JPS63116741A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPS63116741A
JPS63116741A JP61262521A JP26252186A JPS63116741A JP S63116741 A JPS63116741 A JP S63116741A JP 61262521 A JP61262521 A JP 61262521A JP 26252186 A JP26252186 A JP 26252186A JP S63116741 A JPS63116741 A JP S63116741A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
oxide
cerium
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61262521A
Other languages
Japanese (ja)
Other versions
JPH0675675B2 (en
Inventor
Shinichi Matsumoto
伸一 松本
Naoto Miyoshi
直人 三好
Mareo Kimura
希夫 木村
Masakuni Ozawa
正邦 小澤
Akio Isotani
磯谷 彰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP61262521A priority Critical patent/JPH0675675B2/en
Priority to AU80620/87A priority patent/AU595655B2/en
Priority to DE19873737419 priority patent/DE3737419A1/en
Publication of JPS63116741A publication Critical patent/JPS63116741A/en
Priority to US07/290,421 priority patent/US4927799A/en
Publication of JPH0675675B2 publication Critical patent/JPH0675675B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To prevent the lowering in purifying capacity at high temp., by forming a catalyst for purifying exhaust gas by supporting a catalytic metal by a catalyst supporting layer consisting of cerium oxide and zirconium partially present as a composite oxide. CONSTITUTION:A catalyst for purifying exhaust gas is formed by supporting a catalytic metal by a catalyst supporting layer consisting of cerium oxide and zirconium oxide partially present at least as a composite oxide or a solid solution. In this case, the cerium atom and zirconium atom supported as the composite oxide or solid solution are pref. constituted so that the atomic ratio of the number of zirconium atom to that cerium atoms is 5:95-80:20. As the catalytic metal, a noble metal such as Pt, Rh, Pd, Ir, Ru or the like can be used.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は自動車エンジンなどの内燃機関から排出される
排気ガス中に含まれるCo (−Fl?化炭素)、HC
(炭化水素)、N0x(窒素酸化物)を除去して浄化す
る排気ガス浄化用触媒に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to the use of Co (-Fl? carbon) and HC contained in exhaust gas discharged from internal combustion engines such as automobile engines.
The present invention relates to an exhaust gas purifying catalyst that removes and purifies (hydrocarbons) and NOx (nitrogen oxides).

[従来の技術] 従来自動車の排気ガス浄化用触媒は、一般に触媒担持層
と、触媒担持層に担持された触媒金属と、からなるもの
が知られている。そして効率良い浄化を目的として、種
々の排気ガス浄化用触媒が開発されている。
[Prior Art] Conventional catalysts for purifying exhaust gas from automobiles are generally known to consist of a catalyst support layer and a catalytic metal supported on the catalyst support layer. Various exhaust gas purification catalysts have been developed for the purpose of efficient purification.

例えば特公昭59−41775号、待間昭59−906
95号、特公昭58−20307号などには、セリウム
を利用した技術が開示されている。
For example, Special Publication No. 59-41775, Machima 59-906
No. 95 and Japanese Patent Publication No. 58-20307 disclose techniques using cerium.

これらの排気ガス浄化用触媒ではセリウムは酸化物とし
て存在し、(1)式に示す反応により酸素を放出あるい
は取込み(酸素ストレージm)、GOおよびl−1cの
酸化反応およびNOxの還元反応を調節して浄化効率の
向上を図るものである。
In these exhaust gas purification catalysts, cerium exists as an oxide, releases or takes in oxygen (oxygen storage m) through the reaction shown in equation (1), and regulates the oxidation reaction of GO and l-1c and the reduction reaction of NOx. This aims to improve purification efficiency.

Ce O2;=Ce Ot−x + 202−(1)と
ころで上記(1)式の反応は酸化セリウム粒子表面で生
じることがわかっている。しかしながら上記従来の排気
ガス浄化用触媒では、800℃以上の高温下で用いられ
ると酸化セリウムが粒成長して表面積が減少する場合が
あった。従って酸素ストレージ能の低下により浄化性能
が低下するという不具合があった。
Ce O2;=Ce Ot-x + 202-(1) By the way, it is known that the reaction of the above formula (1) occurs on the surface of the cerium oxide particles. However, in the conventional exhaust gas purifying catalyst described above, when used at a high temperature of 800° C. or higher, the cerium oxide may grow grains and the surface area may decrease. Therefore, there was a problem in that the purification performance deteriorated due to a decrease in oxygen storage capacity.

また、活性アルミナの安定化をも目標として、特公昭6
0−7537号、特開昭48−18180号、特[61
−3531号、USP30030201USP3951
860%LISP4170573などには、セリウムと
他の希土類や遷移金属とを同時に用いる技術が開示され
ている。例えば特公昭60−7537号には、セリウム
とランタンとを同時に用い、(2)式に示す複合酸化物
Ce +−z L aX O2−丁+・(2)(0,3
≦ヱ≦0.5) を形成したものが開示されている。
In addition, with the goal of stabilizing activated alumina,
No. 0-7537, JP-A-48-18180, Special [61
-3531, USP30030201USP3951
860%LISP4170573 and the like disclose a technique of using cerium and other rare earths or transition metals at the same time. For example, in Japanese Patent Publication No. 60-7537, cerium and lanthanum are used at the same time, and a composite oxide Ce
≦ヱ≦0.5) is disclosed.

この排気ガス浄化用触媒は、複合酸化物のホタル石型構
造に酸素空孔をもつ格子欠陥を形成させ、酸素ストレー
ジ効果に耐久性をもたせたものである。しかしながらこ
の排気ガス浄化用触媒においても、上記はどではないが
酸化セリウムに粒成長が生じ、浄化性能が低下すること
がわかった。
This exhaust gas purification catalyst has a fluorite-type structure of a composite oxide formed with lattice defects having oxygen vacancies, and has a durable oxygen storage effect. However, even in this exhaust gas purification catalyst, grain growth occurs in the cerium oxide, which is not the case with the above, and purification performance is reduced.

[発明が解決しようとする問題点] 本発明は上記事情に鑑みてなされたものであり、高温度
下における酸化セリウムの粒成長を抑制し、浄化性能の
低下を防止した排気ガス浄化用触媒を提供するものであ
る。
[Problems to be Solved by the Invention] The present invention has been made in view of the above circumstances, and provides an exhaust gas purification catalyst that suppresses grain growth of cerium oxide under high temperatures and prevents deterioration in purification performance. This is what we provide.

[問題点を解決するための手段] 本発明の排気ガス浄化用触媒は、触媒担持層と、触媒担
持層に担持された触媒金属と、からなる排気ガス浄化用
触媒において、 触媒担持層はセリウム酸化物とジルコニウム酸化物とを
含み、セリウム酸化物とジルコニウム酸化物の少なくと
も一部は複合酸化物または固溶体として存在しているこ
とを特徴とする。
[Means for Solving the Problems] The exhaust gas purifying catalyst of the present invention is an exhaust gas purifying catalyst comprising a catalyst supporting layer and a catalytic metal supported on the catalyst supporting layer, wherein the catalyst supporting layer is made of cerium. It is characterized in that it contains an oxide and a zirconium oxide, and at least a portion of the cerium oxide and the zirconium oxide exist as a composite oxide or a solid solution.

触媒担持層は触媒金属が担持されるものであり、例えば
比表面積の大きな活性アルミナ、ジルコニア、酸化チタ
ンなどを用いることができる。一般にはγ−アルミナ、
θ−アルミナなどが用いられる。なお、触媒担持層は、
そのままの状態で用いてもよいし、担体基材を用い、そ
の担体基材表面に触媒担持層を形成してもよい。
The catalyst supporting layer supports a catalytic metal, and for example, activated alumina, zirconia, titanium oxide, etc., which have a large specific surface area, can be used. Generally γ-alumina,
θ-alumina or the like is used. In addition, the catalyst support layer is
It may be used as it is, or a carrier base material may be used and a catalyst supporting layer may be formed on the surface of the carrier base material.

なお担体基材はハニカム形状のモノリス担体基材、ある
いはベレット状の担体基材など、従来と同様のものを用
いることができる。また担体基材の材質は、コージェラ
イト、ムライト、アルミナ、マグネシア、スピネルなど
のセラミックス、あるいはフェライト鋼などの耐熱性金
属など公知のものを用いることができる。
Note that the carrier base material may be the same as conventional carrier base materials, such as a honeycomb-shaped monolith carrier base material or a pellet-shaped carrier base material. Further, as the material of the carrier base material, known materials such as ceramics such as cordierite, mullite, alumina, magnesia, and spinel, or heat-resistant metals such as ferritic steel can be used.

触媒担持層に担持される触媒金属としては、白金(Pt
)、ロジウム(R1−1)、パラジウム(Pd)、イリ
ジウム(Ir)、ルテニウム(Ru)、オスミウム(O
s)などの貴金属、あるいはクロム(Cr)、ニッケル
(N i ) 、バナジウム(V)、銅(Cu)、コバ
ルト(CO)、マンガン(Mn)などの卑金属など、従
来と同様のらのを用いることができる。
The catalyst metal supported on the catalyst support layer is platinum (Pt
), rhodium (R1-1), palladium (Pd), iridium (Ir), ruthenium (Ru), osmium (O
Use the same metals as before, such as noble metals such as s), or base metals such as chromium (Cr), nickel (N i ), vanadium (V), copper (Cu), cobalt (CO), and manganese (Mn). be able to.

本発明の最大の特徴は、触媒担持層はセリウム酸化物と
ジルコニウム酸化物とを含み、セリウム酸化物とジルコ
ニウム酸化物の少なくとも一部は複合酸化物または固溶
体として存在しているところにある。
The most important feature of the present invention is that the catalyst supporting layer contains cerium oxide and zirconium oxide, and at least a portion of the cerium oxide and zirconium oxide exist as a composite oxide or a solid solution.

酸化セリウムは単独酸化物では粒成長し易く、本発明者
らの研究によれば、1000℃で加熱すると直径0.1
μm程度にまで粒成長することがわかっている。そして
1000’Cで加熱後に(3)式の反応によりCOを浄
化しようどしても、反応率はほとんどゼロとなってしま
い、酸素ストレージ能が著しく低下プる。
Cerium oxide, as a single oxide, tends to grow grains, and according to research by the present inventors, when heated at 1000°C, grains grow to a diameter of 0.1
It is known that grains grow to about μm. Even if an attempt is made to purify CO by the reaction of formula (3) after heating at 1000'C, the reaction rate becomes almost zero, and the oxygen storage capacity is significantly reduced.

GO−1−CeO2−+ XCO2+Ce02−iニー
 (3)そこで本発明者らは鋭意研究の結果、酸化セリ
ウムと酸化ジルコニウムとを共存させて熱処理したもの
においては酸化セリウムの粒成長が著しく抑制され、高
温で加熱後の(3)式の反応率も70%以上と非常に高
くなることを見出し本発明を完成したものである。
GO-1-CeO2-+ The present invention was completed by discovering that the reaction rate of formula (3) after heating at high temperature was also very high, at 70% or more.

なお、本発明者らは、酸化セリウム粉末にオキシ硝酸ジ
ルコニウム水溶液を含浸させ、もう一方では酸化ジルコ
ニウム粉末に硝酸セリウム水溶液を含浸させ、それぞれ
600”Cで5時間熱処理し、その時の結晶形態をX線
回折にて分析した。その結果第9表に示すように、酸化
セリウム粉末にオキシ硝酸ジルコニウム水溶液を含浸し
た場合には、酸化セリウム結晶相を示し、その格子定数
は短くなっている。これにより酸化セリウム結晶格子中
にジルコニウムが置換、固溶していることがわかる。ま
た酸化ジルコニウム粉末へ硝酸セリウム水溶液を含浸さ
せた場合は3相に分相しており、格子定数が厳密には定
まらない。これにより酸化ジルコニウムと酸化セリウム
との部分固溶ないしは複合酸化物の生成が示唆される。
The present inventors impregnated a cerium oxide powder with a zirconium oxynitrate aqueous solution, and impregnated a zirconium oxide powder with a cerium nitrate aqueous solution, heat-treated each at 600"C for 5 hours, and changed the crystal form to X. It was analyzed by line diffraction. As shown in Table 9, when cerium oxide powder was impregnated with a zirconium oxynitrate aqueous solution, it showed a cerium oxide crystal phase and its lattice constant was short. It can be seen that zirconium is substituted or dissolved in the cerium oxide crystal lattice.Also, when zirconium oxide powder is impregnated with a cerium nitrate aqueous solution, it separates into three phases, and the lattice constant is not strictly determined. This suggests the formation of a partial solid solution or a composite oxide between zirconium oxide and cerium oxide.

触媒担持層にセリウム酸化物とジルコニウム酸化物とを
含む複合酸化物、または固溶体を形成するには、セリウ
ム塩およびジルコニウム塩の水溶液を同時にあるいは別
々に触媒担持層に含浸させ、600℃以上の温度で焼成
することにより行うことができる。またセリウムおよび
ジルコニウムの少なくとも一方に酸化物を用い、触媒担
持層形酸第  9  表 時に活性アルミナ粉末と混合後800℃以上の温度で焼
成して行うこともできる。温度がこれらの値より低いと
複合酸化物または固溶体が生成しに(く、酸化セリウム
の粒成長が生じやすくなる。
To form a composite oxide or solid solution containing cerium oxide and zirconium oxide in the catalyst support layer, the catalyst support layer is impregnated with an aqueous solution of cerium salt and zirconium salt simultaneously or separately, and the temperature is 600°C or higher. This can be done by firing with. It is also possible to use an oxide for at least one of cerium and zirconium, mix it with activated alumina powder during catalyst-supported layered acid, and then sinter it at a temperature of 800° C. or higher. If the temperature is lower than these values, complex oxides or solid solutions are difficult to form, and grain growth of cerium oxide tends to occur.

なお、酸化セリウムと酸化ジルコニウムとは全体が複合
酸化物または固溶体となっていることが望ましいが、少
なくとも一部であっても酸化セリウムの粒成長防止効果
が得られることはいうまでもない。
Although it is desirable that the cerium oxide and zirconium oxide be entirely in the form of a composite oxide or a solid solution, it goes without saying that the effect of preventing the grain growth of cerium oxide can be obtained even if they are at least partially present.

また酸化セリウムと酸化ジルコニウムとは触媒担持層内
部に存在していてもよいし、担持層表面に担持されたよ
うな状態で存在していてもよい。
Further, cerium oxide and zirconium oxide may exist inside the catalyst support layer, or may exist in a state where they are supported on the surface of the support layer.

特に担持層表面にあれば排気ガスとの接触が容易であり
、Pli素スヒストレージ能大に発揮できるので触媒性
能が特に向上する。
In particular, if it is on the surface of the support layer, it can easily come into contact with the exhaust gas and exhibit a large amount of Pli element hysteresis storage, so that the catalyst performance is particularly improved.

なお、セリウムとジルコニウムとの比率は特に制限され
ないが、複合酸化物または固溶体として担持されたセリ
ウム原子とジルコニウム原子とは、セリウム原子の数に
対するジルコニウム原子の数の原子比が5/95〜80
/20となるように構成するのが好ましい。この原子比
が5/95より小さいと酸化セリウムに粒成長が生じつ
すくなり、80 、/ 20より大きくなると酸素スト
レージ能が不足して浄化性能が低下するようになる。
Note that the ratio of cerium and zirconium is not particularly limited, but the atomic ratio of the number of zirconium atoms to the number of cerium atoms is 5/95 to 80 between cerium atoms and zirconium atoms supported as a composite oxide or solid solution.
/20 is preferable. When this atomic ratio is smaller than 5/95, grain growth tends to occur in cerium oxide, and when it is larger than 80/20, the oxygen storage capacity becomes insufficient and the purification performance deteriorates.

[発明の作用および効果] 本発明の排気ガス浄化用触媒では、触媒担持層はセリウ
ム酸化物とジルコニウム酸化物とを含み、セリウム酸化
物とジルコニウム酸化物の少なくとも一部は複合酸化物
または固溶体として存在している。そしてその機構はま
だ明らかとなっていないが、複合酸化物または固溶体と
して存在することにより酸化はリウムの粒成長が抑ルリ
されている。
[Operations and Effects of the Invention] In the exhaust gas purifying catalyst of the present invention, the catalyst supporting layer contains cerium oxide and zirconium oxide, and at least a part of the cerium oxide and zirconium oxide is present as a composite oxide or a solid solution. Existing. Although the mechanism is not yet clear, the presence of lithium as a composite oxide or solid solution suppresses oxidation and grain growth of lithium.

すなわら本発明の排気ガス浄化用触媒によれば、高温下
で使用した場合の酸化セリウムの粒成長が抑制されるの
で、酸化セリウム自体の表面積は充分大きな値を維持で
きる。従って酸化セリウムの酸素ストレージ能が低下す
るような不具合がなく、浄化性能を長期に渡って高度に
維持することができる。
That is, according to the exhaust gas purifying catalyst of the present invention, grain growth of cerium oxide is suppressed when used at high temperatures, so that the surface area of cerium oxide itself can maintain a sufficiently large value. Therefore, there is no problem such as a decrease in the oxygen storage capacity of cerium oxide, and the purification performance can be maintained at a high level over a long period of time.

[実施例] 以下実施例により具体的に説明づ゛る。[Example] This will be explained in detail below using examples.

(実施例1、比較例1) アルミナ含有率10wt%のアルミナシルア00Qと、
アルミナ粉末10oOgと、蒸溜水300gとを混合し
、撹拌してスラリーを調整した。
(Example 1, Comparative Example 1) Alumina Silua 00Q with an alumina content of 10 wt%,
100 g of alumina powder and 300 g of distilled water were mixed and stirred to prepare a slurry.

このスラリーにコージェライト質からなるハニカム形状
のモノリス触媒担体樋材を1分間浸漬後引き上げ、空気
流によりセル内のスラリーを吹き飛ばし150℃で1時
間乾燥後、700℃で2時間焼成した。この操作を2回
繰返して活性アルミナからなる触媒担持層を形成した。
A honeycomb-shaped monolithic catalyst carrier gutter material made of cordierite was immersed in this slurry for 1 minute, then pulled up, the slurry inside the cell was blown off with an air stream, dried at 150°C for 1 hour, and then calcined at 700°C for 2 hours. This operation was repeated twice to form a catalyst support layer made of activated alumina.

次ニti11Mtリウム(Ce (NO3) 3 )が
0゜Q8mol/、l!およびオキシ61!!酸ジルコ
ニウム(ZrO(NO3)t )が0.32mo l/
J)溶解した混合水溶液に、前記触媒担持層を形成した
モノリス担体基材を1分間浸漬後引き上げ、余分な水分
を吹き飛ばして200℃で3時間乾燥後、空気中600
℃で5時間焼成した。これにより酸化セリウムおよび酸
化ジルコニウムを含む触媒担持層をもつモノリス担体基
材(1A)を得た。
Next, Niti11Mt (Ce (NO3) 3 ) is 0°Q8mol/, l! and Oxy61! ! Zirconium acid (ZrO(NO3)t) is 0.32 mol/
J) The monolithic carrier base material on which the catalyst supporting layer was formed was immersed in the dissolved mixed aqueous solution for 1 minute, then pulled up, the excess water was blown off, and after drying at 200°C for 3 hours, it was heated to 600°C in the air.
It was baked at ℃ for 5 hours. As a result, a monolithic carrier base material (1A) having a catalyst supporting layer containing cerium oxide and zirconium oxide was obtained.

なお、硝酸セリウムおよびオキシ硝酸ジルコニウムの濃
度が異なる混合水溶液を用いること以外は同様にして、
第1表に示す値でセリウム原子およびジルコニウム原子
を含有するモノリス担体基材(1[3〜1E)を得た。
In addition, in the same manner except that mixed aqueous solutions with different concentrations of cerium nitrate and zirconium oxynitrate were used,
Monolith carrier base materials (1[3-1E) containing cerium atoms and zirconium atoms with the values shown in Table 1 were obtained.

またオキシ硝酸ジルコニウム水溶液は用いず硝酸セリウ
ムを0.4m。
In addition, 0.4 m of cerium nitrate was used without using the zirconium oxynitrate aqueous solution.

1/ρ含む水溶液のみに浸漬すること以外は同様にして
モノリス担体基材(1F)を、硝酸セリウム水溶液は用
いずオキシ硝酸ジルコニウムを0゜4mol/N含む水
溶液のみに浸漬すること以外は同様にしてモノリス担体
基材(1G)を得た。
The monolith carrier base material (1F) was immersed in the same manner except that it was immersed only in an aqueous solution containing 1/ρ, but the monolithic carrier base material (1F) was immersed only in an aqueous solution containing 0°4 mol/N of zirconium oxynitrate without using an aqueous cerium nitrate solution. A monolith carrier base material (1G) was obtained.

次にこれらのモノリス担体基材(1△〜IG>のそれぞ
れについて、蒸溜水に浸漬し充分吸水させた後引き上げ
て余分な水分を吹き飛ばし、ジニトロジアンミン白金を
1.Oa/fJ含む水溶液に1時間浸漬した。引き上げ
て余分な水分を吹き飛ばし、200℃で1時間乾燥した
。さらに塩化ロジウムを0.1o/1含む水溶液に同様
に浸漬し、乾燥して白金(Pt)およびロジウム(Rh
)を担持させて触媒化し、第1表に示す実施例1a〜1
eおよび比較例1a、比較例1bの排気ガス浄化用触媒
を得た。
Next, each of these monolithic carrier substrates (1△~IG>) was immersed in distilled water to absorb sufficient water, then pulled out to blow off excess moisture, and soaked in an aqueous solution containing 1.0a/fJ of dinitrodiammine platinum for 1 hour. It was immersed in an aqueous solution containing rhodium chloride at 0.1o/1 and dried for 1 hour at 200°C. Platinum (Pt) and rhodium (Rh
) was catalyzed by supporting Examples 1a to 1 shown in Table 1.
Exhaust gas purifying catalysts of Comparative Example 1a and Comparative Example 1b were obtained.

また上記モノリス担体基材(IA〜1G>を用い、塩化
パラジウムを1.50/ρ含む水溶液および塩化ロジウ
ムを0.2Q/fJ含む水溶液を用いて、上記と同様に
してそれぞれの基材にパラジウム(Pd)およびロジウ
ム(Rh)を担持させ、第2表に示す実施例1f〜1j
および比較例1C1比較例1dの排気ガス浄化用触媒を
得た。
Further, using the monolithic carrier base material (IA~1G>), using an aqueous solution containing 1.50/ρ of palladium chloride and an aqueous solution containing 0.2Q/fJ of rhodium chloride, palladium was added to each base material in the same manner as above. (Pd) and rhodium (Rh) were supported, Examples 1f to 1j shown in Table 2
And Comparative Example 1C1 Exhaust gas purifying catalyst of Comparative Example 1d was obtained.

さらに上記モノリス担体基材(1A〜1G)を用い、ジ
ニトロジアンミン白金を1.0G/41含む水溶液、塩
化パラジウムを1.0g/11含む水溶液および塩化ロ
ジウムを0.20/ρ含む水溶液を用いて、上記と同様
にしてそれぞれのり材に白金(Pt)、パラジウム(P
(j)およびロジウム(Rh)を担持させて触媒化し、
第3表に示す実施例1に〜1oおよび比較例1e、比較
例1fの排気ガス浄化用触媒を得た。
Furthermore, using the above monolithic carrier base materials (1A to 1G), an aqueous solution containing dinitrodiammine platinum at 1.0G/41, an aqueous solution containing palladium chloride at 1.0g/11, and an aqueous solution containing rhodium chloride at 0.20/ρ. , Platinum (Pt) and Palladium (Pt) were added to the glue materials in the same manner as above.
(j) and rhodium (Rh) are supported and catalyzed,
Exhaust gas purifying catalysts of Examples 1 to 1o, Comparative Examples 1e and 1f shown in Table 3 were obtained.

得られたそれぞれの排気ガス浄化用触媒について、31
直列6気筒エンジンの排気系に取付け、空燃比(A/F
) を14.6、大カスfA度850℃の条件で200
時間耐久試験を行った。そして耐久試験後のそれぞれの
触媒について、耐久試験と同一のエンジンを用い、A/
F−14,6、大ガス温度400℃の条件下でHc、C
o、NOXの浄化率を測定した。
For each of the obtained exhaust gas purification catalysts, 31
Attached to the exhaust system of an in-line 6-cylinder engine, the air-fuel ratio (A/F
) is 14.6, large scum fA degree is 200 under the condition of 850℃
A time durability test was conducted. Then, for each catalyst after the durability test, using the same engine as the durability test,
F-14,6, Hc, C under the condition of large gas temperature 400℃
o, NOX purification rate was measured.

また触媒金属を担持する前の上記モノリス担体基材(1
A〜IG)について、それぞれ1000℃で5時間加熱
し、その後酸化雰囲気中600℃に保持した侵、600
℃に保った状態で−酸化炭素をパルス状に流し、前記(
3)式に従って発生する二酸化炭素邑からC○転換率を
求めて酸素ストレージ能を測定した。
In addition, the monolith carrier base material (1) before supporting the catalyst metal
A to IG) were heated at 1000°C for 5 hours and then held at 600°C in an oxidizing atmosphere.
While keeping the temperature at
3) Oxygen storage capacity was measured by determining the C₂ conversion rate from the generated carbon dioxide according to the formula.

さらに上記1000℃で5時間加熱された後の担体基材
を粉砕し、X線回折法にて酸化セリウムの粒子径を測定
した。これらの結果を併せて第1表〜第3表に示す。
Furthermore, the carrier base material after being heated at 1000° C. for 5 hours was pulverized, and the particle size of cerium oxide was measured by X-ray diffraction. These results are shown in Tables 1 to 3.

(実施例2、比較例2) BET表面積100〜150m2/9および平均細孔径
300〜400オングストロームのγ−アルミナ粒状担
体(8輝ユニバーサル〈株)製)1gを用い、濃度が異
なること以外は実施例1および比較例1と同様の氾合水
溶液に浸漬し、同様に乾燥、焼成して各担体基材を19
だ。そして、実施例18〜1eおよび比較例1a〜1b
と同様に触媒化して、第4表に示す構成の実施例2a〜
2dおよび比較例2a、比較例2bの排気ガス浄化用触
媒を得た。
(Example 2, Comparative Example 2) 1 g of γ-alumina granular carrier (manufactured by Yakitori Universal Co., Ltd.) with a BET surface area of 100 to 150 m2/9 and an average pore diameter of 300 to 400 angstroms was used, except that the concentrations were different. Each carrier base material was immersed in the same flooded aqueous solution as in Example 1 and Comparative Example 1, dried and fired in the same manner as in Example 1 and Comparative Example 1.
is. And Examples 18 to 1e and Comparative Examples 1a to 1b
Examples 2a~ with the configurations shown in Table 4 were catalyzed in the same manner as
Exhaust gas purifying catalysts of Comparative Example 2d, Comparative Example 2a, and Comparative Example 2b were obtained.

得られた排気ガス浄化用触媒は実施例1と同様の浄化率
測定試験に供され、結果を第4表に示す。
The obtained exhaust gas purifying catalyst was subjected to the same purification rate measurement test as in Example 1, and the results are shown in Table 4.

(実施例3、比較例3) 上記実施例2 J3よび比較例2の、600℃で焼成さ
れたセリウムおよびジルコニウム原子をもち触媒化前の
それぞれの粒状担体基材を、振動ミルにて平均粒径7μ
mに粉砕した。そして得られたそれぞれの粉末ioom
a部と、硝酸アルミニウムを4Qwt%含有する水溶液
30重量部と、水100重ffi部とを混合し、1時間
ミリングしてそれぞれのスラリーを調整した。このスラ
リーを用いて実施例1と同様のハニカム担体に、同様の
方法で触媒担持層を形成し、実施例1a〜1eおよび比
較例1a〜1bと同様に触媒化して、第5表に示す実施
例3a〜3dおよび比較例3a、比較例3bの排気ガス
浄化用触媒を得た。
(Example 3, Comparative Example 3) The granular carrier base materials of Example 2 J3 and Comparative Example 2, which have cerium and zirconium atoms and have been calcined at 600°C and have not yet been catalyzed, were processed into average particles using a vibration mill. Diameter 7μ
It was ground to m. and each powder ioom obtained
Part a, 30 parts by weight of an aqueous solution containing 4 Qwt% of aluminum nitrate, and 100 parts by weight of water were mixed and milled for 1 hour to prepare respective slurries. Using this slurry, a catalyst support layer was formed on the same honeycomb carrier as in Example 1 in the same manner as in Example 1, and catalyzed in the same manner as in Examples 1a to 1e and Comparative Examples 1a to 1b. Exhaust gas purifying catalysts of Examples 3a to 3d and Comparative Examples 3a and 3b were obtained.

得られた排気ガス浄化用触媒は実施例1と同様の浄化率
測定試験に供され、結果を第5表に示す。
The obtained exhaust gas purifying catalyst was subjected to the same purification rate measurement test as in Example 1, and the results are shown in Table 5.

(実施例4、比較例4) 上記実施例3で用いた粒状担体を粉砕して得られたγ−
アルミナ粉末と、酸化ジルコニウム粉末を第6表の組成
比に配合し、水を混合して実施例3と同様にスラリー化
し、同様に触媒担持層を形成した。そして各担体基材に
硝酸セリウム水溶液を2種類の濃度で含浸させた後、8
00℃で5時間焼成した。その後実施例1に〜1oと同
様に触媒金属を担持させ、第6表に示す実施例4a〜4
bの排気ガス浄化用触媒を得た。なお比較例4ではli
l!I酸セリウム水溶液は含浸しなかった。
(Example 4, Comparative Example 4) γ-
Alumina powder and zirconium oxide powder were blended in the composition ratio shown in Table 6, mixed with water to form a slurry in the same manner as in Example 3, and a catalyst support layer was formed in the same manner. After impregnating each carrier base material with cerium nitrate aqueous solution at two concentrations,
It was baked at 00°C for 5 hours. Thereafter, a catalyst metal was supported on Example 1 in the same manner as in ~1o, and Examples 4a to 4 shown in Table 6 were
The exhaust gas purifying catalyst b was obtained. In Comparative Example 4, li
l! The cerium I acid aqueous solution was not impregnated.

19られた排気ガス浄化用触媒は実施例1と同様の浄化
率測定試験に供され、結果を第6表に示す。
The obtained exhaust gas purifying catalyst was subjected to the same purification rate measurement test as in Example 1, and the results are shown in Table 6.

(実施例5、比較例5) 酸化ジルコニウム粉末の代わりに酸化セリウム粉末を用
い、硝酸セリウムの代わりにオキシ塩化ジルコニウムを
用いたこと以外は実施例4、比較例4と同様にして第6
表に示す実施例5a〜5b、比較例5の排気ガス浄化用
触媒を(qた。
(Example 5, Comparative Example 5) A sixth example was prepared in the same manner as Example 4 and Comparative Example 4 except that cerium oxide powder was used instead of zirconium oxide powder and zirconium oxychloride was used instead of cerium nitrate.
Exhaust gas purifying catalysts of Examples 5a to 5b and Comparative Example 5 shown in the table were (q).

得られた排気ガス浄化用触媒は実施例1と同様の浄化率
測定試験に供され、結果を第6表に示す。
The obtained exhaust gas purifying catalyst was subjected to the same purification rate measurement test as in Example 1, and the results are shown in Table 6.

(実施VA6’、比較例6) スラリーに酸化ジルコニウム粉末、酸化セリウム粉末お
よびアルミナ粉末を第7表の組成比となるように配合し
たもの、および水の混合物を用いること以外は実施例3
、比較例3と同様にして、第8表1示す実施例6a〜6
b、比較例6a〜6bの排気ガス浄化用触媒を1りた。
(Example VA6', Comparative Example 6) Example 3 except that a slurry containing zirconium oxide powder, cerium oxide powder, and alumina powder in the composition ratio shown in Table 7 and a mixture of water were used.
, Examples 6a to 6 shown in Table 8 1 were prepared in the same manner as Comparative Example 3.
b. One exhaust gas purifying catalyst of Comparative Examples 6a to 6b was used.

得られた排気ガス浄化用触媒は実施例1と同様の浄化率
測定試験に供され、結果を第7表に示す。
The obtained exhaust gas purifying catalyst was subjected to the same purification rate measurement test as in Example 1, and the results are shown in Table 7.

(実施例7、比較例7) コージェライト質ハニカム担体基材の代わりにアルミニ
ウムを含むフェライト系金属ハニカム担体基材を用いる
こと以外は実施例1、比較例1と同様にして第7表に示
す実施例7a〜7b1比較例7の排気ガス浄化用触媒を
得た。
(Example 7, Comparative Example 7) Same as Example 1 and Comparative Example 1 except that a ferritic metal honeycomb carrier base material containing aluminum is used instead of the cordierite honeycomb carrier base material, as shown in Table 7. Examples 7a to 7b1 An exhaust gas purifying catalyst of Comparative Example 7 was obtained.

得られた排気ガス浄化用触媒は実施例1と同様の浄化率
測定試験に供され、結果を第7表に示す。
The obtained exhaust gas purifying catalyst was subjected to the same purification rate measurement test as in Example 1, and the results are shown in Table 7.

(実施例8、比較例8) アルミニウム5wt%、クロム2’Ow t%、残部鉄
からなるフェライト系金属ハニカム担体を用い、二酸化
炭素雰囲気中900℃で10分間、さらに空気中900
℃で1時間熱処即し、さらに実施例1と同様にして担体
基材表面に実施例1と同第  8  表 (以下余白) 様の活性アルミナからなる触媒担持層を形成する。
(Example 8, Comparative Example 8) A ferritic metal honeycomb carrier consisting of 5 wt% aluminum, 2'Ow t% chromium, and the balance iron was heated at 900°C for 10 minutes in a carbon dioxide atmosphere, and then at 900°C in air.
C. for 1 hour, and then in the same manner as in Example 1, a catalyst supporting layer made of activated alumina as shown in Table 8 (hereinafter referred to as blank space) as in Example 1 was formed on the surface of the carrier base material.

二の担体基材を用いて実施例1、比較例1と同様ニして
第8表に示す実施例88〜8b、比較例8]〜8bの排
気ガス浄化用触媒を得た。
Exhaust gas purifying catalysts of Examples 88 to 8b and Comparative Examples 8 to 8b shown in Table 8 were obtained in the same manner as in Example 1 and Comparative Example 1 using the second carrier base material.

得られた排気ガス浄化用触媒は実施例1と同様つ浄化率
測定試験に供され、結果を第8表に示す。
The obtained exhaust gas purifying catalyst was subjected to the same purification rate measurement test as in Example 1, and the results are shown in Table 8.

(評価) それぞれの表より明らかに、いずれの実施例も比較例に
比べて浄化率に優れている。これは、実施例の排気ガス
浄化用触媒には酸化セリウムと酸化ジルコニウムとが少
なくとも一部複合酸化物または固溶体として共存してい
る効采にJ:るちのであることが明らかである。
(Evaluation) It is clear from each table that all Examples are superior in purification rate compared to Comparative Examples. This is clearly due to the effect of the exhaust gas purifying catalyst of the example in which cerium oxide and zirconium oxide coexist at least in part as a composite oxide or solid solution.

また第1表より実施例の排気ガス浄化用触媒では、酸化
セリウムの粒成長はほとんどなく、従ってCO転換率(
酸素ストレージ能)に層れていることが明らかである。
Furthermore, from Table 1, in the exhaust gas purification catalysts of the examples, there is almost no grain growth of cerium oxide, and therefore the CO conversion rate (
It is clear that the oxygen storage capacity is layered.

そしてセリウム原子に対するジルコニウム原子のモル比
が大きくなるにつれて粒子径が小さくなり、逆にco転
換率が低下する傾向も読み取ることができる。
It can also be seen that as the molar ratio of zirconium atoms to cerium atoms increases, the particle diameter decreases, and conversely, the co conversion rate decreases.

Claims (2)

【特許請求の範囲】[Claims] (1)触媒担持層と、該触媒担持層に担持された触媒金
属と、からなる排気ガス浄化用触媒において、 該触媒担持層はセリウム酸化物とジルコニウム酸化物と
を含み、該セリウム酸化物と該ジルコニウム酸化物の少
なくとも一部は複合酸化物または固溶体として存在して
いることを特徴とする排気ガス浄化用触媒。
(1) In an exhaust gas purifying catalyst comprising a catalyst support layer and a catalyst metal supported on the catalyst support layer, the catalyst support layer contains cerium oxide and zirconium oxide, and the catalyst support layer contains cerium oxide and zirconium oxide. An exhaust gas purifying catalyst characterized in that at least a part of the zirconium oxide exists as a composite oxide or a solid solution.
(2)前記複合酸化物または固溶体として担持されたセ
リウム原子とジルコニウム原子とは該セリウム原子数に
対する該ジルコニウム原子数の原子比が5/95〜80
/20となるように構成されている特許請求の範囲第1
項記載の排気ガス浄化用触媒。
(2) The cerium atoms and zirconium atoms supported as the composite oxide or solid solution have an atomic ratio of the number of zirconium atoms to the number of cerium atoms of 5/95 to 80.
/20 Claim 1
Exhaust gas purification catalyst described in Section 1.
JP61262521A 1986-04-11 1986-11-04 Exhaust gas purification catalyst Expired - Lifetime JPH0675675B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61262521A JPH0675675B2 (en) 1986-11-04 1986-11-04 Exhaust gas purification catalyst
AU80620/87A AU595655B2 (en) 1986-11-04 1987-11-03 Catalyst for the purification of exhaust gas
DE19873737419 DE3737419A1 (en) 1986-11-04 1987-11-04 EXHAUST GAS CLEANER
US07/290,421 US4927799A (en) 1986-04-11 1988-12-27 Catalyst for the purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61262521A JPH0675675B2 (en) 1986-11-04 1986-11-04 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPS63116741A true JPS63116741A (en) 1988-05-21
JPH0675675B2 JPH0675675B2 (en) 1994-09-28

Family

ID=17376958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61262521A Expired - Lifetime JPH0675675B2 (en) 1986-04-11 1986-11-04 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JPH0675675B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293048A (en) * 1989-04-19 1990-12-04 Engelhard Corp Platinum catalyst carried by ceria carrier containing palladium and mass of catalyst containing said catalyst
WO1990014887A1 (en) * 1989-06-09 1990-12-13 N.E. Chemcat Corporation Exhaust gas purifying catalyst excellent in thermal resistance and method of production thereof
US5015617A (en) * 1988-04-14 1991-05-14 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for purifying exhaust gas and method for production thereof
JPH04334548A (en) * 1991-05-10 1992-11-20 Nissan Motor Co Ltd Exhaust gas purifying catalyst
US5837642A (en) * 1995-12-26 1998-11-17 Daihatsu Motor Co., Ltd. Heat-resistant oxide
JPH1119514A (en) * 1997-06-27 1999-01-26 Toyota Central Res & Dev Lab Inc Catalyst for cleaning lean exhaust gas
JP2003521363A (en) * 1998-11-13 2003-07-15 エンゲルハード・コーポレーシヨン Catalyst and method for reducing exhaust emissions
JP2004290964A (en) * 2003-03-10 2004-10-21 Cataler Corp Catalyst for exhaust gas purification
EP1600212A1 (en) 2004-05-24 2005-11-30 Tanaka Kikinzoku Kogyo K.K. Catalyst and process for preparing the same
US7576029B2 (en) 2004-03-25 2009-08-18 Tanaka Kikinzoku Kogyo K.K. Catalyst
WO2010007826A1 (en) * 2008-07-17 2010-01-21 エヌ・イー ケムキャット株式会社 Honeycomb catalyst for purifying exhaust gas discharged from automobile, method for producing the same, and exhaust gas purifying method using the catalyst
US7691772B2 (en) 2004-03-25 2010-04-06 Tanaka Kikinzoku Kogyo K.K. Catalyst and method for producing catalyst
WO2011010699A1 (en) 2009-07-24 2011-01-27 株式会社 キャタラー Exhaust gas purification catalyst
WO2011010700A1 (en) 2009-07-24 2011-01-27 株式会社 キャタラー Exhaust gas purification catalyst
WO2011030831A1 (en) 2009-09-10 2011-03-17 株式会社 キャタラー Catalyst for exhaust gas purification
US8057745B2 (en) 2006-09-15 2011-11-15 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Catalyst system for vehicle exhaust gas purification devices, exhaust gas purification device using the same, and method for purification of exhaust gases
JP2014104451A (en) * 2012-11-29 2014-06-09 Nagoya Institute Of Technology Carrier for exhaust gas purification catalyst and catalyst using the same
WO2015087836A1 (en) 2013-12-11 2015-06-18 株式会社キャタラー Exhaust gas purifying catalyst
JP2016516660A (en) * 2013-03-19 2016-06-09 ローディア オペレーションズ Compositions based on oxides of zirconium, cerium, niobium and tin, preparation methods and use in catalysis
JP2018528847A (en) * 2015-07-01 2018-10-04 ビーエーエスエフ コーポレーション Nitrous oxide removal catalyst for exhaust system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4435750B2 (en) 2006-03-30 2010-03-24 株式会社キャタラー Exhaust gas purification catalyst and method for producing the same
EP2039422A4 (en) 2006-07-06 2011-06-22 Cataler Corp Oxygen storage material
CN101568381B (en) 2007-02-01 2012-05-09 第一稀元素化学工业株式会社 Catalyst system for use in exhaust gas purification apparatus for automobiles, exhaust gas purification apparatus using the catalyst system, and exhaust gas purification method
EP2218501A4 (en) 2007-10-23 2014-01-29 Cataler Corp Exhaust gas purification catalyst
EP2357038A4 (en) 2008-12-03 2014-11-05 Daiichi Kigenso Kagaku Kogyo Exhaust gas purifying catalyst, exhaust gas purifying apparatus using same, and exhaust gas purifying method
EP2407238A4 (en) 2009-03-09 2014-02-12 Daiichi Kigenso Kagaku Kogyo Exhaust gas purifying catalyst, exhaust gas purifying apparatus using same, and method for purifying exhaust gas
KR101797923B1 (en) 2011-10-31 2017-11-15 엔.이. 켐캣 가부시키가이샤 Exhaust gas purifying catalyst
CN104168999A (en) 2012-03-14 2014-11-26 恩亿凯嘉股份有限公司 Catalyst composition for exhaust gas cleaning and catalyst for automobile exhaust gas cleaning
WO2014002667A1 (en) 2012-06-28 2014-01-03 エヌ・イーケムキャット株式会社 Catalyst composition for exhaust gas purification and exhaust gas purifying catalyst for automobiles
JP2017070912A (en) 2015-10-08 2017-04-13 株式会社キャタラー Catalyst for exhaust purification
JP6611623B2 (en) 2016-01-21 2019-11-27 株式会社キャタラー Exhaust gas purification catalyst
WO2017150350A1 (en) 2016-03-01 2017-09-08 株式会社キャタラー Exhaust gas purification catalyst
CN109153010B (en) 2016-05-25 2022-04-05 恩亿凯嘉股份有限公司 Ternary catalyst for purifying gasoline engine exhaust gas

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687430A (en) * 1979-12-19 1981-07-16 Toyota Central Res & Dev Lab Inc Catalyst for purifying exhaust gas
JPS59209646A (en) * 1983-05-12 1984-11-28 Nippon Shokubai Kagaku Kogyo Co Ltd Honeycomb catalyst for purification of exhaust gas
JPS6178439A (en) * 1984-09-26 1986-04-22 Kiyataraa Kogyo Kk Catalyst for purifying exhaust gas
JPS6193832A (en) * 1984-07-30 1986-05-12 ソシエテ・フランセ−ズ・デ・プロデユイ・プ−ル・カタリ−ズ・プロ−カタリ−ズ Catalyst and method for treating exhaust gas form internal combustion engine
JPS61157347A (en) * 1984-12-28 1986-07-17 Nissan Motor Co Ltd Preparation of catalyst for purifying exhaust gas
JPS61197036A (en) * 1985-02-22 1986-09-01 Matsushita Electric Ind Co Ltd Catalyst for purifying exhaust gas
JPS62282641A (en) * 1986-06-02 1987-12-08 Nissan Motor Co Ltd Production of catalyst for purifying exhaust gas
JPS6388040A (en) * 1986-09-30 1988-04-19 Nippon Engeruharudo Kk Catalyst for purifying exhaust gas for vehicle and its preparation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687430A (en) * 1979-12-19 1981-07-16 Toyota Central Res & Dev Lab Inc Catalyst for purifying exhaust gas
JPS59209646A (en) * 1983-05-12 1984-11-28 Nippon Shokubai Kagaku Kogyo Co Ltd Honeycomb catalyst for purification of exhaust gas
JPS6193832A (en) * 1984-07-30 1986-05-12 ソシエテ・フランセ−ズ・デ・プロデユイ・プ−ル・カタリ−ズ・プロ−カタリ−ズ Catalyst and method for treating exhaust gas form internal combustion engine
JPS6178439A (en) * 1984-09-26 1986-04-22 Kiyataraa Kogyo Kk Catalyst for purifying exhaust gas
JPS61157347A (en) * 1984-12-28 1986-07-17 Nissan Motor Co Ltd Preparation of catalyst for purifying exhaust gas
JPS61197036A (en) * 1985-02-22 1986-09-01 Matsushita Electric Ind Co Ltd Catalyst for purifying exhaust gas
JPS62282641A (en) * 1986-06-02 1987-12-08 Nissan Motor Co Ltd Production of catalyst for purifying exhaust gas
JPS6388040A (en) * 1986-09-30 1988-04-19 Nippon Engeruharudo Kk Catalyst for purifying exhaust gas for vehicle and its preparation

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015617A (en) * 1988-04-14 1991-05-14 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for purifying exhaust gas and method for production thereof
JPH02293048A (en) * 1989-04-19 1990-12-04 Engelhard Corp Platinum catalyst carried by ceria carrier containing palladium and mass of catalyst containing said catalyst
JP2858945B2 (en) * 1989-06-09 1999-02-17 エヌ・イーケムキヤツト株式会社 Exhaust gas purification catalyst excellent in heat resistance and method for producing the same
WO1990014888A1 (en) * 1989-06-09 1990-12-13 N.E. Chemcat Corporation Exhaust gas purifying catalyst excellent in thermal resistance and method of production thereof
US5147842A (en) * 1989-06-09 1992-09-15 N.E. Chemcat Corporation Exhaust gas-purifying catalyst and process for preparation thereof
WO1990014887A1 (en) * 1989-06-09 1990-12-13 N.E. Chemcat Corporation Exhaust gas purifying catalyst excellent in thermal resistance and method of production thereof
JPH04334548A (en) * 1991-05-10 1992-11-20 Nissan Motor Co Ltd Exhaust gas purifying catalyst
US5837642A (en) * 1995-12-26 1998-11-17 Daihatsu Motor Co., Ltd. Heat-resistant oxide
JPH1119514A (en) * 1997-06-27 1999-01-26 Toyota Central Res & Dev Lab Inc Catalyst for cleaning lean exhaust gas
JP2003521363A (en) * 1998-11-13 2003-07-15 エンゲルハード・コーポレーシヨン Catalyst and method for reducing exhaust emissions
JP2004290964A (en) * 2003-03-10 2004-10-21 Cataler Corp Catalyst for exhaust gas purification
JP4503314B2 (en) * 2003-03-10 2010-07-14 株式会社キャタラー Exhaust gas purification catalyst
US7576029B2 (en) 2004-03-25 2009-08-18 Tanaka Kikinzoku Kogyo K.K. Catalyst
US7691772B2 (en) 2004-03-25 2010-04-06 Tanaka Kikinzoku Kogyo K.K. Catalyst and method for producing catalyst
EP1600212A1 (en) 2004-05-24 2005-11-30 Tanaka Kikinzoku Kogyo K.K. Catalyst and process for preparing the same
US7169735B2 (en) 2004-05-24 2007-01-30 Tanaka Kikinzoku Kogyo K.K. Catalyst and process for preparing the same
US8057745B2 (en) 2006-09-15 2011-11-15 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Catalyst system for vehicle exhaust gas purification devices, exhaust gas purification device using the same, and method for purification of exhaust gases
JP2010022918A (en) * 2008-07-17 2010-02-04 Ne Chemcat Corp Honeycomb-structured catalyst for purifying exhaust gas discharged from automobile, method for producing the catalyst, and method for purifying exhaust gas by using the catalyst
WO2010007826A1 (en) * 2008-07-17 2010-01-21 エヌ・イー ケムキャット株式会社 Honeycomb catalyst for purifying exhaust gas discharged from automobile, method for producing the same, and exhaust gas purifying method using the catalyst
US9295945B2 (en) 2009-07-24 2016-03-29 Cataler Corporation Exhaust gas-purifying catalyst
WO2011010699A1 (en) 2009-07-24 2011-01-27 株式会社 キャタラー Exhaust gas purification catalyst
WO2011010700A1 (en) 2009-07-24 2011-01-27 株式会社 キャタラー Exhaust gas purification catalyst
US9358535B2 (en) 2009-07-24 2016-06-07 Cataler Corporation Exhaust gas-purifying catalyst
WO2011030831A1 (en) 2009-09-10 2011-03-17 株式会社 キャタラー Catalyst for exhaust gas purification
US8569198B2 (en) 2009-09-10 2013-10-29 Cataler Corporation Exhaust gas-purifying catalyst
JP2014104451A (en) * 2012-11-29 2014-06-09 Nagoya Institute Of Technology Carrier for exhaust gas purification catalyst and catalyst using the same
JP2016516660A (en) * 2013-03-19 2016-06-09 ローディア オペレーションズ Compositions based on oxides of zirconium, cerium, niobium and tin, preparation methods and use in catalysis
WO2015087836A1 (en) 2013-12-11 2015-06-18 株式会社キャタラー Exhaust gas purifying catalyst
US9597663B2 (en) 2013-12-11 2017-03-21 Cataler Corporation Exhaust cleaning catalyst
JP2018528847A (en) * 2015-07-01 2018-10-04 ビーエーエスエフ コーポレーション Nitrous oxide removal catalyst for exhaust system

Also Published As

Publication number Publication date
JPH0675675B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
JPS63116741A (en) Catalyst for purifying exhaust gas
JP3498453B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4911893B2 (en) Layered catalyst composite
US7202194B2 (en) Oxygen storage material, process for its preparation and its application in a catalyst
JPS63162043A (en) Catalyst for cleaning exhaust gas
JPH01281144A (en) Catalyst for purifying exhaust gas
JP6907890B2 (en) Exhaust gas purification catalyst
WO2014034524A1 (en) Exhaust gas purifying catalyst
JP4707672B2 (en) Exhaust gas purification catalyst
JPH08281107A (en) Catalyst for purifying exhaust gas
JPH10286462A (en) Catalyst of purifying exhaust gas
KR20090019792A (en) Exhaust gas purification catalyst, and catalytic honey-comb structure for exhaust gas purification
JP3297825B2 (en) Exhaust gas purification catalyst
JPH05237390A (en) Catalyst for purification of exhaust gas
JPH08131830A (en) Catalyst for purification of exhaust gas
JP3264697B2 (en) Exhaust gas purification catalyst and purification system using the same
JPH09313938A (en) Catalyst for cleaning exhaust gas
JP2018038999A (en) Exhaust gas purification catalyst
WO2013039037A1 (en) Exhaust gas purification catalyst, and exhaust gas purification catalyst structure
JPH0582258B2 (en)
JPH09248462A (en) Exhaust gas-purifying catalyst
JP3299286B2 (en) Exhaust gas purification catalyst
JP2690654B2 (en) Exhaust gas purification catalyst and purification system using the same
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst
JPH0573463B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term