JPS6054730A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPS6054730A
JPS6054730A JP58160556A JP16055683A JPS6054730A JP S6054730 A JPS6054730 A JP S6054730A JP 58160556 A JP58160556 A JP 58160556A JP 16055683 A JP16055683 A JP 16055683A JP S6054730 A JPS6054730 A JP S6054730A
Authority
JP
Japan
Prior art keywords
catalyst
amount
weight
exhaust gas
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58160556A
Other languages
Japanese (ja)
Inventor
Tetsuhiko Yoneshige
米重 哲彦
Goji Masuda
剛司 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58160556A priority Critical patent/JPS6054730A/en
Publication of JPS6054730A publication Critical patent/JPS6054730A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled catalyst capable of removing CO, HC, NOx in the exhaust gas contg. excess oxygen by specifying the amt. of Pt, Rh, Pd, Ce, Pr, Cu, Ni, and Zr to be supported on a carrier basing on the amt. of alumina supported by the carrier. CONSTITUTION:Alumina contg. oxides of at least one kind of heavy metal selected from Ce, Pr, Cu, Ni, and Zr is prepd., and coated on honeycomb carrier. Then, noble metals i.e. Pt, Rh, and Pd are deposited thereto. In this case, proportions of these metals basing on the alumina layer are by wt%; 0.70-0.90 Pt, 0.07-0.15 Rh, 0.07-0.75 Pd, 4.0-45 Ce, 10-25 Pr, 10-25 Cu, 10-20 Ni, and 10-20 Zr. With this catalyst, CO, HC, and NOx in the exhaust gas are removed simultaneously in an atmosphere contg. excess oxygen with high efficiency.

Description

【発明の詳細な説明】 発明の関連する技術分野 この発明は排ガス中の一酸化炭素(co)、炭化水素(
[0)および窒素酸化物(NOx)を酸素過剰雰囲気で
高効率で浄化するために使用する排ガス浄化用触媒に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical field to which the invention relates
[0] and an exhaust gas purifying catalyst used to purify nitrogen oxides (NOx) with high efficiency in an oxygen-rich atmosphere.

従 来 技 術 従来排ガス、特に車輌等の内燃機関の排ガス中の00 
、 HC!およびNOxを除去するための触媒は多数提
案され、知られている。この内酸素過剤雰囲気即ぢ空燃
比(空気量/燃料量−へh1重量比)が大である排ガス
中のCo 、 He 、 NoXを浄化する触媒として
は、白金触媒をA/F −15〜19で低調にて使用し
、リーンサイドで00 、 He 、 NOxを浄化ス
ル触媒(特開昭52−144580号)、”/pをリー
ンサイドに設定して排ガス中のNOxを高い浄化・率で
除去し得る白金−ロジウム−ゲルマニウム触媒(特開昭
58−187892号)などが知られている。
Conventional technology Conventional exhaust gas, especially 00 in exhaust gas from internal combustion engines such as vehicles.
, HC! Many catalysts for removing NOx and NOx have been proposed and are known. Among these, as a catalyst for purifying Co, He, and NoX in the exhaust gas in which the air-fuel ratio (air amount/fuel amount - h1 weight ratio) is large, a platinum catalyst is used in A/F-15~ 19 is used at a low level and purifies 00, He, and NOx on the lean side. A removable platinum-rhodium-germanium catalyst (JP-A-58-187892) is known.

このような酸素過剰雰囲気で排ガスを処理すると、処理
ガス温度が低いため触媒の耐久性の面で有利であると共
に反応熱による触媒の劣化防止の面でも有利であり、更
には燃費の低減が計れる等の利点があるが、上記従来の
触媒にあっては、長時間使用すると劣化し、NOx転化
率がA/F 1crであっても20%以下となってしま
い、酸素の多い酸化雰FfB気においては、急激に窒素
酸化物の浄化率が低下するという問題点があった。
Treating exhaust gas in such an oxygen-rich atmosphere is advantageous in terms of durability of the catalyst because the temperature of the treated gas is low, and it is also advantageous in terms of preventing deterioration of the catalyst due to reaction heat, which can further reduce fuel consumption. However, the above-mentioned conventional catalyst deteriorates when used for a long time, and even if the NOx conversion rate is A/F 1cr, it becomes less than 20%. However, there was a problem in that the purification rate of nitrogen oxides suddenly decreased.

発 明 の 開 示 この発明は、このような従来の問題点に着目してなされ
たもので、多量のセリウム(Oe)、プラセオジウム(
Pr)、銅(Cu)、ニッケル(Ni)およびジルコニ
ウム(Zr)から成る群から選ばれた重金属の酸化物の
1種または2種以上を含むアルミナを多量に被覆したハ
ニカム担体に、白金(、pt)−1°四ジウムBth)
およびパラジウム(Pd)がら成る群から選ばれた貴金
属の1種または2種以上を担持させた触媒により上記問
題点を解決したものである。
DISCLOSURE OF THE INVENTION This invention was made by focusing on such conventional problems.
Platinum (, pt) -1° Tetradium Bth)
The above-mentioned problems are solved by a catalyst supporting one or more noble metals selected from the group consisting of palladium (Pd) and palladium (Pd).

この発明の触媒の上記貴金属および重金属の担持量は、
担体に付着するアルミナ層に対して白金量は0.70〜
0.90重量%、セリウム量は0゜07〜0.15重量
%、パラジウム量は0.07〜0.75重量%、セリウ
ム量は4.ON45重量係、プラセオジウム量は10〜
25重量%、銅量は10〜25重量%、ニッケル量は1
0〜25重量%、ジルコニウム量は10〜20重量%の
範囲とする。この理由は白金、セリウム、パラジウム、
セリウム、プラセオジム、銅、ニッケルおよびジルコニ
ウムの量カ、上記各下限値未満である場合には、これ等
の責合゛属および重金属の添加効果が発明者らの要求性
能と比較して不十分であり、逆に上記各上限値を越えて
担持させても増量効果がほとんどなく、セリウム、プラ
セオジム、銅、ニッケル、ジルコニウムについては量が
増すと浄化率が若干低下するよ゛・うになるからである
。このようなセリウム、プラセオジム等がある量を境に
添加量の増加によって浄化率が下がるのは活性アルミナ
の量が相対的に減するので担体の表面積が減するからと
思われる。
The amount of noble metals and heavy metals supported in the catalyst of this invention is:
The amount of platinum for the alumina layer attached to the carrier is 0.70~
0.90% by weight, the amount of cerium is 0.07~0.15% by weight, the amount of palladium is 0.07~0.75% by weight, the amount of cerium is 4. ON45 weight section, praseodymium amount is 10~
25% by weight, the amount of copper is 10-25% by weight, the amount of nickel is 1
The amount of zirconium is in the range of 0 to 25% by weight, and the amount of zirconium is in the range of 10 to 20% by weight. The reason for this is platinum, cerium, palladium,
If the amounts of cerium, praseodymium, copper, nickel, and zirconium are below each of the above lower limits, the effect of adding these responsible metals and heavy metals may be insufficient compared to the performance required by the inventors. On the other hand, even if the amount of cerium, praseodymium, copper, nickel, and zirconium is increased beyond the above-mentioned upper limit values, there is almost no effect of increasing the amount of cerium, praseodymium, copper, nickel, and zirconium. . The reason why the purification rate decreases as the amount of cerium, praseodymium, etc. added increases beyond a certain level is thought to be because the surface area of the carrier decreases as the amount of activated alumina decreases relatively.

この発明の触媒は前記貴金属およびセリウム、プラセオ
ジム、裔イ、ニッケル、ジルコニウムを前記担持量で担
体に担持させることにより、空撚費A/Fが25でも良
好なCjO、H’0 、 NOx転化率を示す。この際
の処理する排ガスの温度は800〜350°Cの範囲が
特に好ましく、850℃より高くなるとNOxの転化率
が悪くなり、一方300°Cより低くなると00 、 
MOの転化率が低下する。
The catalyst of the present invention has good CjO, H'0, and NOx conversion rates even when the air twisting cost A/F is 25 by supporting the noble metals and the above-mentioned amounts of cerium, praseodymium, nickel, and zirconium on the carrier. shows. The temperature of the exhaust gas to be treated at this time is particularly preferably in the range of 800 to 350°C; if it is higher than 850°C, the conversion rate of NOx will be poor, while if it is lower than 300°C, the
The conversion rate of MO decreases.

このようにこの発明の触媒がA/F 25でも良好なC
o 、 HC,NOx転化率を示す理由は、十分解明さ
れていないが、特開昭52−144580号公報に記載
されているように、排ガス浄化用触媒が酸化、還元のい
ずれに働くかは排気ガス中のCOがO3と反応するか、
あるいはNOxと反応するかにあり、COと02との反
応速度とCOとNOxとの反応速度を比較すると触媒床
温度が比較的低い温度(500・a9以下)ではほぼ同
じ程度となる傾向にあり、この傾向が添加したセリウム
等の重金属により更に助長されるものと考えられる。
In this way, the catalyst of this invention has good C even at A/F 25.
The reason for the high conversion rates of HC, NOx, and NOx has not been fully elucidated, but as described in JP-A-52-144580, whether the exhaust gas purifying catalyst works for oxidation or reduction depends on whether the exhaust gas purification catalyst works for oxidation or reduction. Does CO in the gas react with O3?
Alternatively, it may react with NOx, and if you compare the reaction rate between CO and 02 and the reaction rate between CO and NOx, they tend to be about the same when the catalyst bed temperature is relatively low (500.a9 or less). It is thought that this tendency is further promoted by the addition of heavy metals such as cerium.

この発明において触媒の製造は、予め多量のce。In this invention, the catalyst is prepared using a large amount of ce in advance.

pr 、 Ou 、 Niおよびzrがら成る群がら選
ばれた1種または2種以上の重金属の酸化物を含むアル
ミナを調製し、このアルミナをハニカム担体に多量にコ
ードン、更に普通の方法でPt 、 RhおよびPaか
ら成る群から選ばれた1種または2種以上の貴金属を付
着させる方法によるのが好ましい。
Alumina containing an oxide of one or more heavy metals selected from the group consisting of pr, Ou, Ni, and Zr is prepared, and a large amount of this alumina is coated with a cordon on a honeycomb carrier, and then Pt, Rh, and Preferably, one or more noble metals selected from the group consisting of Pa are attached.

発明の実施例 次にこの発明を実施例、比較例および試験例により説明
する。
EXAMPLES OF THE INVENTION Next, the present invention will be explained with reference to Examples, Comparative Examples, and Test Examples.

実施例1 アルミナゾル(ベーマイトアルミナ1o重ffi%懸濁
液に10重量%のHBTO8を添加することにより得ら
れるゾル)2478g、活性アルミナ粒状担体491g
および市販のセリア粉末10829をボールミ/’に−
混ぜ込み、6時間粉砕した後、このアル・ミナを含む液
(以下コーテイング液と呼ぶ)を、モノリス担体基材(
0,9)、800セル)に付着さぜ、650°Cで2時
間焼成した。この場合の付着量は担体基材1個当り18
0gに設定した。
Example 1 Alumina sol (sol obtained by adding 10% by weight of HBTO8 to boehmite alumina 10% by weight suspension) 2478g, activated alumina granular carrier 491g
and commercially available ceria powder 10829 to Ballumi/'-
After mixing and pulverizing for 6 hours, this liquid containing alumina (hereinafter referred to as coating liquid) was applied to a monolithic carrier base material (
0,9), 800 cells) and baked at 650°C for 2 hours. In this case, the amount of adhesion is 18 per carrier base material.
It was set to 0g.

更にこのコーテイング液付着処理した担体を塩化白金酸
と塩化ロジウムの混合水容液に浸漬し、白金およびロジ
ウムの付着量が白金1.39およびロジウム0.262
になるように担持させた後、600°Cで2時間焼成し
て触媒1とした。
Furthermore, the carrier treated with this coating solution was immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride, and the amount of platinum and rhodium deposited was 1.39% for platinum and 0.262% for rhodium.
After supporting the catalyst so as to have the following properties, the catalyst was calcined at 600°C for 2 hours to obtain Catalyst 1.

実施例2 実施例1において、アルミナゾル24789、活性アル
ミナ粒状担体697gおよび市販セリア粉末8269に
変えた以外は同様にして触媒2を得た。
Example 2 Catalyst 2 was obtained in the same manner as in Example 1, except that alumina sol 24789, 697 g of activated alumina granular carrier, and commercially available ceria powder 8269 were used.

実施例8 実施例1において、アルミナゾル24789、活性アル
ミナ粒状担体903りおよび市販セリア粉末6199に
変えた以外は同様にして触媒8を得た。
Example 8 Catalyst 8 was obtained in the same manner as in Example 1, except that alumina sol 24789, activated alumina granular carrier 903, and commercially available ceria powder 6199 were used.

・実施例4 ガンマアルミナを主成分とする粒状担体(粒径2〜4 
B)を硝酸セリウ云水溶液に含浸後、乾燥し、次いで空
気中600℃で1時間焼成し、ア°ルミナに対してセリ
ウム酸化物を金属換算で5重量・チ含む担体を得た。
・Example 4 Particulate carrier mainly composed of gamma alumina (particle size 2 to 4
B) was impregnated in an aqueous solution of cerium nitrate, dried, and then calcined in air at 600° C. for 1 hour to obtain a carrier containing cerium oxide in an amount of 5% by weight in terms of metal relative to alumina.

このようにして得たセリウムを含む活性アルミナ粒状担
体15229とアルミナゾル2478りをボールミルに
混ぜ込み、6時間粉砕した後、このコーテイング液をモ
ノリス担体基材(0,9t 、 aoo1゛□セル)に
付着させ、650℃で2時間焼成した。
The thus obtained cerium-containing activated alumina granular carrier 15229 and alumina sol 2478 were mixed in a ball mill and ground for 6 hours, and then the coating liquid was attached to a monolithic carrier base material (0.9t, aoo1゛□ cell). The mixture was heated at 650° C. for 2 hours.

この場合の付着量は担体基材1個当り180りに設定し
た。
In this case, the adhesion amount was set at 180 parts per carrier base material.

さらにこの付着した担体を塩化白金酸と塩化ロジウムの
混合水溶液に浸漬し、白金およびロジウ□ムの付着量が
白金1.89およびロジウム0.289になるように担
持した後600’Cで2時間焼成し、触媒4を得た。
Further, this adhered carrier was immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride, and the amount of platinum and rhodium □ deposited was 1.89 platinum and 0.289 rhodium, and then heated at 600'C for 2 hours. The catalyst 4 was obtained by calcination.

実施例5 ガンマアルミナを主成分とする粒状担体(粒径・2〜4
i+m)を硝酸セリウム水溶液に含浸後乾燥し600℃
1時間空気中で焼成し、アルミナに対してセリウム酸化
物を金属換算で5重量%含む担体を得た。
Example 5 Granular carrier mainly composed of gamma alumina (particle size: 2 to 4
i+m) in a cerium nitrate aqueous solution and dried at 600°C.
It was fired in air for 1 hour to obtain a carrier containing 5% by weight of cerium oxide based on alumina in terms of metal.

このようにして得たセリウムを含む活性アルミナ粒状担
体491りとアルミナゾル24789と市販セリア10
82りをボールミルに混ぜ込み、6時間粉砕した後、得
られたコーテイング液をモノリス担体基材(0,9)、
800セル)に付着させ、650℃で2時間焼成した。
Activated alumina granular carrier containing cerium thus obtained, alumina sol 24789 and commercially available ceria 10
After mixing 82 in a ball mill and grinding for 6 hours, the resulting coating liquid was applied to the monolithic carrier base (0,9),
800 cells) and baked at 650°C for 2 hours.

この場合の付着量は担体基材1個当り1809に設定し
た。
The adhesion amount in this case was set to 1809 per carrier base material.

さらにこの付着した担体を塩化白金酸と塩化ロジウムの
混合水溶液に浸漬し、白金およびロジウムの付着量が白
金1゜3りおよびロジウム0.269になるように担持
した後、600°Cで2時間焼成し、触媒5を得た。
Further, this adhered carrier was immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride, and the amount of platinum and rhodium deposited was 1°3 of platinum and 0.269 of rhodium, and then heated at 600°C for 2 hours. The catalyst 5 was obtained by calcination.

実施例6 実施例1においてアルミナゾル24789、活性アルミ
ナ粒状担体13169、酸化ブラ七オジム601gに変
えた以外は同様にして触媒6を得たち・実施例7 実施例1においてアルミナゾル2478り、活性アルミ
ナ粒状担体1816り、酸化銅668りに変えた以外は
同様にして触媒7を得た。
Example 6 Catalyst 6 was obtained in the same manner as in Example 1, except that alumina sol 24789, activated alumina granular carrier 13169, and 601 g of brassica oxide were used. Example 7 Alumina sol 2478 and activated alumina granular carrier were used in Example 1. Catalyst 7 was obtained in the same manner except that copper oxide 668 was used instead of copper oxide 668.

実施例8 実施例1においてアルミナゾル2478り、活性アルミ
ナ粒状担体1flllfN2、酸化ニッケル500りに
変えた以外は同様にして触媒8を得た。
Example 8 Catalyst 8 was obtained in the same manner as in Example 1 except that alumina sol 2478, activated alumina granular carrier 1flllfN2, and nickel oxide 500% were used.

実施例9 実施例1においてアルミナゾル24789、アルミナ粒
状担体1816g、酸化ジルコニウム545りに変えた
以外は同様にして触媒9を得た。
Example 9 Catalyst 9 was obtained in the same manner as in Example 1 except that 24789 alumina sol, 1816 g of alumina granular carrier, and 545 g of zirconium oxide were used.

実施例10 実施例1において、浸漬する貴金属水溶液を塩化白金酸
に変えた以外は同様にして触媒1oを得た。ただし白金
の付着量は、担体基材1個当り1.67に設定した。
Example 10 Catalyst 1o was obtained in the same manner as in Example 1, except that the noble metal aqueous solution to be immersed was changed to chloroplatinic acid. However, the amount of platinum deposited was set at 1.67 per carrier base material.

実施例11 実施例1において、浸漬させる貴金属水溶液を塩化白金
酸および塩化パラジウムに変えた以外は□・同様にして
触媒11を得た。ただし白金およびパラジウムの付着量
は、担体基材1個当り白金1.8りおよびパラジウム0
.269に設定した。
Example 11 Catalyst 11 was obtained in the same manner as in Example 1 except that the noble metal aqueous solution to be immersed was changed to chloroplatinic acid and palladium chloride. However, the amount of platinum and palladium deposited is 1.8 platinum and 0 palladium per carrier base material.
.. It was set to 269.

実施例12 実施例1において浸漬させる貴金属水溶液を塩化白金酸
、塩化ロジウム、塩化パラジウムに変えた以外は同様に
して触媒12を得た。ただし白金、ロジウムおよびパラ
ジウムの付着量は、担体基材1個当り白金1.8’9N
”ジウム0゜13gおよびパラジウム0.189に設定
した。
Example 12 Catalyst 12 was obtained in the same manner as in Example 1, except that the noble metal aqueous solution to be immersed was changed to chloroplatinic acid, rhodium chloride, or palladium chloride. However, the amount of platinum, rhodium and palladium deposited is 1.8'9N of platinum per carrier base material.
"Dium was set at 0.13 g and palladium at 0.189 g.

実施例18 実施例1において浸漬させる貴金属水溶液を塩化パラジ
ウム、塩化ロジウムに変えた以外は同様にして触媒13
を得た。ただしパラジウムおよびロジウムの付着量は、
担体基材1個当りパラジウム1.89およびロジウム0
.269に設定した。
Example 18 Catalyst 13 was prepared in the same manner as in Example 1 except that palladium chloride and rhodium chloride were used as the noble metal aqueous solution to be immersed.
I got it. However, the amount of palladium and rhodium deposited is
1.89 palladium and 0 rhodium per carrier substrate
.. It was set to 269.

実施例14 実施例1においてアルミナゾル24789、活性アルミ
ナ粒状担体1 B ]、 69 、酸化プラセオジム2
00ノに変えた以外は同様にして@媒14を得・た。
Example 14 In Example 1, alumina sol 24789, activated alumina granular carrier 1B], 69, praseodymium oxide 2
@medium 14 was obtained in the same manner except that it was changed to 00no.

実施例15 実施例1においてアルミナゾル24789、活性アルミ
ナ粒状担体18169、酸化銅220りに変えた以外は
同様にして触媒15を得た。
Example 15 Catalyst 15 was obtained in the same manner as in Example 1 except that alumina sol 24789, activated alumina granular carrier 18169, and copper oxide 220 were used instead.

実施例16 実施例1においてアルミナゾル2478 L;l、活性
アルミナ粒状担体1816g、酸化ニッケル28】りに
変えた以外は同様にして触媒16を得た。
Example 16 Catalyst 16 was obtained in the same manner as in Example 1, except that 2478 L of alumina sol, 1816 g of activated alumina granular carrier, and 28 L of nickel oxide were used.

実施例17 実施例1においてアルミナゾル2478L;l、iiア
ルミナ粒状担体18169、酸化ジルコニウム239り
に変えた以外は同様にして触媒17を得た。
Example 17 Catalyst 17 was obtained in the same manner as in Example 1 except that the alumina sol 2478L; ii, alumina granular carrier 18169, and zirconium oxide 239L were used.

比較例1 アルミナゾル2568.(1、活性アルミナ粒状担体1
4879をボールミルに混ぜ込み、6時間粉砕した後、
得られたコーテイング液をモノリス担体基材(0,9〕
、800セル)に付着させ、焼成した。この場合の付着
量は担体基材1個当り1.80°りに設定した。
Comparative Example 1 Alumina Sol 2568. (1, activated alumina granular carrier 1
After mixing 4879 into a ball mill and grinding for 6 hours,
The obtained coating liquid was applied to the monolith carrier base material (0,9)
, 800 cells) and fired. The amount of adhesion in this case was set at 1.80° per carrier base material.

更にこの付着処理した11体を塩化白金酸の水溶液に浸
漬し、白金の付着量が白金1゜6りになるように担持し
た後、600°Cで2時間焼成し、触媒Aを得た。
Further, the 11 bodies subjected to the adhesion treatment were immersed in an aqueous solution of chloroplatinic acid to support the platinum so that the amount of platinum deposited was 1°6, and then calcined at 600°C for 2 hours to obtain catalyst A.

比較例2 比較例1において塩化白金酸と塩化ロジウムの混合水溶
液に浸漬し、白金およびロジウムの付着量が白金1.3
りおよびロジウム0.267になるように担持した以外
は同様にして触媒Bを得た。
Comparative Example 2 In Comparative Example 1, when immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride, the amount of platinum and rhodium deposited was 1.3 platinum.
Catalyst B was obtained in the same manner except that rhodium was supported so that the amount of rhodium was 0.267.

比較例3 実施例]においてアルミナゾル24789 、活性アル
ミナ粒状担体13169、酸化ゲルマニウム1082り
に変えた以外は同様にして触媒Cを得た。
Comparative Example 3 Catalyst C was obtained in the same manner as in Example except that alumina sol 24789, activated alumina granular carrier 13169, and germanium oxide 1082 were used instead.

比較例4 比較例3において浸漬させる貴金属水溶液を塩化白金酸
水溶液に変えた以外は同様にして触媒りを得た。ただし
白金の付着量は担体基材1個当り1.69に設定した。
Comparative Example 4 A catalyst was obtained in the same manner as in Comparative Example 3, except that the noble metal aqueous solution to be immersed was changed to a chloroplatinic acid aqueous solution. However, the amount of platinum deposited was set at 1.69 per carrier base material.

、比較例5 比較例8において浸漬させる貴金属水溶液を塩′化白金
酸と塩化パラジウムの混合水溶液に変えた以外は同様に
して触媒Eを得た。ただし白金およびパラジウムの付着
量は担体基材1個当り白金1.89およびパラジウム0
.269に設定した。
, Comparative Example 5 Catalyst E was obtained in the same manner as in Comparative Example 8 except that the noble metal aqueous solution to be immersed was changed to a mixed aqueous solution of chloroplatinic acid and palladium chloride. However, the amount of platinum and palladium deposited is 1.89 platinum and 0 palladium per carrier base material.
.. It was set to 269.

比較例6 比較例3において浸漬させる貴金属水溶液を塩化白金酸
、塩化ロジウムおよび塩化パラジウムの混合水溶液に変
えた以外は、同様にして触媒Fを得た。ただし白金、ロ
ジウムおよびパラジウムの担持量は、担体基材1個当り
白金1.89 、ロジウム0.18g、パラジウム0.
189に設定した。
Comparative Example 6 Catalyst F was obtained in the same manner as in Comparative Example 3, except that the noble metal aqueous solution to be immersed was changed to a mixed aqueous solution of chloroplatinic acid, rhodium chloride, and palladium chloride. However, the supported amounts of platinum, rhodium, and palladium are 1.89 g of platinum, 0.18 g of rhodium, and 0.1 g of palladium per carrier base material.
It was set to 189.

比較例? 比較例8において浸漬させる貴金属水溶液を塩化パラジ
ウムと塩化ロジウムの混合水溶液に変えた以外は同様に
して触媒Gを得た。ただしパラジウムおよびロジウムの
付着量は、担体基材1個当りパラジウム1.87および
ロジウム0.269に設定した。
Comparative example? Catalyst G was obtained in the same manner as in Comparative Example 8, except that the noble metal aqueous solution to be immersed was changed to a mixed aqueous solution of palladium chloride and rhodium chloride. However, the amounts of palladium and rhodium deposited were set to 1.87 palladium and 0.269 rhodium per carrier substrate.

・比較例8 実施例10において白金の付着量を白金0.90gにし
た以外は同様にして触媒■を得た。
Comparative Example 8 Catalyst (2) was obtained in the same manner as in Example 10 except that the amount of platinum deposited was changed to 0.90 g of platinum.

比較例9 実施例10において白金の付着量を白金1.8り5にし
た以外は同様にして触媒工を得た。−比較例1O 実施例12においてロジウムの付着量をロジウム0,0
9i7に変えた以外は、同様にして触媒Jを得た。
Comparative Example 9 A catalyst material was obtained in the same manner as in Example 10 except that the amount of platinum deposited was 1.8 to 5. - Comparative Example 1O In Example 12, the amount of rhodium deposited was 0,0
Catalyst J was obtained in the same manner except that 9i7 was used.

比較例11 実施例12においてロジウムの付着量をロジウム0.8
62に変えた以外は同様にして触媒Kを得た。
Comparative Example 11 The amount of rhodium deposited in Example 12 was changed to 0.8 rhodium.
Catalyst K was obtained in the same manner except that 62 was used.

比較例12 実施例12においてパラジウムの付着量をパラジウム0
.099に変えた以外は同様にして触媒りを得た。
Comparative Example 12 In Example 12, the amount of palladium deposited was changed to 0 palladium.
.. A catalyst was obtained in the same manner except that 099 was used.

比較例18 実施例12においてパラジウムの付着量をパラ・ジウム
0,69gに変えた以外は同様にして触媒Mを得た。
Comparative Example 18 Catalyst M was obtained in the same manner as in Example 12, except that the amount of palladium deposited was changed to 0.69 g of palladium.

比較例14 実施例1においてセリウム量を金属換算で付着量に対し
て20重量%に変えた以外は同様にして触媒Nt−得た
Comparative Example 14 A Nt-catalyst was obtained in the same manner as in Example 1 except that the amount of cerium was changed to 20% by weight based on the amount of deposited metal.

比較例15 実施例1において′セリウム量を金属換算で付着量に対
して50重量%に変えた以外は同様にして触媒Oを得た
Comparative Example 15 Catalyst O was obtained in the same manner as in Example 1, except that the amount of cerium was changed to 50% by weight based on the amount of deposited metal.

比較例16 実施例6において酸化プラセオジムをプラセオジム金属
換算で付着量に対して25重量%に変えた以外は同様に
して触媒Pを得た。
Comparative Example 16 Catalyst P was obtained in the same manner as in Example 6 except that the amount of praseodymium oxide was changed to 25% by weight based on the amount of attached praseodymium metal.

比較例17 実施例6において酸化プラセオジムをプラセオジム金属
換算で付着量に対して80重量%にした以外は同様にし
て触媒Qを得た。
Comparative Example 17 Catalyst Q was obtained in the same manner as in Example 6, except that the amount of praseodymium oxide was changed to 80% by weight based on the amount of attached praseodymium metal.

比較例18 実施例7において酸化銅を銅金属換算でコーチ・イング
量に対して5重量%にした以外は同様にして触媒Rを得
た。
Comparative Example 18 Catalyst R was obtained in the same manner as in Example 7 except that copper oxide was changed to 5% by weight based on the coaching amount in terms of copper metal.

比較例19 実施例7において酸化鋼を銅金属換算で付着量に対して
30重ff14にした以外は同様にして触媒Sを得た。
Comparative Example 19 Catalyst S was obtained in the same manner as in Example 7, except that the amount of oxidized steel was changed to 30 weight ff14 in terms of the amount of deposited copper metal.

比較例20 実施例8において酸化ニッケルをニッケル金属換算で付
着量に対して5重屋係にした以外は同様にして触媒Tを
得た。
Comparative Example 20 Catalyst T was obtained in the same manner as in Example 8, except that the amount of nickel oxide was changed to 5 times the amount of adhesion in terms of nickel metal.

比較例21 実施例8において酸化ニッケルをニッケル金属換算で付
着量に対して25重量%にした以外は同様にして触媒U
を得た。
Comparative Example 21 Catalyst U was prepared in the same manner as in Example 8 except that nickel oxide was changed to 25% by weight based on the amount of nickel metal deposited.
I got it.

比較例22 実施例9において酸化ジルコニウムをジルコニウム金属
換算で付着量に対して5重量%にした以外は同様にして
触媒Vを得た。
Comparative Example 22 Catalyst V was obtained in the same manner as in Example 9, except that zirconium oxide was changed to 5% by weight based on the amount of deposited zirconium metal.

比較例23 実施例9において酸化ジルコニウムをシルコニ・ラム金
属換算で付着量に対して25重量%にした以外は同様に
して触媒Wを得た。
Comparative Example 23 Catalyst W was obtained in the same manner as in Example 9, except that the amount of zirconium oxide was changed to 25% by weight based on the amount of adhered zirconium oxide in terms of silconium ram metal.

試験例 実施例1〜17で得た触媒1〜17および比較例1〜2
8で得た触媒A−Wにつき下記条件で耐久試験を行った
Test Examples Catalysts 1 to 17 obtained in Examples 1 to 17 and Comparative Examples 1 to 2
A durability test was conducted on the catalysts AW obtained in 8 under the following conditions.

熱耐久試験条件 雰 囲 気 空 気 温 度 600℃ 耐久時間 zoo時間 このようにして耐久試験を行った後の触媒につき次の評
価条件で炭化水素CHC)、−酸化炭素(CO)、窒素
酸化物(NOx)の浄化率を実験室で測定し、得た結果
を次の第1表に示す。
Thermal durability test conditions Atmosphere Air Temperature Temperature 600°C Durability time Zoo hours After conducting the durability test in this way, the catalyst was evaluated under the following evaluation conditions for hydrocarbons (CHC), -carbon oxides (CO), and nitrogen oxides ( The purification rate of NOx) was measured in the laboratory, and the results are shown in Table 1 below.

評 価 条 件 カス流ffi ’ 85’/min 触 触 量 60f!Lt 入ロガス温度 820℃ ガスの組成 028.6% No 300 ppm 00 0.32% HO6500ppm C H2O,11チ Co 7,7 % H210% N2 残部 第 1 表 第 1 表 (続き) 第 1 表 (続き) 発明の詳細 な説明してきたように、この発明の触媒は、特定の貴金
属および重金属を特定量担持させた構成としたため、耐
久後においても酸素過剰雰囲気′□の排気ガス中のCo
 、 HeおよびNOxの浄化率は低下せず、これ等の
有害成分を高効率で除去することができ、また試験結果
を示す第1表からこの発明の触媒は比較例の触媒にくら
べて、還元雰囲気にもかかわらずNOxの浄化率が著し
く向上したこと1が明らかである。
Evaluation conditions: scum flow ffi '85'/min, contact amount 60f! Lt Inlet log gas temperature 820℃ Gas composition 028.6% No 300 ppm 00 0.32% HO6500ppm C H2O, 11% Co 7.7% H2 10% N2 Remainder Table 1 Table 1 (continued) Table 1 (continued) ) As described in detail, the catalyst of the present invention has a structure in which specific amounts of specific noble metals and heavy metals are supported, so that even after durability, Co in the exhaust gas in an oxygen-rich atmosphere is
, the purification rate of He and NOx does not decrease, and these harmful components can be removed with high efficiency. Also, as shown in Table 1 showing the test results, the catalyst of the present invention has a lower reduction rate than the catalyst of the comparative example. It is clear that the NOx purification rate was significantly improved despite the atmosphere.

特許出願人 日産自動車株式会社Patent applicant: Nissan Motor Co., Ltd.

Claims (1)

【特許請求の範囲】 L 白金、ロジウムおよびパラジウムから成る群から選
ばれた貴金属の1種または2種以上と、セリウム、プラ
セオジム、銅、ニッケルおよびジルコニウムから成る群
から選ばれた重金属の1種または2種以上が耐火性担体
に相持され、担持量が担体に付着するアルミナ層に対し
て白金量が0.70〜0.90重量%、ロジウム量が0
.07〜0.15重量%、パラジウム量が0.07〜0
.75重量%、セリウム量が4.0〜45重量%、プラ
セオジム量が10〜25重量%、銅量が10〜25重量
%、ニッケル量が10〜20重量%、ジルコニウム量が
10〜20重量%であることを特徴とする排ガス中の一
酸化炭素、炭化水素および窒素酸化物を酸素過剰雰囲気
で同時に高効率で除去できる排ガス浄化用触媒。 2、 酸素過剰雰囲気が空燃比で25以内である特許請
求の範囲第1項記載の排ガス浄化ス触媒。
[Claims] L: One or more noble metals selected from the group consisting of platinum, rhodium, and palladium, and one or more heavy metals selected from the group consisting of cerium, praseodymium, copper, nickel, and zirconium. Two or more types are supported on the refractory carrier, and the supported amount is 0.70 to 0.90% by weight of platinum and 0% of rhodium based on the alumina layer attached to the carrier.
.. 07-0.15% by weight, palladium amount 0.07-0
.. 75% by weight, 4.0-45% by weight of cerium, 10-25% by weight of praseodymium, 10-25% by weight of copper, 10-20% by weight of nickel, 10-20% by weight of zirconium. A catalyst for exhaust gas purification that can simultaneously remove carbon monoxide, hydrocarbons, and nitrogen oxides in exhaust gas with high efficiency in an oxygen-rich atmosphere. 2. The exhaust gas purification catalyst according to claim 1, wherein the oxygen-excess atmosphere has an air-fuel ratio of 25 or less.
JP58160556A 1983-09-02 1983-09-02 Catalyst for purifying exhaust gas Pending JPS6054730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58160556A JPS6054730A (en) 1983-09-02 1983-09-02 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58160556A JPS6054730A (en) 1983-09-02 1983-09-02 Catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPS6054730A true JPS6054730A (en) 1985-03-29

Family

ID=15717542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58160556A Pending JPS6054730A (en) 1983-09-02 1983-09-02 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS6054730A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012863A1 (en) * 1991-12-27 1993-07-08 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device in internal combustion engine
US5260249A (en) * 1991-04-05 1993-11-09 Nippon Shokubai, Co., Ltd. Catalyst for purifying automotive exhaust gas
KR100384015B1 (en) * 2000-12-02 2003-05-14 현대자동차주식회사 Improved NOx conversion and thermal durable Pd only three way catalyst
KR100384016B1 (en) * 2000-12-05 2003-05-14 현대자동차주식회사 High durable Pd-Rh three way catalyst for NOx reduction
US6645439B2 (en) 1998-05-27 2003-11-11 Johnson Matthey Japan Ltd. Exhaust gas clean-up catalyst
KR100410942B1 (en) * 2001-07-28 2003-12-18 현대자동차주식회사 A process of preparing the High porous Pd only Three way Catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260249A (en) * 1991-04-05 1993-11-09 Nippon Shokubai, Co., Ltd. Catalyst for purifying automotive exhaust gas
WO1993012863A1 (en) * 1991-12-27 1993-07-08 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device in internal combustion engine
US6645439B2 (en) 1998-05-27 2003-11-11 Johnson Matthey Japan Ltd. Exhaust gas clean-up catalyst
KR100384015B1 (en) * 2000-12-02 2003-05-14 현대자동차주식회사 Improved NOx conversion and thermal durable Pd only three way catalyst
KR100384016B1 (en) * 2000-12-05 2003-05-14 현대자동차주식회사 High durable Pd-Rh three way catalyst for NOx reduction
KR100410942B1 (en) * 2001-07-28 2003-12-18 현대자동차주식회사 A process of preparing the High porous Pd only Three way Catalyst

Similar Documents

Publication Publication Date Title
JP3185448B2 (en) Exhaust gas purification catalyst
JPS60110334A (en) Preparation of catalyst for purifying exhaust gas
JPH09500570A (en) Layered catalyst composite
JP4012320B2 (en) Exhaust gas purification catalyst for lean combustion engine
JP2004508186A (en) Exhaust gas purification catalyst composition
JPH08281107A (en) Catalyst for purifying exhaust gas
WO1998047605A1 (en) Exhaust gas purification method and exhaust gas purification catalyst
JP6438384B2 (en) Exhaust gas purification catalyst carrier and exhaust gas purification catalyst
JP3251010B2 (en) Three-way conversion catalyst containing ceria-containing zirconia support
JPH01139144A (en) Catalyst for controlling exhaust emission
JPS6054730A (en) Catalyst for purifying exhaust gas
JPS63178847A (en) Catalyst for purifying exhaust gas
JP3161113B2 (en) Exhaust gas purification catalyst
JP4775953B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP5030573B2 (en) Composite oxide powder and method for producing the same
JPS61209045A (en) Catalyst for purifying exhaust gas
JPH08323205A (en) Exhaust gas purifying catalyst and its production
JPH01107847A (en) Catalyst for purification of exhaust gas from diesel
JPH0578380B2 (en)
JP4106762B2 (en) Exhaust gas purification catalyst device and purification method
JPH06190282A (en) Catalyst for purification of exhaust gas
JPH0578379B2 (en)
JP3596043B2 (en) Exhaust gas purification catalyst
JPH1190235A (en) Catalyst for purifying exhaust gas from diesel engine and purification method
JPH0361492B2 (en)