JPH0361492B2 - - Google Patents

Info

Publication number
JPH0361492B2
JPH0361492B2 JP59059527A JP5952784A JPH0361492B2 JP H0361492 B2 JPH0361492 B2 JP H0361492B2 JP 59059527 A JP59059527 A JP 59059527A JP 5952784 A JP5952784 A JP 5952784A JP H0361492 B2 JPH0361492 B2 JP H0361492B2
Authority
JP
Japan
Prior art keywords
catalyst
alumina
rhodium
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59059527A
Other languages
Japanese (ja)
Other versions
JPS60206447A (en
Inventor
Yoshuki Eto
Hidenori Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59059527A priority Critical patent/JPS60206447A/en
Publication of JPS60206447A publication Critical patent/JPS60206447A/en
Publication of JPH0361492B2 publication Critical patent/JPH0361492B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の関連する技術分野) この発明は車輛の内燃機関、特に自動車の内燃
機関から排出される排気ガス中の窒素酸化物
(NOx)、炭化水素(HC)および一酸化炭素
(CO)を同時に効率よく低減させる排気ガス浄化
用触媒の製造方法に関するものである。 (従来技術) あらかじめセリウムを含有させた活性アルミナ
粉末をモノリス担体基材の表面に付着させた後、
白金、ロジウム、パラジウム等をそれぞれ単独あ
るいは組み合わせて担持した触媒等が、例えば特
開昭52−116779号、同54−159391号公報などで提
案されている。 しかしながら、このような従来の排気ガス浄化
用触媒にあつては、触媒成分である高価な白金、
ロジウム、パラジウム等の貴金属を多量に担持さ
せていたにもかかわらず、活性アルミナに多量の
セリウムを担持させた後に貴金属を担持させてい
たため、得られた触媒は貴金属の分散状態が悪化
し、このため活性、特に低温度域での活性が低下
するという問題点があつた。 (発明の開示) この発明は、このような従来の問題点に着目し
てなされたもので、あらかじめセリウムを含有さ
せた活性アルミナ粉末と、比表面積が50m2/g以
上である酸化セリウム粉末とをアルミナゾルに配
合して得たスラリーを、モノリス担体基材の表面
に付着させた後、白金とロジウムまたはパラジウ
ムとロジウムから成る貴金属成分を担持させ、貴
金属の分散状態の悪化を防止し、同時に排ガスの
浄化性能を向上させるために、セリアの酸素
(O2)ストレージ効果を増大させることにより貴
金属を低減せしめた排気ガス浄化用の触媒の製造
方法を提供することを目的としている。 一般にγ−アルミナ、δ−アルミナ等の活性ア
ルミナは高温下では安定なα−アルミナと称する
不活性アルミナに変化し、比表面積を1〜2m2
gしか有しなくなる。従つて活性アルミナ担体
を、そのまま触媒用担体として使用し、その上に
白金、ロジウム等の貴金属を担持させ触媒にする
と、高温にさらされた場合、担持された貴金属が
シンタリングを起し、活性を失なう。 しかしながらこの発明の触媒の場合のように活
性アルミナに酸化セリウムを担持させると活性ア
ルミナの耐熱性は著しく向上し、高温下で使用さ
れてもα−アルミナに変化しにくくなる。活性ア
ルミナへの酸化セリウムの担持量は、セリウム金
属換算で対アルミナ比1〜5重量%で、1重量%
未満では活性アルミナの耐熱性向上効果が少な
く、また5重量%を越えると耐熱性は向上する
が、相対的に活性アルミナの比表面積を低下させ
ることになり、好ましくない。 この発明においては、これらの作用を十分に考
慮に入れ、さらには酸化セリウムのO2ストレー
ジ効果を増大させるために、あらかじめ酸化セリ
ウムを含有させた活性アルミナ粉末に、比表面積
が50m2/g以上である酸化セリウム(以下高比表
面積セリアと称する)粉末を配合して得たスラリ
ーを、モノリス担体基材の表面に付着させた後、
貴金属成分を担持する。この貴金属成分の担持は
通常用いられている方法で行われる。 ここで使用する高比表面積セリアは、例えば各
種セリウム塩の内、硝酸第1セリウム、酢酸セリ
ウムを、空気雰囲気中650℃で1時間焼成して得
られる比表面積が50m2/g以上のセリアであり、
硝酸第1セリウムから得られるセリアは50.8m2
g、酢酸セリウムから得られるセリアは60.0m2
gの比表面積を有している。他のセリウム塩を同
条件で焼成して得られるセリアは、例えば炭酸セ
リウムから得られるセリアは17.9m2/g、シユウ
酸セリウムから得られるセリアは、19.6m2/g
と、低比表面積しか持たず、このような比表面積
が50m2/g未満のセリアでは比表面積が6m2/g
程度の市販セリアを用いる場合に比べ、性能の改
良が、発明者らの要求を満たすことができないこ
とから、前記比表面積が50m2/g以上のセリアを
用いる。 この結果活性アルミナとほぼ等しい比表面積を
有するセリアを持つ触媒となり、排ガス浄化性能
は、貴金属担持量を減少させても低下することは
なく、また自動車の排気ガス浄化用として用いた
場合の耐久性も十分であつた。特に高比表面積セ
リアの持つO2ストレージ能力が浄化能力向上に
寄与する効果は大であり、自動車の内燃機関の燃
焼域がリツチ側(燃料過剰側)となつた場合で
も、セリアのO2ストレージ効果が増大した結果、
安定した高浄化性能を示すようになる。 なお活性アルミナ粉末と配合する高比表面積セ
リア粉末の配合量は、金属換算でモノリス担体基
材に付着させたアルミナ層に対して5〜50重量%
で、50重量%を越えることでの増量効果はほとん
どなく、また5重量%未満では高比表面積セリア
を添加した効果が発明者の要求性能と比較して不
十分である。 (発明の実施例) この発明を次の実施例、比較例および試験例に
より説明する。 実施例 1 ガンマアルミナを主成分とする粒状担体(粒径
2〜4mm)を硝酸セリウム水溶液に含浸、乾燥
後、空気雰囲気中、600℃で1時間焼成し、アル
ミナに対してセリウム酸化物を金属換算1重量%
含む担体を得た。 次にアルミナゾル(ベーマイトアルミナ10重量
%懸濁液に10重量%のNHO3を添加することによ
つて得られるゾル)2478.0g、セリウムを含む活
性アルミナ粒状担体1419g、硝酸第1セリウムか
ら得られた高比表面積セリア粉末103.2gをボー
ルミルポツトに投入し、6時間粉砕したのち、得
られたスラリーをモノリス担体基材(1.7400セ
ル)に付着させ、乾燥後、650℃で2時間焼成し
た。この時の付着層付着量は340g/ケに設定し
た。さらに、この担体に担体1ケ当り白金0.77
g、ロジウム0.13gになるように担持した後、焼
成(600℃×2時間)して触媒1を得た。 実施例 2 実施例1において、ガンマアルミナを主成分と
する粒状担体を硝酸セリウム水溶液に含浸、乾
燥、焼成しアルミナに対しセリウム酸化物を金属
換算3重量%を含む担体を得た以外は同様にして
触媒2を得た。 実施例 3 実施例1において、セリウムを含む活性アルミ
ナ粒状担体903g、高比表面積セリア粉末619gに
変えた以外は同様にして触媒3を得た。 実施例 4 実施例1において、セリウムを含む活性アルミ
ナ粒状担体491g、高比表面積セリア粉末1032g
に変えた以外は同様にして触媒4を得た。 実施例 5 実施例2において、セリウムを含む活性アルミ
ナ粒状担体1007g、高比表面積セリア粉末516g
に変えた以外は同様にして触媒5を得た。 実施例 6 実施例2において、セリウムを含む活性アルミ
ナ粒状担体491g、高比表面積セリア粉末1032g
に変えた以外は同様にして触媒6を得た。 実施例 7 実施例1において、ガンマアルミナを主成分と
する粒状担体を硝酸セリウム水溶液に含浸、乾
燥、焼成しアルミナに対し、セリウム酸化物を金
属換算5重量%含む担体を得た以外は同様にして
触媒7を得た。 実施例 8 実施例7において、セリウムを含む活性アルミ
ナ粒状担体1007g、高比表面積セリア粉末516g
に変えた以外は同様にして触媒8を得た。 実施例 9 実施例7において、セリウムを含む活性アルミ
ナ粒状担体491g、高比表面積セリア粉末1032g
に変えた以外は同様にして触媒9を得た。 比較例 1 アルミナゾル2563.0g、活性アルミナ粒状担体
1437.0gをボールミルに混ぜ込み、6時間粉砕し
たのちコーテイング担体基材(1.7400セル)に
付着させ、焼成(650℃×2時間)した。 この時の付着量は340g/ケに設定した。 さらに、この担体を白金とロジウムの塩酸酸性
溶液に浸漬し、白金1.9g/ケ、ロジウム0.19
g/ケになるように担持した後600℃で2時間焼
成して触媒Aを得た。 比較例 2 アルミナゾル2563g、セリウムを金属換算5重
量%含む活性アルミナ粒状担体1437gを用いた以
外は比較例1と同様にして触媒Bを得た。ただし
白金の付着量は1.9g/ケ、ロジウムは0.19g/
ケに設定した。 比較例 3 アルミナゾル2478g、高比表面積セリア粉末
(比表面積50m2/g)983g、活性アルミナ粒状担
体466gを用いた以外は同様にして触媒Cを得た。
ただし貴金属担持量は触媒1ケ当り白金1.9g、
ロジウム0.19gに設定した。 比較例 4 アルミナゾル2563g、セリウムを金属換算0.5
重量%含む活性アルミナ粒状担体1367.2g、高比
表面積セリア粉末69.8gを用いた以外は実施例1
と同様にして触媒Dを得た。ただし貴金属担持量
は触媒1ケ当り白金0.772g、ロジウム0.1286g
に設定した。 比較例 5 アルミナゾル2563g、セリウムを金属換算10重
量%含む活性アルミナ粒状担体31.9g、高比表面
積セリア粉末1405gとした以外は、実施例1と同
様にして触媒Eを得た。この触媒1ケ当りの貴金
属担持量は、白金0.772g、ロジウム0.1286gに
設定した。 実施例 10 実施例1において、酢酸セリウムから得られた
比表面積が60m2/gであるセリアを用いた以外は
同様にして触媒10を得た。 実施例 11 実施例1において、モノリス担体基材を400セ
ル、1.7から300セル、0.9に変えた以外は、
同様にして触媒11を得た。ただしセリウムを含
む活性アルミナと高比表面積セリアアルミナゾル
の合計すなわち付着層の付着量は180g/ケで、
貴金属の担持量は、1ケ当り白金0.9535g、ロジ
ウム0.1589gに設定した。 実施例 12 実施例1においてモノリス担体基材を、400セ
ル1.7から300セル0.7に変えた以外は同様に
して触媒12を得た。ただし付着層の付着量は
140g/ケ、貴金属担持量は1ケ当り白金0.7865
g、ロジウム0.0787gに設定した。 実施例 13 実施例1において、モノリス担体基材を400セ
ル1.7から400セル1.32に変えた以外は同様に
して触媒12を得た。ただし付着層の付着量は
264g/ケ、貴金属担持量は1ケ当り白金0.5993
g、ロジウム0.0999gに設定した。 比較例 6 アルミナに対してセリウム酸化物を金属換算1
重量%含む活性アルミナ粒状担体1419gと、アル
ミナゾル2478g、炭酸セリウムから得られる比表
面積が17.9m2/gであるセリア103.2gをボール
ミル・ポツトに投入し、6時間粉砕したのち、得
られたスラリーをモノリス担体基材(1.7、400
セル)に付着させ、乾燥後、650℃で2時間焼成
した。この時の付着量は、340g/ケに設定した。
さらに、この担体に一ケ当り、白金0.77g、ロジ
ウム0.13gになるように担持した後、焼成(600
℃×2時間)して触媒Fを得た。 比較例 7 比較例6において、比表面積が6m2/gである
市販セリアを用いた以外は同様にして触媒Gを得
た。この触媒1ケ当りの貴金属担持量は、白金
0.77g、ロジウム0.13gに設定した。 比較例 8 比較例1において、モノリス担体基材を400セ
ル1.7から300セル0.9に変えた以外は同様に
して触媒Hを得た。この場合のスラリーの付着量
は焼成後で180g/ケであつた。ただし貴金属の
担持量は1ケ当り白金0.9535g、ロジウム0.1589
gに設定した。 比較例 9 本例においては、特開昭52−116779号の触媒の
例を示す。 シリカ2563g、セリウムを金属換算3重量%を
含む活性アルミナ粒状担体1437gをボールミルに
混ぜ込み、6時間粉砕の後、コーテング担体基材
(400セル、1.7)に付着し、650℃で2時間焼成
した。この時の付着量は340g/ケに設定した。
さらにこのコーテイング担体を塩化白金酸と塩化
ロジウムの混合水溶液に浸漬し、H2/N2の流れ
の中で還元した。この時の貴金属担持量は、白金
1.9g/ケ、ロジウム0.19g/ケに設定した。そ
の後600℃で2時間焼成して触媒Iを得た。 比較例 10 本例では特開昭54−159391号の触媒の例を示
す。アルミナゾル2563g、活性アルミナ粒状担体
1437gをボールミルに混ぜ込み、6時間粉砕した
後、コーテイング担体基材(400セル、1.7)に
付着させ、650℃で2時間焼成した。この時の付
着量は340g/ケに設定した。次いでCe(NO33
水溶液を用いセリウム金属換算で28gのセリウム
を付着させた。この後、120℃で3時間乾燥し、
空気中600℃で2時間焼成した。 さらに塩化白金酸と塩化ロジウムの混合水溶液
中に浸漬し、白金、ロジウムの付着量が、白金
1.9g、ロジウム0.19gになるように担持した後
焼成し、触媒Jを得た。 実施例 14 実施例1において、パラジウムの付着量を0.77
g/ケ、ロジウム0.13g/ケになるように担持す
る以外は同様にして触媒14を得た。 実施例 15 実施例5において、パラジウムの付着量を0.77
g/ケ、ロジウム0.13g/ケに担持する以外は同
様にして触媒15を得た。 比較例 11 比較例1において、パラジウムの付着量を1.9
g/ケ、ロジウム0.19g/ケになるように担持さ
せる以外は同様にして触媒Kを得た。 試験例 1 実施例1〜15より得た触媒1〜15、比較例1
〜11より得た触媒A〜Kにつき下記条件で耐久を
行ない、10モードエシツシヨンの浄化率で比較
し、表1に示した。 耐久試験条件 触 媒 モノリス型貴金属触媒 排気ガス触媒出口温度750℃(850℃実施例10比較
例6) 空間速度 約7万Hr-1(約10万Hr-1実施例10比較
例6) 耐久時間 100時間 エンジン 排気量2200c.c. 耐久中入口エミツシヨン CO 0.4〜0.6% O2 0.5±0.1% NO 2500ppm HC 1000ppm CO2 14.9±0.1% 10モード評価車輛 セドリツク 排気量 2000c.c. (日産自動車(株)製:商品名) (スタンザ 排気量 1800c.c. 実施例10 (日産自動車(株)製:商品名) 比較例6)
(Technical field to which the invention relates) This invention simultaneously eliminates nitrogen oxides (NOx), hydrocarbons (HC), and carbon monoxide (CO) in exhaust gases emitted from internal combustion engines of vehicles, particularly automobile internal combustion engines. The present invention relates to a method of manufacturing a catalyst for purifying exhaust gas that efficiently reduces exhaust gas. (Prior art) After adhering activated alumina powder containing cerium to the surface of a monolithic carrier base material,
Catalysts in which platinum, rhodium, palladium, etc. are supported either singly or in combination have been proposed, for example, in JP-A-52-116779 and JP-A-54-159391. However, in the case of such conventional exhaust gas purification catalysts, expensive platinum, which is a catalyst component,
Although a large amount of noble metals such as rhodium and palladium were supported on activated alumina, the noble metal was supported on the activated alumina after a large amount of cerium was supported on it, so the resulting catalyst had a poor dispersion state of the precious metal. Therefore, there was a problem that the activity, especially in the low temperature range, decreased. (Disclosure of the Invention) This invention was made by focusing on such conventional problems, and consists of activated alumina powder containing cerium in advance and cerium oxide powder having a specific surface area of 50 m 2 /g or more. After adhering the slurry obtained by blending with alumina sol to the surface of the monolith carrier base material, the precious metal component consisting of platinum and rhodium or palladium and rhodium is supported, preventing deterioration of the dispersion state of the precious metal, and at the same time reducing exhaust gas. The purpose of the present invention is to provide a method for producing a catalyst for exhaust gas purification in which precious metal content is reduced by increasing the oxygen (O 2 ) storage effect of ceria in order to improve the purification performance of ceria. In general, activated alumina such as γ-alumina and δ-alumina transforms into a stable inert alumina called α-alumina at high temperatures, with a specific surface area of 1 to 2 m 2 /
It will only have g. Therefore, if an activated alumina carrier is used as it is as a catalyst carrier and a noble metal such as platinum or rhodium is supported on it to form a catalyst, when exposed to high temperatures, the supported noble metal will sinter and lose its activity. lose. However, when cerium oxide is supported on activated alumina as in the case of the catalyst of the present invention, the heat resistance of activated alumina is significantly improved, and it becomes difficult to convert into α-alumina even when used at high temperatures. The amount of cerium oxide supported on activated alumina is 1 to 5% by weight relative to alumina in terms of cerium metal, and is 1% by weight.
If it is less than 5% by weight, the effect of improving the heat resistance of activated alumina will be small, and if it exceeds 5% by weight, the heat resistance will be improved, but the specific surface area of activated alumina will be relatively reduced, which is not preferable. In this invention, in order to fully take these effects into consideration and further increase the O 2 storage effect of cerium oxide, activated alumina powder containing cerium oxide in advance has a specific surface area of 50 m 2 /g or more. After adhering a slurry obtained by blending cerium oxide (hereinafter referred to as high specific surface area ceria) powder to the surface of a monolithic carrier base material,
Supports precious metal components. This noble metal component is supported by a commonly used method. The high specific surface area ceria used here is, for example, ceria with a specific surface area of 50 m 2 /g or more obtained by baking cerous nitrate and cerium acetate among various cerium salts at 650°C for 1 hour in an air atmosphere. can be,
Ceria obtained from cerous nitrate is 50.8 m 2 /
g, ceria obtained from cerium acetate is 60.0 m 2 /
It has a specific surface area of g. For example, ceria obtained by firing other cerium salts under the same conditions is 17.9 m 2 /g from cerium carbonate, and 19.6 m 2 /g from cerium oxalate.
Ceria, which has a low specific surface area of less than 50 m 2 /g, has a specific surface area of 6 m 2 /g.
Since the improvement in performance could not meet the inventors' requirements compared to the case where a commercially available ceria of about 50% is used, ceria having a specific surface area of 50 m 2 /g or more is used. As a result, the catalyst has ceria, which has a specific surface area almost equal to that of activated alumina, and its exhaust gas purification performance does not deteriorate even if the amount of precious metal supported is reduced, and it also has excellent durability when used for purifying automobile exhaust gas. was also sufficient. In particular, the O 2 storage capacity of Ceria, which has a high specific surface area, has a large effect on improving the purification ability. As a result of increased effectiveness,
It shows stable and high purification performance. The amount of high specific surface area ceria powder to be blended with activated alumina powder is 5 to 50% by weight based on the alumina layer attached to the monolith carrier base material in terms of metal.
If it exceeds 50% by weight, there is almost no effect of increasing the amount, and if it is less than 5% by weight, the effect of adding ceria with a high specific surface area is insufficient compared to the performance required by the inventor. (Examples of the Invention) The present invention will be explained using the following Examples, Comparative Examples, and Test Examples. Example 1 A granular carrier (particle size 2 to 4 mm) mainly composed of gamma alumina was impregnated with an aqueous cerium nitrate solution, dried, and then calcined in an air atmosphere at 600°C for 1 hour to convert cerium oxide to alumina as a metal. Converted 1% by weight
A carrier containing the above was obtained. Next, 2478.0 g of alumina sol (a sol obtained by adding 10 wt.% NHO3 to a 10 wt.% suspension of boehmite alumina), 1419 g of activated alumina granular carrier containing cerium, and ceric nitrate were prepared. After 103.2 g of high specific surface area ceria powder was put into a ball mill pot and pulverized for 6 hours, the resulting slurry was adhered to a monolithic carrier base material (1.7400 cells), dried, and then calcined at 650° C. for 2 hours. The amount of adhesion layer deposited at this time was set at 340 g/piece. Furthermore, this carrier has 0.77 platinum per carrier.
After supporting the catalyst in amounts of 0.13 g and 0.13 g of rhodium, catalyst 1 was obtained by calcining (600°C x 2 hours). Example 2 The same procedure as in Example 1 was carried out, except that a granular carrier containing gamma alumina as the main component was impregnated with an aqueous cerium nitrate solution, dried, and calcined to obtain a carrier containing 3% by weight of cerium oxide based on alumina in terms of metal. Catalyst 2 was obtained. Example 3 Catalyst 3 was obtained in the same manner as in Example 1, except that 903 g of activated alumina granular carrier containing cerium and 619 g of high specific surface area ceria powder were used. Example 4 In Example 1, 491 g of activated alumina granular carrier containing cerium and 1032 g of high specific surface area ceria powder
Catalyst 4 was obtained in the same manner except that . Example 5 In Example 2, 1007 g of activated alumina granular carrier containing cerium and 516 g of high specific surface area ceria powder were used.
Catalyst 5 was obtained in the same manner except that . Example 6 In Example 2, 491 g of activated alumina granular carrier containing cerium and 1032 g of high specific surface area ceria powder
Catalyst 6 was obtained in the same manner except that . Example 7 The same procedure as in Example 1 was carried out, except that a granular carrier containing gamma alumina as the main component was impregnated with an aqueous cerium nitrate solution, dried, and calcined to obtain a carrier containing 5% by weight of cerium oxide in terms of metal based on the alumina. Catalyst 7 was obtained. Example 8 In Example 7, 1007 g of activated alumina granular carrier containing cerium, 516 g of high specific surface area ceria powder
Catalyst 8 was obtained in the same manner except that . Example 9 In Example 7, 491 g of activated alumina granular carrier containing cerium, 1032 g of high specific surface area ceria powder
Catalyst 9 was obtained in the same manner except that . Comparative Example 1 Alumina sol 2563.0g, activated alumina granular carrier
1437.0g was mixed in a ball mill and pulverized for 6 hours, then adhered to a coating carrier base material (1.7400 cells) and fired (650°C x 2 hours). The amount of adhesion at this time was set at 340 g/piece. Furthermore, this carrier was immersed in an acidic solution of platinum and rhodium in hydrochloric acid, and 1.9 g/kg of platinum and 0.19 g/kg of rhodium were added.
After supporting the catalyst in an amount of 1.5 g/kg, catalyst A was obtained by calcining at 600° C. for 2 hours. Comparative Example 2 Catalyst B was obtained in the same manner as in Comparative Example 1, except that 2563 g of alumina sol and 1437 g of activated alumina granular carrier containing 5% by weight of cerium in terms of metal were used. However, the amount of platinum deposited is 1.9g/ke, and the amount of rhodium is 0.19g/ke.
It was set to . Comparative Example 3 Catalyst C was obtained in the same manner except that 2478 g of alumina sol, 983 g of high specific surface area ceria powder (specific surface area 50 m 2 /g), and 466 g of activated alumina granular carrier were used.
However, the amount of precious metal supported is 1.9g of platinum per catalyst.
Rhodium was set at 0.19g. Comparative example 4 Alumina sol 2563g, cerium equivalent to 0.5 as metal
Example 1 except that 1367.2 g of active alumina granular carrier containing % by weight and 69.8 g of high specific surface area ceria powder were used.
Catalyst D was obtained in the same manner as above. However, the amount of precious metal supported is 0.772g of platinum and 0.1286g of rhodium per catalyst.
It was set to Comparative Example 5 Catalyst E was obtained in the same manner as in Example 1, except that 2563 g of alumina sol, 31.9 g of activated alumina granular carrier containing 10% by weight of cerium as metal, and 1405 g of high specific surface area ceria powder were used. The amount of precious metal supported per catalyst was set to 0.772 g of platinum and 0.1286 g of rhodium. Example 10 Catalyst 10 was obtained in the same manner as in Example 1, except that ceria obtained from cerium acetate and having a specific surface area of 60 m 2 /g was used. Example 11 In Example 1, except that the monolith carrier base material was changed from 400 cells, 1.7 to 300 cells, 0.9.
Catalyst 11 was obtained in the same manner. However, the total amount of the activated alumina containing cerium and the high specific surface area ceria alumina sol, that is, the amount of the adhesion layer, is 180 g/kg.
The amount of precious metals supported was set to 0.9535 g of platinum and 0.1589 g of rhodium per piece. Example 12 Catalyst 12 was obtained in the same manner as in Example 1 except that the monolith carrier base material was changed from 400 cells 1.7 to 300 cells 0.7. However, the amount of adhesion layer is
140g/piece, precious metal loading is 0.7865 platinum per piece
g, rhodium 0.0787 g. Example 13 Catalyst 12 was obtained in the same manner as in Example 1 except that the monolith carrier base material was changed from 400 cells 1.7 to 400 cells 1.32. However, the amount of adhesion layer is
264g/piece, precious metal loading is 0.5993 platinum per piece
g, rhodium was set at 0.0999 g. Comparative example 6 Cerium oxide compared to alumina in terms of metal 1
1,419 g of active alumina granular carrier containing % by weight, 2,478 g of alumina sol, and 103.2 g of ceria with a specific surface area of 17.9 m 2 /g obtained from cerium carbonate were placed in a ball mill pot, and after pulverizing for 6 hours, the resulting slurry was Monolith carrier substrate (1.7, 400
After drying, it was baked at 650°C for 2 hours. The amount of adhesion at this time was set at 340 g/piece.
Furthermore, after supporting 0.77 g of platinum and 0.13 g of rhodium per piece on this carrier, it was fired (600 g).
℃ x 2 hours) to obtain catalyst F. Comparative Example 7 Catalyst G was obtained in the same manner as in Comparative Example 6, except that commercially available ceria having a specific surface area of 6 m 2 /g was used. The amount of precious metal supported per catalyst is platinum
It was set to 0.77g and rhodium 0.13g. Comparative Example 8 Catalyst H was obtained in the same manner as in Comparative Example 1 except that the monolith carrier base material was changed from 400 cells 1.7 to 300 cells 0.9. In this case, the amount of slurry deposited after firing was 180 g/piece. However, the amount of precious metals supported is 0.9535g of platinum and 0.1589g of rhodium per unit.
It was set to g. Comparative Example 9 In this example, an example of the catalyst disclosed in JP-A-52-116779 is shown. 2,563 g of silica and 1,437 g of activated alumina granular carrier containing 3% by weight of cerium (metal equivalent) were mixed in a ball mill, pulverized for 6 hours, attached to a coating carrier base material (400 cells, 1.7), and baked at 650°C for 2 hours. . The amount of adhesion at this time was set at 340 g/piece.
Further, this coated carrier was immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride, and reduced in a flow of H 2 /N 2 . The amount of precious metal supported at this time is platinum
It was set at 1.9 g/piece and rhodium at 0.19 g/piece. Thereafter, catalyst I was obtained by calcining at 600°C for 2 hours. Comparative Example 10 In this example, an example of the catalyst disclosed in JP-A-54-159391 is shown. Alumina sol 2563g, activated alumina granular carrier
After 1437 g was mixed in a ball mill and pulverized for 6 hours, it was attached to a coating carrier base material (400 cells, 1.7) and baked at 650°C for 2 hours. The amount of adhesion at this time was set at 340 g/piece. Then Ce( NO3 ) 3
Using an aqueous solution, 28 g of cerium was deposited in terms of cerium metal. After that, dry at 120℃ for 3 hours,
It was fired in air at 600°C for 2 hours. Furthermore, it was immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride, and the amount of platinum and rhodium deposited on the platinum
After supporting 1.9 g of rhodium and 0.19 g of rhodium, catalyst J was obtained. Example 14 In Example 1, the amount of palladium deposited was set to 0.77.
Catalyst 14 was obtained in the same manner except that rhodium was supported at 0.13 g/piece. Example 15 In Example 5, the amount of palladium deposited was set to 0.77.
Catalyst 15 was obtained in the same manner except that rhodium was supported on 0.13 g/piece. Comparative Example 11 In Comparative Example 1, the amount of palladium deposited was 1.9
Catalyst K was obtained in the same manner except that rhodium was supported at 0.19 g/piece. Test Example 1 Catalysts 1 to 15 obtained from Examples 1 to 15, Comparative Example 1
Catalysts A to K obtained from 11 to 11 were tested for durability under the following conditions, and the purification rates of the 10-mode edition were compared and shown in Table 1. Durability test conditions Catalyst Monolithic precious metal catalyst Exhaust gas catalyst outlet temperature 750℃ (850℃Example 10 Comparative Example 6) Space velocity Approx. 70,000 Hr -1 (Approx. 100,000 Hr -1 Example 10 Comparative Example 6) Durability time 100 hour engine Displacement 2200c.c. Mid-durability inlet emission CO 0.4~0.6% O 2 0.5±0.1% NO 2500ppm HC 1000ppm CO 2 14.9±0.1% 10 mode evaluation vehicle Sedryk Displacement 2000c.c. (Nissan Motor Co., Ltd. ): Product name) (Stanza Displacement 1800c.c. Example 10 (Made by Nissan Motor Co., Ltd.: Product name) Comparative example 6)

【表】 ことを示す。
試験例 2 実施例1〜15より得た触媒1〜15、比較例1
〜11より得た触媒A〜Kにつき、下記の条件であ
らかじめ熱劣化させ、Z特性評価をラボ評価装置
を用いて行ない、HC、NO添加率を第1図〜第
8図に示した。 熱劣化試験 温度×時間 750℃×24時間 雰囲気 空気中 ラボ評価条件 触媒サイズ 直径36mm×長さ59mm約60c.c. モデルガス流量 27.5/min 空間速度 SV 27500Hr-1 触媒入口ガス温度 400℃ Z値の設定 Z=
〔O2〕+0.5〔NO〕/0.5〔CO〕+〔H2〕+1.5〔H.C〕に より求められる各ガス濃度、但
しCO2,H2Oは一定 転化率= 〔入口ガス濃度〕−〔触媒出口ガス濃度〕/〔入口ガス
濃度〕×100(%) 尚第1図は触媒Aと触媒1,2,3の比較、第
2図は触媒Cと触媒4,5,6の比較、第3図は
触媒Bと触媒7,8,9の比較、第4図は触媒
D,Eと触媒1の比較、第5図は触媒Hと触媒1
1,12,13の比較、第6図は触媒Kと触媒1
4,15の比較、第7図は触媒I,Jと触媒5の
比較、第8図は触媒F、Gと触媒10の比較をそ
れぞれ示す。第1〜8図よりこの発明の触媒は、
Z特性に優れ、特にZ値0.4および0.7という酸素
不足域で、HCの高転化率が得られることから比
表面積が50m2/g以上である酸化セリウムのO2
ストレージ効果の向上が確認された。 (発明の効果) 以上説明してきたように、この発明の方法によ
ると、得られた触媒はあらかじめセリウムを含有
させた活性アルミナ粉末に、高比表面積セリアを
配合して得たスラリーを、モノリス担体基材表面
に付着させた後貴金属成分を担持させて構成され
たものであることにより、第1表からも明らかな
ように貴金属が低減したにもかかわらず、浄化率
の向上が著しく、特に混ぜ込む高比表面積セリア
の率が高いほど、該セリアのO2ストレージ効果
が向上しNOの浄化率が向上し且つ安定した高浄
化性能を示すという効果が得られる。
[Table] Shows that.
Test Example 2 Catalysts 1 to 15 obtained from Examples 1 to 15, Comparative Example 1
Catalysts A to K obtained from 1 to 11 were thermally degraded in advance under the following conditions, and Z characteristics were evaluated using a laboratory evaluation device, and the HC and NO addition rates are shown in FIGS. 1 to 8. Thermal degradation test Temperature x time 750℃ x 24 hours Atmosphere Laboratory evaluation conditions in air Catalyst size Diameter 36mm x length 59mm Approx. 60c.c. Model gas flow rate 27.5/min Space velocity SV 27500Hr -1 Catalyst inlet gas temperature 400℃ Z value Setting Z=
Concentration of each gas determined by [O 2 ] + 0.5 [NO] / 0.5 [CO] + [H 2 ] + 1.5 [HC], where CO 2 and H 2 O are constant Conversion rate = [Inlet gas concentration] - [Catalyst outlet gas concentration] / [Inlet gas concentration] x 100 (%) Figure 1 is a comparison between catalyst A and catalysts 1, 2, and 3, and Figure 2 is a comparison between catalyst C and catalysts 4, 5, and 6. , Figure 3 is a comparison of catalyst B and catalysts 7, 8, and 9, Figure 4 is a comparison of catalysts D, E, and catalyst 1, and Figure 5 is a comparison of catalyst H and catalyst 1.
Comparison of 1, 12, and 13, Figure 6 shows catalyst K and catalyst 1.
7 shows a comparison between catalysts I and J and catalyst 5, and FIG. 8 shows a comparison between catalysts F and G and catalyst 10. From Figures 1 to 8, the catalyst of this invention is
O 2 of cerium oxide with a specific surface area of 50 m 2 /g or more has excellent Z characteristics and can obtain a high conversion rate of HC especially in the oxygen-deficient region of Z value 0.4 and 0.7.
Improvement in storage efficiency was confirmed. (Effects of the Invention) As explained above, according to the method of the present invention, the obtained catalyst is produced by mixing a slurry obtained by blending ceria with a high specific surface area with activated alumina powder that has previously contained cerium, onto a monolithic carrier. As it is made up of a material that supports precious metal components after adhering to the surface of the base material, as is clear from Table 1, the purification rate is significantly improved even though the precious metal content is reduced. The higher the ratio of high specific surface area ceria incorporated, the better the O 2 storage effect of the ceria, the higher the NO purification rate, and the more stable and high purification performance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜8図はそれぞれ実施例および比較例の触
媒のNO、HC転化率とZ値との関係を示す曲線
で、第1図は触媒Aと触媒1,2,3の比較、第
2図は触媒Cと触媒4,5,6の比較、第3図は
触媒Bと触媒7,8,9の比較、第4図は触媒
D、Eと触媒1の比較、第5図は触媒Hと触媒1
1,12,13の比較、第6図は触媒Kと触媒1
4,15の比較、第7図は触媒I、Jと触媒5の
比較、第8図は触媒F、Gと触媒10の比較を示
す。
Figures 1 to 8 are curves showing the relationship between NO and HC conversion rates and Z values for the catalysts of Examples and Comparative Examples, respectively; Figure 1 is a comparison of catalyst A and catalysts 1, 2, and 3; Figure 3 is a comparison between catalyst C and catalysts 4, 5, and 6, Figure 3 is a comparison between catalyst B and catalysts 7, 8, and 9, Figure 4 is a comparison between catalysts D, E, and catalyst 1, and Figure 5 is a comparison between catalyst H and catalysts. catalyst 1
Comparison of 1, 12, and 13, Figure 6 shows catalyst K and catalyst 1.
7 shows a comparison between catalysts I and J and catalyst 5, and FIG. 8 shows a comparison between catalysts F and G and catalyst 10.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミナゾルに、あらかじめアルミナに対し
酸化セリウムを金属換算で1〜5重量%含有させ
た活性アルミナ粉末と、アルミナに対して金属換
算で5〜50重量%の比表面積が50m2/g以上であ
る酸化セリウム粉末とを配合して得たスラリー
を、モノリス担体基材の表面に付着させた後、白
金とロジウムまたはパラジウムとロジウムから成
る貴金属成分を担持させることを特徴とする内燃
機関の排気ガス中の炭化水素、一酸化炭素および
窒素酸化物を効率よく低減させる排気ガス浄化用
触媒の製造方法。
1 Alumina sol containing activated alumina powder containing 1 to 5% by weight of cerium oxide in terms of metal based on alumina, and a specific surface area of 5 to 50% by weight in terms of metal based on alumina of 50 m 2 /g or more. In the exhaust gas of an internal combustion engine, which is characterized in that a slurry obtained by blending with cerium oxide powder is adhered to the surface of a monolithic carrier base material, and then a noble metal component consisting of platinum and rhodium or palladium and rhodium is supported. A method for producing an exhaust gas purification catalyst that efficiently reduces hydrocarbons, carbon monoxide, and nitrogen oxides.
JP59059527A 1984-03-29 1984-03-29 Catalyst for purifying exhaust gas Granted JPS60206447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59059527A JPS60206447A (en) 1984-03-29 1984-03-29 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59059527A JPS60206447A (en) 1984-03-29 1984-03-29 Catalyst for purifying exhaust gas

Publications (2)

Publication Number Publication Date
JPS60206447A JPS60206447A (en) 1985-10-18
JPH0361492B2 true JPH0361492B2 (en) 1991-09-20

Family

ID=13115833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59059527A Granted JPS60206447A (en) 1984-03-29 1984-03-29 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS60206447A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234937A (en) * 1985-04-09 1986-10-20 Mazda Motor Corp Catalyst for purifying exhaust gas of engine
US4708946A (en) * 1985-05-23 1987-11-24 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for purifying exhaust gas
ES2042687T3 (en) * 1987-10-30 1993-12-16 Degussa TRIVALENT PLATINUM-FREE CATALYST.
JP2798690B2 (en) * 1989-03-06 1998-09-17 工業技術院長 Method for producing exhaust gas purifying catalyst

Also Published As

Publication number Publication date
JPS60206447A (en) 1985-10-18

Similar Documents

Publication Publication Date Title
US5063192A (en) Catalyst for purification of exhaust gases
JPH0215253B2 (en)
JPH05184876A (en) Catalyst for purifying exhaust gas
JPH08281107A (en) Catalyst for purifying exhaust gas
JP3297825B2 (en) Exhaust gas purification catalyst
JP3251010B2 (en) Three-way conversion catalyst containing ceria-containing zirconia support
JPH05237390A (en) Catalyst for purification of exhaust gas
JP2578219B2 (en) Method for producing exhaust gas purifying catalyst
JPH0699069A (en) Catalyst for purification of exhaust gas
JPH06378A (en) Catalyst for purification of exhaust gas
JPH06114264A (en) Production of catalyst for purification of exhaust gas
JPS62282641A (en) Production of catalyst for purifying exhaust gas
JPH0361492B2 (en)
JPH07171392A (en) Catalyst for exhaust gas purification
JP4382180B2 (en) Exhaust gas purification catalyst
JP3362532B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH0554381B2 (en)
JPH0622675B2 (en) Engine exhaust gas purification catalyst
JPS6054730A (en) Catalyst for purifying exhaust gas
JPH0716466A (en) Catalyst for purification exhaust gas
JPS63104651A (en) Catalyst for purifying exhaust gas
JP3426792B2 (en) Exhaust gas purification catalyst
JPS6377545A (en) Catalyst for purifying exhaust gas
JP2948232B2 (en) Exhaust gas purification catalyst
JP2823251B2 (en) Exhaust gas purifying catalyst and method for producing exhaust gas purifying catalyst

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term