KR100384016B1 - High durable Pd-Rh three way catalyst for NOx reduction - Google Patents

High durable Pd-Rh three way catalyst for NOx reduction Download PDF

Info

Publication number
KR100384016B1
KR100384016B1 KR10-2000-0073444A KR20000073444A KR100384016B1 KR 100384016 B1 KR100384016 B1 KR 100384016B1 KR 20000073444 A KR20000073444 A KR 20000073444A KR 100384016 B1 KR100384016 B1 KR 100384016B1
Authority
KR
South Korea
Prior art keywords
oxide
weight
palladium
parts
catalyst
Prior art date
Application number
KR10-2000-0073444A
Other languages
Korean (ko)
Other versions
KR20020043966A (en
Inventor
여권구
송영일
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR10-2000-0073444A priority Critical patent/KR100384016B1/en
Publication of KR20020043966A publication Critical patent/KR20020043966A/en
Application granted granted Critical
Publication of KR100384016B1 publication Critical patent/KR100384016B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 질소산화물 제거용 팔라듐-로듐 삼원촉매와 그 제조방법에 관한 것으로서, 더욱 상세하게는 종래 벌크 산화세륨(CeO2)만을 함유하고 있는 팔라듐-로듐 삼원촉매와 달리 세륨화합물로서 벌크 산화세륨(CeO2) 외에도 세륨ㆍ지르코늄 복합산화물[(CeㆍZr)O2]을 동시에 함유하고 있어 내열성이 향상되고, 산화프라세오디미윰(PrO2)을 함유하여 배기가스 정화효과가 우수하며 그 중에서도 특히 질소산화물(NOX)의 제거효과가 탁월하여 자동차 배기가스나 각종 산업시설에서 가스정화용 촉매로서 매우 유용한 개선된 팔라듐-로듐 삼원촉매와 그 제조방법에 관한 것이다.The present invention relates to a palladium-rhodium tertiary catalyst for removing nitrogen oxides and a method of manufacturing the same, and more particularly, to a palladium-rhodium tertiary catalyst containing only bulk cerium oxide (CeO 2 ) as a cerium compound, a bulk cerium oxide ( In addition to CeO 2 ), it contains cerium-zirconium composite oxide [(Ce.Zr) O 2 ] at the same time, which improves heat resistance, and it contains excellent Praseodymic oxide (PrO 2 ) to purify the exhaust gas. The present invention relates to an improved palladium-rhodium tertiary catalyst which is excellent as a catalyst for purifying gas in automobile exhaust gas or various industrial facilities due to its excellent removal effect of nitrogen oxide (NO X ) and a method for producing the same.

Description

질소산화물 제거용 팔라듐-로듐 삼원촉매와 그 제조방법{High durable Pd-Rh three way catalyst for NOx reduction}Palladium-rhodium three-way catalyst for nitrogen oxide removal and its manufacturing method {High durable Pd-Rh three way catalyst for NOx reduction}

본 발명은 질소산화물 제거용 팔라듐-로듐 삼원촉매와 그 제조방법에 관한 것으로서, 더욱 상세하게는 종래 벌크 산화세륨(CeO2)만을 함유하고 있는 팔라듐-로듐 삼원촉매와 달리 세륨화합물로서 벌크 산화세륨(CeO2) 외에도 세륨ㆍ지르코늄 복합산화물[(CeㆍZr)O2]을 동시에 함유하고 있어 내열성이 향상되고, 산화프라세오디미윰(PrO2)을 함유하여 배기가스 정화효과가 우수하며 그 중에서도 특히 질소산화물(NOX)의 제거효과가 탁월하여 자동차 배기가스나 각종 산업시설에서 가스정화용 촉매로서 매우 유용한 개선된 팔라듐-로듐 삼원촉매와 그 제조방법에 관한 것이다.The present invention relates to a palladium-rhodium tertiary catalyst for removing nitrogen oxides and a method of manufacturing the same, and more particularly, to a palladium-rhodium tertiary catalyst containing only bulk cerium oxide (CeO 2 ) as a cerium compound, a bulk cerium oxide ( In addition to CeO 2 ), it contains cerium-zirconium composite oxide [(Ce.Zr) O 2 ] at the same time, which improves heat resistance, and it contains excellent Praseodymic oxide (PrO 2 ) to purify the exhaust gas. The present invention relates to an improved palladium-rhodium tertiary catalyst which is excellent as a catalyst for purifying gas in automobile exhaust gas or various industrial facilities due to its excellent removal effect of nitrogen oxide (NO X ) and a method for producing the same.

일반적으로 각종 산업시설에서 배출되는 배기가스나 자동차의 배기가스에 함유된 질소산화물(NOX)은 일산화질소, 이산화질소, 및 아산화질소를 말하는 것으로여타의 탄소산화물 및 황산화물과 같이 대기환경오염을 일으키는 대표적인 물질 중의 하나이다. 이중에서도 아산화질소는 독성이 크지 않지만, 이산화탄소와 함께 지구 온난화의 주원인 물질이며, 일산화질소는 배기가스 질소산화물의 주성분으로 공기중에 배출될 경우 상온에서도 산소와 반응하여 쉽게 이산화질소로 전환된다. 특히, 일산화질소와 이산화질소는 인체에 매우 유해한 발암성 물질로 심각한 대기 오염을 일으키며, 황산화물과 함께 산성비의 원인이 되고 있다. 이들 질소산화물의 배출은 산업 폐기물의 경우를 제외하고는 주로 고온연소시 공기중의 질소와 산소의 반응 및 연료 속에 포함된 질소화합물의 연소에 기인한다. 따라서, 연소 조절을 통하여 질소산화물의 생성을 줄이는 방법 이외에 배기가스 처리에 의한 질소산화물 제거기술의 개발이 불가피하다.In general, nitrogen oxides (NO X ) contained in exhaust gases emitted from various industrial facilities or automobile exhaust gases refer to nitrogen monoxide, nitrogen dioxide, and nitrous oxide, which cause air pollution such as other carbon oxides and sulfur oxides. One of the representative materials. Of these, nitrous oxide is not toxic, but it is a major source of global warming along with carbon dioxide. Nitrogen monoxide is a major component of exhaust gas nitrogen oxides and is easily converted to nitrogen dioxide by reacting with oxygen at room temperature when released into the air. In particular, nitrogen monoxide and nitrogen dioxide are carcinogenic substances that are very harmful to the human body, causing serious air pollution, and together with sulfur oxides, are causing acid rain. The emissions of these nitrogen oxides are mainly due to the reaction of nitrogen and oxygen in the air and the combustion of nitrogen compounds contained in the fuel at high temperature, except for industrial waste. Therefore, in addition to the method of reducing the production of nitrogen oxides through the combustion control, the development of nitrogen oxide removal technology by the exhaust gas treatment is inevitable.

질소산화물 제거기술은 크게 촉매를 사용하는 경우와 촉매를 사용하지 않고 처리하는 경우가 있으며, 촉매가 이용되는 경우 환원제를 사용하는 방법과 환원제 없이 촉매 상에서 직접 분해시키는 방법으로 나누어 진다. 촉매와 환원제가 함께 사용되는 경우로는, 1980년대 초에 암모니아를 환원제로한 처리기술이 처음 실용화되어 급속도로 그 이용이 증대되어 왔다. 그러나, 상기 암모니아를 환원제로 사용하는 방법은 암모니아의 수송 및 장입의 어려움과 암모니아의 부식성 때문에 장치비가 많이 소요되는 단점 이외에 미반응된 암모니아가 대기중으로 배출되는 이차 공해 유발의 문제점을 안고 있다.Nitrogen oxide removal technology is largely divided into the case of using a catalyst and the case of treatment without using a catalyst. When a catalyst is used, it is divided into a method of using a reducing agent and a method of directly decomposing on a catalyst without a reducing agent. In the case where a catalyst and a reducing agent are used together, the treatment technology using ammonia as a reducing agent has been commercialized for the first time in the early 1980s, and its use has rapidly increased. However, the method of using the ammonia as a reducing agent has a problem of causing secondary pollution in which unreacted ammonia is discharged into the air, in addition to the disadvantage that the equipment cost is high due to the difficulty of transporting and charging the ammonia and the corrosiveness of the ammonia.

한편, 1970년대 이래로는 일산화질소를 직접 분해하거나 또는 선택적 접촉 환원제를 이용하는 환원촉매를 개발하기 위하여 백금족 금속이나 금속 산화물 촉매에 관한 연구를 중심으로 많은 노력이 이루어져 왔다. 특히, 자동차 배기가스에 대해서는 자동차의 공연비가 화학양론적인 경우, 배기가스의 전환용 촉매인 백금-팔라듐-로듐 삼원촉매가 배기가스 오염원인 일산화탄소, 탄화수소, 및 질소산화물을 거의 90% 이상 무해 가스로 전환시키는 효과를 가진다고 보고되었다.On the other hand, since the 1970s, much effort has been focused on research on platinum group metals or metal oxide catalysts in order to directly decompose nitrogen monoxide or to develop a reduction catalyst using a selective catalytic reducing agent. Particularly, for automobile exhaust gas, when the air-fuel ratio of the vehicle is stoichiometric, the platinum-palladium-rhodium tertiary catalyst, which is a catalyst for converting the exhaust gas, converts carbon monoxide, hydrocarbons, and nitrogen oxides, which are exhaust gas pollutants, into almost 90% or more harmless gas. It has been reported to have a converting effect.

이러한 질소산화물 등의 오염물질 제거를 위해 사용되는 삼원촉매(three way catalyst)는 배기가스의 유해성분인 탄화수소계 화합물, 일산화탄소 및 질소산화물(NOx)과 동시에 반응하여 이들 화합물을 제거시키는 촉매를 의미하는데, 주로 Pt/Rh, Pd/Rh 또는 Pt/Pd/Rh계 삼원촉매를 사용하여 왔다.The three way catalyst used to remove pollutants such as nitrogen oxides refers to a catalyst that reacts with hydrocarbon-based compounds, carbon monoxide and nitrogen oxides (NOx), which are harmful components of exhaust gas, to remove these compounds. Pt / Rh, Pd / Rh or Pt / Pd / Rh based ternary catalysts have been used.

최근에는 로듐(Rh) 없이 팔라듐(Pd)만을 사용한 팔라듐 삼원촉매가 개발 공지된 바 있으며[한국특허 제235029호, 미국특허 제6,043,188호], 그 제조방법은 다음과 같다.Recently, palladium ternary catalysts using only palladium (Pd) without rhodium (Rh) have been developed and known [Korean Patent No. 235029, US Patent No. 6,043,188], and the manufacturing method thereof is as follows.

즉, 팔라듐 용액을 알루미나에 함침한 후 환원시키고 여기에 산화세륨 및 혼합용액을 첨가한 다음 pH를 조절하여 반응시키고 밀링하여 촉매물질 코팅슬러리(coating slurry)를 얻은 후 여기에 세라믹모노리스(ceramic monolith)를 담가서 코팅하고 건조 및 소성하여 팔라듐 삼원촉매를 제조한다.That is, the palladium solution is impregnated with alumina and then reduced, and then, cerium oxide and mixed solution are added thereto, and then the pH is adjusted and reacted and milled to obtain a coating slurry of the catalyst material, followed by ceramic monolith. Immersion, coating, drying and calcining to prepare a palladium tertiary catalyst.

그러나, 이러한 삼원촉매는 질소산화물 등 유해가스제거에는 어느 정도 효과가 있으나 내열성이 다소 떨어지고 정화효과에서도 보다 개선의 여지가 있었다. 특히, 질소산화물들은 열역학적으로 질소와 산소에 비하여 저온영역에서 불안정하다고 알려져 있어 배기가스중의 질소산화물을 촉매상에서 직접 분해시켜 질소와 산소로 전환시키는 것이 최선의 방법이지만 고온의 반응온도를 필요로 하고 촉매 활성이 쉽게 저하되는 문제 때문에 현재까지는 실제로 실용화될 수 있는 정도로 개선된 촉매가 개발되지 않은 실정이다.However, these three-way catalysts have some effect on the removal of harmful gases such as nitrogen oxides, but the heat resistance is somewhat lowered and there is room for further improvement in the purification effect. In particular, nitrogen oxides are known to be thermostable in the low temperature range compared to nitrogen and oxygen, so it is best to directly decompose nitrogen oxides in the exhaust gas on the catalyst and convert them to nitrogen and oxygen, but it requires high temperature reaction temperature. Due to the problem that the catalyst activity is easily lowered, so far no improved catalyst has been developed that can be put into practical use.

또한, Pd/Rh계 삼원촉매로서 Zr-Ce복합산화물을 이용하면 산소저장능력이 우수해지고 내열성이 향상되는 것으로 많은 연구에서 발표된 바 있지만, 배기가스 규제가 점점 강화되면서 보다 더 높은 온도에서 견딜 수 있는 고 내열성 면에서 열세한 문제점이 있었다.In addition, the use of Zr-Ce complex oxide as a Pd / Rh-based three-way catalyst improves oxygen storage capacity and improves heat resistance. However, many studies have been published. There was an inferior problem in terms of high heat resistance.

한편, 선진국에서는 계속적으로 각종 환경오염성 배출가스를 엄격히 규제하고 있는 추세여서 앞으로도 배기가스 정화 기술의 수요는 크게 증가될 전망이다. 따라서, 기존에 비하여 질소산화물 제거능 및 내열성이 더욱 우수한 삼원촉매를 개발하여 효과적으로 실용화할 수 있도록 하는 것이 당면과제로 남아 있다.Meanwhile, advanced countries continue to strictly regulate various pollutant emissions, and the demand for exhaust gas purification technology is expected to increase significantly. Therefore, it remains a problem to develop a three-way catalyst having better nitrogen oxide removal ability and heat resistance than the conventional one, and to effectively use it.

이에, 본 발명자는 종래 삼원촉매의 실용화를 목적으로 질소산화물 제거능을 보다 향상시키고 내열성을 증대시키기 위하여 연구 노력한 결과, 벌크 산화세륨(CeO2)과는 별도로 세륨-지르코늄 복합산화물[(CeㆍZr)O2]을 함께 이용하고 산화프라세오디미윰(PrO2)을 첨가하면 종래에 비하여 고효율로 질소산화물을 제거할 수 있음과 동시에 내열성도 향상된다는 사실을 알게 되어 본 발명을 완성하였다.Thus, the present inventors prior art for the purpose of practical use of the three-way catalyst improve the NOx Removal and research efforts result in order to increase the heat resistance, a bulk cerium (CeO 2), and the cerium separately oxide-zirconium composite oxide [(Ce and Zr) The use of O 2 ] together with the addition of praseodymium oxide (PrO 2 ) has been found to be capable of removing nitrogen oxide with high efficiency and improved heat resistance at the same time as compared with the conventional art, thereby completing the present invention.

따라서, 본 발명은 종래에 팔라듐-로듐 삼원촉매에 사용된 바 없는 새로운 성분을 첨가하여 종래보다 내열성 등이 우수하면서도 배기가스 정화효과가 향상되고 그 중에서도 질소산화물의 정화효과가 특히 개선된 팔라듐-로듐 삼원촉매를 제공하는데 그 목적이 있다.Therefore, the present invention adds a new component that has not been conventionally used in the palladium-rhodium ternary catalyst to improve the exhaust gas purification effect while improving heat resistance and the like, and particularly the palladium-rhodium especially the nitrogen oxide purification effect is improved. The purpose is to provide a three-way catalyst.

본 발명은 세라믹모노리스 담체에 팔라듐, 로듐 및 세륨 성분이 코팅된 팔라듐-로듐 삼원촉매에 있어서,In the present invention, in the palladium-rhodium ternary catalyst coated with a ceramic monolith carrier, palladium, rhodium and cerium components,

전체 담체 겉보기 부피에 대하여 단위부피당 알루미나 100 중량부를 기준으로 산화세륨 5 ∼ 10 중량부, 세륨-지르코늄 복합산화물 18 ∼ 27 중량부, 산화프라세오디미윰 3 ∼ 10 중량부를 포함하는 성분이 코팅된 것임을 특징으로 하는 질소산화물 제거용 팔라듐-로듐 삼원촉매에 그 특징이 있다.Based on 100 parts by weight of alumina per unit volume of the total carrier apparent volume, a component containing 5 to 10 parts by weight of cerium oxide, 18 to 27 parts by weight of cerium-zirconium compound oxide, and 3 to 10 parts by weight of praseodymium oxide is coated. It is characterized by the palladium-rhodium ternary catalyst for nitrogen oxide removal.

또한, 본 발명은 팔라듐 용액을 알루미나에 함침하고 환원 후 산화세륨을 포함하는 담지성분과 반응시켜 촉매 슬러리를 얻고, 상기 촉매 슬러리를 세라믹모노리스 담체에 코팅시켜서 팔라듐 삼원촉매를 제조하는 방법에 있어서,In addition, the present invention is a method of producing a palladium tertiary catalyst by impregnating a palladium solution in alumina and reacting with a supported component containing cerium oxide after reduction to obtain a catalyst slurry, and coating the catalyst slurry on a ceramic monolith carrier,

전체 담체 겉보기 부피에 대하여 단위부피당 알루미나 100 중량부를 기준으로 팔라듐 1 ∼ 5 중량부, 로듐 0.1 ∼ 1 중량부를 알루미나에 함침하고 환원 후, 산화세륨 5 ∼ 10 중량부, 세륨-지르코늄 복합산화물 18 ∼ 27 중량부, 산화프라세오디미윰 3 ∼ 10 중량부, 산화바륨 5 ∼ 6 중량부 및 산화란타늄 1 ∼ 2 중량부를 첨가하여 반응시켜서 팔라듐-로듐 삼원촉매을 제조하는 것을 특징으로 한다.1 to 5 parts by weight of palladium and 0.1 to 1 parts by weight of rhodium are impregnated into alumina based on 100 parts by weight of alumina per unit volume of the total carrier apparent volume, and then 5 to 10 parts by weight of cerium oxide and a cerium-zirconium compound oxide 18 to 27 It is characterized by producing a palladium-rhodium tertiary catalyst by adding by weight, reacting 3 to 10 parts by weight of praseodymium oxide, 5 to 6 parts by weight of barium oxide and 1 to 2 parts by weight of lanthanum oxide.

이와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본 발명은 자동차 배기가스의 정화효과가 우수하고 그 중에서도 특히 질소산화물의 제거효과가 탁월하며 내열성이 보다 향상된 팔라듐-로듐 삼원촉매 및 그 제조방법에 관한 것이다.The present invention relates to a palladium-rhodium ternary catalyst having an excellent purifying effect of automobile exhaust gas, among other things, an excellent effect of removing nitrogen oxides and improved heat resistance, and a method of manufacturing the same.

본 발명에 따른 질소산화물 제거용 팔라듐-로듐 삼원촉매의 제조방법을 단계별로 더욱 구체화하여 설명하면 다음과 같다.The method for preparing a palladium-rhodium tertiary catalyst for removing nitrogen oxides according to the present invention will be described in more detail as follows.

제 1 공정으로, 팔라듐 용액 및 로듐 용액을 알루미나(Al2O3)에 함침시킨 다음 이를 환원시키는 공정을 수행한다. 이때, 상기 팔라듐은 알루미나 100 중량부에 대하여 1 ∼ 5 중량부를 첨가하며, 로듐은 0.1 ∼ 1 중량부를 첨가한다. 또한, 환원방법은 하이드라진 하이드레이트(hydrazinehydrate)를 팔라듐 1 g당 1.5 ∼ 20 ㎖가 되도록 적가한다.In a first process, a palladium solution and a rhodium solution are impregnated into alumina (Al 2 O 3 ), and then a process of reducing it is performed. At this time, the palladium is added 1 to 5 parts by weight based on 100 parts by weight of alumina, the rhodium is added to 0.1 to 1 parts by weight. In addition, the reduction method is added dropwise so that the hydrazine hydride (hydrazinehydrate) is 1.5 to 20 ml per 1 g of palladium.

제 2 공정으로, 벌크(Bulk) 산화세륨(CeO2) 및 세륨-지르코늄 복합산화물[(CeㆍZr)O2]을 첨가하고 산화프라세오디미윰(PrO2)을 첨가한 후 혼합용액을 첨가하는 공정을 수행한다.In the second process, bulk cerium oxide (CeO 2 ) and cerium-zirconium composite oxide [(Ce.Zr) O 2 ] are added, and praseodymium oxide (PrO 2 ) is added, followed by addition of a mixed solution. To perform the process.

이때, CeO2및 (CeㆍZr)O2를 동시에 사용하는 이유는 구조적 안정화를 유도하여 내열성을 향상시키기 위함이다. 또한, 상기 (CeㆍZr)O2는 18 ∼ 27 중량부를 사용하는 바, 너무 소량 사용하면 내열성 향상을 기대하기 어렵고 너무 과량 사용하면 비경제적일뿐 아니라 오히려 물성이 저하될 우려가 있다. 상기 PrO2는 촉매상에서 Ce을 안정화 시킴으로써 CO의 흡착과 산소저장능력을 조절하여 질소산화물을효과적으로 제거한다. 이때, PrO2는 알루미나 성분 100 중량부에 대하여 3 ∼ 10 중량부를 사용하는 바, 상기 3 중량부 미만을 사용하면 내열성 향상 및 질소산화물 정화효율 향상 효과가 적어지는 문제가 있고, 10 중량부를 초과하면 효과 대비 가격이 높아지는 문제가 있다.At this time, the reason for using CeO 2 and (Ce.Zr) O 2 simultaneously is to induce structural stabilization and to improve heat resistance. In addition, since the (Ce.Zr) O 2 is used in an amount of 18 to 27 parts by weight, it is difficult to expect improvement in heat resistance when used in a small amount, and when used too much, it is not only economical but also a possibility of deterioration in physical properties. The PrO 2 effectively removes nitrogen oxides by controlling CO adsorption and oxygen storage capacity by stabilizing Ce on a catalyst. At this time, 3 to 10 parts by weight of PrO 2 is used with respect to 100 parts by weight of the alumina component. When using less than 3 parts by weight, there is a problem that the effect of improving heat resistance and improving the efficiency of purifying nitrogen oxides decreases. There is a problem that the price increases compared to the effect.

상기 혼합용액은 산화바륨, 산화란타늄, 아세트산 및 물을 혼합한 것으로, 산화바륨은 5 ∼ 6 중량부, 산화란타늄은 1 ∼ 2 중량부를 첨가하는 것이 알루미나의 내열성과 산화세륨의 특성 향상을 위하여 바람직하다. 또한, 아세트산은 23.5 ∼ 33.5 중량부 사용하는 것이 pH의 조절에 있어서 바람직한 바, pH는 4.5 이하인 것이 다음의 코팅을 위한 촉매 슬러리 제조에 있어서 점도의 조절을 위하여 바람직하다.The mixed solution is a mixture of barium oxide, lanthanum oxide, acetic acid and water, and 5 to 6 parts by weight of barium oxide and 1 to 2 parts by weight of lanthanum oxide are preferably added to improve the heat resistance of alumina and the properties of cerium oxide. Do. In addition, it is preferable to use 23.5-33.5 parts by weight of acetic acid for adjusting the pH, and the pH is preferably 4.5 or less for controlling the viscosity in preparing the catalyst slurry for the next coating.

제 3 공정으로, 상기 혼합물을 볼밀(Ball mill)방법으로 슬러리반응 및 입도를 조절하며 밀링하여 입자크기 1 ∼ 7 ㎛인 것이 전체 입자중 90 % 이상이 되도록 미분한다. 이때, 입자크기가 상기 범위를 벗어나도록 밀링하는 경우 정화효율 및 내구성이 감소되는 문제가 있다. 상기 밀링 공정을 수행한 결과, 고형분이 35 ∼ 45 %이고 점도가 250 ∼ 400 cpsi인 촉매 슬러리를 얻는다.In a third process, the mixture is milled by controlling the slurry reaction and particle size by a ball mill method to have a particle size of 1 to 7 μm to 90% or more of all the particles. In this case, there is a problem that the purification efficiency and durability is reduced when milling the particle size outside the above range. As a result of the milling process, a catalyst slurry having a solid content of 35 to 45% and a viscosity of 250 to 400 cpsi is obtained.

제 4 공정으로, 상기 촉매 슬러리에 세라믹 모노리스 담체를 담가서 코팅한 후 건조하고 소성하는 공정을 수행한다. 본 발명의 코팅은 세그레게이션 효과(segregation effect)를 이용한 단일코팅으로서, 이는 일반적으로 임의의 성분을 원하는 위치에 두기 위하여 주로 2중 코팅을 하고 있으나, 서로 뭉치는 특성을갖는 화합물 상태를 이용하여 필요부분에 성분을 위치시킴으로써 단일코팅의 효율을 극대화시킬 수 있으며, 촉매성능을 향상시킬 수 있는 효과이다. 다시말해, 본 발명의 코팅시에 각 성분의 투입방식 및 성분의 적정한 출발물질의 선정으로 딥핑(dipping)형태로도 가능한 원하는 성분을 원하는 위치에 코팅한다. 또한, 상기 건조는 건조로에서 150 ℃ 온도로 2시간 동안 수행되고, 소성은 전기로에서 450 ∼ 550 ℃ 온도로 4시간 동안 실시한다. 이때, 건조 및 소성조건이 상기 범위를 벗어나면 코팅층의 크랙발생 및 유해한 화합물이 형성되는 문제가 있다.In a fourth process, the ceramic monolith carrier is immersed in the catalyst slurry, coated, dried and calcined. The coating of the present invention is a single coating using a segregation effect, which is generally a double coating to place any component in a desired position, but using a compound state having the property of agglomeration with each other By locating the components in the required portion can maximize the efficiency of the single coating, it is an effect that can improve the catalytic performance. In other words, in the coating of the present invention, the desired component, which can be in the form of dipping, is coated at a desired position by the method of adding each component and selecting an appropriate starting material of the component. In addition, the drying is carried out for 2 hours at 150 ℃ temperature in a drying furnace, firing is carried out for 4 hours at 450 ~ 550 ℃ temperature in an electric furnace. At this time, when the drying and firing conditions are out of the above range, there is a problem that cracks and harmful compounds are formed in the coating layer.

따라서, 상기와 같은 본 발명에 따른 질소산화물 제거용 팔라듐-로듐 삼원 촉매는 내열성 및 질소산화물 제거능이 우수하여 단일층 코팅 촉매 분야에 폭넓게 적용할 수 있고 자동차 배기가스 정화, 디젤촉매 및 산업용 촉매 등에 유용하게 사용될 수 있다.Therefore, the palladium-rhodium tertiary catalyst for removing nitrogen oxides according to the present invention as described above is excellent in heat resistance and nitrogen oxide removal ability, which can be widely applied to the field of single layer coating catalyst, and is useful for automobile exhaust gas purification, diesel catalyst and industrial catalyst. Can be used.

이하, 본 발명을 실시예에 의거하여 더욱 상세하게 설명하겠는바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by Examples.

실시예Example

다음에 기술하는 방법으로 실시하되, 각 성분들의 구체적인 사용량은 다음 표 1에 나타낸 바와 같다. 팔라듐 및 로듐이 들어있는 용액을 알루미나에 함침시킨 다음 하이드라진 하이드레이트를 팔라듐 1 g당 1.66 ㎖가 되도록 적가하여 환원시켰다. 그 다음, CeO2및 (CeㆍZr)O2를 혼합하여 첨가하고 PrO2를 넣었다.또한, 산화바륨, 산화란타늄, 아세트산 및 물을 혼합한 용액을 넣고, 아세트산을 사용하여 pH를 4.2로 맞추었다. 그리고, 볼밀(Ball mill)방법으로 입자크기 1 ∼ 7 ㎛ 인 것이 전체 입자중 90 %가 되도록 밀링하여 고형분이 40 %이고 점도가 300 cpsi인 촉매 슬러리를 얻었다. 여기에, 세라믹모노리스 담체를 담가서 코팅한 후 건조로에서 150 ℃ 온도로 2시간 동안 건조하고 전기로에서 450 ∼ 550 ℃ 온도로 4시간 동안 소성하였다It is carried out by the method described below, the specific amount of each component is shown in Table 1 below. The solution containing palladium and rhodium was impregnated in alumina and then reduced by dropwise addition of hydrazine hydrate to 1.66 ml per g of palladium. Then, CeO 2 and (Ce.Zr) O 2 were mixed and added, and PrO 2 was added. Further, a solution containing barium oxide, lanthanum oxide, acetic acid and water was added thereto, and the pH was adjusted to 4.2 using acetic acid. It was. In addition, a catalyst slurry having a solid content of 40% and a viscosity of 300 cpsi was obtained by milling the particles having a particle size of 1 to 7 μm to 90% of all particles by a ball mill method. The ceramic monolith carrier was immersed and coated therein, dried at 150 ° C. for 2 hours in a drying furnace and calcined at 450-550 ° C. in an electric furnace for 4 hours.

비교예 1Comparative Example 1

상기 실시예 1과 동일한 방법으로 제조하되, 로듐을 사용하지 않고 다음 표 1과 같은 조성으로 실시하였다.Prepared in the same manner as in Example 1, but was carried out in the composition shown in Table 1 without using rhodium.

비교예 2Comparative Example 2

Pd-Rh계 삼원촉매의 공지된 제조방법으로 제조하되, 다음 표 1과 같은 조성으로 실시하였다.The Pd-Rh-based three-way catalyst was prepared by a known method, but was performed in the composition shown in Table 1 below.

그런 다음, 상기 실시예와 비교예 1 ∼ 2에 따라 제조된 촉매를 비교 시험하여 그 결과를 다음 표 2에 나타내었다.Thereafter, the catalyst prepared according to Examples and Comparative Examples 1 and 2 was compared and the results are shown in Table 2 below.

상기 표 2에서, 저온활성온도는 50 % 정화되는 온도로서, 상기 측정된 온도가 낮을 수록 탄화수소, 일산화탄소, 질소산화물의 정화효능이 우수함을 의미한다. 상기 표 2의 결과에 따르면, 본 발명의 삼원촉매인 실시예의 경우 비교예 1 ∼ 2에비해서 초기, 950 ℃ 에이징 후, 1100 ℃ 에이징 후에 측정한 NOX의 제거효과가 비교적 높은 수치를 유지한 것으로 보아 질소산화물 제거효과가 우수하고 내열성이 향상된 것을 확인할 수 있었다.In Table 2, the low temperature active temperature is a 50% purification temperature, the lower the measured temperature means that the purification efficiency of hydrocarbons, carbon monoxide, nitrogen oxides is excellent. According to the results of Table 2, in the case of the example of the three-way catalyst of the present invention, the removal effect of NO X measured after 950 ° C. after aging at 950 ° C. after aging at 950 ° C. was maintained as compared with Comparative Examples 1 to 2. It was confirmed that the nitrogen oxide removal effect is excellent and the heat resistance is improved.

상술한 바와 같이, 본 발명의 팔라듐-로듐 삼원촉매는 새롭게 함유된 산화프라세오디미윰이 촉매상에서 일산화탄소의 흡착과 산소저장능력을 조절하여 촉매의 질소산화물 제거능을 월등히 향상시키고, 벌크 산화세륨과 세륨-지르코늄 복합산화물을 동시에 사용함으로써 벌크 산화세륨만을 함유하는 기존의 촉매에 비해 내열성을 강화시켜 종래보다 효율적으로 각종 정화용 촉매 및 산업용 촉매 등으로 널리 활용할 수 있는 효과가 있다.As described above, the palladium-rhodium tertiary catalyst of the present invention improves the nitrogen oxide removal ability of the catalyst by greatly adjusting the adsorption and oxygen storage capacity of carbon monoxide on the catalyst by the newly contained praseodymidite, and the bulk cerium oxide and cerium -By using zirconium complex oxide at the same time, heat resistance can be strengthened compared to the existing catalyst containing only bulk cerium oxide, so that it can be widely utilized as various purification catalysts and industrial catalysts.

Claims (2)

세라믹모노리스 담체에 팔라듐, 로듐 및 세륨 성분이 코팅된 팔라듐-로듐 삼원촉매에 있어서,In the palladium-rhodium three-way catalyst coated with a ceramic monolith carrier palladium, rhodium and cerium components, 전체 담체 겉보기 부피에 대하여 단위부피당 알루미나 100 중량부를 기준으로 산화세륨 5 ∼ 10 중량부, 세륨-지르코늄 복합산화물이 18 ∼ 27 중량부, 산화프라세오디미윰이 3 ∼ 10 중량부를 포함하는 성분이 코팅된 것임을 특징으로 하는 질소산화물 제거용 팔라듐-로듐 삼원촉매.Coated with a component containing 5 to 10 parts by weight of cerium oxide, 18 to 27 parts by weight of cerium-zirconium compound oxide, and 3 to 10 parts by weight of praseodymium oxide, based on 100 parts by weight of alumina per unit volume based on the total carrier apparent volume. Palladium-rhodium three-way catalyst for removing nitrogen oxides, characterized in that. 팔라듐 용액을 알루미나에 함침하고 환원 후 산화세륨을 포함하는 담지성분과 반응시켜 촉매 슬러리를 얻고, 상기 촉매 슬러리를 세라믹모노리스 담체에 코팅시켜서 팔라듐 삼원촉매를 제조하는 방법에 있어서,In the method of preparing a palladium tertiary catalyst by impregnating a palladium solution into alumina and reacting with a supported component containing cerium oxide after reduction, coating the catalyst slurry on a ceramic monolith carrier, 전체 담체 겉보기 부피에 대하여 단위부피당 알루미나 100 중량부를 기준으로 팔라듐 1 ∼ 5 중량부, 로듐 0.1 ∼ 1 중량부를 알루미나에 함침하고 환원 후, 산화세륨 5 ∼ 10 중량부, 세륨-지르코늄 복합산화물 18 ∼ 27 중량부, 산화프라세오디미윰 3 ∼ 10 중량부, 산화바륨 5 ∼ 6 중량부 및 산화란타늄 1 ∼ 2 중량부를 첨가하여 반응시키는 것을 특징으로 하는 팔라듐-로듐 삼원촉매의 제조방법.1 to 5 parts by weight of palladium and 0.1 to 1 parts by weight of rhodium are impregnated into alumina based on 100 parts by weight of alumina per unit volume of the total carrier apparent volume, and then 5 to 10 parts by weight of cerium oxide and a cerium-zirconium compound oxide 18 to 27 A method for producing a palladium-rhodium tertiary catalyst characterized by adding a weight part, 3 to 10 parts by weight of praseodymium oxide, 5 to 6 parts by weight of barium oxide, and 1 to 2 parts by weight of lanthanum oxide.
KR10-2000-0073444A 2000-12-05 2000-12-05 High durable Pd-Rh three way catalyst for NOx reduction KR100384016B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0073444A KR100384016B1 (en) 2000-12-05 2000-12-05 High durable Pd-Rh three way catalyst for NOx reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0073444A KR100384016B1 (en) 2000-12-05 2000-12-05 High durable Pd-Rh three way catalyst for NOx reduction

Publications (2)

Publication Number Publication Date
KR20020043966A KR20020043966A (en) 2002-06-12
KR100384016B1 true KR100384016B1 (en) 2003-05-14

Family

ID=27679718

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0073444A KR100384016B1 (en) 2000-12-05 2000-12-05 High durable Pd-Rh three way catalyst for NOx reduction

Country Status (1)

Country Link
KR (1) KR100384016B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054730A (en) * 1983-09-02 1985-03-29 Nissan Motor Co Ltd Catalyst for purifying exhaust gas
JPS6178439A (en) * 1984-09-26 1986-04-22 Kiyataraa Kogyo Kk Catalyst for purifying exhaust gas
JPS63205141A (en) * 1987-02-23 1988-08-24 Nissan Motor Co Ltd Catalyst for purifying exhaust gas
JPH05115780A (en) * 1991-04-22 1993-05-14 Nippon Shokubai Co Ltd Catalyst for cleaning exhaust gas
US5883037A (en) * 1994-05-27 1999-03-16 Rhone-Poulenc Chimie Thermally stable/highly reducible catalyst compositions comprising alumina and the oxides of cerium and zirconium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054730A (en) * 1983-09-02 1985-03-29 Nissan Motor Co Ltd Catalyst for purifying exhaust gas
JPS6178439A (en) * 1984-09-26 1986-04-22 Kiyataraa Kogyo Kk Catalyst for purifying exhaust gas
JPS63205141A (en) * 1987-02-23 1988-08-24 Nissan Motor Co Ltd Catalyst for purifying exhaust gas
JPH05115780A (en) * 1991-04-22 1993-05-14 Nippon Shokubai Co Ltd Catalyst for cleaning exhaust gas
US5883037A (en) * 1994-05-27 1999-03-16 Rhone-Poulenc Chimie Thermally stable/highly reducible catalyst compositions comprising alumina and the oxides of cerium and zirconium

Also Published As

Publication number Publication date
KR20020043966A (en) 2002-06-12

Similar Documents

Publication Publication Date Title
US4157316A (en) Polyfunctional catalysts
KR100431476B1 (en) Layered Catalyst Composite
KR920009112B1 (en) Three-way catalysts for lean exhaust system
JP5718269B2 (en) Compositions based on alumina, cerium and barium and / or strontium, in particular used for trapping nitrogen oxides (NOX)
ZA200503956B (en) Exhaust gas purifying catalyst and method for purifying exhaust gas
US4552733A (en) Polyfunctional catalysts and method of use
KR100213183B1 (en) Catalyst for purifying exhaust gases of automobile and preparing method thereof
EP0722767A1 (en) Catalyst for purifying exhaust gases
KR100384016B1 (en) High durable Pd-Rh three way catalyst for NOx reduction
KR100410952B1 (en) High Performance Pd only Three way Catalyst
KR100494543B1 (en) Method for manufacturing low precious metal loaded Pt-Pd-Rh three way catalyst
WO2002055194A1 (en) Catalyst for clarification of nitrogen oxides
JPH1176819A (en) Catalyst for cleaning of exhaust gas
KR100384015B1 (en) Improved NOx conversion and thermal durable Pd only three way catalyst
KR100461112B1 (en) High Performance, Low precious metal loading Pd only Three way Catalyst
KR0166465B1 (en) Preparation of catalyst for cleaning exhaust gases
KR100488779B1 (en) Method for manufacturing low precious metal loading Pd only three way catalyst
KR100410942B1 (en) A process of preparing the High porous Pd only Three way Catalyst
KR100494542B1 (en) Method for manufacturing double layer coated Pd only three way catalyst
JP4588134B2 (en) Nitrogen oxide purification catalyst
KR100588858B1 (en) Method for manufacturing catalyzed diesel particulate filter system
KR100410801B1 (en) High porous and HC removal Pd only Three way Catalyst
KR20230059196A (en) Oxidation catalyst including oxygen storage composition and manufacturing method thereof
JPH09313941A (en) Oxide catalyst material for removing nitrogen oxide and removal of nitrogen oxide
KR20050028941A (en) Method for manufacturing double layer coated pd only three way catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070502

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee