JPS62282641A - Production of catalyst for purifying exhaust gas - Google Patents

Production of catalyst for purifying exhaust gas

Info

Publication number
JPS62282641A
JPS62282641A JP61125830A JP12583086A JPS62282641A JP S62282641 A JPS62282641 A JP S62282641A JP 61125830 A JP61125830 A JP 61125830A JP 12583086 A JP12583086 A JP 12583086A JP S62282641 A JPS62282641 A JP S62282641A
Authority
JP
Japan
Prior art keywords
catalyst
cerium
rhodium
weight
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61125830A
Other languages
Japanese (ja)
Inventor
Junichi Mine
峰 純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP61125830A priority Critical patent/JPS62282641A/en
Publication of JPS62282641A publication Critical patent/JPS62282641A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title catalyst having excellent purification performance, durability, etc., by depositing a slurry contg. zirconium oxide contg. rhodium, activated alumina contg. cerium, cerium oxide, and an alumina sol on a carrier, drying and baking the obtained material, and then depositing platinum on the material. CONSTITUTION:About 0.15-7wt% rhodium is incorporated into zirconium oxide by impregnation, etc., and about 1-5wt% cerium is incorporated into activated alumina. The zirconium oxide and the activated alumina are crushed and mixed in an alumina sol to obtain a slurry, and a carrier is impregnated with the slurry, dried, and baked to form composite oxide coated film contg. rhodium on the carrier. Pt is then deposited on the coated film to obtain the catalyst. The catalyst has excellent purification performance, heat resistance, durability, etc., and is appropriately used as the catalyst for removing carbon monoxide, hydrocarbons, and nitrogen oxides in the exhaust gas from an automobile, etc.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) この発明は、排ガス、特に自動車などの内燃機関からの
排ガス中の一酸化炭素(CO)、炭化水素(HC)およ
び窒素酸化物(NOX)を浄化するのに用いられる排ガ
ス浄化用触媒の製造方法に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) This invention is directed to the treatment of exhaust gases, particularly carbon monoxide (CO) and hydrocarbons (HC) in exhaust gases from internal combustion engines such as automobiles. The present invention also relates to a method for producing an exhaust gas purifying catalyst used to purify nitrogen oxides (NOX).

(従来の技術) 従来の排ガス浄化用触媒としては、例えば一体構造型担
体の表面に活性アルミナ層を設け、次に触媒金属を担持
させ触媒とするものがある。かかる触媒は例えば特開昭
52−27088号公報に記載されているように、セリ
ア(CeO□)10%を含む活性アルミナ40〜45重
量%のスラリーに担体を浸漬し、例えば125℃で乾燥
した後、空気雰囲気中500℃で焼成し、次いでこの担
体を硝酸ニッケル溶液中に浸漬し、125℃で乾燥した
後、空気雰囲気中500℃でか焼し、次に塩化白金酸と
塩化ロジウムを含む溶液に浸漬し、その後硫化水素中を
通し、得られた担体を水洗し、次いで125℃で乾燥し
た後、500℃の空気雰囲気中で焼成し、触媒化される
(Prior Art) As a conventional exhaust gas purifying catalyst, for example, there is one in which an activated alumina layer is provided on the surface of a monolithic structure carrier, and then a catalytic metal is supported thereon to form a catalyst. Such a catalyst is prepared, for example, by immersing a carrier in a slurry of 40 to 45% by weight of activated alumina containing 10% ceria (CeO After calcining at 500 °C in an air atmosphere, the carrier is then immersed in a nickel nitrate solution and dried at 125 °C, then calcined at 500 °C in an air atmosphere, and then containing chloroplatinic acid and rhodium chloride. After immersion in a solution and subsequent passage through hydrogen sulfide, the resulting support is washed with water, then dried at 125°C and then calcined in an air atmosphere at 500°C to be catalyzed.

なお硝酸ニッケル含浸工程において他の卑金属塩も使用
される。また他の方法によるとセリアを用いず硝酸セリ
ウムと活性アルミナおよび硝酸とを混合してスラリーと
し、一体構造型担体にコーティングし、125℃で乾燥
した後、500℃の空気雰囲気中で焼成し、硝酸セリウ
ムをセリアとし、同様にして触媒が形成される。
Note that other base metal salts are also used in the nickel nitrate impregnation step. According to another method, cerium nitrate, activated alumina, and nitric acid are mixed to form a slurry without using ceria, and the slurry is coated on an integral structure carrier, dried at 125°C, and then fired in an air atmosphere at 500°C. A catalyst is formed in a similar manner using cerium nitrate as ceria.

(発明が解決しようとする問題点) しかしながら、このような従来の排ガス浄化用触媒にあ
っては、上記のようにして形成された触媒金属の担持さ
れた活性アルミナ層で被覆されており、触媒金属が活性
アルミナ層の表面付近に存在する形態となっており、ま
た活性アルミナ層の耐熱性が不十分となっていたため、
長距離走行を行うと被毒物質の蓄積等による触媒の活性
点の被覆、或いはアルミナ層の結晶構造変化による表面
積低下を起こし、触媒が活性を失ってしまうという問題
点があった。
(Problems to be Solved by the Invention) However, such conventional exhaust gas purification catalysts are coated with an activated alumina layer on which catalyst metal is supported, which is formed as described above. The metal was present near the surface of the activated alumina layer, and the activated alumina layer had insufficient heat resistance.
When traveling over long distances, there is a problem in that the active points of the catalyst are covered by the accumulation of poisonous substances, or the surface area decreases due to changes in the crystal structure of the alumina layer, causing the catalyst to lose its activity.

(問題点を解決するための手段) この発明は、このような従来の問題点に着目してなされ
たもので、あらかじめロジウムを含有させた酸化ジルコ
ニウムと、あらかじめセリウムを含有させた活性アルミ
ナとセリウム酸化物とアルミナゾルとを混合粉砕してス
ラリーとし、このスラリーを担体に付着、乾燥、焼成し
、担体上に形成されたロジウムを含む複合酸化物あるい
は混合酸化物に白金を担持すことにより、上記問題点を
解決したものである。
(Means for Solving the Problems) This invention was made by focusing on such conventional problems, and consists of zirconium oxide pre-contained with rhodium, activated alumina pre-contained cerium, and cerium oxide. The oxide and alumina sol are mixed and pulverized to form a slurry, this slurry is attached to a carrier, dried, and fired, and platinum is supported on the rhodium-containing composite oxide or mixed oxide formed on the carrier. This solves the problem.

(作 用) この発明の排ガス浄化用触媒の製造方法においては、あ
らかじめロジウムを含有させた酸化ジルコニウムとあら
かじめセリウムを含有させた活性アルミナとセリウム酸
化物とアルミナゾルとを混合粉砕してスラリーとし、こ
のスラリーを担体に含浸、乾燥、焼成する。この結果担
体上にロジウムを含む複合酸化物あるいは混合酸化物よ
りなる酸化物被膜が形成される。次いでこの酸化物被膜
に白金を担持させる。このようにして形成された触媒は
白金およびロジウムの主触媒金属の担持量を少なくして
も、浄化性能が低下せず、また耐熱性が高く、自動車用
として用いた場合の耐久性も充分である。
(Function) In the method for producing an exhaust gas purification catalyst of the present invention, zirconium oxide containing rhodium in advance, activated alumina containing cerium in advance, cerium oxide, and alumina sol are mixed and pulverized to form a slurry. The slurry is impregnated into a carrier, dried, and fired. As a result, an oxide film made of a complex oxide or mixed oxide containing rhodium is formed on the carrier. Next, platinum is supported on this oxide film. The catalyst formed in this way does not deteriorate in purification performance even if the supported amount of the main catalyst metals of platinum and rhodium is reduced, and has high heat resistance and sufficient durability when used in automobiles. be.

尚、あらかじめロジウムを含有させた酸化ジルコニウム
と、あらかじめセリウムを含有させた活性アルミナとセ
リウム酸化物とアルミナゾルとを混合粉砕してスラリー
をつくる際、酸化ジルコニウムにロジウムを含有させる
量は、金属換算で酸化ジルコニウムに対して0.15〜
7重量%が好ましく、活性アルミナにセリウムを含有さ
せる量は金属換算でアルミナに対して1〜5重量%が好
ましく、セリウム酸化物の量は5〜40重量%が好まし
い。酸化ジルコニウムにロジウムを含有させる量がロジ
ウムとして、7重量%を越えると分散性が悪くなるため
か、性能が悪化し、また0、15重量%未満ではその効
果がほとんど変わらない。活性アルミナにセリウムを含
有させる量がセリウムとして5重量%(金属換算)を超
え、配合するセリウム酸化物粉末が40重量%を超えて
もその増量効果は殆どなく、逆に活性アルミナにセリウ
ムを含有させる量が1重量%(金属換算)未満、配合す
るセリウム酸化物粉末が5重量%未満の場合は、それら
の添加効果が発明者らの要求性能として不十分であり好
ましくない。また前記担体上にロジウムを含む複合酸化
物あるいは混合酸化物より成る酸化物被膜に白金を担持
させる量は特に限定されるものではないが、コストの点
から実用上0.5重量%程度まで、望ましくは0.15
重量%程度とする。
When making a slurry by mixing and pulverizing zirconium oxide containing rhodium in advance, activated alumina containing cerium in advance, cerium oxide, and alumina sol, the amount of rhodium contained in zirconium oxide is determined in terms of metal. 0.15 to zirconium oxide
The amount of cerium contained in the activated alumina is preferably 1 to 5% by weight based on the alumina, and the amount of cerium oxide is preferably 5 to 40% by weight. If the amount of rhodium contained in the zirconium oxide exceeds 7% by weight of rhodium, the performance deteriorates, probably due to poor dispersibility, and if it is less than 0.15% by weight, the effect will hardly change. Even if the amount of cerium contained in activated alumina exceeds 5% by weight as cerium (metal equivalent) and the amount of cerium oxide powder added exceeds 40% by weight, there is almost no effect of increasing the amount of cerium; on the contrary, if activated alumina contains cerium If the amount is less than 1% by weight (metal equivalent) and if the amount of cerium oxide powder added is less than 5% by weight, the effects of their addition will be insufficient to meet the performance required by the inventors, and this is not preferred. Further, the amount of platinum supported on the oxide film made of a complex oxide or mixed oxide containing rhodium on the support is not particularly limited, but from the viewpoint of cost, it is practically limited to about 0.5% by weight. Preferably 0.15
Approximately % by weight.

(実施例) 以下本発明を実施例、比較例および試験例により説明す
る。
(Examples) The present invention will be explained below with reference to Examples, Comparative Examples, and Test Examples.

実施例1 酸化ジルコニウム粉末を塩化ロジウム水溶液に含浸後乾
燥し600℃2時間空気中で焼成し酸化ゴルコニウムに
対してロジウムを金属換算で0.25重 ゛量%含む酸
化ジルコニウム粉末を得た。次に、ガンマアルミナを主
成分とするアルミナ粉末を硝酸セリウム水溶液に含浸乾
燥し、600℃2時間空気中で焼成しアルミナに対して
セリウム酸化物を金属換算で3重量%含む担体を得た。
Example 1 Zirconium oxide powder was impregnated in an aqueous rhodium chloride solution, dried and calcined in air at 600°C for 2 hours to obtain zirconium oxide powder containing 0.25% by weight of rhodium based on gorconium oxide in terms of metal. Next, alumina powder containing gamma alumina as a main component was impregnated in an aqueous cerium nitrate solution, dried, and calcined in air at 600° C. for 2 hours to obtain a carrier containing 3% by weight of cerium oxide based on alumina in terms of metal.

次にアルミナゾル(ベーマイトアルミナ10重量%懸濁
液に10重量%のHNO,を添加することによって得ら
れるゾル)2478g、上記ロジウムを含む酸化ジルコ
ニウム粉末330g、セリアを含む活性アルミナ粉末5
73g、セリア粉末619gをボールミルで混合し、3
Qrpmで6時間粉砕した。このロジウム、アルミナを
含む液(コーテイング液)にモノリス型担体基材(0,
9f 300セル/in’)を浸漬し、エアブロー後乾
燥する作業を3回繰り返し、酸化物コート層を付着させ
、650℃の空気雰囲気中で2時間焼成を行った。この
時のロジウムの付着量は0.10g/個、またアルミナ
とセリウム酸化物と酸化ジルコニウムの合計の付着量は
、225g/個であった。
Next, 2478 g of alumina sol (a sol obtained by adding 10 wt% HNO to a 10 wt% suspension of boehmite alumina), 330 g of the above-mentioned rhodium-containing zirconium oxide powder, and activated alumina powder containing ceria 5
Mix 73g and 619g of ceria powder in a ball mill,
It was ground for 6 hours at Qrpm. A monolithic carrier base material (0, 0,
The process of immersing a 9f 300 cell/in'), air blowing and drying was repeated three times, an oxide coating layer was attached, and baking was performed in an air atmosphere at 650° C. for 2 hours. At this time, the amount of rhodium deposited was 0.10 g/piece, and the total amount of deposited alumina, cerium oxide, and zirconium oxide was 225 g/piece.

さらにこのロジウムとアルミナとセリウム酸化物と酸化
ジルコニウムの付着した担体を塩化白金酸の水溶液に浸
漬し、白金の付着量が1.01g/個になるように担持
した後、空気雰囲気中600℃で2時間焼成を行い、触
媒1を得た。
Further, the carrier to which rhodium, alumina, cerium oxide, and zirconium oxide were attached was immersed in an aqueous solution of chloroplatinic acid to support the platinum in an amount of 1.01 g/piece, and then heated at 600°C in an air atmosphere. Calcining was performed for 2 hours, and Catalyst 1 was obtained.

実施例2 実施例1において、ロジウムを金属換算で0.74重量
%含む酸化ジルコニウム粉末110g、セリウムを含む
活性アルミナ粉末(セリウム金属換算3重量%)793
g、アルミナゾル2478g、セリア粉末619gを用
いた以外は同様の方法で触媒を調製し、触媒2を得た。
Example 2 In Example 1, 110 g of zirconium oxide powder containing 0.74% by weight of rhodium in terms of metal, and activated alumina powder containing cerium (3% by weight in terms of cerium metal) 793
A catalyst was prepared in the same manner except that 2,478 g of alumina sol, and 619 g of ceria powder were used to obtain Catalyst 2.

実施例3 実施例1において、ロジウムを金属換算で1.5重量%
含む酸化ジルコニウム粉末55g、セリウムを含む活性
アルミナ粉末(セリウム金属換算3重量%) 848g
、、アルミナゾル2478g、セリア粉末619gを用
いた以外は同様の方法で触媒を調製し、触媒3を得た。
Example 3 In Example 1, rhodium was 1.5% by weight in terms of metal.
55g of zirconium oxide powder containing 848g of activated alumina powder containing cerium (3% by weight in terms of cerium metal)
A catalyst was prepared in the same manner except that 2478 g of alumina sol and 619 g of ceria powder were used to obtain Catalyst 3.

実施例4 実施例1において、ロジウムを金属換算で1.8重量%
含む酸化ジルコニウム粉末44g1セリウムを含む活性
アルミナ粉末(セリウム金属換算3重量%) 859g
、アルミナゾル2478g、セリア粉末619gを用い
た以外は同様の方法で触媒を調製し、触媒4を得た。
Example 4 In Example 1, rhodium was 1.8% by weight in terms of metal.
44 g of zirconium oxide powder containing 1 859 g of activated alumina powder containing cerium (3% by weight in terms of cerium metal)
A catalyst was prepared in the same manner except that 2478 g of alumina sol and 619 g of ceria powder were used to obtain Catalyst 4.

実施例5 実施例1において、ロジウムを金属換算で2.4重量%
含む酸化ジルコニウム粉末33g、セリウムを含む活性
アルミナ粉末(セリウム金属換算3重量%) 870g
、アルミナゾル2478g、セリア粉末619gを用い
た以外は同様の方法で触媒を調製し、触媒5を得た。
Example 5 In Example 1, rhodium was 2.4% by weight in terms of metal.
33g of zirconium oxide powder containing 870g of activated alumina powder containing cerium (3% by weight in terms of cerium metal)
A catalyst was prepared in the same manner except that 2478 g of alumina sol and 619 g of ceria powder were used to obtain Catalyst 5.

実施例6 実施例1において、ロジウムを金属換算で3.6重量%
含む酸化ジルコニウム粉末22g1セリウムを含む活性
アルミナ粉末(セリウム金属換算3重量%)881g、
アルミナゾル2478g、セリア粉末619gを用いた
以外は同様の方法で触媒を調製し、触媒6を得た。
Example 6 In Example 1, rhodium was 3.6% by weight in terms of metal.
22 g of zirconium oxide powder containing 1 881 g of activated alumina powder containing cerium (3% by weight in terms of cerium metal),
A catalyst was prepared in the same manner except that 2478 g of alumina sol and 619 g of ceria powder were used to obtain catalyst 6.

実施例7 実施例1において、ロジウムを金属換算で6.9重量%
含む酸化ジルコニウム粉末11g、’セリウムを含む活
性アルミナ粉末(セリウム金属換算3重量%) 892
g、アルミナゾル247gg、セリア粉末619gを用
いた以外は同様の方法で触媒を調製し、触媒7を得た。
Example 7 In Example 1, rhodium was 6.9% by weight in terms of metal.
11g of zirconium oxide powder, activated alumina powder containing cerium (3% by weight in terms of cerium metal) 892
A catalyst was prepared in the same manner except that 247 g of alumina sol and 619 g of ceria powder were used to obtain Catalyst 7.

実施例8 実施例1において、ロジウムを金属換算で0.15重量
%含む酸化ジルコニウム粉末550g 、セリウムを含
む活性アルミナ粉末(セリウム金属換算3重量%) 3
53g、アルミナゾル2478g、セリア粉末619g
を用いた以外は同様の方法で触媒を調製し、触媒8を得
た。
Example 8 In Example 1, 550 g of zirconium oxide powder containing 0.15% by weight of rhodium in terms of metal, activated alumina powder containing cerium (3% by weight in terms of cerium metal) 3
53g, alumina sol 2478g, ceria powder 619g
A catalyst was prepared in the same manner except that catalyst 8 was obtained.

実施例9 実施例1において、ロジウムを金属換算で0.11重量
%含む酸化ジルコニウム粉末770g、セリウムを含む
活性アルミナ粉末(セリウム金属換算3重量%) 13
3g、アルミナゾル2478g、セリア粉末619gを
用いた以外は同様の方法で触媒を調製し、触媒9を得た
Example 9 In Example 1, 770 g of zirconium oxide powder containing 0.11% by weight of rhodium in terms of metal, and activated alumina powder containing cerium (3% by weight in terms of cerium metal) 13
A catalyst was prepared in the same manner except that 3 g of alumina sol, 2478 g of alumina sol, and 619 g of ceria powder were used to obtain catalyst 9.

実施例10 実施例1において、0.25重量%のロジウムを含む酸
化ジルコニウム粉末330g、セリウムを含む活性アル
ミナ粉末(セリウム金属換算3重量%) 1048g、
アルミナゾル24T8g、セリア粉末144gを用いた
以外は同様の方法で触媒を調製し、触媒10を得た。
Example 10 In Example 1, 330 g of zirconium oxide powder containing 0.25% by weight of rhodium, 1048 g of activated alumina powder containing cerium (3% by weight in terms of cerium metal),
A catalyst was prepared in the same manner except that 8 g of alumina sol 24T and 144 g of ceria powder were used to obtain catalyst 10.

実施例11 実施例1において、0.25重量%のロジウムを含ム酸
化ジルコニウム粉末330g、セリウムを含む活性アル
ミナ粉末(セリウム金属換算3重量%) 842g、ア
ルミナゾル2478g、セリア粉末350gを用いた以
外は同様の方法で触媒を調製し、触媒11を得た。
Example 11 In Example 1, except that 330 g of zirconium oxide powder containing 0.25% by weight of rhodium, 842 g of activated alumina powder containing cerium (3% by weight in terms of cerium metal), 2478 g of alumina sol, and 350 g of ceria powder were used. A catalyst was prepared in a similar manner to obtain catalyst 11.

実施例12 実施例1において、0.25重量%のロジウムを含む酸
化ジルコニウム粉末330g 、セリウムを含む活性ア
ルミナ粉末(セリウム金属換算3重量%) 616g。
Example 12 In Example 1, 330 g of zirconium oxide powder containing 0.25% by weight of rhodium and 616 g of activated alumina powder containing cerium (3% by weight in terms of cerium metal) were used.

アルミナゾル2563g、セリア粉末491gを用いた
以外は同様の方法で触媒を調製し、触媒12を得た。
A catalyst was prepared in the same manner except that 2563 g of alumina sol and 491 g of ceria powder were used to obtain catalyst 12.

実施例13 実施例1において、0.25重量%のロジウムを含む酸
化ジルコニウム粉末330g、セリウムを含む活性アル
ミナ粉末(セリウム金属換算1重量%) 928g。
Example 13 In Example 1, 330 g of zirconium oxide powder containing 0.25% by weight of rhodium and 928 g of activated alumina powder containing cerium (1% by weight in terms of cerium metal) were used.

アルミナゾル2648g 、セリア粉末94gを用いた
以外は同様の方法で触媒を調製し、触媒13を得た。
A catalyst was prepared in the same manner except that 2648 g of alumina sol and 94 g of ceria powder were used to obtain catalyst 13.

実施例14 実施例1において、0.25重量%のロジウムを含む酸
化ジルコニウム粉末330g、セリウムを含む活性アル
ミナ粉末(セリウム金属換算1重量%) 367g、ア
ルミナゾル2478g、セリア粉末826gを用いた以
外は同様の方法で触媒を調製し、触媒14を得た。
Example 14 Same as Example 1 except that 330g of zirconium oxide powder containing 0.25% by weight of rhodium, 367g of activated alumina powder containing cerium (1% by weight in terms of cerium metal), 2478g of alumina sol, and 826g of ceria powder were used. A catalyst was prepared by the method described above to obtain catalyst 14.

実施例15 実施例1において、0.25重量%のロジウムを含む酸
化ジルコニウム粉末330g、セリウムを含む活性アル
ミナ粉末(セリウム金属換算5重量%) 517g。
Example 15 In Example 1, 330 g of zirconium oxide powder containing 0.25% by weight of rhodium and 517 g of activated alumina powder containing cerium (5% by weight in terms of cerium metal) were used.

アルミナゾル2563g、セリア粉末590gを用いた
以外は同様の方法で触媒を調整し、触媒15を得た。
A catalyst was prepared in the same manner except that 2563 g of alumina sol and 590 g of ceria powder were used to obtain catalyst 15.

実施例16 実施例1において、0.25重量%のロジウムを含む酸
化ジルコニウム粉末330g、セリウムを含む活性アル
ミナ粉末(セリウム金属換算5重量%) 321g。
Example 16 In Example 1, 330 g of zirconium oxide powder containing 0.25% by weight of rhodium, and 321 g of activated alumina powder containing cerium (5% by weight in terms of cerium metal).

アルミナゾル2563g、セリア粉末786gを用いた
以外は同様の方法で触媒を調整し、触媒16を得た。
A catalyst was prepared in the same manner except that 2563 g of alumina sol and 786 g of ceria powder were used to obtain catalyst 16.

実施例17 実施例1において、0.25重量%のロジウムを含む酸
化ジルコニウム粉末330g、セリウムを含む活性アル
ミナ粉末(セリウム金属換算3重量%) 263g。
Example 17 In Example 1, 330 g of zirconium oxide powder containing 0.25% by weight of rhodium and 263 g of activated alumina powder containing cerium (3% by weight in terms of cerium metal) were used.

アルミナゾル2478g 、セリア粉末929gを用い
た以外は同様の方法で触媒を調製し、触媒17を得た。
A catalyst was prepared in the same manner except that 2478 g of alumina sol and 929 g of ceria powder were used to obtain catalyst 17.

比較例1 アルミナゾル(ベーマイトアルミナ10重量%懸濁液に
10重量%のHNO3を添加することによって得られる
ゾル)2648g、活性アルミナ粉末1352gをボー
ルミルで混合し、8Qrpmで6時間粉砕した。このア
ルミナを含む液(コーテイング液)にモノリス型担体基
材(0,9f 300セル/1n2)を浸漬し、エアブ
ロ−後乾燥する作業を3回繰り返し、アルミナコート層
を付着させ、650℃の空気雰囲気中で2時間焼成を行
った。この時のアルミナの付着量は225g /個に設
定した。
Comparative Example 1 2,648 g of alumina sol (a sol obtained by adding 10% by weight of HNO3 to a 10% by weight suspension of boehmite alumina) and 1,352 g of activated alumina powder were mixed in a ball mill and pulverized at 8 Q rpm for 6 hours. A monolithic carrier base material (0.9f 300 cells/1n2) is immersed in this alumina-containing solution (coating solution), air-blown and then dried three times to adhere an alumina coating layer, and then air heated to 650°C Firing was performed in an atmosphere for 2 hours. The amount of alumina deposited at this time was set at 225 g/piece.

さらにこのアルミナの付着した担体を塩化白金酸と塩化
ロジウムの混合水溶液に浸漬し、白金、ロジウムの付着
量が白金1.01g/個、ロジウム0.l。
Further, this carrier with alumina attached was immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride, and the amount of platinum and rhodium attached was 1.01 g/piece of platinum and 0.0 g/piece of rhodium. l.

87個になるように担持した後600℃の空気雰囲気中
で2時間焼成を行い触媒Aを得た。
After supporting 87 pieces, calcination was performed in an air atmosphere at 600°C for 2 hours to obtain catalyst A.

比較例2 比較例1において、アルミナゾル2563g 、 活性
アルミナ粉末847gの他に、セリア粉末590gを加
えて用いた以外は同様の方法で触媒を調製し、触媒Bを
1尋た。
Comparative Example 2 A catalyst was prepared in the same manner as in Comparative Example 1, except that 590 g of ceria powder was added in addition to 2563 g of alumina sol and 847 g of activated alumina powder, and 1 fathom of catalyst B was used.

比較例3 比較例1において、セリウムを含む活性アルミナ粉末(
セリウム金属換算3重量%) 1352g 、アルミナ
ゾル2648gを用いた以外は、同様の方法で触媒を調
製し、触媒Cを得た。
Comparative Example 3 In Comparative Example 1, activated alumina powder containing cerium (
A catalyst was prepared in the same manner, except that 1352 g of cerium (3% by weight calculated as metal) and 2648 g of alumina sol were used to obtain Catalyst C.

比較例4 実施例1において、ロジウムを金属換算で8.5重量%
を含む酸化ジルコニウム粉末9g1セリウムを含む活性
アルミナ粉末(セリウム金属換算3重量%) 894g
、アルミナゾル247gg 、セリア粉末619gを用
いた以外は、同様の方法で触媒を調製し、触媒りを得た
Comparative Example 4 In Example 1, rhodium was 8.5% by weight in terms of metal.
9 g of zirconium oxide powder containing 1 894 g of activated alumina powder containing cerium (3% by weight in terms of cerium metal)
A catalyst was prepared in the same manner except that 247 g of alumina sol and 619 g of ceria powder were used.

試験例 実施例1〜17で得た触媒1〜17、比較例1〜4で得
た触媒A−Dにつき下記条件でエンジン耐久を行い、車
両による10モードエミツシヨンの浄化率を測定し、浄
化率を5=として第1表に示す。
Test Examples Catalysts 1 to 17 obtained in Examples 1 to 17 and catalysts A to D obtained in Comparative Examples 1 to 4 were subjected to engine durability under the following conditions, and the purification rate of 10 mode emission by vehicle was measured. Table 1 shows the purification rate as 5=.

エ・ンジン耐久条件 触  媒      一体型貴金属触媒触媒出口温度 
   約750℃ 空間速度      約 7万8r’ 耐久時間      100時間 エンジン      排気量2.200cc車両評価条
件 エンジン        排気量 1800cc10%
−ドベースエミッシ97  HC1,5〜1.8g/k
mCO5,0〜6.0g/km No  0.9〜1.0g/km (発明の効果) 以上説明してきたように、この発明によれば、あらかじ
めロジウムを含有させた酸化ジルコニウムと、あらかじ
めセリウムを含有させた活性アルミナと、セリウム酸化
物とアルミナシとを混合粉砕してスラリーとして、この
スラリーを担体に含浸、乾燥、焼成し、担体上に形成さ
れたロジウムを含む複合酸化物あるいは混合酸化物に白
金を担持する構成としたため、得られた触媒は排ガス浄
化率が著しく向上し、耐久性が改善され、このことによ
り低主触媒金属量であっても高い浄化率を示すことがで
きるという効果が得られる。
Engine durability conditions Catalyst Integrated noble metal catalyst Catalyst outlet temperature
Approximately 750℃ Space velocity Approximately 70,800r' Endurance time 100 hours Engine displacement 2.200cc Vehicle evaluation conditions Engine displacement 1800cc 10%
-Dobase Emissi 97 HC1.5~1.8g/k
mCO5, 0 to 6.0 g/km No. 0.9 to 1.0 g/km (Effect of the invention) As explained above, according to this invention, zirconium oxide containing rhodium in advance and cerium in advance are The activated alumina, cerium oxide, and alumina are mixed and ground to form a slurry, and this slurry is impregnated into a carrier, dried, and fired to form a rhodium-containing complex oxide or mixed oxide formed on the carrier. Due to the structure supporting platinum, the resulting catalyst has a significantly improved exhaust gas purification rate and improved durability, which has the effect of being able to show a high purification rate even with a low amount of main catalyst metal. can get.

Claims (1)

【特許請求の範囲】[Claims] 1、あらかじめロジウムを含有させた酸化ジルコニウム
と、あらかじめセリウムを含有させた活性アルミナとセ
リウム酸化物とアルミナゾルとを混合粉砕してスラリー
とし、このスラリーを担体に付着、乾燥、焼成し、担体
上に形成されたロジウムを含む複合酸化物あるいは混合
酸化物の被膜に白金を担持させることを特徴とする排ガ
ス中の一酸化炭素、炭化水素および窒素酸化物を除去す
るための排ガス浄化用触媒の製造方法。
1. Mix and grind zirconium oxide pre-contained with rhodium, activated alumina pre-contained cerium, cerium oxide, and alumina sol to form a slurry, adhere this slurry to a carrier, dry it, sinter it, and apply it on the carrier. A method for producing an exhaust gas purifying catalyst for removing carbon monoxide, hydrocarbons, and nitrogen oxides from exhaust gas, characterized by supporting platinum on the formed rhodium-containing composite oxide or mixed oxide film. .
JP61125830A 1986-06-02 1986-06-02 Production of catalyst for purifying exhaust gas Pending JPS62282641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61125830A JPS62282641A (en) 1986-06-02 1986-06-02 Production of catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61125830A JPS62282641A (en) 1986-06-02 1986-06-02 Production of catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPS62282641A true JPS62282641A (en) 1987-12-08

Family

ID=14919996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61125830A Pending JPS62282641A (en) 1986-06-02 1986-06-02 Production of catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS62282641A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116741A (en) * 1986-11-04 1988-05-21 Toyota Motor Corp Catalyst for purifying exhaust gas
JPS63156545A (en) * 1986-12-18 1988-06-29 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas
EP0695580A3 (en) * 1994-08-03 1997-07-09 Toyota Motor Co Ltd Process for producing exhaust-gas-purifying catalyst
US5814576A (en) * 1995-11-27 1998-09-29 Nissan Motor Co., Ltd. Catalyst for purifying exhaust gas and method of producing same
US5883037A (en) * 1994-05-27 1999-03-16 Rhone-Poulenc Chimie Thermally stable/highly reducible catalyst compositions comprising alumina and the oxides of cerium and zirconium
US6261989B1 (en) 1999-05-19 2001-07-17 Daihatsu Motor Co., Ltd. Catalytic converter for cleaning exhaust gas
US6464946B1 (en) 1999-05-07 2002-10-15 Daihatsu Motor Co., Ltd. Catalytic converter for cleaning exhaust gas
US6576200B1 (en) 1998-08-28 2003-06-10 Daihatsu Motor Co., Ltd. Catalytic converter for automotive pollution control, and oxygen-storing complex oxide used therefor
US6682706B1 (en) 1998-12-09 2004-01-27 Daihatsu Motor Co., Ltd. Catalytic converter for automotive pollution control, and process for making catalytic converter

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116741A (en) * 1986-11-04 1988-05-21 Toyota Motor Corp Catalyst for purifying exhaust gas
JPS63156545A (en) * 1986-12-18 1988-06-29 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas
JPH0547263B2 (en) * 1986-12-18 1993-07-16 Nippon Catalytic Chem Ind
US5883037A (en) * 1994-05-27 1999-03-16 Rhone-Poulenc Chimie Thermally stable/highly reducible catalyst compositions comprising alumina and the oxides of cerium and zirconium
EP0695580A3 (en) * 1994-08-03 1997-07-09 Toyota Motor Co Ltd Process for producing exhaust-gas-purifying catalyst
US5866500A (en) * 1994-08-03 1999-02-02 Toyota Jidosha Kabushiki Kaisha Process for producing exhaust-gas-purifying catalyst
US5814576A (en) * 1995-11-27 1998-09-29 Nissan Motor Co., Ltd. Catalyst for purifying exhaust gas and method of producing same
US6576200B1 (en) 1998-08-28 2003-06-10 Daihatsu Motor Co., Ltd. Catalytic converter for automotive pollution control, and oxygen-storing complex oxide used therefor
US6682706B1 (en) 1998-12-09 2004-01-27 Daihatsu Motor Co., Ltd. Catalytic converter for automotive pollution control, and process for making catalytic converter
US6464946B1 (en) 1999-05-07 2002-10-15 Daihatsu Motor Co., Ltd. Catalytic converter for cleaning exhaust gas
US6261989B1 (en) 1999-05-19 2001-07-17 Daihatsu Motor Co., Ltd. Catalytic converter for cleaning exhaust gas

Similar Documents

Publication Publication Date Title
JPH10151353A (en) Exhaust gas purifying catalyst
JPH0626672B2 (en) Exhaust purification catalyst and method of manufacturing the same
JPS59127649A (en) Catalyst for purifying exhaust gas
JPH05237390A (en) Catalyst for purification of exhaust gas
JPH08131830A (en) Catalyst for purification of exhaust gas
JPS62282641A (en) Production of catalyst for purifying exhaust gas
JPH0547263B2 (en)
JPH06114264A (en) Production of catalyst for purification of exhaust gas
JP4459346B2 (en) Exhaust gas purification catalyst
JPH0582258B2 (en)
JPH0578378B2 (en)
JPS61209045A (en) Catalyst for purifying exhaust gas
JPS6320036A (en) Production of catalyst for purifying exhaust gas
JPH0622675B2 (en) Engine exhaust gas purification catalyst
JPH0472577B2 (en)
WO2002055194A1 (en) Catalyst for clarification of nitrogen oxides
JPH03196841A (en) Catalyst for purification of exhaust gas
JPS6362548A (en) Production of catalyst for purifying exhaust gas
JPH04334548A (en) Exhaust gas purifying catalyst
JPS6178438A (en) Monolithic catalyst for purifying exhaust gas
JP3426792B2 (en) Exhaust gas purification catalyst
JPH0578379B2 (en)
JPH0520435Y2 (en)
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst
JPH0549940A (en) Exhaust gas purifying device