JPH0675675B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst

Info

Publication number
JPH0675675B2
JPH0675675B2 JP61262521A JP26252186A JPH0675675B2 JP H0675675 B2 JPH0675675 B2 JP H0675675B2 JP 61262521 A JP61262521 A JP 61262521A JP 26252186 A JP26252186 A JP 26252186A JP H0675675 B2 JPH0675675 B2 JP H0675675B2
Authority
JP
Japan
Prior art keywords
catalyst
oxide
exhaust gas
cerium
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61262521A
Other languages
Japanese (ja)
Other versions
JPS63116741A (en
Inventor
伸一 松本
直人 三好
希夫 木村
正邦 小澤
彰男 磯谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP61262521A priority Critical patent/JPH0675675B2/en
Priority to AU80620/87A priority patent/AU595655B2/en
Priority to DE19873737419 priority patent/DE3737419A1/en
Publication of JPS63116741A publication Critical patent/JPS63116741A/en
Priority to US07/290,421 priority patent/US4927799A/en
Publication of JPH0675675B2 publication Critical patent/JPH0675675B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は自動車エンジンなどの内燃機関から排出される
排気ガス中に含まれるCO(一酸化炭素)、HC(炭化水
素)、NOx(窒素酸化物)を除去して浄化する排気ガス
浄化用触媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to CO (carbon monoxide), HC (hydrocarbon), NOx (nitrogen oxidation) contained in exhaust gas discharged from an internal combustion engine such as an automobile engine. The present invention relates to an exhaust gas purifying catalyst for removing and purifying substances.

[従来の技術] 従来自動車の排気ガス浄化用触媒は、一般に触媒担持層
と、触媒担持層に担持された触媒金属と、からなるもの
が知られている。そして効率良い浄化を目的として、種
々の排気ガス浄化用触媒が開発されている。
[Prior Art] Conventionally, an exhaust gas purifying catalyst for an automobile is generally known to be composed of a catalyst supporting layer and a catalyst metal supported on the catalyst supporting layer. Various exhaust gas purification catalysts have been developed for the purpose of efficient purification.

例えば特公昭59−41775号、特開昭59−90695号、特公昭
58−20307号などには、セリウムを利用した技術が開示
されている。これらの排気ガス浄化用触媒ではセリウム
は酸化物として存在し、(1)式に示す反応により酸素
を放出あるいは取込み(酸素ストレージ能)、COおよび
HCの酸化反応およびNOxの還元反応を調節して浄化効率
の向上を図るものである。
For example, Japanese Patent Publication No. 59-41775, Japanese Patent Publication No. 59-90695, and Japanese Patent Publication No.
58-20307 and the like disclose a technique using cerium. In these exhaust gas purification catalysts, cerium exists as an oxide, and releases or takes up oxygen (oxygen storage capacity), CO and
The purification efficiency is improved by controlling the oxidation reaction of HC and the reduction reaction of NOx.

ところで上記(1)式の反応は酸化セリウム粒子表面で
生じることがわかっている。しかしながら上記従来の排
気ガス浄化用触媒では、800℃以上の高温下で用いられ
ると酸化セリウムが粒成長して表面積が減少する場合が
あった。従って酸素ストレージ能の低下により浄化性能
が低下するという不具合があった。
By the way, it is known that the reaction of the above formula (1) occurs on the surface of cerium oxide particles. However, in the above conventional exhaust gas purifying catalyst, when used at a high temperature of 800 ° C. or higher, the cerium oxide may grow into grains and the surface area may decrease. Therefore, there is a problem that the purification performance is deteriorated due to the decrease of the oxygen storage capacity.

また、活性アルミナの安定化をも目標として、特公昭60
−7537号、特開昭48−18180号、特開昭61−3531号、USP
3003020、USP3951860、USP4170573などには、セリウム
と他の希土類や遷移金属とを同時に用いる技術が開示さ
れている。例えば特公昭60−7537号には、セリウムとラ
ンタンとを同時に用い、(2)式に示す複合酸化物 (0.3≦x≦0.5) を形成したものが開示されている。
In addition, with the goal of stabilizing activated alumina,
-7537, JP-A-48-18180, JP-A-61-3351, USP
3003020, USP3951860, USP4170573 and the like disclose a technique of simultaneously using cerium and other rare earth or transition metal. For example, Japanese Examined Patent Publication No. 60-7537 discloses a complex oxide represented by the formula (2) in which cerium and lanthanum are used at the same time. It is disclosed that (0.3 ≦ x ≦ 0.5) is formed.

この排気ガス浄化用触媒は、複合酸化物のホタル石型構
造に酸素空孔をもつ格子欠陥を形成させ、酸素ストレー
ジ効果に耐久性をもたせたものである。しかしながらこ
の排気ガス浄化用触媒においても、上記ほどではないが
酸化セリウムに粒成長が生じ、浄化性能が低下すること
がわかった。
This exhaust gas purifying catalyst has a fluorite-type structure of a composite oxide with lattice defects having oxygen vacancies, and has durability against the oxygen storage effect. However, it was found that even with this exhaust gas purifying catalyst, although not so much as described above, grain growth occurs in cerium oxide and the purifying performance deteriorates.

[発明が解決しようとする問題点] 本発明は上記事情に鑑みてなされたものであり、高温度
下における酸化セリウムの粒成長を抑制し、浄化性能の
低下を防止した排気ガス浄化用触媒を提供するものであ
る。
[Problems to be Solved by the Invention] The present invention has been made in view of the above circumstances, and provides an exhaust gas purifying catalyst that suppresses grain growth of cerium oxide at high temperatures and prevents deterioration of purification performance. It is provided.

[問題点を解決するための手段] 本発明の排気ガス浄化用触媒は、触媒担持層と、該触媒
担持層に担持された触媒金属と、からなる排気ガス浄化
用触媒において、 該触媒担持層は少なくとも表面層にセリウム酸化物とジ
ルコニウム酸化物及び触媒金属を含み、該セリウム酸化
物と該ジルコニウム酸化物の少なくとも一部は複合酸化
物または固溶体として存在し、該複合酸化物または固溶
体のセリウム原子数に対するジルコニウム原子数の比
(Zr/Ce)が5/95〜70/30の範囲にあることを特徴とす
る。
[Means for Solving the Problems] An exhaust gas purifying catalyst of the present invention is an exhaust gas purifying catalyst comprising a catalyst supporting layer and a catalyst metal supported on the catalyst supporting layer. Contains at least a cerium oxide, a zirconium oxide and a catalyst metal in the surface layer, at least a part of the cerium oxide and the zirconium oxide exists as a complex oxide or a solid solution, and a cerium atom of the complex oxide or the solid solution. The ratio of the number of zirconium atoms to the number (Zr / Ce) is in the range of 5/95 to 70/30.

触媒担持層は触媒金属が担持されるものであり、例えば
比表面積の大きな活性アルミナ、ジルコニア、酸化チタ
ンなどを用いることができる。一般にはγ−アルミナ、
θ−アルミナなどが用いられる。なお、触媒担持層は、
そのままの状態で用いてもよいし、担体基材を用い、そ
の担体基材表面に触媒担持層を形成してもよい。
The catalyst supporting layer supports the catalyst metal, and for example, activated alumina, zirconia, titanium oxide, etc. having a large specific surface area can be used. Generally γ-alumina,
θ-alumina or the like is used. The catalyst supporting layer is
It may be used as it is, or a carrier substrate may be used and a catalyst supporting layer may be formed on the surface of the carrier substrate.

なお担体基材はハニカム形状のモノリス担体基材、ある
いはペレット状の担体基材など、従来と同様のものを用
いることができる。また担体基材の材質は、コージェラ
イト、ムライト、アルミナ、マグネシア、スピネルなど
のセラミックス、あるいはフェライト鋼などの耐熱性金
属など公知のものを用いることができる。
The carrier base material may be the same as the conventional one, such as a honeycomb-shaped monolith carrier base material or a pellet-shaped carrier base material. As the material of the carrier base material, known materials such as ceramics such as cordierite, mullite, alumina, magnesia and spinel, and heat resistant metals such as ferritic steel can be used.

触媒担持層に担持される触媒金属としては、白金(P
t)、ロジウム(Rh)、パラジウム(Pd)、イリジウム
(Ir)、ルテニウム(Ru)、オスミウム(Os)などの貴
金属、あるいはクロム(Cr)、ニッケル(Ni)、バナジ
ウム(V)、銅(Cu)、コバルト(Co)、マンガン(M
n)などの卑金属など、従来と同様のものを用いること
ができる。
The catalyst metal supported on the catalyst supporting layer is platinum (P
t), rhodium (Rh), palladium (Pd), iridium (Ir), ruthenium (Ru), osmium (Os) and other precious metals, or chromium (Cr), nickel (Ni), vanadium (V), copper (Cu) ), Cobalt (Co), manganese (M
A base metal such as n) can be used as in the related art.

本発明の最大の特徴は、触媒担持層はセリウム酸化物と
ジルコニウム酸化物とを含み、セリウム酸化物とジルコ
ニウム酸化物の少なくとも一部は複合酸化物または固溶
体として存在しているところにある。
The greatest feature of the present invention is that the catalyst supporting layer contains cerium oxide and zirconium oxide, and at least part of the cerium oxide and zirconium oxide exists as a complex oxide or a solid solution.

酸化セリウムは単独酸化物では粒成長し易く、本発明者
らの研究によれば、1000℃で加熱すると直径0.1μm程
度にまで粒成長することがわかっている。そして1000℃
で加熱後に(3)式の反応によりCOを浄化しようとして
も、反応率はほとんどゼロとなってしまい、酸素ストレ
ージ能が著しく低下する。
Grain growth of cerium oxide easily occurs as a single oxide, and according to the research conducted by the present inventors, it is known that when heated at 1000 ° C., grains grow to a diameter of about 0.1 μm. And 1000 ℃
Even if an attempt is made to purify CO by the reaction of formula (3) after heating, the reaction rate becomes almost zero, and the oxygen storage capacity is significantly reduced.

CO+CeO2→XCO2+CeO2-x …(3) そこで本発明者らは鋭意研究の結果、酸化セリウムと酸
化ジルコニウムとを共存させて熱処理したものにおいて
は酸化セリウムの粒成長が著しく抑制され、高温で加熱
後の(3)式の反応率も70%以上と非常に高くなること
を見出し本発明を完成したものである。
CO + CeO 2 → XCO 2 + CeO 2- x (3) Therefore, as a result of intensive studies, the present inventors have found that grain growth of cerium oxide is significantly suppressed in the case of heat treatment in the presence of cerium oxide and zirconium oxide. The present invention has been completed by finding that the reaction rate of the formula (3) after heating becomes very high at 70% or more.

なお、本発明者らは、酸化セリウム粉末にオキシ硝酸ジ
ルコニウム水溶液を含浸させ、もう一方では酸化ジルコ
ニウム粉末に硝酸セリウム水溶液を含浸させ、それぞれ
800℃で5時間熱処理し、その時の結晶形態をX線回折
にて分析した。その結果第9表に示すように、酸化セリ
ウム粉末にオキシ硝酸ジルコニウム水溶液を含浸した場
合には、酸化セリウム結晶相を示し、その格子定数は短
くなっている。これにより酸化セリウム結晶格子中にジ
ルコニウムが置換、固溶していることがわかる。また酸
化ジルコニウム粉末へ硝酸セリウム水溶液を含浸させた
場合は3相に分相しており、格子定数が厳密には定まら
ない。これにより酸化ジルコニウムと酸化セリウムとの
部分固溶ないしは複合酸化物の生成が示唆される。
The inventors of the present invention impregnated the cerium oxide powder with the zirconium oxynitrate aqueous solution and the zirconium oxide powder with the cerium nitrate aqueous solution.
Heat treatment was performed at 800 ° C. for 5 hours, and the crystal morphology at that time was analyzed by X-ray diffraction. As a result, as shown in Table 9, when the cerium oxide powder was impregnated with the aqueous solution of zirconium oxynitrate, it showed a cerium oxide crystal phase and had a short lattice constant. This shows that zirconium is substituted in the cerium oxide crystal lattice and is in solid solution. Further, when the zirconium oxide powder is impregnated with the cerium nitrate aqueous solution, the zirconium oxide is divided into three phases, and the lattice constant cannot be determined exactly. This suggests the formation of a partial solid solution of zirconium oxide and cerium oxide or a complex oxide.

触媒担持層にセリウム酸化物とジルコニウム酸化物とを
含む複合酸化物、または固溶体を形成するには、セリウ
ム塩およびジルコニウム塩の水溶液を同時にあるいは別
々に触媒担持層に含浸させ、600℃以上の温度で焼成す
ることにより行うことができる。またセリウムおよびジ
ルコニウムの一方に酸化物を用い、触媒担持層形成 時に活性アルミナ粉末と混合後800℃以上の温度で焼成
して行うこともできる。温度がこれらの値より低いと複
合酸化物または固溶体が生成しにくく、酸化セリウムの
粒成長が生じやすくなる。
To form a composite oxide containing a cerium oxide and a zirconium oxide in the catalyst-supporting layer, or a solid solution, the catalyst-supporting layer is impregnated with an aqueous solution of a cerium salt and a zirconium salt at the same time or separately, and the temperature is 600 ° C. or higher. It can be performed by firing. Also, an oxide is used as one of cerium and zirconium to form a catalyst support layer. It may be carried out by mixing with activated alumina powder and firing at a temperature of 800 ° C. or higher. If the temperature is lower than these values, it is difficult to form a complex oxide or solid solution, and cerium oxide grain growth is likely to occur.

なお、酸化セリウムと酸化ジルコニウムとは全体が複合
酸化物または固溶体となっていることが望ましいが、少
なくとも一部であっても酸化セリウムの粒成長防止効果
が得られることはいうまでもない。
It is desirable that the whole of cerium oxide and zirconium oxide be a composite oxide or a solid solution, but it goes without saying that even if they are at least a part, the grain growth preventing effect of cerium oxide can be obtained.

また酸化セリウムと酸化ジルコニウムとは触媒担持層内
部に存在していてもよいし、担持層表面に担持されたよ
うな状態で存在していてもよい。特に担持層表面にあれ
ば排気ガスとの触媒が容易であり、酸素ストレージ能を
最大に発揮できるので触媒性能が特に向上する。
Further, cerium oxide and zirconium oxide may be present inside the catalyst supporting layer or may be present in a state of being supported on the surface of the supporting layer. In particular, if it is on the surface of the supporting layer, the catalyst with exhaust gas can be easily catalyzed, and the oxygen storage capacity can be maximized.

なお、セリウムとジルコニウムとの比率は、複合酸化物
または固溶体として担持されたセリウム原子とジルコニ
ウム原子とは、セリウム原子の数に対するジルコニウム
原子の数の原子比が5/95〜70/30となるように構成する
のが好ましい。この原子比が5/95より小さいと酸化セリ
ウムに粒成長が生じやすくなり、70/30より大きくなる
と酸化ストレージ能が不足して浄化性能が低下するよう
になる。
The ratio of cerium and zirconium is such that the cerium atom and the zirconium atom supported as a complex oxide or a solid solution have an atomic ratio of the number of zirconium atoms to the number of cerium atoms of 5/95 to 70/30. It is preferable to configure. If this atomic ratio is less than 5/95, cerium oxide tends to grow grains, and if it exceeds 70/30, the oxidizing storage capacity becomes insufficient and the purification performance deteriorates.

[発明の作用および効果] 本発明の排気ガス浄化用触媒では、触媒担持層は少なく
とも表面層にセリウム酸化物とジルコニウム酸化物及び
触媒金属を含み、セリウム酸化物とジルコニウム酸化物
の少なくとも一部は複合酸化物または固溶体として存在
している。そしてその機構はまだ明らかとなっていない
が、複合酸化物または固溶体として存在することにより
酸化セリウムの粒成長が抑制されている。
[Operation and Effect of the Invention] In the exhaust gas purifying catalyst of the present invention, the catalyst-supporting layer contains cerium oxide, zirconium oxide, and a catalyst metal in at least the surface layer, and at least a part of the cerium oxide and zirconium oxide is It exists as a complex oxide or solid solution. Although the mechanism has not been clarified yet, the grain growth of cerium oxide is suppressed due to the presence of a complex oxide or a solid solution.

すなわち本発明の排気ガス浄化用触媒によれば、高温下
で使用した場合の酸化セリウムの粒成長が抑制されるの
で、酸化セリウム自体の表面積は充分大きな値を維持で
きる。従って酸化セリウムの酸化ストレージ能が低下す
るような不具合がなく、浄化性能を長期に渡って高度に
維持することができる。
That is, according to the exhaust gas purifying catalyst of the present invention, grain growth of cerium oxide when used at high temperature is suppressed, so that the surface area of cerium oxide itself can be maintained at a sufficiently large value. Therefore, there is no problem that the oxidization storage capacity of cerium oxide is reduced, and the purification performance can be maintained at a high level for a long period of time.

[実施例] 以下実施例により具体的に説明する。[Examples] Specific examples will be described below.

(実施例1、比較例1) アルミナ含有率10wt%のアルミナゾル700gと、アルミナ
粉末1000gと、蒸溜水300gとを混合し、攪拌してスラリ
ーを調整した。このスラリーにコージェライト質からな
るハニカム形状のモノリス触媒担体基材を1分間浸漬後
引き上げ、空気流によりセル内のスラリーを吹き飛ばし
150℃で1時間乾燥後、700℃で2時間焼成した。この操
作を2回繰返して活性アルミナからなる触媒担持層を形
成した。
(Example 1 and Comparative Example 1) 700 g of alumina sol having an alumina content of 10 wt%, 1000 g of alumina powder, and 300 g of distilled water were mixed and stirred to prepare a slurry. A honeycomb-shaped monolithic catalyst carrier substrate made of cordierite is immersed in this slurry for 1 minute and then pulled up, and the slurry in the cell is blown off by an air flow.
After drying at 150 ° C. for 1 hour, it was baked at 700 ° C. for 2 hours. This operation was repeated twice to form a catalyst supporting layer made of activated alumina.

次に硝酸セリウム(Ce(NO3)が0.16mol/および
オキシ硝酸ジルコニウム(ZrO(NO3)が0.24mol/
溶解した混合水溶液に、前記触媒担持層を形成したモノ
リス担体基材を1分間浸漬後引き上げ、余分な水分を吹
き飛ばして200℃で3時間乾燥後、空気中600℃で5時間
焼成した。これにより酸化セリウムおよび酸化ジルコニ
ウムを含む触媒担持層をもつモノリス担体基材(1B)を
得た。
Next, cerium nitrate (Ce (NO 3 ) 3 ) was 0.16 mol / and zirconium oxynitrate (ZrO (NO 3 ) 2 ) was 0.24 mol /.
The monolithic carrier substrate having the catalyst supporting layer formed thereon was immersed in the dissolved mixed solution for 1 minute, then pulled up, excess water was blown off, dried at 200 ° C. for 3 hours, and then baked in air at 600 ° C. for 5 hours. As a result, a monolithic support substrate (1B) having a catalyst supporting layer containing cerium oxide and zirconium oxide was obtained.

なお、硝酸セリウムおよびオキシ硝酸ジルコニウムの濃
度が異なる混合水溶液を用いること以外は同様にして、
第1表に示す値でセリウム原子およびジルコニウム原子
を含有するモノリス担体基材(1B〜1E)を得た。またオ
キシ硝酸ジルコニウム水溶液は用いず硝酸セリウムを0.
4mol/含む水溶液のみに浸漬すること以外は同様にし
てモノリス担体基材(1F)を、硝酸セリウム水溶液は用
いずオキシ硝酸ジルコニウムを0.4mol/含む水溶液の
みに浸漬すること以外は同様にしてモノリス担体基材
(1G)を得た。
In the same manner, except that mixed aqueous solutions having different concentrations of cerium nitrate and zirconium oxynitrate are used,
Monolith carrier base materials (1B to 1E) containing cerium atoms and zirconium atoms at the values shown in Table 1 were obtained. In addition, cerium nitrate was added to 0.
The monolith carrier base material (1F) was similarly prepared except that it was immersed only in the aqueous solution containing 4 mol / mol, and the monolith carrier was similarly prepared except that it was immersed only in the aqueous solution containing 0.4 mol / zirconium oxynitrate without using the cerium nitrate aqueous solution. A base material (1G) was obtained.

次にこれらのモノリス担体基材(1B〜1G)のそれぞれに
ついて、蒸溜水に浸漬し充分吸水させた後引き上げて余
分な水分を吹き飛ばし、ジニトロジアンミン白金を1.0g
/含む水溶液に1時間浸漬した。引き上げて余分な水
分を吹き飛ばし、200℃で1時間乾燥した。さらに塩化
ロジウムを0.1g/含む水溶液に同様に浸漬し、乾燥し
て白金(Pt)およびロジウム(Rh)を担持させて触媒化
し、第1表に示す実施例1b〜1eおよび比較例1a、比較例
1bの排気ガス浄化用触媒を得た。
Next, for each of these monolithic carrier base materials (1B to 1G), dip them in distilled water to absorb water sufficiently and then pull up to blow off excess water, and dinitrodiamine platinum 1.0 g
It was immersed in an aqueous solution containing / for 1 hour. It was pulled up to blow off excess water, and dried at 200 ° C. for 1 hour. Further, it was immersed in an aqueous solution containing 0.1 g / rhodium chloride in the same manner, dried to support platinum (Pt) and rhodium (Rh) for catalysis, and Examples 1b to 1e and Comparative Example 1a shown in Table 1 were compared. An example
An exhaust gas purifying catalyst of 1b was obtained.

また上記モノリス担体基材(1B〜1G)を用い、塩化パラ
ジウムを1.5g/含む水溶液および塩化ロジウムを0.2g/
含む水溶液を用いて、上記と同様にしてそれぞれの基
材にパラジウム(Pd)およびロジウム(Rh)を担持さ
せ、第2表に示す実施例1g〜1jおよび比較例1c、比較例
1dの排気ガス浄化用触媒を得た。
Also, using the above monolithic carrier substrate (1B-1G), an aqueous solution containing 1.5 g / palladium chloride and 0.2 g / rhodium chloride.
Palladium (Pd) and rhodium (Rh) were loaded on the respective base materials in the same manner as above using an aqueous solution containing, and Examples 1g to 1j and Comparative Examples 1c and 1c shown in Table 2 were compared.
A 1d exhaust gas purification catalyst was obtained.

さらに上記モノリス担体基材(1B〜1G)を用い、ジニト
ロジアンミン白金を1.0g/含む水溶液、塩化パラジウ
ムを1.0g/含む水溶液および塩化ロジウムを0.2g/含
む水溶液を用いて、上記と同様にしてそれぞれの基材に
白金(Pt)、パラジウム(Pd)およびロジウム(Rh)を
担持させて触媒化し、第3表に示す実施例1l〜1oおよび
比較例1e、比較例1fの排気ガス浄化用触媒を得た。
Further using the monolith carrier substrate (1B ~ 1G), using an aqueous solution containing 1.0 g / dinitrodiammine platinum, an aqueous solution containing 1.0 g / palladium chloride and 0.2 g / rhodium chloride in the same manner as above. Platinum (Pt), palladium (Pd), and rhodium (Rh) are supported on each substrate to be catalyzed, and the exhaust gas purifying catalysts of Examples 1l to 1o and Comparative Examples 1e and 1f shown in Table 3 are shown. Got

得られたそれぞれの排気ガス浄化用触媒について、3
直列6気筒エンジンの排気系に取付け、空燃比(A/F)
を14.6、入ガス温度850℃の条件で200時間耐久試験を行
った。そして耐久試験後のそれぞれの触媒について、耐
久試験と同一のエンジンを用い、A/F=14.6、入ガス温
度400℃の条件下でHC、CO、NOxの浄化率を測定した。
For each of the obtained exhaust gas purification catalysts, 3
Attached to the exhaust system of an inline 6-cylinder engine, air-fuel ratio (A / F)
Was subjected to a 200 hour endurance test under conditions of 14.6 and an inlet gas temperature of 850 ° C. Then, for each catalyst after the durability test, the purification rate of HC, CO, and NOx was measured under the conditions of A / F = 14.6 and inlet gas temperature of 400 ° C. using the same engine as that of the durability test.

また触媒金属を担持する前の上記モノリス担体基材(1B
〜1G)について、それぞれ1000℃で5時間加熱し、その
後酸化雰囲気中600℃に保持した後、600℃に保った状態
で一酸化炭 素をパルス状に流し、前記(3)式に従って発生する二
酸化炭素量からCO転換率を求め酸素ストレージ能を測定
した。
In addition, the monolithic carrier substrate (1B
~ 1G), each was heated at 1000 ℃ for 5 hours, then kept at 600 ℃ in an oxidizing atmosphere, and then kept at 600 ℃ in the state of carbon monoxide. The oxygen was stored in a pulsed manner, the CO conversion rate was determined from the amount of carbon dioxide generated according to the above equation (3), and the oxygen storage capacity was measured.

さらに上記1000℃で5時間加熱された後の担体基材を粉
砕し、X線回折法にて酸化セリウムの粒子径を測定し
た。これらの結果を併せて第1表〜第3表に示す。
Further, the carrier base material after being heated at 1000 ° C. for 5 hours was crushed, and the particle diameter of cerium oxide was measured by an X-ray diffraction method. The results are shown together in Tables 1 to 3.

(実施例2、比較例2) BET表面積100〜150m2/gおよび平均細孔径300〜400オン
グストロームのγ−アルミナ粒状担体(日輝ユニバーサ
ル(株)製)1を用い、濃度が異なること以外は実施
例1および比較例1と同様の混合水溶液に浸漬し、同様
に乾燥、焼成して各担体基材を得た。そして、実施例1b
〜1eおよび比較例1a〜1bと同様に触媒化して、第4表に
示す構成の実施例2b〜2eおよび比較例2a、比較例2bの排
気ガス浄化用触媒を得た。
(Example 2, Comparative Example 2) A γ-alumina granular carrier (manufactured by Nikko Universal Co., Ltd.) 1 having a BET surface area of 100 to 150 m 2 / g and an average pore diameter of 300 to 400 Å was used, except that the concentration was different. Each carrier base material was obtained by immersing in the same mixed aqueous solution as in Example 1 and Comparative Example 1, and similarly drying and firing. And Example 1b
.About.1e and Comparative Examples 1a to 1b were catalyzed to obtain the exhaust gas purifying catalysts of Examples 2b to 2e and Comparative Examples 2a and 2b having the configurations shown in Table 4.

得られた排気ガス浄化用触媒は実施例1と同様の浄化率
測定試験に供され、結果を第4表に示す。
The obtained exhaust gas purifying catalyst was subjected to the same purification rate measurement test as in Example 1, and the results are shown in Table 4.

(実施例3、比較例3) 上記実施例2および比較例2の、600℃で焼成されたセ
リウムおよびジルコニウム原子をもち触媒化前のそれぞ
れの粒状担体基材を、振動ミルにて平均粒径7μmに粉
砕した。そして得られたそれぞれの粉末100重量部と、
硝酸アルミニウムを40wt%含有する水溶液30重量部と、
水100重量部とを混合し、1時間ミリングしてそれぞれ
のスラリーを調整した。このスラリーを用いて実施例1
と同様のハニカム担体に、同様の方法で触媒担持層を形
成し、実施例1b〜1eおよび比較例1a〜1bと同様に触媒化
して、第5表に示す実施例3b〜3eおよび比較例3a、比較
例3bの排気ガス浄化用触媒を得た。
(Example 3, Comparative Example 3) Each of the granular carrier base materials having cerium and zirconium atoms calcined at 600 ° C. and having not been catalyzed in Example 2 and Comparative Example 2 was subjected to an average particle size by a vibration mill. It was ground to 7 μm. And 100 parts by weight of each powder obtained,
30 parts by weight of an aqueous solution containing 40 wt% of aluminum nitrate,
100 parts by weight of water was mixed and milled for 1 hour to prepare each slurry. Example 1 using this slurry
A catalyst carrier layer was formed in the same manner on the same honeycomb carrier as above, and catalyzed in the same manner as in Examples 1b to 1e and Comparative Examples 1a to 1b, and Examples 3b to 3e and Comparative Example 3a shown in Table 5 were performed. Thus, an exhaust gas purifying catalyst of Comparative Example 3b was obtained.

得られた排気ガス浄化用触媒は実施例1と同様の浄化率
測定試験に供され、結果を第5表に示す。
The obtained exhaust gas purifying catalyst was subjected to the same purification rate measurement test as in Example 1, and the results are shown in Table 5.

(実施例4、比較例4) 上記実施例2で用いた粒状担体を粉砕して得られたγ−
アルミナ粉末と、酸化ジルコニウム粉末を第6表の組成
比に配合し、水を混合して実施例 3と同様にスラリー化し、同様に触媒担持層を形成し
た。そして各担体基材に硝酸セリウム水溶液を2種類の
濃度で含浸させた後、800℃で5時間焼成した。その後
実施例1l〜1oと同様に触媒金属を担持させ、第6表に示
す実施例4の排気ガス浄化用触媒を得た。なお比較例4
では硝酸セリウム水溶液は含浸しなかった。
(Example 4, Comparative Example 4) γ-obtained by pulverizing the granular carrier used in Example 2 above.
Alumina powder and zirconium oxide powder were blended in the composition ratio shown in Table 6 and mixed with water. A slurry was formed in the same manner as in No. 3, and a catalyst supporting layer was formed in the same manner. Then, each carrier substrate was impregnated with an aqueous cerium nitrate solution at two different concentrations and then calcined at 800 ° C. for 5 hours. After that, a catalyst metal was loaded in the same manner as in Examples 1l to 1o to obtain an exhaust gas purifying catalyst of Example 4 shown in Table 6. Comparative Example 4
Then, the cerium nitrate aqueous solution was not impregnated.

得られた排気ガス浄化用触媒は実施例1と同様の浄化率
測定試験に供され、結果を第6表に示す。
The obtained exhaust gas purifying catalyst was subjected to the same purification rate measurement test as in Example 1, and the results are shown in Table 6.

(実施例5、比較例5) 酸化ジルコニウム粉末の代わりに酸化セリウム粉末を用
い、硫酸セリウムの代わりにオキシ塩化ジルコニウムを
用いたこと以外は実施例4、比較例4と同様にして第6
表に示す実施例5a〜5b、比較例5の排気ガス浄化用触媒
を得た。
(Example 5 and Comparative Example 5) A sixth example was performed in the same manner as Example 4 and Comparative Example 4 except that cerium oxide powder was used instead of zirconium oxide powder and zirconium oxychloride was used instead of cerium sulfate.
Exhaust gas purifying catalysts of Examples 5a-5b and Comparative Example 5 shown in the table were obtained.

得られた排気ガス浄化用触媒は実施例1と同様の浄化率
測定試験に供され、結果を第6表に示す。
The obtained exhaust gas purifying catalyst was subjected to the same purification rate measurement test as in Example 1, and the results are shown in Table 6.

(実施例6、比較例6) スラリーに酸化ジルコニウム粉末、酸化セリウム粉末お
よびアルミナ粉末を第7表の組成比とな るように配合したもの、および水の混合物を用いるこ
と、焼成温度を1000℃としたこと以外は実施例3、比較
例3と同様にして、実施例6a〜6b、比較例6a〜6bの排気
ガス浄化用触媒を得た。
(Example 6, Comparative Example 6) Zirconium oxide powder, cerium oxide powder and alumina powder were added to the slurry in the composition ratios shown in Table 7. Exhaust of Examples 6a to 6b and Comparative Examples 6a to 6b in the same manner as Example 3 and Comparative Example 3 except that a mixture of water and water was used, and the firing temperature was 1000 ° C. A gas purification catalyst was obtained.

得られた排気ガス浄化用触媒は実施例1と同様の洗浄率
測定試験に供され、結果を第7表に示す。
The obtained exhaust gas purifying catalyst was subjected to the same cleaning rate measurement test as in Example 1, and the results are shown in Table 7.

(実施例7、比較例7) コージェライト質ハニカム担体基材の代わりにアルミニ
ウムを含むフェライト系金属ハニカム担体基材を用いる
こと以外は実施例1、比較例1と同様にして第7表に示
す実施例7a〜7b、比較例7の排気ガス浄化用触媒を得
た。
(Example 7 and Comparative Example 7) Table 7 shows the same as Example 1 and Comparative Example 1 except that a ferritic metal honeycomb carrier substrate containing aluminum was used instead of the cordierite honeycomb carrier substrate. Exhaust gas purifying catalysts of Examples 7a to 7b and Comparative Example 7 were obtained.

得られた排気ガス浄化用触媒は実施例1と同様の浄化率
測定試験に供され、結果を第7表に示す。
The obtained exhaust gas purifying catalyst was subjected to the same purification rate measurement test as in Example 1, and the results are shown in Table 7.

(実施例8、比較例8) アルミニウム5wt%、クロム20wt%、残部鉄からなるフ
ェライト系金属ハニカム担体を用い、二酸化炭素雰囲気
中900℃で10分間、さらに空気中900℃で1時間熱処理
し、さらに実施例1と同様にして担体基材表面に実施例
1と同 様の活性アルミナからなる触媒担持層を形成する。この
担体基材を用いて実施例1、比較例1と同様にして第8
表に示す実施例8、比較例8a〜8bの排気ガス浄化用触媒
を得た。
(Example 8 and Comparative Example 8) Using a ferrite metal honeycomb carrier composed of aluminum 5 wt%, chromium 20 wt% and balance iron, heat treatment was performed in a carbon dioxide atmosphere at 900 ° C for 10 minutes, and in air at 900 ° C for 1 hour. Further, the same procedure as in Example 1 was performed on the surface of the carrier substrate in the same manner as in Example 1. A catalyst supporting layer made of activated alumina is formed. Using this carrier substrate, in the same manner as in Example 1 and Comparative Example 1,
Exhaust gas purifying catalysts of Example 8 and Comparative Examples 8a to 8b shown in the table were obtained.

得られた排気ガス浄化用触媒は実施例1と同様の浄化率
測定試験に供され、結果を第8表に示す。
The obtained exhaust gas purifying catalyst was subjected to the same purification rate measurement test as in Example 1, and the results are shown in Table 8.

(評価) それぞれの表より明らかに、いずれの実施例も比較例に
比べて浄化率に優れている。これは、実施例の排気ガス
浄化用触媒には酸化セリウムと酸化ジルコニウムとが少
なくとも一部複合酸化物または固溶体として共存してい
る効果によるものであることが明らかである。
(Evaluation) Clearly from each table, all of the examples are superior in purification rate to the comparative examples. It is clear that this is due to the effect that cerium oxide and zirconium oxide coexist at least in part as a composite oxide or solid solution in the exhaust gas purifying catalyst of the example.

また第1表より実施例の排気ガス浄化用触媒では、酸化
セリウムの粒成長はほとんどなく、従ってCO転換率(酸
素ストレージ能)に優れていることが明らかである。そ
してセリウム原子に対するジルコニウム原子のモル比が
大きくなるにつれて粒子径が小さくなり、逆にCO転換率
が低下する傾向も読み取ることができる。
Further, it is clear from Table 1 that the exhaust gas purifying catalysts of the Examples have almost no grain growth of cerium oxide and therefore have an excellent CO conversion rate (oxygen storage capacity). It can also be read that the particle size decreases as the molar ratio of zirconium atoms to cerium atoms increases, and conversely the CO conversion rate decreases.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 希夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 小澤 正邦 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 磯谷 彰男 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (56)参考文献 特開 昭61−197036(JP,A) 特開 昭61−157347(JP,A) 特開 昭61−93832(JP,A) 特開 昭61−78439(JP,A) 特開 昭59−209646(JP,A) 特開 昭56−87430(JP,A) 特開 昭63−88040(JP,A) 特開 昭62−282641(JP,A) 実開 昭62−1737(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Nobuo Kimura, Inventor Nozomi Kimura, Aichi-gun, Aichi-gun, Nagakute, No. 41, Yokoshiro, 1st place, Toyota Central Research Institute Co., Ltd. (72) Inventor Masakuni Ozawa Nagakute, Aichi-gun, Aichi 1 in 41 Chuo Yokoido, Central Research Institute, Ltd. (72) Inventor Akio Isoya 1 in 41, Nagakute-cho, Aichi-gun, Aichi Prefecture Toyota Central Research Institute, 1 (56) References 61-197036 (JP, A) JP 61-157347 (JP, A) JP 61-93832 (JP, A) JP 61-78439 (JP, A) JP 59-209646 (JP, A) JP-A-56-87430 (JP, A) JP-A-63-88040 (JP, A) JP-A-62-282641 (JP, A) Actual development-Sho 62-1737 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】担体基材と、該担体基材表面に形成された
触媒担持層と、該触媒担持層に担持された触媒金属と、
からなる排気ガス浄化用触媒において、 該触媒担持層は少なくとも表面層にセリウム酸化物とジ
ルコニウム酸化物及び触媒金属を含み、該セリウム酸化
物と該ジルコニウム酸化物の少なくとも一部は複合酸化
物または固溶体として存在し、該複合酸化物または固溶
体のセリウム原子数に対するジルコニウム原子数の比
(Zr/Ce)が5/95〜70/30の範囲にあることを特徴とする
排気ガス浄化用触媒。
1. A support base material, a catalyst support layer formed on the surface of the support base material, and a catalyst metal supported on the catalyst support layer.
In the exhaust gas purifying catalyst, the catalyst-supporting layer contains cerium oxide, zirconium oxide and a catalyst metal in at least the surface layer, and at least a part of the cerium oxide and the zirconium oxide is a composite oxide or a solid solution. And a ratio of the number of zirconium atoms to the number of cerium atoms (Zr / Ce) of the complex oxide or the solid solution is in the range of 5/95 to 70/30.
JP61262521A 1986-04-11 1986-11-04 Exhaust gas purification catalyst Expired - Lifetime JPH0675675B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61262521A JPH0675675B2 (en) 1986-11-04 1986-11-04 Exhaust gas purification catalyst
AU80620/87A AU595655B2 (en) 1986-11-04 1987-11-03 Catalyst for the purification of exhaust gas
DE19873737419 DE3737419A1 (en) 1986-11-04 1987-11-04 EXHAUST GAS CLEANER
US07/290,421 US4927799A (en) 1986-04-11 1988-12-27 Catalyst for the purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61262521A JPH0675675B2 (en) 1986-11-04 1986-11-04 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPS63116741A JPS63116741A (en) 1988-05-21
JPH0675675B2 true JPH0675675B2 (en) 1994-09-28

Family

ID=17376958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61262521A Expired - Lifetime JPH0675675B2 (en) 1986-04-11 1986-11-04 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JPH0675675B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122917A1 (en) 2006-03-30 2007-11-01 Cataler Corporation Exhaust gas purifying catalyst and method for producing same
WO2008004452A1 (en) 2006-07-06 2008-01-10 Cataler Corporation Oxygen storage material
WO2008093471A1 (en) 2007-02-01 2008-08-07 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Catalyst system for use in exhaust gas purification apparatus for automobiles, exhaust gas purification apparatus using the catalyst system, and exhaust gas purification method
WO2009054315A1 (en) 2007-10-23 2009-04-30 Cataler Corporation Exhaust gas purification catalyst
WO2010064497A1 (en) 2008-12-03 2010-06-10 第一稀元素化学工業株式会社 Exhaust gas purifying catalyst, exhaust gas purifying apparatus using same, and exhaust gas purifying method
WO2010103870A1 (en) 2009-03-09 2010-09-16 第一稀元素化学工業株式会社 Exhaust gas purifying catalyst, exhaust gas purifying apparatus using same, and method for purifying exhaust gas
WO2013065421A1 (en) 2011-10-31 2013-05-10 エヌ・イー ケムキャット株式会社 Exhaust gas purifying catalyst
WO2013136821A1 (en) 2012-03-14 2013-09-19 エヌ・イーケムキャット株式会社 Catalyst composition for exhaust gas cleaning and catalyst for automobile exhaust gas cleaning
WO2014002667A1 (en) 2012-06-28 2014-01-03 エヌ・イーケムキャット株式会社 Catalyst composition for exhaust gas purification and exhaust gas purifying catalyst for automobiles
US9597663B2 (en) 2013-12-11 2017-03-21 Cataler Corporation Exhaust cleaning catalyst
EP3153225A1 (en) 2015-10-08 2017-04-12 Cataler Corporation Exhaust gas-purifying catalyst
WO2017150350A1 (en) 2016-03-01 2017-09-08 株式会社キャタラー Exhaust gas purification catalyst
US9855550B2 (en) 2016-01-21 2018-01-02 Cataler Corporation Exhaust gas-purifying catalyst
US10765998B2 (en) 2016-05-25 2020-09-08 N.E. Chemcat Corporation Three-way catalyst for purifying gasoline engine exhaust gas

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015617A (en) * 1988-04-14 1991-05-14 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for purifying exhaust gas and method for production thereof
CA2011484C (en) * 1989-04-19 1997-03-04 Joseph C. Dettling Palladium-containing, ceria-supported platinum catalyst and catalyst assembly including the same
DE69018571T2 (en) * 1989-06-09 1995-09-28 N E Chemcat Corp EXHAUST GAS PURIFICATION CATALYST WITH EXCELLENT THERMAL RESISTANCE AND METHOD FOR THE PRODUCTION THEREOF.
JP2734808B2 (en) * 1991-05-10 1998-04-02 日産自動車株式会社 Exhaust gas purification catalyst
US5837642A (en) * 1995-12-26 1998-11-17 Daihatsu Motor Co., Ltd. Heat-resistant oxide
JP3861385B2 (en) * 1997-06-27 2006-12-20 株式会社豊田中央研究所 Lean exhaust gas purification catalyst
EP1165946B1 (en) * 1998-11-13 2005-10-12 Engelhard Corporation Catalyst and method for reducing exhaust gas emissions
JP4503314B2 (en) * 2003-03-10 2010-07-14 株式会社キャタラー Exhaust gas purification catalyst
JP4199691B2 (en) 2004-03-25 2008-12-17 田中貴金属工業株式会社 catalyst
JP3795895B2 (en) 2004-03-25 2006-07-12 田中貴金属工業株式会社 Catalyst production method
JP4426379B2 (en) 2004-05-24 2010-03-03 Tanakaホールディングス株式会社 Catalyst precursor and catalyst, and catalyst precursor and catalyst production method
JP4787704B2 (en) 2006-09-15 2011-10-05 第一稀元素化学工業株式会社 Catalyst system used in automobile exhaust gas purification device, exhaust gas purification device using the same, and exhaust gas purification method
JP5322526B2 (en) * 2008-07-17 2013-10-23 エヌ・イーケムキャット株式会社 Honeycomb structure type catalyst for purifying exhaust gas discharged from automobile, method for manufacturing the same, and method for purifying exhaust gas using the catalyst
WO2011010699A1 (en) 2009-07-24 2011-01-27 株式会社 キャタラー Exhaust gas purification catalyst
EP2457653A4 (en) 2009-07-24 2014-03-19 Cataler Corp Exhaust gas purification catalyst
EP2476486A4 (en) 2009-09-10 2014-03-19 Cataler Corp Catalyst for exhaust gas purification
JP5798547B2 (en) * 2012-11-29 2015-10-21 国立大学法人 名古屋工業大学 Exhaust gas purification catalyst carrier and catalyst using the same
FR3003557B1 (en) * 2013-03-19 2015-05-01 Rhodia Operations COMPOSITION BASED ON ZIRCONIUM OXIDE, CERIUM, NIOBIUM AND TIN, PROCESS FOR PREPARATION AND USE IN CATALYSIS
US10260395B2 (en) * 2015-07-01 2019-04-16 Basf Corporation Nitrous oxide removal catalysts for exhaust systems

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609861B2 (en) * 1979-12-19 1985-03-13 株式会社豊田中央研究所 Catalyst for exhaust gas purification
JPS59209646A (en) * 1983-05-12 1984-11-28 Nippon Shokubai Kagaku Kogyo Co Ltd Honeycomb catalyst for purification of exhaust gas
FR2568143B1 (en) * 1984-07-30 1986-12-05 Prod Catalyse Ste Fse CATALYST AND METHOD FOR THE TREATMENT OF EXHAUST GASES FROM INTERNAL COMBUSTION ENGINES
JPS6178439A (en) * 1984-09-26 1986-04-22 Kiyataraa Kogyo Kk Catalyst for purifying exhaust gas
JPS61157347A (en) * 1984-12-28 1986-07-17 Nissan Motor Co Ltd Preparation of catalyst for purifying exhaust gas
JPS61197036A (en) * 1985-02-22 1986-09-01 Matsushita Electric Ind Co Ltd Catalyst for purifying exhaust gas
JPS62282641A (en) * 1986-06-02 1987-12-08 Nissan Motor Co Ltd Production of catalyst for purifying exhaust gas
JPS6388040A (en) * 1986-09-30 1988-04-19 Nippon Engeruharudo Kk Catalyst for purifying exhaust gas for vehicle and its preparation

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122917A1 (en) 2006-03-30 2007-11-01 Cataler Corporation Exhaust gas purifying catalyst and method for producing same
WO2008004452A1 (en) 2006-07-06 2008-01-10 Cataler Corporation Oxygen storage material
WO2008093471A1 (en) 2007-02-01 2008-08-07 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Catalyst system for use in exhaust gas purification apparatus for automobiles, exhaust gas purification apparatus using the catalyst system, and exhaust gas purification method
WO2009054315A1 (en) 2007-10-23 2009-04-30 Cataler Corporation Exhaust gas purification catalyst
WO2010064497A1 (en) 2008-12-03 2010-06-10 第一稀元素化学工業株式会社 Exhaust gas purifying catalyst, exhaust gas purifying apparatus using same, and exhaust gas purifying method
US8337791B2 (en) 2008-12-03 2012-12-25 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Exhaust gas purification catalyst, exhaust gas purification apparatus using the same and exhaust gas purification method
WO2010103870A1 (en) 2009-03-09 2010-09-16 第一稀元素化学工業株式会社 Exhaust gas purifying catalyst, exhaust gas purifying apparatus using same, and method for purifying exhaust gas
US9061266B2 (en) 2011-10-31 2015-06-23 N.E. Chemcat Corporation Exhaust gas purifying catalyst
WO2013065421A1 (en) 2011-10-31 2013-05-10 エヌ・イー ケムキャット株式会社 Exhaust gas purifying catalyst
WO2013136821A1 (en) 2012-03-14 2013-09-19 エヌ・イーケムキャット株式会社 Catalyst composition for exhaust gas cleaning and catalyst for automobile exhaust gas cleaning
US9339793B2 (en) 2012-03-14 2016-05-17 N.E. Chemcat Corporation Catalyst composition for exhaust gas cleaning and catalyst for automobile exhaust gas cleaning
WO2014002667A1 (en) 2012-06-28 2014-01-03 エヌ・イーケムキャット株式会社 Catalyst composition for exhaust gas purification and exhaust gas purifying catalyst for automobiles
US9339794B2 (en) 2012-06-28 2016-05-17 N.E. Chemcat Corporation Catalyst composition for exhaust gas purification and exhaust gas purifying catalyst for automobiles
US9597663B2 (en) 2013-12-11 2017-03-21 Cataler Corporation Exhaust cleaning catalyst
EP3153225A1 (en) 2015-10-08 2017-04-12 Cataler Corporation Exhaust gas-purifying catalyst
US9855550B2 (en) 2016-01-21 2018-01-02 Cataler Corporation Exhaust gas-purifying catalyst
WO2017150350A1 (en) 2016-03-01 2017-09-08 株式会社キャタラー Exhaust gas purification catalyst
US10710023B2 (en) 2016-03-01 2020-07-14 Cataler Corporation Exhaust gas purification catalyst
US10765998B2 (en) 2016-05-25 2020-09-08 N.E. Chemcat Corporation Three-way catalyst for purifying gasoline engine exhaust gas

Also Published As

Publication number Publication date
JPS63116741A (en) 1988-05-21

Similar Documents

Publication Publication Date Title
JPH0675675B2 (en) Exhaust gas purification catalyst
JPH0644999B2 (en) Exhaust gas purification catalyst
JP3498453B2 (en) Exhaust gas purification catalyst and method for producing the same
EP0272136B1 (en) Catalyst for purifying exhaust gas and method for its production
JPH0675676B2 (en) Exhaust gas purification catalyst
EP0428753B1 (en) Exhaust gas purifying catalyst excellent in thermal resistance and method of production thereof
US4957896A (en) Catalyst for purification of exhaust gases
KR100567726B1 (en) Exhaust gas purifying catalyst
JPH09500570A (en) Layered catalyst composite
JP2934906B2 (en) Multifunctional catalyst for treating internal combustion engine exhaust gas containing U, U promoter and precious metal and method for preparing the same
JPH08281107A (en) Catalyst for purifying exhaust gas
CN108883397B (en) Exhaust gas purifying catalyst, method for producing same, and exhaust gas purifying apparatus using same
JPH10286462A (en) Catalyst of purifying exhaust gas
JPH0547263B2 (en)
JPH05285386A (en) Production of catalyst for purification of exhaust gas
JPH0582258B2 (en)
JP2000262898A (en) Catalyst for purifying exhaust gas
JPH09248462A (en) Exhaust gas-purifying catalyst
JP3072520B2 (en) Exhaust gas purification catalyst
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3222184B2 (en) Method for producing exhaust gas purifying catalyst
JPH07251073A (en) Exhaust gas purifying catalyst
JP3622893B2 (en) NOx absorbent and exhaust gas purification catalyst using the same
JP3246295B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term