust gas that has purified the three components mentioned above most effectively. In order to work more effectively, in addition to an electronically controlled fuel injection system that supplies fuel using an injection pump to maintain a constant A/F, a ventilator carburetor is used to control the air-fuel ratio. However, depending on the control method, the A/F may be quite wide from the stoichiometric equivalence point.
The catalyst may be exposed to the F range, and in the case of sudden changes in operation such as acceleration or deceleration, the fuel supply is partially or completely cut off to prevent the honeycomb catalyst from melting due to a sudden rise in temperature. may be exposed to lean atmospheres. In other words, the three-way catalyst is not always exposed to ideal exhaust gas during A/F operation, and when the catalyst is exposed to high temperatures under such conditions, the components contained in the catalyst, especially rhodium, Platinum is susceptible to thermal degradation. Therefore, there is a need for a three-way catalyst that exhibits stable purification performance even under a wide range of A/F operating conditions and that exhibits minimal deterioration. In addition, the temperature of the three-way catalyst mounted near the bottom of the floor is relatively lower than that of the tower mounted at the engine position, so it is necessary to increase the performance by increasing the catalyst capacity or the amount of precious metals supported. There are drawbacks to it. Therefore, if a three-way catalyst can be used in the high temperature range directly under the engine, the reaction rate will be high and the catalyst capacity can be made compact, which is advantageous in terms of cost. Therefore, there has been a desire for a three-way catalyst that can be stably used without deteriorating at high temperatures of 800 to 1000°C. An object of the present invention is to provide a catalyst composition that exhibits stable and high purification performance for CO, HC, and NOx3 components at high temperatures of 800° C. or higher over a wide range of A/F. The present invention can therefore be specified as follows. (1) A honeycomb carrier having an integral structure, at least one selected from the group consisting of activated alumina, ceria, neodymia, zirconia, iron oxide and nickel oxide, and at least one selected from the group consisting of platinum and palladium. A catalyst used for the simultaneous purification of hydrocarbons, carbon monoxide and nitrogen oxides in exhaust gas, which is made by supporting a carrier 1 and rhodium.
per unit, activated alumina 50-200g, ceria 5-30g
g, neodymia 2-15g, zirconia 1-8
g, 0 to 5 g as iron oxide Fe 2 O 3 , 0 to 10 g as nickel oxide NiO (however, Fe 2 O 3 +
0.5-10g as NiO), and a total of 0.1-10g of platinum group metals consisting of platinum and palladium.
and rhodium is supported in a range of 0.1 to 10 g, and the ceria content is greater than the neodymia content and the zirconia content, and the neodymia content is greater than the total content of iron oxide and nickel oxide. A honeycomb catalyst for exhaust gas purification that is characterized by The honeycomb carrier having a monolithic structure used in the present invention may be one commonly referred to as a ceramic honeycomb carrier, particularly cordierite, mullite, alpha alumina, zirconia, titania, titanium phosphate, aluminum titanate,
Honeycomb carriers made of petalite, spodium, aluminosilicate, magnesium silicate, etc. are preferred, and among them, cordierite is particularly preferred for use in internal combustion engines. In addition, a unitary structure made of oxidation-resistant heat-resistant metal such as stainless steel or FeClalloy is also used. These monolith carriers are manufactured by extrusion molding or rolling and compacting sheet-like elements.
The gas passage opening (cell shape) may be hexagonal, square, triangular, or corrugated. Cell density (number of cells/unit cross-sectional area) is 150 to 600
A cell/inch of 2 is sufficiently usable and gives good results. The activated alumina used in the present invention is preferably an activated alumina with a specific surface area of 50 to 180 m 2 /g, and hydrated alumina in the state of aluminum hydroxide, boehmite, or precipitated boehmite is also supported on a honeycomb carrier and then fired to form the activated alumina. The crystalline forms of alumina in the finished catalyst can be γ, δ, θ, χ, κ, and η. Among these, particularly preferred aluminas are γ and δ type activated aluminas with a specific surface area of 70 to 160 m 2 /g.
It is loaded in an amount between 50 and 200 g per portion. As the cerium source, cerium nitrate, cerium acetate, cerium oxalate, cerium carbonate, cerium hydroxide, and cerium oxide are preferably used. As neodymium sources, neodymium nitrate, neodymium acetate, neodymium oxalate, neodymium carbonate, neodymium hydroxide, and neodymium oxide are preferably used. As the zirconium source, zirconyl nitrate, zirconyl acetate, zirconyl hydroxide, and zirconium oxide are preferably used. As the iron source, iron nitrate, iron hydroxide, iron oxide, iron oxalate, and iron ammonium oxalate are preferably used. As the nickel source, nickel nitrate, nickel acetate, nickel carbonate, nickel hydroxide, and nickel oxide are preferably used. The content of cerium, neodymium, zirconium, iron, and nickel used in the present invention is as follows:
per unit, 5 to 30 g as ceria, 2 to 15 g as neodymia, 1 to 8 g as zirconia, 0 to 5 g of iron oxide as Fe 2 O 3 , 0 to 10 g of nickel oxide as NiO (however, 0.5 to 1 as Fe 2 O 3 + NiO) Ten
The ceria content is preferably greater than the neodymia content and zirconia content, and the neodymia content is preferably greater than the total content of iron oxide and nickel oxide. The reason for specifying this quantity relationship is that by containing less neodymia and zirconia than ceria and more neodymia than iron oxide and/or nickel oxide, CO and
It improves NOx purification properties and reduces deterioration even when exposed to high temperatures of 800℃ or higher.Furthermore, it improves the activity of NOx, CO, and HC near the A/F equivalence point, allowing temperatures of 800℃ or higher. This is because it is less susceptible to deterioration due to exposure to high temperatures and changes in the engine atmosphere. At the same time as possessing the above characteristics, it is resistant to oxidizing atmosphere on the lean side of A/F fuel.
CO and HC oxidation activities are also sufficiently maintained, thus NOx
It is possible to maintain high activity near the equivalence point and stable activity over a wide range of A/F without impairing the purification properties of. Therefore, it is important to contain the metal oxides within the ranges specified above to prevent deterioration of the finished catalyst when used at high temperatures. In addition to the above-mentioned basic elements constituting the catalyst of the present invention, lanthanum and praseodymium can be used together, but it is desirable that the amount of these used is less than the amount of neodymium used. As mentioned above, the platinum group metal used in the present invention essentially includes rhodium, and platinum and/or palladium are used, but the amount of platinum group metal used is between 0.1 and 10 g per catalyst, respectively,
and/or Pd ratios between 1:100 and 1:1 can be used. The method for producing the catalyst according to the present invention is carried out, for example, by the following method. (1) First, activated alumina is supported on a honeycomb carrier having an integral structure by a conventional method, and then cerium, neodymium, zirconium, and soluble salts of iron and/or nickel are supported in an aqueous solution, dried, and fired. Finally, an aqueous solution of a soluble salt of a platinum group metal is supported and dried, calcined, or reduced and calcined to obtain a finished catalyst. (2) An aqueous solution or dispersion of cerium, neodymium, zirconium, iron and/or nickel soluble salts or finely powdered hydroxides or oxides is added to activated alumina and mixed into a honeycomb carrier having an integral structure. , dried and calcined, and then supported again in the form of an aqueous slurry, dried and calcined, and finally supported with an aqueous solution of a soluble salt of a platinum group metal, dried, calcined or reduced and calcined to obtain a finished catalyst. (3) An aqueous solution or aqueous dispersion of activated alumina, soluble salts of cerium, neodymium, zirconium, iron and/or nickel and platinum group metals, or finely powdered hydroxides and oxides on a honeycomb carrier having an integral structure. After addition and mixing, drying and calcining, the slurry is made to support again and then dried or calcined if necessary to obtain a finished catalyst. (4) Add and mix an aqueous solution or aqueous dispersion of cerium, neodymium, zirconium, iron and/or nickel soluble salts or finely powdered hydroxides or oxides to activated alumina into a honeycomb carrier having an integral structure. After being fixed by drying and baking, an aqueous solution of a soluble salt of a platinum group metal is further mixed, and after drying, baking or reduction baking,
The slurry is again supported and then dried or, if necessary, calcined to obtain a finished catalyst. In these manufacturing methods, drying is carried out at a temperature of 200°C or lower and baking is carried out between 200 and 900°C, preferably between 400 and 800°C. Among these production methods, particularly preferred embodiments are (3) and (4). The present invention will be explained in more detail with reference to Examples below, but it goes without saying that the present invention is not limited only to these Examples. Example 1 Commercially available cordierite monolith support (N-
(manufactured by COR) to prepare a catalyst. The monolith carrier had about 300 gas flow cells per square inch in cross section, and when cut into a cylindrical shape with an outer diameter of 33 mm and a length of 76 mm, it had a volume of about 65 ml. Cerium nitrate [Ce(NO 3 ) 3・6H 2 O] 17.6g,
100 ml of 20.2 g of ferric nitrate [Fe(NO 3 ) 3 9H 2 O], 5.6 g of zirconyl nitrate [ZrO(NO 3 ) 2 ], 13.0 g of neodymium nitrate [Nd(NO 3 ) 3 6H 2 O] Rhodium nitrate aqueous solution [Rh(NO 3 ) 3 .
2.3 ml of nH 2 O] (Rh = 50 g/) and 11.2 ml of a nitric acid aqueous solution (Pt = 100 g/) of dinitrodiaminoplatinum [Pt(NH 3 ) 2 (NO 2 ) 2 ] were added and stirred. 120g of activated alumina powder with a surface area of 120m 2 /g and an average particle size of 50μ was added to this aqueous solution while stirring, and after thorough mixing, it was dried at 150℃ for 5 hours, and then heated to 600℃ in 2 hours in an electric furnace. And at this temperature 2
Firing was continued for a certain period of time, after which it was gradually cooled and taken out from the furnace. This was mixed with dilute nitric acid water in a ball mill.
A slurry for coating was prepared by mixed pulverization for 30 hours. The honeycomb type carrier was immersed in this coating slurry for 30 seconds, then taken out from the slurry, and excess slurry in the cells was blown out with compressed air to remove clogging from all cells. This catalyst was dried in a dryer at 140°C for 5 hours to obtain a complete catalyst. In addition, when the coating amount of this catalyst was measured, it was 140 g/-catalyst. Also, the ratio to the total supported amount is approximately Al 2 O 3 /CeO 2 /Fe 2 O 3 /
ZrO 2 /Nd 2 O 3 =120/7/4/3/5.
Regarding platinum and rhodium, Pt=1.12 g/-catalyst and Rh=0.11 g/-catalyst (hereinafter expressed similarly) were supported, respectively. Example 2 Catalysts with different compositions were prepared in the same manner as in Example 1. That is, the ratio of amounts of cerium nitrate, ferric nitrate, zirconyl nitrate, neodymium nitrate and activated alumina powder was changed. In addition, as a noble metal source, chloroplatinic acid [H 2 PtCl 6 ] was used instead of dinitrodiaminoplatinum, and rhodium chloride aqueous solution [RhCl 3 .nH 2 O] was used instead of rhodium nitrate aqueous solution to prepare a finished catalyst. The coating amount of this catalyst was measured and was 146g/
-It was a catalyst. Also, the ratio to the total supported amount is approximately Al 2 O 3 /CeO 2 /Fe 2 O 3 /ZrO 2 /Nd 2 O 3 =
It was 120/15/3/2/5. Regarding platinum and rhodium, Pt was supported at 1.12 g/Rh and Rhodium was supported at 0.11 g/Rh. Example 3 Cerium acetate [Ce(CH 3 COO) 3 ] 18.4 g, Iron oxide powder [Fe 2 O 3 ] 2 g, Zirconyl acetate [ZrO
(CH 3 COO) 2 ] 9.1 g, neodymium acetate [Nd
(CH 3 COO) 3 ] 15.3 g was dissolved in 100 ml of water. 120 g of activated alumina powder was added to this aqueous solution with stirring. After thorough mixing, the mixture was dried at 150°C for 5 hours, and then fired in an electric furnace at 600°C for 2 hours. On the other hand, rhodium nitrate aqueous solution (Rh=50g/)
Add 2.3 ml and 11.2 ml of dinitro-diaminoplatinum nitric acid aqueous solution (Pt = 100 g/), dilute with water.
Add the powder to 150 ml while stirring, and add 60 ml.
Stirring was continued for a minute. After that, Example 1
A finished catalyst was prepared by drying, calcination, and slurry formation using the same method as above. When the coating amount of this catalyst was measured, it was 146g/, and the ratio to the total supported amount was approximately Al 2 O 3 /CeO 2 /
Fe 2 O 3 /ZrO 2 /Nd 2 O 3 =120/10/2/5/8. For platinum and rhodium, Pt=1.12g/
, Rh=0.11g/supported. Example 4 Nickel or lanthanum was added using the same method as in Example 1. Namely, cerium, iron, zircon, neodymium nitrates and nickel nitrate [Ni
(NO 3 ) 2・6H 2 O] or lanthanum nitrate [La
(NO 3 ) 3.6H 2 O] was simultaneously dissolved and charged to prepare a finished catalyst. The catalyst composition is shown below.

【表】 実施例 5 実施例1と同様な手法で触媒を調製した。但し
貴金属として白金のかわりにパラジウムを同量担
持した。パラジウム源として硝酸パラジウム
〔Pd(NO32〕の硝酸水溶液を用いた。ロジウムは
実施例1と同様、硝酸ロジウム水溶液を用いて完
成触媒とした。この触媒のコーテイング量を測定
したところ、140g/であつた。又、総担持量
に対する比率はほゞAl2O3/CeO2/Fe2O3
ZrO2/Nd2O3=120/7/4/3/5であつた。
パラジウムとロジウムについてはPd=1.12g/
、Rh=0.11g/担持していた。 実施例 6 硝酸ロジウム水溶液及びジニトロ・ジアミノ白
金の水溶液を添加しない以外は実施例1と同様の
手法によりコーテイング担体をえた。さらに、こ
の触媒を600℃×2時間焼成した。次いで三塩化
ロジウムと塩化白金酸を含む水溶液に上記触媒を
1時間浸漬し、抜出して140℃×5時間乾燥して
完成触媒とした。なお、この触媒のコーテイング
量を測定したところ140g/であつた。又、総
担持量に対する比率はほゞAl2O3/CeO2
Fe2O3/ZrO2/Nd2O3=120/10/2/3/4で
あつた。白金、ロジウムについてはPt=1.12g/
、Rh=0.11g/担持していた。 実施例 7 実施例1と同様の手法で以下の完成触媒を調製
した。この触媒のコーテイング量を測定したとこ
ろ、141g/であつた。又、総担持量に対する
比率はAl2O3/CeO2/Fe2O3/ZrO2/Nd2O3
120/10/2/5/3であつた。白金とロジウム
についてはPt=1.12g/、Rh=0.11g/担持
していた。 比較例 1 鉄を含まない組成の触媒を調製した。すなわ
ち、硝酸第2鉄を添加しないこと以外は実施例1
と同様の手法で完成触媒を調製した。この触媒の
コーテイング量を測定したところ、136g/で
あつた。又、総担持量に対する比率はAl2O3
CeO2/Fe2O3/ZrO2/Nd2O3=120/7/0/
3/5であつた。白金とロジウムについてはPt=
1.12g/、Rh=0.11g/担持していた。 比較例 2 セリアよりネオジミア担持量が多い触媒を調製
した。また、鉄およびジルコニウム量を変えた以
外は実施例2と同様の手法で完成触媒を調製し
た。この触媒のコーテイング量を測定したところ
143g/であつた。又、総担持量に対する比率
はAl2O3/CeO2/Fe2O3/ZrO2/Nd2O3=120/
7/4/3/10であつた。白金とロジウムについ
てはPt=1.12g/、Rh=0.11g/担持してい
た。 比較例 3 酸化鉄の担持量よりネオジミア担持量が少ない
触媒を調製した。またジルコニウム量を変えた以
外は実施例3と同様の手法で完成触媒を調製し
た。この触媒のコーテイング量を測定したところ
140g/であつた。又、総担持量に対する比率
はAl2O3/CeO2/Fe2O3/ZrO2/Nd2O3=120/
10/4/3/2であつた。白金とロジウムについ
てはPt=1.12g/、Rh=0.11g/担持してい
た。 比較例 4 実施例6と同様の方法で、実施例1で用いたハ
ニカム担体を用いて、活性アルミナ、セリア、ネ
オジミアのみを含有するコーテイング担体を作り
600℃で焼成した。次いで実施例6と同様の方法
でロジウムと白金を担持させ140℃で乾燥し、500
℃で2時間焼成して完成触媒を得た。この触媒の
コーテイング量を測定したところ141g/であ
つた。又、総担持量に対する比率はAl2O3
CeO2/Nd2O3=120/10/10であつた。白金とロ
ジウムについてはPt=1.12g/、Rh=0.11g/
担持していた。 比較例 5 ネオジミアを含有しない触媒を調製した。実施
例1で用いたハニカム担体にまず活性アルミナの
みを担持させ、乾燥し、700℃で2時間焼成し次
いでこのアルミナコーテイング担体を硝酸セリウ
ム、硝酸ジルコニル、硝酸鉄を溶解させた水溶液
に含浸させ再び乾燥し、700℃で2時間焼成し
た。このコーテイング担体を更に実施例6と同様
の方法で、ロジウムと白金を担持させ140℃で乾
燥し、500℃で2時間焼成して完成触媒をえた。
この触媒のコーテイング量は115g/であり、
又総担持量に対する比率はAl2O3/CeO2
ZrO2/Fe2O3=100/4/6/4であり、白金と
ロジウムについてはPt=1.12g/、Rh=0.11
g/担持していた。 実施例 8 実施例1から実施例7までの触媒と比較例1か
ら比較例5までの触媒をエンジン排ガスを用いて
三元特性を評価した。 本実験で使用されたエンジンは市販の電子制御
式4気筒1800c.c.で、その試験法は実際のクローズ
ドループ式エンジンのA/F状態をモデル化した
方法である。強制的に1Hrで±0.5A/F単位(す
なわちA/F14.0〜A/F15.0の様に)で振動さ
せ、その時の中心をA/F=15.1から14.1まで0.2
ずつ変化させてその時のCO、HC及びNO成分の
浄化率を測定し、たて軸に3成分の浄化率を、横
軸にA/Fの中心点をプロツトし、できたグラフ
図より3元触媒反応特性を比較した。すなわち、
良好な触媒の基準としてCO、NO浄化率曲線の交
点〔クロスオーバーポイント(COP)と呼ぶ〕
の高さと、80%以上同時に浄化率を達成しうる
A/F幅において、前者(COP)の数値の高い
ものと、後者(A/F幅)の数値の大きいものを
選ぶことになる。 触媒は台上マルチコンバーターに充填して反応
を行つた。評価条件は入口ガス温度400℃、S.V.
=約90000Hr-1(STP)、触媒体積=65mlとし
た。 評価結果を第1表に示したが、本発明触媒は全
てNOとCOの転化率曲線の交点(クロスオーバー
ポイント)が高く、また同時に80%以上除去でき
るA/F値の幅(80%ウインドウ)も広かつた。 一方、比較例ではクロスオーバーポイントも低
く、かつウインド幅もせまかつた。
[Table] Example 5 A catalyst was prepared in the same manner as in Example 1. However, instead of platinum, the same amount of palladium was supported as the noble metal. A nitric acid aqueous solution of palladium nitrate [Pd(NO 3 ) 2 ] was used as a palladium source. As in Example 1, a rhodium nitrate aqueous solution was used to prepare the finished catalyst. When the coating amount of this catalyst was measured, it was 140g/. Moreover, the ratio to the total supported amount is approximately Al 2 O 3 /CeO 2 /Fe 2 O 3 /
ZrO 2 /Nd 2 O 3 =120/7/4/3/5.
For palladium and rhodium, Pd=1.12g/
, Rh=0.11g/supported. Example 6 A coated carrier was obtained in the same manner as in Example 1 except that the rhodium nitrate aqueous solution and the dinitrodiaminoplatinum aqueous solution were not added. Furthermore, this catalyst was calcined at 600°C for 2 hours. Next, the catalyst was immersed in an aqueous solution containing rhodium trichloride and chloroplatinic acid for 1 hour, taken out, and dried at 140° C. for 5 hours to obtain a finished catalyst. In addition, when the coating amount of this catalyst was measured, it was 140g/. Moreover, the ratio to the total supported amount is approximately Al 2 O 3 /CeO 2 /
Fe 2 O 3 /ZrO 2 /Nd 2 O 3 =120/10/2/3/4. For platinum and rhodium, Pt=1.12g/
, Rh=0.11g/supported. Example 7 The following finished catalyst was prepared in a manner similar to Example 1. When the coating amount of this catalyst was measured, it was 141g/. Also, the ratio to the total supported amount is Al 2 O 3 /CeO 2 /Fe 2 O 3 /ZrO 2 /Nd 2 O 3 =
It was 120/10/2/5/3. Regarding platinum and rhodium, Pt was supported at 1.12 g/Rh and Rh was supported at 0.11 g/Rh. Comparative Example 1 A catalyst having a composition not containing iron was prepared. That is, Example 1 except that ferric nitrate was not added.
The finished catalyst was prepared in a similar manner. When the coating amount of this catalyst was measured, it was 136 g/. Also, the ratio to the total supported amount is Al 2 O 3 /
CeO 2 /Fe 2 O 3 /ZrO 2 /Nd 2 O 3 =120/7/0/
It was 3/5. For platinum and rhodium, Pt=
1.12g/, Rh=0.11g/. Comparative Example 2 A catalyst was prepared that supported a larger amount of neodymia than ceria. Further, a finished catalyst was prepared in the same manner as in Example 2 except that the amounts of iron and zirconium were changed. When we measured the amount of coating on this catalyst,
It was 143g/. Also, the ratio to the total supported amount is Al 2 O 3 /CeO 2 /Fe 2 O 3 /ZrO 2 /Nd 2 O 3 = 120/
It was 7/4/3/10. Regarding platinum and rhodium, Pt was supported at 1.12 g/Rh and Rh was supported at 0.11 g/Rh. Comparative Example 3 A catalyst was prepared in which the amount of neodymia supported was smaller than the amount of iron oxide supported. Further, a finished catalyst was prepared in the same manner as in Example 3 except that the amount of zirconium was changed. When we measured the amount of coating on this catalyst,
It was 140g/. Also, the ratio to the total supported amount is Al 2 O 3 /CeO 2 /Fe 2 O 3 /ZrO 2 /Nd 2 O 3 = 120/
It was 10/4/3/2. Regarding platinum and rhodium, Pt was supported at 1.12 g/Rh and Rh was supported at 0.11 g/Rh. Comparative Example 4 A coating carrier containing only activated alumina, ceria, and neodymia was produced using the honeycomb carrier used in Example 1 in the same manner as in Example 6.
It was fired at 600℃. Next, rhodium and platinum were supported in the same manner as in Example 6 and dried at 140°C.
A completed catalyst was obtained by calcining at ℃ for 2 hours. The coating amount of this catalyst was measured and was found to be 141 g/kg. Also, the ratio to the total supported amount is Al 2 O 3 /
CeO 2 /Nd 2 O 3 =120/10/10. For platinum and rhodium, Pt = 1.12g/, Rh = 0.11g/
was carrying it. Comparative Example 5 A catalyst containing no neodymia was prepared. First, only activated alumina was supported on the honeycomb carrier used in Example 1, dried, and fired at 700°C for 2 hours. Then, this alumina-coated carrier was impregnated with an aqueous solution in which cerium nitrate, zirconyl nitrate, and iron nitrate were dissolved. It was dried and baked at 700°C for 2 hours. This coated carrier was further loaded with rhodium and platinum in the same manner as in Example 6, dried at 140°C, and calcined at 500°C for 2 hours to obtain a finished catalyst.
The coating amount of this catalyst is 115g/
The ratio to the total supported amount is Al 2 O 3 /CeO 2 /
ZrO 2 /Fe 2 O 3 = 100/4/6/4, and for platinum and rhodium, Pt = 1.12g/, Rh = 0.11
g/ was supported. Example 8 The ternary characteristics of the catalysts from Example 1 to Example 7 and the catalysts from Comparative Example 1 to Comparative Example 5 were evaluated using engine exhaust gas. The engine used in this experiment was a commercially available electronically controlled 4-cylinder 1800c.c., and the test method used was a method that modeled the A/F status of an actual closed-loop engine. Forcibly vibrate in ±0.5 A/F units (i.e. A/F14.0 to A/F15.0) for 1 hour, and then change the center by 0.2 from A/F = 15.1 to 14.1.
Measure the purification rates of CO, HC, and NO components by varying the amount of water, plot the purification rates of the three components on the vertical axis, plot the center point of A/F on the horizontal axis, and use the resulting graph to determine the three components. The catalytic reaction characteristics were compared. That is,
The intersection point of the CO and NO purification rate curves [called the crossover point (COP)] is the criterion for a good catalyst.
In terms of the height of COP and the A/F width that can achieve a purification rate of 80% or more at the same time, the one with the higher value of the former (COP) and the one with the higher value of the latter (A/F width) are selected. The reaction was carried out by filling the catalyst into a bench multi-converter. Evaluation conditions are inlet gas temperature 400℃, SV
= approximately 90000Hr -1 (STP), catalyst volume = 65ml. The evaluation results are shown in Table 1, and all of the catalysts of the present invention have a high intersection point (crossover point) of the conversion rate curves of NO and CO, and also have a high A/F value width (80% window) that can simultaneously remove 80% or more. ) was also wide. On the other hand, the comparative example had a low crossover point and a narrow window width.

【表】【table】

【表】 実施例 9 実施例8で初期活性を評価した触媒をエンジン
台上試験装置により耐久走行にかけられた。 使用されたエンジンは市販の電子制御式8気筒
4400c.c.で、その耐久操作方法はプログラムセツタ
ー使用によるモード運転法を採用した。即ち、60
秒間エンジン回転数3000rpm×ブースト圧(−
300mmHg)で定常走行し、7秒間スロツトルを戻
し燃料を切る。7秒後にエンジン回転数は約
1800rpmとなる。この減速走行の時に入口酸素濃
度が19%〜20%となり、触媒を急速に劣化させる
というものである。触媒はマルチコンバーターに
つめられ、定常走行時は入口温度850℃で空間速
度(S.V.)は約350000Hr-1(STP)A/F=
14.65のもとに100時間エージングされ、再び実施
例6と同様の評価法により3元特性を評価した。
評価の結果を第2表に示した。 本発明の触媒は、いぜん高い水準のクロスオー
バーポイントと有効なウインドウを保有していた
が、比較例の触媒はいずれもクロスオーバーポイ
ントも低く、ウインドウはほとんどない状態とな
つた。
[Table] Example 9 The catalyst whose initial activity was evaluated in Example 8 was subjected to endurance running using an engine bench test device. The engine used was a commercially available electronically controlled 8-cylinder engine.
4400c.c., and its durability operation method adopted a mode operation method using a program setter. i.e. 60
Engine speed per second 3000 rpm x boost pressure (-
300mmHg), then return the throttle for 7 seconds to turn off the fuel. After 7 seconds, the engine speed will be approximately
It becomes 1800rpm. During this deceleration, the inlet oxygen concentration reaches 19% to 20%, causing rapid deterioration of the catalyst. The catalyst is packed in a multi-converter, and during steady running, the inlet temperature is 850℃ and the space velocity (SV) is approximately 350000Hr -1 (STP) A/F =
14.65 for 100 hours, and the ternary characteristics were evaluated again using the same evaluation method as in Example 6.
The evaluation results are shown in Table 2. The catalyst of the present invention had a very high level of crossover point and an effective window, but the catalysts of the comparative examples all had a low crossover point and almost no window.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の新品のA/Fに対する
CO、HC、NO浄化率(%)の変化を示すグラフ
を表わす。
Figure 1 shows the new A/F of Example 1.
A graph showing changes in CO, HC, and NO purification rates (%) is shown.

Claims (1)

【特許請求の範囲】[Claims] 1 一体構造を有するハニカム担体に、活性アル
ミナ、セリア、ネオジミア、ジルコニアおよび、
鉄酸化物およびニツケル酸化物よりなる群から選
ばれた少なくとも1種さらに白金およびパラジウ
ムよりなる群から選ばれた少なくとも1種および
ロジウムを担持せしめてなる排ガス中の炭化水
素、一酸化炭素および窒素酸化物の同時浄化に用
いられる触媒であつて、担体1当り、活性アル
ミナ50〜200g、セリア5〜30g、ネオジミア2
〜15g、ジルコニア1〜8g、鉄酸化物Fe2O3
して0〜5g、ニツケル酸化物NiOとして0〜10
g(ただしFe2O3+NiOとして0.5〜10g)、さら
に白金およびパラジウムよりなる白金族金属は合
計で0.1〜10gの範囲およびロジウムが0.1〜10g
の範囲担持せしめられてなり、さらにセリア含量
がネオジミア含量よりもまたジルコニア含量より
も多く、かつネオジミア含量は鉄酸化物とニツケ
ル酸化物の合計含量より多く担持せしめられてな
ることを特徴とする排気ガス浄化用ハニカム触
媒。
1. Activated alumina, ceria, neodymia, zirconia and
Oxidation of hydrocarbons, carbon monoxide, and nitrogen in exhaust gas by supporting at least one selected from the group consisting of iron oxide and nickel oxide, and at least one selected from the group consisting of platinum and palladium, and rhodium. A catalyst used for the simultaneous purification of substances, containing 50 to 200 g of activated alumina, 5 to 30 g of ceria, and 2 g of neodymia per carrier.
~ 15g , 1-8g of zirconia, 0-5g as iron oxide Fe2O3 , 0-10 as nickel oxide NiO
g (however, 0.5 to 10 g as Fe 2 O 3 + NiO), platinum group metals consisting of platinum and palladium in a total range of 0.1 to 10 g, and rhodium in a total range of 0.1 to 10 g.
The exhaust gas is further characterized in that the ceria content is greater than the neodymia content and the zirconia content, and the neodymia content is greater than the total content of iron oxide and nickel oxide. Honeycomb catalyst for gas purification.
JP58081650A 1983-05-12 1983-05-12 Honeycomb catalyst for purification of exhaust gas Granted JPS59209646A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58081650A JPS59209646A (en) 1983-05-12 1983-05-12 Honeycomb catalyst for purification of exhaust gas
CA000453322A CA1213874A (en) 1983-05-12 1984-05-02 Process for producing honeycomb catalyst for exhaust gas conversion
EP84104977A EP0125565B1 (en) 1983-05-12 1984-05-03 Process for producing honeycomb catalyst for exhaust gas conversion
US06/606,612 US4504598A (en) 1983-05-12 1984-05-03 Process for producing honeycomb catalyst for exhaust gas conversion
DE8484104977T DE3484324D1 (en) 1983-05-12 1984-05-03 METHOD FOR PRODUCING A HONEYCOMB-SHAPED CATALYST FOR EXHAUST GAS CONVERSION.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58081650A JPS59209646A (en) 1983-05-12 1983-05-12 Honeycomb catalyst for purification of exhaust gas

Publications (2)

Publication Number Publication Date
JPS59209646A JPS59209646A (en) 1984-11-28
JPS6214337B2 true JPS6214337B2 (en) 1987-04-01

Family

ID=13752206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58081650A Granted JPS59209646A (en) 1983-05-12 1983-05-12 Honeycomb catalyst for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPS59209646A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025143A1 (en) * 1993-04-28 1994-11-10 Nippon Shokubai Co., Ltd. Method of removing nitrogen oxides contained in exhaust gas

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675675B2 (en) * 1986-11-04 1994-09-28 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP2680597B2 (en) * 1988-03-14 1997-11-19 マツダ株式会社 Exhaust gas purification catalyst
JPH0653229B2 (en) * 1988-03-24 1994-07-20 トヨタ自動車株式会社 Exhaust gas purification catalyst
KR100471590B1 (en) * 2002-04-25 2005-03-08 박종후 Metallic monoliths substrate of 3-way catalytic converter
JP5827286B2 (en) * 2013-09-06 2015-12-02 トヨタ自動車株式会社 Automotive exhaust gas purification catalyst
JP2019084482A (en) * 2017-11-03 2019-06-06 株式会社デンソー Exhaust gas purification device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025143A1 (en) * 1993-04-28 1994-11-10 Nippon Shokubai Co., Ltd. Method of removing nitrogen oxides contained in exhaust gas

Also Published As

Publication number Publication date
JPS59209646A (en) 1984-11-28

Similar Documents

Publication Publication Date Title
US4504598A (en) Process for producing honeycomb catalyst for exhaust gas conversion
JP3704279B2 (en) Exhaust gas purification catalyst
JP2659796B2 (en) Exhaust gas purification catalyst and method for producing the same
KR100567726B1 (en) Exhaust gas purifying catalyst
JP3688871B2 (en) Exhaust gas purification catalyst
JPH0260373B2 (en)
JP3235640B2 (en) Internal combustion engine exhaust gas purification catalyst
JPH0574415B2 (en)
CN101069845A (en) Catalyst for treating exhaust gas, manufacturing method thereof and method for treating exhaust gas using the same
JP2006263583A (en) Catalyst for cleaning exhaust gas
JPH0547263B2 (en)
JP3264697B2 (en) Exhaust gas purification catalyst and purification system using the same
JPH05220395A (en) Production of ternary catalyst excellent in low-temperature activity
JPS6366258B2 (en)
JPS6214337B2 (en)
JP2698302B2 (en) Exhaust gas purification catalyst
JPH0578378B2 (en)
JPS6214338B2 (en)
JP4382180B2 (en) Exhaust gas purification catalyst
JP2690654B2 (en) Exhaust gas purification catalyst and purification system using the same
JPH0523593A (en) Exhaust emission control system
JP2690661B2 (en) Exhaust gas purification catalyst and purification system using the same
JP3272015B2 (en) Exhaust gas purification catalyst
JPH0523599A (en) Catalyst for decontaminating exhaust gas
JPH052373B2 (en)