JPH0472577B2 - - Google Patents

Info

Publication number
JPH0472577B2
JPH0472577B2 JP59201341A JP20134184A JPH0472577B2 JP H0472577 B2 JPH0472577 B2 JP H0472577B2 JP 59201341 A JP59201341 A JP 59201341A JP 20134184 A JP20134184 A JP 20134184A JP H0472577 B2 JPH0472577 B2 JP H0472577B2
Authority
JP
Japan
Prior art keywords
catalyst
aqueous solution
carrier
alumina
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59201341A
Other languages
Japanese (ja)
Other versions
JPS6178439A (en
Inventor
Takao Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYATARA KOGYO KK
Original Assignee
KYATARA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYATARA KOGYO KK filed Critical KYATARA KOGYO KK
Priority to JP59201341A priority Critical patent/JPS6178439A/en
Publication of JPS6178439A publication Critical patent/JPS6178439A/en
Publication of JPH0472577B2 publication Critical patent/JPH0472577B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は内燃機関から排出される排ガス中に
含まれる窒素酸化物(NO)および可燃性炭素物
質である一酸化炭素(CO)、炭化水素(HC)等
を除去、浄化できる排ガス浄化用触媒に関する。
とくに、コージエライト、ムライト等の耐火性無
機化合物を基材とし、その表面にアルミナをコー
トとして得られた担体に触媒金属および添加物を
担持させた排ガス浄化用触媒に関する。 〔従来の技術〕 従来、排ガス浄化用触媒に用いられる触媒金属
としては、白金、ロジウム、パラジウム等が使用
され、また添加物としては、セリウム、ジルコニ
ウム、ランタン、ニツケル、鉄等の酸化物が使用
されてきている。これらの添加物は、触媒金属に
対して助触媒効果を目的として添加されるもの、
また、触媒金属を付着せしめたアルミナが高熱使
用条件下に焼結することを防止する目的で添加さ
れるものなど、各種の効果を得るために添加され
ている。従来、これらの添加物として種々のもの
が提案されているが、従来一般にこれらの添加物
は、コージエライト、ムライト等の耐火性無機化
合物基材の表面にコートされるアルミナコート層
に均一に分散させて用いられている。このアルミ
ナコート層に添加物を分散させる方法としては、
添加物金属の硝酸塩、塩化物等の水溶液をアルミ
ナコート層に含浸させたのち焼成する含浸法、ま
た添加物金属の炭酸塩、酢酸塩をアルミナと混合
し、アルミナを基材表面にコートすると同時に添
加物をも基材に付着せしめ、焼成してアルミナ中
に均一な酸化物を生成させる方法、などがある。 〔発明が解決しようとする問題点〕 上記のような従来技術の問題点は、新品の状態
では、上記のセリウム、ジルコニウム、ランタ
ン、ニツケル、鉄等の酸化物は非常に良好な助触
媒効果を示すが、高熱にさらされると、添加物の
ないものに比較して劣化が大きくなる点である。
従来の自動車排ガス浄化用触媒に対する要求性能
は、触媒入口ガス温度の上限が800℃前後とはな
つていたため、高熱使用条件下において劣化が大
きいことはそれほどの問題とはなつていなかつ
た。しかしながら、最近の触媒取付け位置の排気
管上流部への移動や自動車業界における要求など
により、触媒入口ガス温度の上限が上昇して900
℃前後となつており、触媒温度は1000℃程度にな
つていると考えられる。その結果、従来それほど
重視されてなかつた高温耐久性が最近とくに問題
視されている。 〔問題点を解決するための手段〕 本発明者は、上記従来技術の問題点を解決すべ
く鋭意研究を行つた結果、新品の状態で触媒性能
にすぐれ、かつ高熱耐久性を具備した内熱機関排
ガス浄化用触媒を得ることに成功した。 すなわちこの発明は、基材にアルミナをコート
して得られた担体に、触媒を担持させた排ガス浄
化用触媒において、アルミナコート層を二層とな
し、内側のアルミナコート層には、イツトリウ
ム、プラセオジウム、ネオジウム、コバルト、ニ
ツケルおよびジルコニウムから選ばれた少くとも
一種とセリウムとを含有させ、外側のアルミナコ
ート層にはセリウムを含有させ、触媒金属として
白金、パラジウムおよびロジウムから選ばれた少
くとも一種を担持させたことからなる、窒素酸化
物、一酸化炭素および炭化水素を含有する排ガス
の浄化用触媒を提供することにより従来技術の問
題点を解決したものである。 基材として用いる耐火性無機化合物は、コージ
エライト、ムライト等であり、基材の形態はハニ
カム構造が一般的であるが、三角形、四角形およ
び波型のセル構造のものであつてもよい。 アルミナコート層への添加物であるイツトリウ
ム、プラセオジウム、ネオジウム、コバルト、ニ
ツケル、ジルコニウム、セリウムを添加する方法
は、前記した従来一般におこなわれているような
含浸法等を用いる。また、これらの添加物を含有
した担体の焼成温度は400℃ないし1000℃である
ことが好ましい。 なお、外側のアルミナコート層に含浸法等によ
りセリウムを含有させると、これにともなつて内
側のアルミナコート層にもセリウムが含有される
ので、内側のアルミナコート層には、とくにセリ
ウムを含浸法等により含有させなくともよい。 上記のアルミナ層に含有される添加物は、何れ
も焼成により、例えば二酸化セリウムのように酸
化物の形態で存在する。 この発明で用いられる触媒金属は、白金、パラ
ジウムおよびロジウムから選ばれた少くとも1種
の金属であり、これら金属の水溶性塩の水溶液に
担体を浸漬させたのち、焼成することによつて担
体に担持させる。焼成温度は、300℃ないし800℃
であることが好ましい。 〔作用〕 この発明の触媒において、内側のアルミナコー
ト層に含有されるイツトリウム、プラセオジウ
ム、ネオジウム、コバルト、ニツケルおよびジル
コニウムから選ばれた少くとも一種とセリウムと
は、何れも助触媒の作用をなし、また外側のアル
ミナコート層に含有されるセリウムも助触媒の作
用をなす。さらに外側のアルミナコート層の上に
担持される白金、パラジウムおよびロジウムから
選ばれた少くとも一種の金属は触媒としての作用
をなす。 触媒金属は、排ガス浄化用触媒の場合、その性
能を十分に発揮させるため、なるべく高分散に、
かつコート表面に担持させるのが通例である。こ
のような前提条件を考慮した場合、この発明にお
いて助触媒として含有される金属のうちセリウム
以外の助触媒金属は、触媒金属と共存すると、高
熱下においてシンタリングしやすいという欠点を
有する。したがつてこの発明の触媒においては、
セリウム以外の助触媒金属は内側の層に含有させ
て触媒金属と離間させ、外側の層にはこのような
欠点を有しないセリウムのみを含有させている。 しかも、助触媒効果は、本発明のイツトリウ
ム、プラセオジウム、ネオジウム、コバルト、ニ
ツケル、ジルコニウムにおいては、内側のコート
層のみであつても、十分に発揮できるものであ
る。 〔実施例〕 実施例 1 純水420gに酢酸で安定化したアルミナゾル
(アルミナ含有率10重量%)350gおよび硝酸アル
ミニウム〔Al(NO33・9H2O〕60gを添加して
得た混合溶液に、平均粒径10μm、比表面積125
m2/gのγ−アルミナ粉末1Kgを撹拌しながら
徐々に添加し、均一なアルミナスラリーを調製し
た。ついで、コージエライト質(四角セル、セル
数45個/cm2、直径30mm、長さ50mm、重量20g)の
モノリス型基材を純水に浸漬して引上げ、セル内
に残つた水を空気流で吹き払い除去したのち、上
記のアルミナスラリー中に2分間浸漬した。基材
をスラリーより引上げ、セル内の余剰のアルミナ
スラリーを空気流で吹き払い除去したのち、80℃
で3時間乾燥し、さらに電気炉中において空気雰
囲気下800℃で1時間焼成して基材にアルミナの
コートされた担体を得た。 つぎに、硝酸イツトリウム水溶液の中にこの担
体を2分間浸漬した。担体を水溶液より引き上
げ、セル内の余剰の水溶液を空気流で吹き払い除
去したのち、80℃で3時間乾燥し、さらに電気炉
中において空気雰囲気下800℃で1時間焼成した。
この時の硝酸イツトリウム水溶液の濃度は、イツ
トリウム原子が担体1個当り3.5×10-3モル担持
されるよう調整した。 ついで、上記のアルミナスラリーを用いて上記
と同様の方法にてアルミナを担体にさらにコート
したのち、硝酸セリウム水溶液中に2分間浸漬し
た。担体を水溶液より引き上げ、セル内の余剰の
水溶液を空気流で吹き払い除去した後、80℃で3
時間乾燥し、さらに電気炉中において、空気雰囲
気下800℃で1時間焼成した。この時の硝酸セリ
ウム水溶液の濃度は、セリウム原子が、担体1個
当り7×10-3モル担持されるよう調整した。 このようにして得た触媒担体を白金アンミン水
溶液に浸漬し、触媒担体に白金を吸着させたの
ち、水洗し、引きつづき塩化ロジウム水溶液に浸
漬して触媒担体にロジウムを担持させ、ついで
100℃で乾燥した後、500℃で30分間焼成して排ガ
ス浄化用触媒を得た。この触媒について、化学分
析により貴金属担持量を測定したところ、触媒担
体に対する白金の担持量は、0.218重量%、ロジ
ウムの担持量は0.0227重量%であつた。 このようにして得られた新品の触媒、およびこ
の触媒を下記の方法により劣化させた後の触媒の
両者につき、触媒性能を下記の方法によつて評価
し、その結果を第1表に示した。 触媒の劣化試験は、98%のN2ガスと、2%の
O2ガスの混合ガス雰囲気で1000℃、3時間触媒
サンプルをさらすことによりおこなつた。 また、触媒の性能評価方法は、ミニリアクター
モデルガス評価装置を用いておこなつた。 C3H61000ppm、CO0.5%、NO800ppm、CO2
よびH2Oの各10%、H20.2%、O20.77%および残
余N2のガスを、流量23.3/分、空間速度
40000hr-1なる条件で触媒に通じ、触媒入口ガス
温度を100℃から20℃/分の昇温速度で500℃まで
昇温し、C3H6の50%浄化率を示す時の触媒入口
ス温度 〔T50%C3H6(℃)〕を測定し、触媒性能を評
価した。 実施例 2 担体を浸漬する水溶液として、硝酸イツトリウ
ム水溶液の代りに、硝酸プラセオジウム水溶液を
用いた以外は実施例1と同様にして排ガス浄化用
触媒を得た。この触媒および実施例1に示すと同
様の劣化試験の後の触媒につき、実施例1と同様
の方法によつて触媒性能の評価をおこないその結
果を第1表に示した。 実施例 3 担体を浸漬する水溶液として、硝酸イツトリウ
ム水溶液の代りに、硝酸ネオジウム水溶液を用い
た以外は実施例1と同様にして排ガス浄化用触媒
を得た。この触媒および実施例1に示すと同様の
劣化試験の後の触媒につき、実施例1と同様の方
法によつて触媒性能の評価をおこないその結果を
第1表に示した、 実施例 4 担体を浸漬する水溶液として、硝酸イツトリウ
ム水溶液の代りに、硝酸コバルト水溶液を用いた
以外は実施例1と同様にして排ガス浄化用触媒を
得た。この触媒および実施例1に示すと同様の劣
化試験の後の触媒につき、実施例1と同様の方法
によつて触媒性能の評価をおこないその結果を第
1表に示した。 実施例 5 担体を浸漬する水溶液として、硝酸イツトリウ
ム水溶液の代りに、硝酸ニツケル水溶液を用いた
以外は実施例1と同様にして排ガス浄化用触媒を
得た。この触媒および実施例1に示すと同様の劣
化試験の後の触媒につき、実施例1と同様の方法
によつて触媒性能を評価をおこないその結果を第
1表に示した。 実施例 6 担体を浸漬する水溶液として、硝酸イツトリウ
ム水溶液の代りに、オキシ硝酸ジルコニウム水溶
液を用いた以外は実施例1と同様にして排ガス浄
化用触媒を得た。この触媒および実施例1に示す
と同様の劣化試験の後の触媒につき、実施例1と
同様の方法によつて触媒性能の評価をおこないそ
の結果を第1表に示した。 比較例 1 実施例1と同様の方法で第1回目のアルミナコ
ートを基材に施し、さらに連続して同様の方法に
て第2回目のアルミナコートを基材に施し担体を
得た。つぎに担体1個当りセリウム原子が7×
10-3モルとなるように、実施例1と同様の方法で
硝酸セリウム水溶液を用いてセリウムの担持をお
こなつた後、実施例1に示すと同様の方法で乾燥
および焼成をおこなつて触媒担体を得た。以後実
施例1と同様にして触媒担体に白金およびロジウ
ムを担持して触媒を得た。 このようにして得た触媒および実施例1に示す
と同様の劣化試験の後の触媒につき、実施例1と
同様の方法によつて触媒性能の評価をおこないそ
の結果を第1表に示した。 比較例 2 担体を浸漬する水溶液として、硝酸セリウム水
溶液の代りに、オキシ硝酸ジルコニウム水溶液を
用いた以外は実施例1と同様にして触媒を得た。
この触媒および実施例1に示すと同様の劣化試験
の後の触媒につき、実施例1と同様の方法によつ
て触媒性能の評価をおこないその結果を第1表に
示した。 比較例 3 担体を浸漬する水溶液として、硝酸セリウム水
溶液の代りに、硝酸ランタン水溶液を用いた以外
は比較例1と同様にして触媒を得た。この触媒お
よび実施例1に示すと同様の劣化試験の後の触媒
につき、実施例1と同様の方法によつて触媒性能
の評価をおこないその結果を第1表に示した。 比較例 4 担体を浸漬する水溶液として、硝酸セリウム水
溶液の代りに、硝酸ニツケル水溶液を用いた以外
は比較例1と同様にして触媒を得た。この触媒お
よび実施例1に示すと同様の劣化試験の後の触媒
につき、実施例1と同様の方法によつて触媒性能
の評価をおこないその結果を第1表に示した。 比較例 5 担体を浸漬する水溶液として、硝酸セリウム水
溶液の代りに、硝酸第二鉄水溶液を用いた以外は
比較例1と同様にして触媒を得た。この触媒およ
び実施例1に示すと同様の劣化試験の後の触媒に
つき、実施例1と同様の方法によつて触媒性能の
評価をおこないその結果を第1表に示した。 比較例 6 比較例1と同様にして2回のアルミナコートを
基材に施した後、セリウムの担持をおこなつた。
ついで、実施例1と同様にして硝酸イツトリウム
水溶液を用い、担体1個当りイツトリウム原子が
3.5×10-3モル担持されるようにイツトリウムを
担持して触媒担体を得た。以後実施例1と同様に
して白金およびロジウムを触媒担体に担持して触
媒を得た。 このようにして得た触媒および実施例1に示す
と同様の劣化試験の後の触媒につき、実施例1と
同様の方法によつて触媒性能の評価をおこないそ
の結果を第1表に示した。 比較例 7 担体に浸漬する水溶液として、硝酸イツトリウ
ム水溶液の代りに、硝酸プラセオジウム水溶液を
用いた以外は比較例6と同様にして触媒を得た。
この触媒および実施例1に示すと同様の劣化試験
の後の触媒につき、実施例1と同様の方法によつ
て触媒性能の評価をおこないその結果を第1表に
示した。 比較例 8 担体を浸漬する水溶液として、硝酸イツトリウ
ム水溶液の代りに、硝酸ネオジウム水溶液を用い
た以外は比較例6と同様にして触媒を得た。この
触媒および実施例1に示すと同様の劣化試験の後
の触媒につき、実施例1と同様の方法によつて触
媒性能の評価をおこないその結果を第1表に示し
た。 比較例 9 担体を浸漬する水溶液として、硝酸イツトリウ
ム水溶液の代りに、硝酸コバルト水溶液を用いた
以外は比較例6と同様にして触媒を得た。この触
媒および実施例1に示すと同様の劣化試験の後の
触媒につき、実施例1と同様の方法によつて触媒
性能の評価をおこないその結果を第1表に示し
た。 比較例 10 担体を浸漬する水溶液として、硝酸イツトリウ
ム水溶液の代りに、硝酸ニツケル水溶液を用いた
以外は比較例6と同様にして触媒を得た。この触
媒および実施例1に示すと同様の劣化試験の後の
触媒につき、実施例1と同様の方法によつて触媒
性能の評価をおこないその結果を第1表に示し
た。 比較例 11 担体を浸漬する水溶液として、硝酸イツトリウ
ム水溶液の代りに、オキシ硝酸ジルコニウム水溶
液を用いた以外は比較例6と同様にして触媒を得
た。この触媒および実施例1に示すと同様の劣化
試験の後の触媒につき、実施例1と同様の方法に
よつて触媒性能の評価をおこないその結果を第1
表に示した。 実施例 7〜12 実施例1〜6において、白金アンミン水溶液お
よび塩化ロジウム水溶液を用いて触媒金属として
の白金およびロジウムを触媒担体に担持させた代
りに、塩化パラジウム水溶液および塩化ロジウム
水溶液を順次に用いて触媒担体に触媒金属のパラ
ジウムおよびロジウムを担持させた以外は実施例
1〜6と同様にして、夫々実施例7〜12の排ガス
浄化用触媒を得た。なおパラジウムの担持量は
0.218重量%、ロジウムの担持量は、0.0227重量
%であつた。 このようにして得た触媒および実施例1に示す
と同様の劣化試験の後の触媒につき実施例1と同
様の方法によつて触媒性能の評価をおこないその
結果を第2表に示した。 比較例 12〜22 比較例1〜11で、白金アンミン水溶液および塩
化ロジウム水溶液を用いて触媒金属としての白金
およびロジウムを触媒担体に担持させた代りに、
塩化パラジウム水溶液および塩化ロジウム水溶液
を順次に用いて触媒担体に触媒金属をパラジウム
およびロジウムを担持させた以外は比較例1〜11
と同様にして、夫々比較例12〜22の触媒を得た。
なお、パラジウムの担持量は0.218重量%、ロジ
ウムの担持量は0.0227重量%であつた。 このようにて得た触媒および実施例1に示すと
同様の劣化試験の後の触媒につき、実施例1と同
様の方法によつて触媒性能の評価をおこないその
結果を第2表に示した。 実施例 13〜18 実施例1〜6において、白金アンミン水溶液お
よび塩化ロジウム水溶液を用いて触媒金属として
の白金およびロジウムを触媒担体に担持させた代
りに、塩化パラジウム水溶液、白金アンミン水溶
液および塩化ロジウム水溶液を順次に用いて触媒
担体に触媒金属のパラジウム、白金およびロジウ
ムを担持させた以外は実施例1〜6と同様にし
て、夫々実施例13〜18の排ガス浄化用触媒を得
た。なおパラジウムの担持量は0.109重量%、白
金の担持量は0.109重量%、ロジウムの担持量は
0.0227重量%であつた。 このようにして得た触媒および実施例1に示す
と同様の劣化試験の後の触媒につき、実施例1と
同様の方法によつて触媒性能の評価をおこないそ
の結果を第3表に示した。 比較例 23〜33 比較例1〜11で、白金アンミン水溶液および塩
化ロジウム水溶液を用いて触媒金属としての白金
およびロジウムを触媒担体に担持させた代りに、
塩化パラジウム水溶液、白金アンミン水溶液およ
び塩化ロジウム水溶液を順次に用いて触媒担体に
触媒金属のパラジウム、白金およびロジウムを担
持させた以外は比較例1〜11と同様にして、夫々
比較例23〜33の触媒を得た。なお、パラジウムの
担持量は0.109重量%、白金の担持量は0.109重量
%、ロジウムの担持量は0.0227重量%であつた。 このようにして得た触媒および実施例1に示す
と同様の劣化試験の後の触媒につき、実施例1と
同様の方法によつて触媒性能の評価をおこないそ
の結果を第3表に示した。
[Industrial Application Field] This invention removes nitrogen oxides (NO) and combustible carbon substances such as carbon monoxide (CO) and hydrocarbons (HC) contained in exhaust gas discharged from internal combustion engines. This invention relates to a catalyst for purifying exhaust gas.
In particular, the present invention relates to a catalyst for exhaust gas purification in which catalyst metals and additives are supported on a carrier obtained by coating a refractory inorganic compound such as cordierite or mullite with alumina on its surface. [Prior art] Conventionally, platinum, rhodium, palladium, etc. have been used as catalyst metals used in exhaust gas purification catalysts, and oxides of cerium, zirconium, lanthanum, nickel, iron, etc. have been used as additives. It has been done. These additives are added to the catalytic metal for the purpose of promoting a cocatalyst effect,
Further, it is added to obtain various effects, such as for the purpose of preventing alumina to which a catalyst metal is attached from sintering under high-temperature usage conditions. Various types of additives have been proposed in the past, but generally these additives have been uniformly dispersed in an alumina coating layer coated on the surface of a refractory inorganic compound base material such as cordierite or mullite. It is used as The method for dispersing additives in this alumina coat layer is as follows:
An impregnation method involves impregnating the alumina coating layer with an aqueous solution of additive metal nitrates, chlorides, etc., and then firing it, or a method in which carbonate or acetate of additive metals are mixed with alumina, and the alumina is coated on the surface of the base material at the same time. There is a method in which additives are also attached to the base material and fired to form a uniform oxide in alumina. [Problems to be Solved by the Invention] The problem with the prior art as described above is that when new, the oxides of cerium, zirconium, lanthanum, nickel, iron, etc. have very good promoter effects. However, when exposed to high heat, the deterioration is greater than that without additives.
The performance required for conventional automobile exhaust gas purification catalysts was such that the upper limit of the gas temperature at the catalyst inlet was around 800°C, so large deterioration under high-temperature operating conditions was not a major problem. However, due to the recent movement of the catalyst mounting position to the upstream part of the exhaust pipe and the demands of the automobile industry, the upper limit of the catalyst inlet gas temperature has increased to 900°C.
It is thought that the catalyst temperature is around 1000°C. As a result, high-temperature durability, which has not been given much importance in the past, has recently become a particular issue. [Means for Solving the Problems] As a result of intensive research to solve the problems of the above-mentioned prior art, the present inventors have discovered an internal heat treatment system that has excellent catalytic performance and high heat durability when new. We succeeded in obtaining a catalyst for purifying engine exhaust gas. That is, the present invention provides an exhaust gas purifying catalyst in which a catalyst is supported on a carrier obtained by coating a base material with alumina, and has two alumina coat layers, and the inner alumina coat layer contains yttrium and praseodymium. , neodymium, cobalt, nickel, and zirconium and cerium, the outer alumina coat layer contains cerium, and the catalyst metal contains at least one selected from platinum, palladium, and rhodium. The problems of the prior art are solved by providing a supported catalyst for purifying exhaust gas containing nitrogen oxides, carbon monoxide, and hydrocarbons. The refractory inorganic compound used as the base material is cordierite, mullite, etc., and the base material generally has a honeycomb structure, but may also have a triangular, square, or wavy cell structure. The additives yttrium, praseodymium, neodymium, cobalt, nickel, zirconium, and cerium are added to the alumina coat layer by the conventional impregnation method described above. Further, the firing temperature of the carrier containing these additives is preferably 400°C to 1000°C. Note that when the outer alumina coat layer contains cerium by an impregnation method, cerium is also contained in the inner alumina coat layer. etc., it may not be included. All of the additives contained in the alumina layer described above exist in the form of oxides, such as cerium dioxide, due to firing. The catalyst metal used in this invention is at least one metal selected from platinum, palladium, and rhodium. be carried by Firing temperature is 300℃ to 800℃
It is preferable that [Function] In the catalyst of the present invention, at least one selected from yttrium, praseodymium, neodymium, cobalt, nickel, and zirconium and cerium contained in the inner alumina coat layer act as promoters, Cerium contained in the outer alumina coat layer also acts as a promoter. Furthermore, at least one metal selected from platinum, palladium, and rhodium supported on the outer alumina coat layer acts as a catalyst. In the case of catalysts for exhaust gas purification, catalytic metals should be as highly dispersed as possible in order to fully demonstrate their performance.
And it is customary to carry it on the coated surface. Taking these preconditions into consideration, among the metals contained as promoters in the present invention, promoter metals other than cerium have the disadvantage that, when they coexist with catalyst metals, they tend to sinter under high heat. Therefore, in the catalyst of this invention,
Promoter metals other than cerium are contained in the inner layer and separated from the catalyst metal, and the outer layer contains only cerium, which does not have these drawbacks. Moreover, the cocatalyst effect can be sufficiently exhibited in the case of yttrium, praseodymium, neodymium, cobalt, nickel, and zirconium of the present invention even when only the inner coating layer is used. [Example] Example 1 A mixed solution obtained by adding 350 g of alumina sol (alumina content 10% by weight) stabilized with acetic acid and 60 g of aluminum nitrate [Al(NO 3 ) 3.9H 2 O] to 420 g of pure water. , average particle size 10μm, specific surface area 125
1 kg of γ-alumina powder of m 2 /g was gradually added with stirring to prepare a uniform alumina slurry. Next, a monolithic base material made of cordierite (square cells, number of cells/cm 2 , 30 mm in diameter, 50 mm in length, weight 20 g) made of cordierite (square cells, number of cells/cm 2 , 30 mm in diameter, 50 mm in length, weight 20 g) was immersed in pure water and pulled up, and the water remaining in the cells was removed with an air stream. After being blown off and removed, it was immersed in the above alumina slurry for 2 minutes. After lifting the base material from the slurry and blowing off the excess alumina slurry inside the cell with an air stream, it was heated to 80°C.
The base material was dried for 3 hours at 800° C. in an electric furnace for 1 hour at 800° C. to obtain a support coated with alumina. Next, this carrier was immersed in an aqueous yttrium nitrate solution for 2 minutes. The carrier was lifted out of the aqueous solution, the excess aqueous solution in the cell was blown off with an air stream, and then dried at 80°C for 3 hours, and further calcined in an electric furnace at 800°C in an air atmosphere for 1 hour.
The concentration of the yttrium nitrate aqueous solution at this time was adjusted so that 3.5 x 10 -3 moles of yttrium atoms were supported per carrier. Next, the carrier was further coated with alumina using the above alumina slurry in the same manner as above, and then immersed in an aqueous cerium nitrate solution for 2 minutes. After lifting the carrier from the aqueous solution and blowing off the excess aqueous solution in the cell with an air stream, it was incubated at 80°C for 3
It was dried for an hour and then fired in an electric furnace at 800° C. for 1 hour in an air atmosphere. The concentration of the cerium nitrate aqueous solution at this time was adjusted so that 7×10 −3 moles of cerium atoms were supported per carrier. The catalyst carrier thus obtained was immersed in a platinum ammine aqueous solution to adsorb platinum onto the catalyst carrier, washed with water, and subsequently immersed in a rhodium chloride aqueous solution to support rhodium on the catalyst carrier.
After drying at 100°C, it was calcined at 500°C for 30 minutes to obtain an exhaust gas purification catalyst. When the amount of noble metals supported on this catalyst was measured by chemical analysis, the amount of platinum supported on the catalyst carrier was 0.218% by weight, and the amount of supported rhodium was 0.0227% by weight. The catalytic performance of both the new catalyst obtained in this way and the catalyst after this catalyst was deteriorated by the method described below was evaluated by the method below, and the results are shown in Table 1. . The catalyst deterioration test was performed using 98% N2 gas and 2% N2 gas.
This was done by exposing the catalyst sample to a mixed gas atmosphere of O 2 gas at 1000°C for 3 hours. In addition, the catalyst performance evaluation method was performed using a mini-reactor model gas evaluation device. Gases of C 3 H 6 1000 ppm, CO 0.5%, NO 800 ppm, 10% each of CO 2 and H 2 O, H 2 0.2%, O 2 0.77% and the balance N 2 at a flow rate of 23.3/min and a space velocity.
The catalyst inlet gas temperature is increased from 100°C to 500°C at a rate of 20°C/min, and shows a 50% purification rate of C 3 H 6 . The temperature [T50%C 3 H 6 (°C)] was measured to evaluate the catalyst performance. Example 2 A catalyst for exhaust gas purification was obtained in the same manner as in Example 1, except that an aqueous praseodymium nitrate solution was used instead of an aqueous yttrium nitrate solution as the aqueous solution in which the carrier was immersed. The catalyst performance of this catalyst and the catalyst after the same deterioration test as shown in Example 1 was evaluated by the same method as in Example 1, and the results are shown in Table 1. Example 3 A catalyst for exhaust gas purification was obtained in the same manner as in Example 1, except that an aqueous neodymium nitrate solution was used instead of an aqueous yttrium nitrate solution as the aqueous solution in which the carrier was immersed. This catalyst and the catalyst after the same deterioration test as shown in Example 1 were evaluated for catalyst performance by the same method as in Example 1, and the results are shown in Table 1. An exhaust gas purifying catalyst was obtained in the same manner as in Example 1, except that an aqueous cobalt nitrate solution was used instead of an aqueous yttrium nitrate solution as the aqueous solution to be immersed. The catalyst performance of this catalyst and the catalyst after the same deterioration test as shown in Example 1 was evaluated by the same method as in Example 1, and the results are shown in Table 1. Example 5 A catalyst for exhaust gas purification was obtained in the same manner as in Example 1, except that an aqueous nickel nitrate solution was used instead of an aqueous yttrium nitrate solution as the aqueous solution in which the carrier was immersed. The catalyst performance of this catalyst and the catalyst after the same deterioration test as shown in Example 1 was evaluated by the same method as in Example 1, and the results are shown in Table 1. Example 6 A catalyst for exhaust gas purification was obtained in the same manner as in Example 1, except that an aqueous zirconium oxynitrate solution was used instead of an aqueous yttrium nitrate solution as the aqueous solution in which the carrier was immersed. The catalyst performance of this catalyst and the catalyst after the same deterioration test as shown in Example 1 was evaluated by the same method as in Example 1, and the results are shown in Table 1. Comparative Example 1 A first alumina coat was applied to the base material in the same manner as in Example 1, and a second alumina coat was subsequently applied to the base material in the same manner to obtain a carrier. Next, the number of cerium atoms per carrier is 7×
Cerium was supported using an aqueous cerium nitrate solution in the same manner as in Example 1 so that the amount of cerium was 10 -3 mol, and then dried and calcined in the same manner as in Example 1 to obtain a catalyst. A carrier was obtained. Thereafter, platinum and rhodium were supported on a catalyst carrier in the same manner as in Example 1 to obtain a catalyst. The catalyst performance of the thus obtained catalysts and the catalysts subjected to the same deterioration test as shown in Example 1 was evaluated in the same manner as in Example 1, and the results are shown in Table 1. Comparative Example 2 A catalyst was obtained in the same manner as in Example 1, except that a zirconium oxynitrate aqueous solution was used instead of a cerium nitrate aqueous solution as the aqueous solution in which the carrier was immersed.
The catalyst performance of this catalyst and the catalyst after the same deterioration test as shown in Example 1 was evaluated by the same method as in Example 1, and the results are shown in Table 1. Comparative Example 3 A catalyst was obtained in the same manner as in Comparative Example 1, except that a lanthanum nitrate aqueous solution was used instead of a cerium nitrate aqueous solution as the aqueous solution in which the carrier was immersed. The catalyst performance of this catalyst and the catalyst after the same deterioration test as shown in Example 1 was evaluated by the same method as in Example 1, and the results are shown in Table 1. Comparative Example 4 A catalyst was obtained in the same manner as in Comparative Example 1, except that a nickel nitrate aqueous solution was used instead of a cerium nitrate aqueous solution as the aqueous solution in which the carrier was immersed. The catalyst performance of this catalyst and the catalyst after the same deterioration test as shown in Example 1 was evaluated by the same method as in Example 1, and the results are shown in Table 1. Comparative Example 5 A catalyst was obtained in the same manner as in Comparative Example 1, except that a ferric nitrate aqueous solution was used instead of a cerium nitrate aqueous solution as the aqueous solution in which the carrier was immersed. The catalyst performance of this catalyst and the catalyst after the same deterioration test as shown in Example 1 was evaluated by the same method as in Example 1, and the results are shown in Table 1. Comparative Example 6 After applying alumina coating twice to the base material in the same manner as in Comparative Example 1, cerium was supported.
Then, in the same manner as in Example 1, using an aqueous yttrium nitrate solution, the amount of yttrium atoms per carrier was determined.
A catalyst carrier was obtained by supporting yttrium in an amount of 3.5×10 −3 mol. Thereafter, in the same manner as in Example 1, platinum and rhodium were supported on a catalyst carrier to obtain a catalyst. The catalyst performance of the thus obtained catalysts and the catalysts subjected to the same deterioration test as shown in Example 1 was evaluated in the same manner as in Example 1, and the results are shown in Table 1. Comparative Example 7 A catalyst was obtained in the same manner as in Comparative Example 6, except that an aqueous praseodymium nitrate solution was used instead of an aqueous yttrium nitrate solution as the aqueous solution for dipping the carrier.
The catalyst performance of this catalyst and the catalyst after the same deterioration test as shown in Example 1 was evaluated by the same method as in Example 1, and the results are shown in Table 1. Comparative Example 8 A catalyst was obtained in the same manner as in Comparative Example 6, except that a neodymium nitrate aqueous solution was used instead of the yttrium nitrate aqueous solution as the aqueous solution in which the carrier was immersed. The catalyst performance of this catalyst and the catalyst after the same deterioration test as shown in Example 1 was evaluated by the same method as in Example 1, and the results are shown in Table 1. Comparative Example 9 A catalyst was obtained in the same manner as in Comparative Example 6, except that a cobalt nitrate aqueous solution was used instead of the yttrium nitrate aqueous solution as the aqueous solution in which the carrier was immersed. The catalyst performance of this catalyst and the catalyst after the same deterioration test as shown in Example 1 was evaluated by the same method as in Example 1, and the results are shown in Table 1. Comparative Example 10 A catalyst was obtained in the same manner as in Comparative Example 6, except that a nickel nitrate aqueous solution was used instead of the yttrium nitrate aqueous solution as the aqueous solution in which the carrier was immersed. The catalyst performance of this catalyst and the catalyst after the same deterioration test as shown in Example 1 was evaluated by the same method as in Example 1, and the results are shown in Table 1. Comparative Example 11 A catalyst was obtained in the same manner as in Comparative Example 6 except that an aqueous zirconium oxynitrate solution was used instead of an aqueous yttrium nitrate solution as the aqueous solution in which the carrier was immersed. The catalyst performance of this catalyst and the catalyst after the same deterioration test as shown in Example 1 was evaluated in the same manner as in Example 1, and the results were evaluated in the first
Shown in the table. Examples 7 to 12 In Examples 1 to 6, instead of supporting platinum and rhodium as catalyst metals on the catalyst carrier using an aqueous platinum ammine solution and an aqueous rhodium chloride solution, an aqueous palladium chloride solution and an aqueous rhodium chloride solution were sequentially used. Exhaust gas purifying catalysts of Examples 7 to 12 were obtained in the same manner as Examples 1 to 6, except that the catalyst metals palladium and rhodium were supported on the catalyst carrier. The amount of palladium supported is
The amount of rhodium supported was 0.0227% by weight. The catalysts thus obtained and the catalysts subjected to the same deterioration test as shown in Example 1 were evaluated for catalyst performance in the same manner as in Example 1, and the results are shown in Table 2. Comparative Examples 12 to 22 Instead of Comparative Examples 1 to 11, in which platinum and rhodium as catalyst metals were supported on a catalyst carrier using a platinum ammine aqueous solution and a rhodium chloride aqueous solution,
Comparative Examples 1 to 11 except that palladium and rhodium were supported as catalyst metals on the catalyst carrier using a palladium chloride aqueous solution and a rhodium chloride aqueous solution sequentially.
Catalysts of Comparative Examples 12 to 22 were obtained in the same manner as above.
The amount of palladium supported was 0.218% by weight, and the amount of rhodium supported was 0.0227% by weight. The catalysts thus obtained and the catalysts subjected to the same deterioration test as shown in Example 1 were evaluated for catalyst performance in the same manner as in Example 1, and the results are shown in Table 2. Examples 13 to 18 In Examples 1 to 6, instead of supporting platinum and rhodium as catalyst metals on a catalyst carrier using a platinum ammine aqueous solution and a rhodium chloride aqueous solution, a palladium chloride aqueous solution, a platinum ammine aqueous solution, and a rhodium chloride aqueous solution were used. Exhaust gas purifying catalysts of Examples 13 to 18 were obtained in the same manner as in Examples 1 to 6, except that the catalyst metals palladium, platinum, and rhodium were supported on the catalyst carrier by sequentially using the following methods. The amount of palladium supported is 0.109% by weight, the amount of platinum supported is 0.109% by weight, and the amount of supported rhodium is 0.109% by weight.
It was 0.0227% by weight. The catalysts thus obtained and the catalysts subjected to the same deterioration test as shown in Example 1 were evaluated for catalyst performance in the same manner as in Example 1, and the results are shown in Table 3. Comparative Examples 23 to 33 In place of Comparative Examples 1 to 11, in which platinum and rhodium as catalyst metals were supported on a catalyst carrier using a platinum ammine aqueous solution and a rhodium chloride aqueous solution,
Comparative Examples 23 to 33 were prepared in the same manner as Comparative Examples 1 to 11, except that the catalyst metals palladium, platinum, and rhodium were supported on the catalyst carrier using a palladium chloride aqueous solution, a platinum ammine aqueous solution, and a rhodium chloride aqueous solution, respectively. I got a catalyst. The amount of palladium supported was 0.109% by weight, the amount of platinum supported was 0.109% by weight, and the amount of rhodium supported was 0.0227% by weight. The catalysts thus obtained and the catalysts subjected to the same deterioration test as shown in Example 1 were evaluated for catalyst performance in the same manner as in Example 1, and the results are shown in Table 3.

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

この発明の排ガス浄化用触媒は、新品の性能は
良好であるが、高熱耐久性に劣つていた従来品と
異なり、劣化前の新品の性能が良好であるのみな
らず、高熱耐久性にとくに優れている特長を有す
る。
The catalyst for exhaust gas purification of this invention has good performance when new, but unlike conventional products which had poor high-temperature durability, the catalyst for exhaust gas purification of this invention not only has good performance when new before deterioration, but also has particularly good high-temperature durability. It has excellent features.

Claims (1)

【特許請求の範囲】[Claims] 1 基材にアルミナをコートして得られた担体
に、触媒を担持させた排ガス浄化用触媒におい
て、アルミナコート層を二層となし、内側のアル
ミナコート層には、イツトリウム、プラセオジウ
ム、ネオジウム、コバルト、ニツケルおよびジル
コニウムから選ばれた少くとも一種とセリウムと
を含有させ、外側のアルミナコート層にはセリウ
ムを含有させ、さらに触媒金属として白金、パラ
ジウムおよびロジウムから選ばれた少くとも一種
を担持させたことからなる、排ガス中の窒素酸化
物、一酸化炭素および炭化水素を除去、浄化する
ための排ガス浄化用触媒。
1 In an exhaust gas purification catalyst in which a catalyst is supported on a carrier obtained by coating a base material with alumina, there are two alumina coat layers, and the inner alumina coat layer contains yttrium, praseodymium, neodymium, and cobalt. , at least one selected from nickel and zirconium, and cerium; the outer alumina coat layer contains cerium; and at least one selected from platinum, palladium, and rhodium is supported as a catalyst metal. An exhaust gas purification catalyst for removing and purifying nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas.
JP59201341A 1984-09-26 1984-09-26 Catalyst for purifying exhaust gas Granted JPS6178439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59201341A JPS6178439A (en) 1984-09-26 1984-09-26 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59201341A JPS6178439A (en) 1984-09-26 1984-09-26 Catalyst for purifying exhaust gas

Publications (2)

Publication Number Publication Date
JPS6178439A JPS6178439A (en) 1986-04-22
JPH0472577B2 true JPH0472577B2 (en) 1992-11-18

Family

ID=16439417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59201341A Granted JPS6178439A (en) 1984-09-26 1984-09-26 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS6178439A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622675B2 (en) * 1985-09-24 1994-03-30 マツダ株式会社 Engine exhaust gas purification catalyst
JPH0675675B2 (en) * 1986-11-04 1994-09-28 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP2716205B2 (en) * 1989-05-08 1998-02-18 株式会社日本触媒 Exhaust gas purification catalyst
JP3639164B2 (en) * 1999-12-02 2005-04-20 ダイハツ工業株式会社 Degradation method of exhaust gas purification catalyst
KR100384015B1 (en) * 2000-12-02 2003-05-14 현대자동차주식회사 Improved NOx conversion and thermal durable Pd only three way catalyst
KR100384016B1 (en) * 2000-12-05 2003-05-14 현대자동차주식회사 High durable Pd-Rh three way catalyst for NOx reduction
KR100471590B1 (en) * 2002-04-25 2005-03-08 박종후 Metallic monoliths substrate of 3-way catalytic converter

Also Published As

Publication number Publication date
JPS6178439A (en) 1986-04-22

Similar Documents

Publication Publication Date Title
JP3956437B2 (en) Exhaust gas purification catalyst
JP3953630B2 (en) Automobile exhaust catalyst and its production method
JP5982987B2 (en) Exhaust gas purification catalyst containing exhaust gas purification catalyst material
JPH09500570A (en) Layered catalyst composite
JPH0653229B2 (en) Exhaust gas purification catalyst
JP2934906B2 (en) Multifunctional catalyst for treating internal combustion engine exhaust gas containing U, U promoter and precious metal and method for preparing the same
JP7255459B2 (en) Exhaust gas purification catalyst
JPS60110335A (en) Catalyst for purifying exhaust gas
JPH05237390A (en) Catalyst for purification of exhaust gas
JPH08131830A (en) Catalyst for purification of exhaust gas
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JPH0472577B2 (en)
JPH11285644A (en) Production of catalyst
JPH09248462A (en) Exhaust gas-purifying catalyst
JPH0578378B2 (en)
JPS62282641A (en) Production of catalyst for purifying exhaust gas
JP3247956B2 (en) Exhaust gas purification catalyst
JPH10216514A (en) Catalyst for exhaust gas purification
JPH0622675B2 (en) Engine exhaust gas purification catalyst
JPH0523599A (en) Catalyst for decontaminating exhaust gas
JPH1176819A (en) Catalyst for cleaning of exhaust gas
JPS6320036A (en) Production of catalyst for purifying exhaust gas
JPH0578379B2 (en)
JP2001058131A (en) Catalyst for exhaust gas treatment
JPH02191548A (en) Catalyst for purification of exhaust gas

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term